Federal Reserve Bank of Minneapolis
Research Department Staff Report 255

October 1998

Complex Eigenvalues and Trend-Reverting
Fluctuations

Costas Azariadis*

University of California at Los Angeles

James Bullard*
Federal Reserve Bank of St. Louis

Lee E. Ohanian*

Federal Reserve Bank of Minneapolis
and University of Minnesota

ABSTRACT

Autoregressions of quarterly or annual aggregate time series provide evidence of trend-
reverting output growth and of short-term dynamic adjustment that appears to be governed
by complex eigenvalues. This finding is at odds with the predictions of reasonably parameter-
ized, convex one-sector growth models, most of which have positive real characteristic roots.
We study a class of one-sector economies, overlapping generations with finite life spans of
L > 3, in which aggregate saving depends nontrivially on the distribution of wealth among
cohorts. If consumption goods are weak gross substitutes near the steady state price vector,
we prove that the unique equilibrium of a life cycle exchange economy converges to the unique
steady state via damped oscillations. We also conjecture that this form of trend reversion
extends to production economies with a relatively flat factor-price frontier, and we test this
conjecture in several plausible parameterizations of 55-period life cycle economies.
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1. Introduction

Persistence and trend reversion are two widely documented properties of the U.S. out-
put growth rate. Reduced-form representations of time series data suggest that real per capita
gross national product (GNP) and related measures of economic activity undergo damped
oscillations in response to temporary external shocks, as documented, for example, by Nel-
son and Plosser (1982), Blanchard and Quah (1989), and Cogley and Nason (1995). This
pattern appears in both the autocorrelation and the impulse-response functions of simple
GNP autoregressions (ARs), as well as in vector autoregressions (VARs) that include invest-
ment, employment, interest rates, and other variables. Temporary responses to total factor
productivity, for example, elicit from reduced-form representations of postwar U.S. data the
persistent, hump-shaped, self-reversing output reaction displayed in the solid line of Figure
1. This figure, which we reproduce from Cogley and Nason (1995, p. 499), compares the
output response of actual data to a transitory shock, represented by the solid line, and of the
business cycle model due to Christiano and Eichenbaum (1992), represented by the dotted
line. In the data, output accelerates above its trend rate of growth for a few quarters, even-
tually slowing down to below-average growth and approaching its trend level within five or
six years, whereas the model shows monotonic decay. Cogley and Nason (1995) find similar
responses for other business cycle models. We conjecture that monotonic decay would also
appear in standard versions of the descriptive growth model, the optimum growth model,
the overlapping generations (OLG) growth model with two-period life cycles, as well as the
infinite-lived extensions of the OLG model due to Blanchard (1985) and Weil (1989). Cogley
and Nason (1995, p. 500) comment that “while GNP first rises and then falls in response to

a transitory shock, the model generates monotonic decay. Thus the model does not generate
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Figure 1: The response of GDP to a transitory shock in the data (solid line) and in a business
cycle model (dotted line). In the data, output first grows at a faster-than-trend pace, then at a
slower-than-trend pace, following a shock. Eventually output returns to its preshock level. In the
model, output only grows at a slower-than-trend pace following the shock. This figure is reproduced
from the lower right panel of Figure 3 in Cogley and Nason (1995, pp. 492-511).

an important trend-reverting component in output.”

Trend reversion motion poses a serious problem for economic theorists.! It means
that complex or negative real eigenvalues appear to govern the short-term dynamics of U.S.
output and other aggregates, even though all empirically plausible one-sector models of convex
growth that we know of are incapable of reversing their equilibrium motion because all their
stable eigenvalues are positive and real. VARs, in short, turn out to imply adjustments to
transitory disturbances which differ strikingly from the predictions of all widely used growth
models. However, it seems sensible to build models which are consistent with both growth

and business cycle facts.?

'We postpone until Section 5 discussing how the temporary impulse reactions of reduced-form VARs differ
from those of one-sector growth models in persistence and trend reversion.
2This belief is based on the seminal contribution of Kydland and Prescott (1982) and the large literature



One solution to this problem is to complicate or discard some of the basic assumptions
underlying convex, neoclassical models of one-sector growth. For example, negative stable
eigenvalues occur in one-sector OLG models of endogenous fluctuations if we assume certain
types of large income effects as in Grandmont (1985), highly elastic labor supply as in Reichlin
(1986), or low elasticities of capital-labor substitution as in Benhabib and Laroque (1988).
Boldrin and Montrucchio (1986) demonstrate that a multisector optimum growth model has
a negative stable eigenvalue when the rate of time preference is sufficiently high. Complex
eigenvalues, conversely, appear in representative agent models with large nonconvexities due
to monopolistic competition as in Gali (1996) or technological increasing returns to scale as in
Benhabib and Farmer (1994) and in nonclassical growth models with investment, gestation,
or production lags as in Samuelson (1939).

None of these extended growth models does a good job of reconciling trend reversion
with growth theory, because none seems able to predict complex or negative eigenvalues for
empirically plausible choices of taste and technology parameters. OLG models with two-
period life cycles typically need elasticities of substitution in consumption or production to
be far below one in order to generate endogenous fluctuations. Multisector optimum growth
economies experience cyclical and chaotic dynamics at rates of time preference corresponding
to annual interest rates of 100% or more, according to Boldrin (1989). And estimates of
returns to scale in U.S. production due to Basu and Fernald (1997) raise questions about
the scale effects required to extract complex eigenvalues from nonconvex economies with a
representative household.

It is hard to resist the conclusion that economic theory has not yet come up with

inspired by them.



a plausible explanation for output trend reversion. What mechanisms convert a temporary
external shock to a self-reversing motion? In this paper, we propose an answer to this ques-
tion by taking a careful look at the dynamics of a relatively unfamiliar class of one-sector
growth models—OLG economies with finite life cycles of three or more periods. We focus
on this class because, as we will show, economies in this class turn out to have two prop-
erties that are unique among growth models: (1) equilibrium dynamics depend nontrivially
on the intergenerational distribution of wealth, and (2) our calculations show that most of
the stable eigenvalues turn out to be complex. These facts suggest that OLG models with
realistic life cycles and standard parameter configurations have, in principle, the ability to
duplicate, in a neoclassical context, the short-term business cycle movements of output and
other macroeconomic time series.

