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ABSTRACT___________________________________________________________________ 

We develop a restart algorithm based on Scarf’s (1973) algorithm for computing approximate 
Brouwer fixed points. We use the algorithm to compute all of the equilibria of a general 
equilibrium pure-exchange model with four consumers, four goods, and 15 equilibria.  The 
mathematical result that motivates the algorithm is a fixed-point index theorem that provides a 
sufficient condition for uniqueness of equilibrium and a necessary condition for multiplicity of 
equilibria. Examining the structure of the model with 15 equilibria provides us with a method for 
constructing higher dimensional models with even more equilibria. For example, using our 
method, we can construct a pure-exchange economy with eight consumers and eight goods that 
has (at least) 255 equilibria. 
______________________________________________________________________________ 

JEL Codes: C60, C62, C63, D51 

Keywords: uniqueness of equilibrium; multiplicity of equilibrium; computation of equilibrium 

*This paper is forthcoming in Economic Theory.  The authors developed the numerical example as part of a course on 
advanced topics in microeconomic theory at the University of Minnesota. Kehoe was the professor, and Gauthier and 
Quintin were students.  Kehoe proposed the example, and Gauthier and Quintin implemented the restart algorithm and 
mapped out all of the equilibria.  We thank the referee for pointing out an error in our original figure 1 and for making 
several valuable suggestions.  The views expressed herein are those of the authors and not necessarily those of the 
Federal Reserve Bank of Minneapolis or the Federal Reserve System.  Contact information: pascal.gauthier@nib.int, 
tkehoe@umn.edu, equintin@bus.wisc.edu.
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1. Introduction 

This paper has been written in honor of Nicholas Yannelis on the occasion of his 65th birthday. In 

1991, Nicholas was one of the founders of the Society for the Advancement of Economic Theory, 

and he followed Charalambos Aliprantis as the editor of the society’s journal, Economic Theory, 

after the tragic death of Aliprantis in 2009.  Nicholas, the SAET, and Economic Theory have played 

major roles in keeping alive the study of general equilibrium theory in economic theory, even as 

much of the focus in economic theory has shifted to game theory and decision theory.  Keeping 

alive the study of general equilibrium theory is essential for economics as a whole because 

applications of general equilibrium in macroeconomics, international trade, industrial 

organization, and development have become increasingly important.  Both Timothy Kehoe and 

Erwan Quintin are members of Economic Theory’s editorial board and regular participants in the 

SAET annual summer conferences.  Together with coauthor Pascal Gauthier, Kehoe and Quintin 

are happy to be able to honor Yannelis with a paper that provides new insights into the 

fundamentals of general equilibrium theory. 

This paper takes an approach to calculating the equilibria of general equilibrium pure-exchange 

economies and developing sufficient conditions for uniqueness of equilibrium and necessary 

conditions for multiplicity of equilibria that was developed during the 1960s, ’70s, and ’80s by 

Herbert Scarf, his coauthors, and his students at Yale University.  Kehoe remembers discussing 

with Ludo Van der Hayden the sort of restart computational algorithm employed in this paper and 

discussing the fixed-point index theorem developed in this paper with Scarf, B. Curtis Eaves, and 

David Backus at Yale in the second half of the 1970s. 

In this paper, we employ Scarf’s algorithm to compute