We proceed as follows. Section 2 sums up the evidence on the eigenvalues of the
simplest AR and VAR representations of quarterly aggregate time series. Complex or negative
characteristic roots are a fairly robust feature of the data, especially when we include lags
of at least two quarters. This finding is in accord with Section 3, which calibrates a variety
of OLG economies with and without production for life cycles of 3 and 55 periods. We
then turn to providing an explanation for the ubiquity of complex or negative eigenvalues
in OLG economies with nontrivial life cycles. Section 4 proves a theorem that rules out
monotonic convergence to the unique steady-state for endowment economies and certain
classes of production economies whenever consumption goods are weak gross substitutes at
price vectors close to the steady-state price vector. Section 5 looks more broadly at the issue
of matching the impulse-response functions of VARs with those of theoretical growth models.
A summary and a list of extensions make up Section 6.
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2. Eigenvalues in AR aggregate time series models

A large literature analyzes the time series properties of U.S. gross domestic product
(GDP) and other aggregate variables, as, for example, in Sims (1980). A widely documented
finding is that most variables are not well characterized as first-order linear univariate pro-
cesses. Instead, the data indicate a richer form of autocorrelation than is consistent with a
first-order autoregressive [AR(1)] model and thus raise the possibility of complex or negative
eigenvalues in empirical reduced forms. While the autocorrelation properties of macroeco-
nomic time series have been analyzed in detail in the literature, less is known about the
corresponding eigenvalues in these reduced-form models.

In this section, we study the eigenvalues in estimated AR models of GDP and VAR
models of GDP and other aggregate time series. We focus on the likelihood that there
are complex or negative eigenvalues in the AR and VAR representations of aggregate time
series that are routinely used in empirical macroeconomics. We start by estimating simple
univariate ARs for real GDP and report the eigenvalues based on the point estimates from
the AR. To assess sampling uncertainty in the eigenvalues, we use a nonparametric bootstrap
technique to build an empirical distribution. Following the univariate analysis, we consider
VARs between real GDP and other variables. We use postwar quarterly data, ranging from
1948:01 to 1997:04. The data include real GDP, consumption, fixed investment, and the

interest rate on three-month U.S. Treasury bills.



A. Eigenvalues in univariate ARs of GDP

We first consider univariate models of GDP:
A(L)Y; =& (1)

where A is a vector of coefficients in the lag operator L and Y is the natural log of real
GDP. Since there is no consensus on how to decompose economic time series into trend and
cyclical components, we use three approaches that have been used in the literature: (1) the
linear time trend, (2) linear and quadratic time trends, and (3) the Hodrick-Prescott (HP)
filter. For each model of the underlying trend, the cyclical component (y;) is defined as the

difference between the raw data (Y;) and the estimated trend component (Yt) :
=Y, - Y. (2)

Once the cyclical component of the data has been extracted, it is necessary to choose
the lag order in the ARs. Since several researchers have reported that AR(1) models are
rejected in favor of higher-order models, we begin by estimating an AR(2) and an AR(3)
model of the cyclical component of real GDP. We estimate the coefficients using OLS. The
two eigenvalues (A; and Ag) based on the estimated AR(2) coefficients are shown in Table 1,

and the three eigenvalues based on the estimated AR(3) coefficients are shown in Table 2.



| Table 1. Eigenvalues for GDP AR(2) Model. |

H ‘ Linear ‘ Quadratic ‘ Hodrick-Prescott H
A1 | 0.953 0.847 0.5823 + 0.0884
Ao | 0.367 0.444 0.5823 — 0.088:

Table 1: Eigenvalues for the AR(2) univariate model for GDP.

| Table 2. Eigenvalues for GDP AR(3) Model. |
H ‘ Linear ‘ Quadratic | Hodrick-Prescott H

A1 | 0.938 | 0.743 + 0.105¢ 0.714 + 0.348:
A2 | 0.536 | 0.743 — 0.105¢ 0.714 — 0.348q
Az | —0.186 —0.246 —0.350

Table 2: Eigenvalues for the AR(3) univariate model for GDP.

For the AR(2) process, we find that both eigenvalues are real and positive for the
two deterministic trend specifications (specifications 1 and 2), but both are complex for the
HP-filtered data. For the AR(3) process, we find that all eigenvalues are either complex or
negative for the quadratic and HP-filtered trends, while one eigenvalue is negative for linear
detrending. Since the eigenvalues are functions of the estimated AR coefficients, they are
subject to sampling uncertainty. To assess this uncertainty, we use a nonparametric bootstrap
technique to construct an empirical distribution of the eigenvalues. This involves the following
steps. First, we take the residuals from the fitted equations and shuffle their positions using
randomly generated numbers from a uniform density. Second, we construct pseudodata,
{gjt}le, using the reordered innovations and the originally estimated AR parameters. We
then re-estimate the AR parameters from the pseudodata and use those new parameters
to calculate new eigenvalues. By repeating this resampling procedure many times, we can
construct a histogram of the empirical eigenvalues.

Based on 500 replications, we found that the eigenvalues were always real and positive
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| Table 3. Eigenvalues for Y/C VAR Model. |
H ‘ Linear ‘ Quadratic | Hodrick-Prescott H

A | 1127 —0.147 0.596 + 0.263:
A2 | 1.013 0.534 0.596 — 0.2631
Az | 0.133 0.795 —0.081
Aq | —0.099 0.932 0.674

Table 3: Eigenvalues for the VAR with GDP and consumption.

| Table 4. Eigenvalues for Y/I VAR Model. ||
H ‘ Linear | Quadratic| Hodrick-Prescott H

A | 0977 0.451 0.713 + 0.2244
A2 | 0.497 0.892 0.713 — 0.2243
Az | 0.687 —0.033 0.329
Aq | —0.051 0.771 0.054

Table 4: Eigenvalues for the VAR with GDP and investment.

for the linear and quadratic trend cases for the AR(2) specification. For the HP-filtered
data, however, eigenvalues were complex in 92.8% of the trials. For the AR(3) specification,
complex or negative eigenvalues were a common feature across all three trend specifications.
For the linear trend, 90.6% of the trials had at least one real negative eigenvalue, and 2.6%
had at least one complex conjugate pair of eigenvalues. For the quadratic trend, 100% of the
trials had complex eigenvalues, and for the HP-filtered trend, 100% of the trials had at least
one real negative eigenvalue and one complex conjugate pair of eigenvalues. To summarize,
we found that for univariate representations, complex eigenvalues are a robust feature if HP
detrending is used and are robust for the other detrending methods for AR(3) or higher-order

processes.’

3We also analyzed an AR(4) and an AR(5) process, and the results were very similar to those of the AR(3)
in terms of the characteristics of the eigenvalues.



B. Eigenvalues in VAR representations of GDP

We next analyze eigenvalues in VARs using two-variable systems with one lag. We
extract the cyclical components of the variables using the same procedure as in the univariate
analysis. The variables in the model are GDP with consumption, investment, or the three-
month Treasury bill rate. The eigenvalues based on the VAR coefficients are shown in Tables
3-5. The two-variable systems are denoted Y/C for the output-consumption system, Y /I for
the output-investment system, and Y /R for the output—interest rate system.

As in the univariate analysis, we used the nonparametric bootstrap technique to assess
sampling uncertainty of the eigenvalues from the VARs. We found that complex or negative
eigenvalues were also a robust characteristic of these low-dimensional VARs. Table 6 summa-
rizes these results by presenting the fraction of draws in which there were either complex or
negative eigenvalues in the three systems we studied using the three detrending procedures.
We performed 500 draws in the bootstrap analysis.

Table 6 shows that complex or negative roots occurred frequently in the bootstrap
analysis. In particular, there were complex or negative roots in the output—interest rate
VAR in each of the 500 draws. The only case in which this did not occur virtually every
time was the linear-quadratic detrending case in the output-investment VAR, in which 75
percent of the draws had either complex or negative roots. The analysis presented in this
section thus suggests that commonly used reduced-form models of major macroeconomic
time series, detrended with conventional procedures, produce characteristic roots that are

frequently complex or negative.



| Table 5. Eigenvalues for Y/R VAR Model. |

H | Linear ‘ Quadratic | Hodrick-Prescott H
M 0.349 0.422 0.746 + 0.2657

A2 | 0.936 4 0.047¢ | 0.878 +0.0757 | 0.746 — 0.265¢

Az | 0.936 — 0.047¢ | 0.878 — 0.0757 | 0.243 + 0.161%

A 0.150 0.125 0.243 — 0.161:

Table 5: Eigenvalues for the VAR with GDP and an interest rate.

Table 6. Frequency of Negative
or Complex Eigenvalues in VARs.

H | Linear ‘ Quadratic ‘ Hodrick-Prescott ‘

Y/C| 97.6% 98.6% 99.8%
Y/I | 92.6% 75.2% 100.0%
Y/R | 100.0% | 100.0% 100.0%

Table 6: Frequency of complex or negative eigenvalues in VAR estimates, based on bootstrap
estimates of sampling uncertainty.

3. Dynamic adjustment in life cycle economies

We explore next the characteristic roots of deterministic OLG economies with finite
life cycles of L > 3 periods, identical households within each generation, and time-invariant
characteristics (population, preferences, endowment vectors, and technology). If all pairs of
dated consumption goods are weak gross substitutes at all price ratios, then, as Kehoe et al.
(1991) show, every endowment economy in this class admits no limit cycles; every endowment
economy has instead a unique real steady state with unvalued government liabilities and a
unique equilibrium sequence converging to that state.* More relevant for business cycle anal-
ysis is that local uniqueness holds under very weak assumptions. Kehoe et al. (1991) prove
that the equilibrium sequence is unique near the steady state if dated consumption goods
are gross substitutes at all price ratios close to the steady state. In either case, uniqueness

means that the number of stable eigenvalues exactly equals the number of initial conditions

4For details, see Section 4.
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describing the distribution of wealth among generations at the beginning of time. Another
conclusion we can draw from the convergence result is that life cycle economies eventually
dissipate external impulses and cannot deviate from their steady state for any prolonged pe-
riod of time unless they are periodically shocked from outside. Kehoe et al. (1991), however,
do not say whether convergence is monotonic or oscillatory.’

To sort things out, we compute eigenvalues for a fairly large class of homothetic life
cycle economies with and without production for two life cycle lengths: L = 3 to explore
the economic intuition behind the trend-reversal phenomenon and L = 55 to approximate
the year-to-year dynamic adjustment process of a plausibly calibrated economy. In every
economy we consider, there is one consumption good, and the trend rate of growth is exactly

zero. No technological change or population growth takes place. Each household has utility
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where ¢,(t +7) is the consumption of the agent born in period ¢ in period t + ¢, the discount
factor is § > 0, and the curvature parameter v > 0, v # 1, describes the inverse elasticity of
intertemporal substitution.

In pure exchange economies, agents receive consumption good endowments e; > 0 in
each period of life t = 1, ..., L and store value in personal loans. The net supply of these loans
is zero. We normalize the community endowment to unity, setting Zle e; = 1.

Production economies, on the other hand, use capital and labor to produce a single

% Auerbach and Kotlikoff (1987) and Huang, Imrohoroglu, and Sargent (1997) simulate long-term behavior
of production economies with a 55-period life cycle and find convergence to be monotonic, possibly due to the
capital stock adjustment costs included in their economies. Recursive equilibria, studied by Rios-Rull (1996),
also exhibit monotonic convergence.
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consumption good under constant returns to scale. The supply of efficiency labor units is
inelastic, denoted by w; > 0 for ¢ =1, ..., L, and normalized again to sum to one. The stores
of value in this economy are loans (in zero net supply) and capital (in positive net supply).

Technology is in the CES class; that is,

y(t) =0 [ak(t) ?+1—a] ", (4)

where y(t) is output in period t, k(t) is capital (also the capital-effective labor ratio) in
period t, the scale parameter § > 1, capital share a € (0,1), and p > —1 governs capital-
labor substitutability. If p = 0, the technology is Cobb-Douglas. Capital depreciates at the
net rate 6 € [0, 1].

If we denote total household assets held in period t by A(t), then the equilibrium

condition corresponding to unvalued or nonconstant government liabilities is

At) =0 (5)

for endowment economies and is

Alt) — k(t+1) =0 (6)

for economies with production.
Each economy contains L asset trading generations from the youngest at age ¢ = 0 to
the oldest at age: = L—1. Trading plans in period ¢ are conditional on the 2L.—1 dimensional

price vector p* = (pi_ri1, ., Pty -y Prar—1) - Walras’ law and the zero-degree homogeneity of
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excess demands mean that trading plans depend on just 2L — 3 price ratios. Hence, the
equilibrium conditions (5) and (6) are nonlinear difference equations of order 2L — 4 and
2L — 3, respectively. These conditions are supplemented by L — 2 initial conditions in the
endowment economy and L — 1 initial conditions in the production economy, which describe

the pre-existing asset and liability positions of households in the initial period ¢ = 0.

A. Logarithmic endowment economies with three-period lives

Equilibrium in these economies is any solution to the second-order difference equation

u(t) + aya (t) = 0, (7)

for t = 1,2, ..., which satisfies the initial condition

040(0) + Oé_l(O) =0. (8)

In these equations, a;(t + i) denotes claims on other households held by a household of
generation ¢ at the end of period ¢t + i, for i = 0, 1,2, .... Equation (8) is an initial condition
that specifies what the two transitional generations owe each other; it is the equivalent of
fixing the interest rate at t = 0.

As a starting example, we use the logarithmic utility function u' = In¢,(t) + S 1In ¢, (¢t +
1) + 3% Inc(t +2) for each generation ¢ = 1,2, ..., and the endowment vector (e, e1,es) € R?

such that eg + e; + e; = 1. We start with the asset accumulation identities:

al(t) = eo—alt) (9)

13



a(t+1) = Ruoy(t)+e —c(t+1) (10)

where R; = p;/pi;1 is the real interest factor on loans made at ¢ and repaid at ¢t + 1. The

consumer’s first-order conditions yield

Ct(t + 1) = ﬁRtCt(t), (11)
eo+ & + 52—
alt) = 15 (12

Substitution of (9) and (10) into (7) and (8) yields the second-order equation

Ti41 = Rt (13)
_ Yé2
Ryq = T i) (14)
where v = Wiﬁ“ and
f@R) = {Q-y)eo+[1-(1+pP)]er+eg[l—(1+08)7]z} (15)

xR —v[er+ (14 f)e].

As we detail in the Appendix, equation (15) turns out to have a unique steady state

R, just as predicted by Kehoe et al. (1991). It also has a characteristic polynomial

7(AN) =X =TA+D (16)
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with

T = —(if?+D><o (17)
A= 1-7e+[1-010+3) e (19)

and two negative eigenvalues such that

A < —1< A\ <O. (20)

Combining the initial condition (8) with the single stable eigenvalue (20), we conclude
that real equilibrium is unique in this economy. Whenever the initial distribution of claims
{ap (0),_1 (0)} happens to deviate slightly from its steady-state configuration for whatever
reason (for example, unexpected policy intervention), the interest rate will also differ from
its stationary value R. Dynamic adjustment to R can be locally approximated by the linear
equation

R,— R= X\ (R_1—R) (21)

in which —1 < A; < 0. The adjustment path shown in Figure 2 shows the oscillatory pattern

consistent with reduced-form VARs.

B. More-general endowment economies with L = 3
In this section, we explore how robust a negative stable eigenvalue is among exchange

economies with a three-period life cycle. To do so, we calculate numerically the eigenvalues
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Figure 2

Qualitative impulse-response.
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Figure 2: The qualitative impulse-response for a logarithmic preferences life cycle endowment
economy with L = 3.

of large numbers of economies drawn from certain classes and report the results. From this,
we gain intuition about the nature of eigenvalue constellations in larger, more interesting

models.

Constant Relative Risk Aversion (CRRA) utility
with gross substitutes maintained

The logarithmic preferences economy discussed above possesses a single stable eigen-
value which is always real and negative. Our first extension is to study a class of similar
economies in which preferences are in the CRRA class, but in which the curvature parameter
is restricted to lie between 0 and 1. By limiting these economies to intertemporal substitution
elasticities greater than unity, we preserve the gross substitutes property. We conjecture that
the negative stable eigenvalue is always a feature of gross substitutes endowment economies
in this class with L = 3. Preferences are given by (3) with L = 3. An economy in the set F;

is a tuple (3,7, e1,eq,e3) € By, with € (0,1), 7€ (0,1), e +ea+e3 =1, and e; > 0. An

16



H Table 7. Eigenvalues of economies in F; H

H | Minimum ‘ Maximum ‘ Median H
A —5353 —1.918 —6.57
Aa | —0.842 —0.068 —0.329
R 0.303 1660 2.07

Table 7: Summary statistics for eigenvalues and the interest rate of 1,000 randomly selected
economies in F;. This class of economies is large in the sense that discount factors near zero
and endowments near zero and in arbitrary sequence are allowed.

economy is randomly selected from FE; as follows. The preference parameters 3 and v are
randomly selected from uniform distributions on the unit interval. For the endowments, we

select three random numbers from uniform distributions on the unit interval, say, 1, 79, 3.

Ti
ritra+rs

We then create an endowment pattern by setting e; = . This procedure encompasses
a wide class of possible endowment patterns. With an economy in hand, we calculate the
steady state and then find the associated eigenvalues. We repeat this process to create a
sample of 1,000 economies in ;.

The results shown in Table 7 strengthen our conjecture about the relationship between
the negative stable eigenvalue and the gross substitutes property. In particular, the eigenval-
ues for the 1,000 economies in F; are always real and negative. One of these eigenvalues is
always outside the unit circle, while the other is inside. Thus, adjustment to the steady state
following a temporary disturbance is always damped and oscillatory for these economies. We
also report the steady-state interest rate for these economies, which can be either less than
or greater than unity, indicating for the former cases that these economies can sometimes

be inefficient. However, this fact does not affect the qualitative local dynamics around the

steady state.
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Additional curvature

If we allow significant curvature in preferences, the gross substitutes property does not
necessarily hold and the uniqueness of steady state equilibrium can be lost. However, we want
to explore how our results from the preceding subsection change if v > 1. To reduce clutter and
report the most interesting features, we also restrict the remaining parameters. Accordingly,
an economy in Fs is a tuple (3,7, e1,e2,e3) € Ey in which the following restrictions apply.
We choose from a uniform distribution v € (0,3), which implies intertemporal elasticities
of substitution as small as % The discount factor is chosen from a uniform distribution on
(0.5,2), corresponding to rates of time preference that might be viewed as realistic given the
length of the time period. The endowment sequence is restricted to be hump-shaped with e; =
e3 and the middle endowment chosen from a uniform distribution with ey € (eq,3e;). This
pattern corresponds roughly to data sometimes used to calibrate larger models, in which the
peak endowment is about 1.7 times the first endowment and the final endowments are of about
magnitude equal to the initial endowments. We maintain the restriction that e; +es+e3 = 1.
We randomly select 1,000 economies from Fy and calculate the steady state as well as the
associated eigenvalues.

The results are shown in Figure 3. These economies turn out to always have a unique
steady state, and they continue to possess a single stable eigenvalue. This stable eigenvalue,
however, can now sometimes be positive. In Figure 3, we plot the value of the stable eigen-
value for each of our 1,000 sample economies against four characteristics of the economy. In
Panel A, the value of the stable eigenvalue is plotted against es, which can be interpreted
as the peakedness of the endowment pattern. It is clear that flatter endowment sequences

tend to preserve the negative sign on the stable eigenvalue. Similarly, Panels B and D show

18



Figure 3. How the negative stable eigenvalue relates to properties of
endowment economies.
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Figure 3: The stable eigenvalue for the 1,000 economies in Fjs is typically negative. The four panels
relate the stable eigenvalue to characteristics of these economies.

that discount factors less than unity and curvature parameters less than two tend to preserve
the negative sign on the stable eigenvalue, regardless of other parameters. Panel C relates
the value of the stable eigenvalue to the steady-state gross interest rate. Here, we see that
the inefficient economies, those with gross interest rates less than unity, can be characterized
by a positive stable eigenvalue. These results suggest that oscillatory adjustment to transi-
tory shocks can characterize efficient economies with empirically plausible features: positive
rates of time preference, relatively flat endowment profiles, and relatively high elasticities of

intertemporal substitution (above 3).
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C. Production economies with three-period life cycles

In economies with three-period life cycles and production, the dimension of the asso-
ciated dynamic system increases by one. Initial conditions are now the holdings of capital
owned by the agents who have been alive for one and two periods. For determinacy to hold,
we expect two stable eigenvalues in these systems. We use the same CRRA utility func-
tion and the CES production function given by equation (4). Labor supply is inelastic and
normalized to unity. An economy in the set F3 is a tuple (3,7, e1, ez, €3, a, p,8), where «
is capital share, p is the inverse of the elasticity of substitution between capital and labor,
and ¢ is the net rate of depreciation for physical capital. For the preference parameters, we
choose from uniform distributions g € (0.5,2) and v € (0.5,3). We use the hump-shaped
endowment pattern described in the preceding section. For the production parameters, we
choose, again, from uniform distributions, a € (0.25,0.4), p € (—0.5,0.5), and § € (0.8,1).
We set the scale parameter 6 to 10, which is sufficient to guarantee existence. We calculate
the steady state and the associated eigenvalues.

The 1,000 economies in E3 always possess a unique, determinate steady state. In each
case, we find that one stable eigenvalue is real and positive and the other is real and negative.
The modulus of the two eigenvalues is of similar magnitude in most cases, but the positive
eigenvalue is larger in absolute value in about 85% of the economies. Figure 4 shows our
findings and relates the characteristics of the economies to the magnitude of the two stable
eigenvalues. The results here are much less ambiguous than those for the economies in Fj.
Here, the negative eigenvalue is always present and can be dominant under many parameter

configurations.
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Figure 4. How the stable eigenvalues of 3-period production economies
relate to economic characateristics

Panel A
1
i 0.5
= o0
® .0.51
-1 T T T T
0 0.5 1 1.5 2 25
beta, discount factor
Panel C
1
i 0.5
- 0
© .05
-1 T T T
0 1 2 3 4
gamma, reciprocal of IES
Panel E
1
¥ 0.5
0
© .0.51
-1 T T T
0.3 0.4 0.5 0.6 0.7

peakedness

Panel B

0.2

0.25 0.3 0.35 0.4
alpha, capital share

0.45

Panel D

0.51

s B

-0.6

-0.4 -0.2 0 0.2 0.4 0.6
rho, capital-labor substitutability

Panel F

0.8 0.85 0.9 0.95 1
delta, depreciation rate

1.05

Figure 4: The two stable eigenvalues of three-period production economies, related to characteristics

of these economies.
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D. Production economies with 55-period life cycles

We ultimately want to understand the local dynamics of life cycle economies with
many periods, in which agents are allowed to make decisions and thus react to shocks at
many points in their lives. Accordingly, we study economies with L = 55, annual models.
Here we calibrate the economies much more sharply in order to reduce the number of cases
we need to calculate. Our calibration proceeds as follows. We use a productivity profile
based on Hansen (1993).° We set the following parameters at annualized values: 3 = 0.98,
6 = 0.065. We set capital share o = 0.33. That leaves two parameters, curvature in preferences
and capital-labor substitutability, which can be viewed as the most interesting parameters
for dynamic adjustment. We explore nine cases based on the following (p, ) pairs: A =
(-0.5,1.1), B=(-0.5,2),C = (-0.5,5), D =(0,1.1), E = (0,2), F = (0,5), G = (0.5,1.1),
H = (0.5,2), and I = (0.5,5). Accordingly, case D is close to a log-log specification, in
which preferences are logarithmic and production is Cobb-Douglas.” For each case A, ..., I,
we calculate the steady state of the system. In principle, uniqueness of the steady state is
not guaranteed, but multiple steady states do not occur for these parameter configurations.
There is also the question of whether the calculated steady states are efficient or inefficient.
The gross growth rate in these economies is one, so any gross interest rate greater than one

indicates that the equilibrium is efficient. Steady-state interest rates are always greater than

6The Hansen data are collected from samples taken in 1979 and 1987. The data separate males from
females. We average the data from the two years, and we also average the data across males and females
using weights of 0.6 and 0.4. The resulting profile is a step function, because the data are collected for
age groupings. We fit a fifth-order polynomial to this step function. This yields the smooth profile e; o
= mo + myi + mai® + mai® +myi* + msi® for i = 21,...,76, with the vector of coefficients m = [—4.34,
0.613, —0.0274, 0.0063, —0.717 x 1073, 0.314 x 10~7]. This profile peaks at agent age 28 (figurative age 48),
when productivity is about 1.6 times its level at agent age 1 (figurative age 21). Productivity in the final
year of life is virtually the same as in the first year of life.

"To avoid special programming code, we did not allow the case in which v is exactly equal to unity. This
makes little difference for the results.
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Figure 5

Eigenvalues, 55-period model
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Figure 5: The eigenvalues for Case DD. The eigenvalues in the inner loop are all inside the unit
circle. Since there are 54 of them, the economy is determinate. The cases A, ..., I all produced
qualitatively similar diagrams.

one for each of the nine cases A, ..., I, so we are looking at only efficient economies.

We study the local dynamics of these economies. In Figure 5, we plot the associated
eigenvalues in the complex plane for case D. Each square plotted represents an eigenvalue
associated with the unique steady state. The eigenvalues on the inner loop are all less than
unity in modulus, and since there are exactly 54 of them, the equilibrium is determinate.
Perhaps more importantly for our purposes, nearly all the roots are complex and of about
equal modulus.® Thus, we expect the local dynamics of these systems to be characterized

by fluctuating motion. The qualitative features of this figure are the same for the other nine

8Laitner (1990) calculates eigenvalues for a small sample of alternatively parameterized large life cycle
economies and finds complex eigenvalues. In those economies, taxes play an important role.
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H Table 8. Comparison of cases A, ..., 1. H

Economy Minimum | 2"¢ Smallest | Largest Stable

(p,7) Modulus Modulus Modulus
A= (-.511) 0.153 0.856 0.944
B =(-.5,2) 0.049 0.881 0.956
C = (-.5,5) 0.003 0.833 0.993
D =(0,1.1) 0.163 0.837 0.930
E =(0,2) 0.104 0.855 0.939
F=1(0,5) 0.017 0.777 0.981
G =(.5,1.1) 0.164 0.759 0.932
H = (.5,2) 0.122 0.797 0.937
I=(.5,5) 0.033 0.744 0.973
Table 8: Summary of eigenvalues for cases A, ..., I.

cases—we always find two groups of eigenvalues, one group lying roughly evenly spaced on an
ellipse outside the unit circle and the other lying roughly evenly spaced on an ellipse inside
the unit circle. The idea that the eigenvalues are roughly evenly spaced can be documented
if we translate to polar coordinates and measure the distance between eigenvalues in degrees.
In this metric, the stable eigenvalues are all about 360/54 degrees apart, the only substantial
exceptions occurring near the point (1,0) in the diagram, where the roots are slightly farther
apart. Of the two stable real roots one has modulus comparable to the complex roots and
the other is relatively small and negative. We summarize the results for the nine cases in

Table &.

4. Trend reversion and gross substitutes

Simulations from Section 3 suggest that gross substitutes tend to rule out monotonic
convergence—specifically, if all pairs of dated consumption goods are weak gross substitutes
in the neighborhood of the steady-state price vector, then equilibria near the steady-state

exhibit damped oscillations for all exchange economies with a life cycle L > 3 and for some
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production economies as well.

Under gross substitutes, aggregate asset demand—which must vanish in an exchange
equilibrium—is an increasing function of all relevant interest rates. This technical result
means roughly that all L — 1 nontransitional households will keep building their assets as
long as interest rates remain above the steady state, and the resulting asset gain must be
exactly offset by the reduction in asset holdings of the lone transitional generation—the oldest
one alive. For a large value of L—that is, a short trading period—monotonic decay toward
the steady state would seem to require an enormous stock of assets in the hands of the oldest
living cohort.

Intuition supporting the conjecture of damped oscillations is easier to conjure up in
an exchange economy with the typical peaked endowment pattern. Consumption smoothing
in this environment produces a steady state in which the young borrow from the middle
aged, repay loans and build up assets in middle age, and draw down these assets in old
age. If the interest rate at t is above its steady state value R, then young agents postpone
consumption and reduce their liabilities. Middle-aged agents, according to equation (7), must
correspondingly reduce their asset holdings even as they are shifting consumption away from
the current period ¢t. This is a consistent course of action for them only if the middle aged
reduce current consumption to repay unusually high debts carried from the previous period
t — 1. Unusually high consumption in youth is rational only if the interest rate was unusually

low at ¢t — 1. Hence, R; > R implies that R;_1 < R.
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A. Convergence in exchange economies

Formal results come from studying a double-ended deterministic exchange economy
with finite life cycles of length I = T+ 1 > 3, constant population, and one agent in each
cohort. Our economy is very similar to the one in Kehoe et al. (1991). We denote time
periods by t = 0, 4+1,+2, ..., and cohorts by v. Each cohort has a stationary, nonnegative en-
dowment vector ¢’ = {e’ H};TFZO = {e;}._,, a consumption vector ¢ = {c, (v +14)}._,, and an

additive utility function U" = Zf:_ol Bule, (v +1i)], B > 0, satisfying standard smoothness,

monotonicity, and convexity properties.

v+T

+—,, » which implies price ratios or

The price vector relevant to cohort v is p¥ = {p;
interest rates { R; t”;T with R; = p/piy1. Maximizing utility subject to the budget constraint

p’(¢” —¢e”) <0 leads to asset demand schedules of the form

t

o) = X (B few a0 (22)

=V Pt
2(p"/pist —v). (23)

These schedules satisfy standard accounting and budget constraints; that is,

ay(t) = Ri—ray (t—1) + e1—y — (1), (24)

wheret=v+1,...,v+T —1 and

a,(v—1)=0=a,(v+T). (25)
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For each stage of the life cycle t — v =0, ..., T, the asset demands are homogeneous of degree
zero in the vector p”, depending only on the vector p* /p; = (p, /D4, ..., Pvrr/pt) for any cohort
v and any time period ¢t = v, ...,v + 1. Since price ratios are products of interest factors, we

can rewrite real asset demands as functions of these interest factors; that is,

au(t) = 2" (Rw'“vRVJrTfl;t_y)' (26)

Gross substitutability implies that each asset demand schedule is monotonic in the vector of

interest factors. We prove in the Appendix the following result:

LeMMA 1. (Monotonicity.) If all pairs of dated consumption goods are weak gross substitutes
for cohort v, then «,(t) is an increasing function of the vector (R,,..., R, r 1) for each

t=v,.,.v+T—1.

Monotonicity easily extends to the aggregate real asset demand schedule at time ¢:

.
=
I
Q

<
=
Il

Z* (RthJrla sy RtJrTfl) ; (27)

which depends positively on a 27" — 2 dimensional vector of interest factors.

This economy admits a unique stationary real equilibrium but no periodic real equilib-
ria. Stationary equilibria are constant interest rate sequences R, = R* > (0 or geometric price
sequences p; = po (R*) ™", satisfying A(t) = 0 for t = 0,41, 42, .... The increasingness of the
schedule z* rules out multiple steady states, and Kehoe et al. (1991, pp. 13-15) demonstrate

that one such state exists by bounding z* from above and below. We sum up in the following:
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LeEMMA 2. (Uniqueness of the steady state.) Weak gross substitutes imply that a unique

nonmonetary steady state exists.

Of immediate concern to us are high-frequency adjustments to temporary external
shocks at, say, ¢ = 0. To study the adjustment process, we look at how the economy evolves
from t = 1 onward either after an unexpected shock that disturbs a stationary equilibrium at
t = 0 or after an anticipated policy intervention that fixes wealth for all generations at the end
of period ¢t = 0. In either case, a nonstationary equilibrium sequence { R, };°, satisfies A(t) = 0,
t=1,2,..., plus T'— 1 independent initial conditions which fix the wealth of all pre-existing
generations at the end of period ¢ = 0. These initial conditions fix {a;_7(0), ..., ¢(0)} and, in
addition, constrain ZBZI_T a,(0) = 0. The last equation means that transitory generations
v=1-T,...,0 hold claims against each other only, not against cohorts born at ¢ = 1 or later.

Nonstationary equilibria are solutions to the difference equation A(t) = 0, which has
order 27 — 2 or 2L — 4 in the price vector {R; 7.1, ..., Ry 1}, subject to the T'— 1 initial
conditions. Kehoe et al. (1991, pp. 6-7, 18) prove that there can be no more than one such

solution for each economy.

LeEMMA 3. (Uniqueness of equilibrium.) Under weak gross substitutability, there is at most

one equilibrium price sequence which, if it exists, converges to the steady state.

Two corollaries of this result are that limit cycles cannot exist when consumption goods
are gross substitutes at all price ratios and that limit cycles cannot exist near the steady state
if gross substitutability obtains at prices near the steady state-price vector. More relevant for
our purposes is the added implication that the steady-state R* has T'— 1 unstable eigenvalues

with modulus larger than one and 7" — 1 stable eigenvalues with modulus smaller than one.
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Convergence to R* will take place on the stable manifold of this economy, a 7'—1 dimensional
subspace defined near R* by the eigenvectors which correspond to the stable roots.

Trend reversion requires that deviations from the steady state die out as damped
oscillations, not as monotonically decaying motions. None of the preceding results say whether
the T'— 1 stable eigenvalues are complex or negative, and it would seem very hard to extract
such information about the nature of these roots from first principles. The main theoretical
result of this section is that convergence to R* involves some damped oscillatory motion.

Formally, we have the following:

Theorem 1. If dated consumption goods are weak gross substitutes at price ratios near

R*, then the unique equilibrium price sequence {R}}," ., if it exists, cannot be monotonic.

Proof. Monotonic convergence implies that for all ¢ > 7, either R} > R* or Ry < R*. In
view of equation (27), the first alternative means that A(s) > 0 for all s > 7+ T — 1. The
second alternative means that A(s) < 0 for all s > 7+ 7T — 1. Both implications violate the

equilibrium condition A(¢) =0. B

We conclude that some of the T" — 1 stable roots associated with the steady state R*
must be complex or negative and that adjustment in the neighborhood of R* is dominated

by these eigenvalues.
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B. Convergence in production economies
The equilibrium of a production economy with a life cycle of L > 2 periods satisfies a

difference equation of order 2L — 3, which represents zero aggregate excess demand for assets,

A(t) — k(t+1) =0, (28)

plus L — 1 independent initial conditions fixing the wealth of transitional generations, that is,
{a1 7(0), ..., a0(0)} given S0, (0) = k; > 0. Despite the similarities between this econ-
omy and the preceding one, Lemma 3 and Theorem 1 do not extend directly to economies with
production. Calvo (1978) and Kehoe (1985), in particular, provide examples of nonunique
equilibria in economies with gross substitutability in consumption and a high degree of com-
plementarity in production. We recall also from Section 3 the simulations of the OLG growth
model with a three-period life cycle summarized in Figure 4. In that figure, the stable eigen-
value with the largest modulus can be either positive or negative, even for utility functions
satisfying v < 1, that is, functions for which consumption goods are gross substitutes at all
price ratios. Hence, gross substitutability is not sufficient to rule out monotonic convergence
in OLG growth models with nontrivial life cycles.

The logic of these counterexamples to uniqueness and trend reversion is not entirely
clear, but seems to rest on the correlation of prices with incomes as an economy adjusts
toward its steady state. In endowment economies, incomes are fixed and uncorrelated with
prices or interest rates. In production economies, however, interest rates and wage incomes
are negatively correlated by the factor-price frontier.

Deviations from the steady state affect interest rates and wages in opposite directions
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and exert two conflicting forces on savings plans: a higher-than-normal interest rate tends
to postpone current consumption and raise asset holdings, while a lower-than-normal wage
rate (and wage income) will lower assets as the household borrows against future earnings
to smooth out its consumption path. Dynamic adjustment in production economies seems
to depend on the balance of these two conflicting forces, that is, on the steepness of the
factor-price frontier near the steady state. We conjecture that production economies with

relatively flat factor-price frontiers will behave like endowment economies.

5. Matching models with data

Comparing the tables of Section 2 with the simulations of Section 3 reveals remarkable
qualitative similarities in the dynamic adjustment pattern of aggregate time series autore-
gressions with that of life cycle economies. VARs and life cycle models display a persistent,
self-reversing response to temporary output and interest-rate shocks. The dominant eigen-
values of HP-filtered and quadratic filtered quarterly VARs in Tables 2, 4, and 5 are complex
with modulus in the intervals [0.75, 0.80] and [0.75, 0.90], respectively. The characteristic
roots of empirically plausible simulations of 55-period OLG economies are also complex with
modulus between 0.80 and 0.98. As a benchmark, we note that the unique stable eigenvalue
of the most basic optimal growth model is 0.975 for quarterly time periods.’

When adjustment to external stocks is dominated by a pair of complex eigenvalues

v &£ ju, as it is in both OLG models and autoregressions of postwar U.S. aggregate time

9This represents the stable eigenvalue of a model with a fixed labor supply, no adjustment costs of any type,
homothetic instantaneous utility u(c) = (1 —~)~" ¢1=7, Cobb-Douglas technology f(k) = k“, and constant
capital depreciation and utility discount rates (6, 3), respectively. We close the parameterization (v, p, v, §) =
(0.33,0.01,2,0.02) and the time unit to be a quarter. The stable eigenvalue is the only root of the polynominal

7(A) = A2 =TA+ D in the interval (0,1) for 1/3 = 1+4p, D = 1+4p, T =2+p-+0, = L-0)etd) (% —5).

When p and 6 are smaller than 0.05, the stable eigenvalue is well approximated by 1 — V.
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series, the impulse response of a deviation from a stationary trend subject to initial conditions
(29, 21) = (0,1) takes the form

B ¢ 15in 0t
T =r" T ——

(29)

sind

where r is the modulus of each root; that is, r = (7 + MQ)I/Q and cosf = v/r.

Any sequence {z;},-, conforming to equation (5.1) displays positive autocorrelation at
high frequencies (that is, z;z;1 > 0) and trend reversion twice in each cycle (that is, z;z,11 <
0). The natural question to ask next is, Can we develop qualitative similarities between life
cycle economies and AR representations of aggregate time series into a quantitative match?
Is there, in particular, a realistic parameterization of an OLG economy that will duplicate
the autocorrelation, spectral density, and impulse-response functions of reduced-form VARs?

Duplicating the evolution of U.S. output at cyclical frequencies has proved to be a
difficult job for any growth model, as documented, for instance, by Burnside, Eichenbaum,
and Rebelo (1993), Cogley and Nason (1995), and Rotemberg and Woodford (1996). Models
based on one-sector optimum growth and one-sector infinite life cycle overlapping generations
tend to display persistence and no trend reversion because their dominant eigenvalues are
positive. Temporary output shocks decay monotonically and have an implied half-life that
varies from 2 to 20 quarters. Persistence can be changed by tweaking some parameters, for
example, by adding adjustment costs to capital or labor, lowering the depreciation rate, or
raising the elasticity of intertemporal labor substitution.!” As we explained in Section 1,

trend reversion cannot occur without major departures from normal parameter values.

10 A1l these added features slow during the adjustment of the capital-labor ratio to its steady state, either by
reducing the elasticity of saving to deviations of the capital-labor ratio from the steady state or by generating
labor supply movements in the same direction.
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Both persistence and trend reversion are built into life cycle economies when consump-
tion goods are weak gross substitutes and productive factors have a relatively flat factor-price
frontier. These qualitative features stem from the interaction between aggregate saving be-
havior and the distribution of wealth over consumer cohorts. At any point in time, aggregate
consumption in a life cycle economy reflects the distribution of permanent income among
active households, not just aggregate permanent income. When that distribution fluctuates,
so will economic aggregates.

Matching life cycle models with data seems to us quite a challenge. For example,
the simulations of 55-period models in Section 3 lead us to believe that OLG models have
too much persistence, even with no intertemporal substitutability in the labor supply. Their
dominant eigenvalues imply that temporary shocks have exceptionally large half-lives ranging
from 12 to 32 quarters. Another problem is the computational complexity of a quarterly life
cycle model with positive intertemporal elasticity of substitution and a list of state variables
running in the hundreds. Finally, explaining the hump-shaped nature of impulse responses
may prove as much of a problem for life cycle models as it has been for representative agent
models. The hump shape signals an amplified impulse, possibly due to a nonconvexity or
indivisibility in factor markets.!!

One useful step would be to compare in detail how the autocorrelation and impulse-
response functions implied by U.S. output ARs match those of a calibrated 55-period OLG

economy.

"Bernanke and Gertler (1989) and Ramey and Watson (1997) study how the indivisibility of invest-
ment projects and jobs can amplify external shocks in economies with private information. Azariadis
and Chakraborty (1998) explore amplification in economies with increasing returns to scale in financial
intermediation.
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6. Conclusions

Convex life cycle economies with pure exchange or with production under constant
returns to scale are the simplest class of models consistent with the trend-reverting behav-
ior of U.S. output. This behavior is documented by reduced-form VARs in their response
to temporary impulses and in their characteristic roots, which tend to be overwhelmingly
complex or negative. Complex eigenvalues also occur in OLG economies with pure exchange
when dated consumption goods are gross substitutes near the steady state and aggregate
saving depends nontrivially on the distribution of household wealth among successive cohorts
of individuals. We conjecture that an array of complex eigenvalues is a likely feature of all
life cycle economies with a reasonably large number of decision points in the life cycle. These
complex eigenvalues are of comparable modulus to the largest real root.

The qualitative similarity between life cycle economies and VARs in their dynamic
adjustment paths naturally brings to the fore the question of quantitative fit. Are there em-
pirically plausible parameterizations of OLG economies in which eigenvalues, autocorrelation
functions, and responses to temporary productivity or liquidity shocks match quantitatively
those of fitted VARs? Section 5 outlines some of the computational and conceptual prob-
lems involved in answering this question. We hope that some of our colleagues will become

addicted to answering it.
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Appendix

A. Eigenvalues a of three-period endowment economy

Uniqueness of the steady state R follows from the monotonicity of the expression
R — ves/ f(R, R), which is derived from equation (13). Similarly, we show that R? > ve,/A.
This means that 7 has a positive discriminant, 7(—1) =1+ 7T + D < 0, and that there are

two negative eigenvalues which straddle —1, as asserted in the text.

B. Proof of Lemma 1

We show that asset demand «,(t) by cohort v at time t = v,...,v + T is increas-
ing in the interest factor R;. To do this, we ask how «,(t) reacts when we replace the
price vector (p*) = (Py,...;ppsr) With (5) = (Apy, ..., APy, Pet1, o, Do) Or With (p7) =
(Puy ooy Pty Dea1 [ Ay oy D/ A) for some fixed A > 1. Each of these substitutions raises the price
ratio R; = p;/piy1 while keeping all other price ratios constant. Weak gross substitutabil-
ity means that the consumption vectors (¢”, ¢, ) corresponding to these price systems will

satisfy

éu(s) > ¢ (s) (30)

fors=t+1,...,v+T and

&(s) < cu(s) (31)

for s = 1,...,t. From these inequalities and the asset accumulation identity in equation (24),

we obtain

eu(s) —cu(s) = Rs_1 [Gu(s — 1) —ap(s — 1)] — [au(s) — aw(s)] > 0 (32)
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fors=t+1,...,v+7T and

cu(s) —cy(s) = Rs 1 [au(s—1) —ay(s —1)] — [a,(s) — a(s)] <0 (33)

for s = v, ..., t. Initial wealth is zero, and rational consumption requires terminal wealth to

be zero as well; that is,

av+T)=a,v+T)=a,v—-1)=da,r—-1)=0. (34)

Inserting (34) into (32) and (33) leads to

fors=t+1,..,v+T and

a,(s) > ay(s) (36)

for s = v, ...,t. Taken together, these two inequalities show that an increase in R, raises the

entire asset profile of cohort v =t — 1T, ...,t.
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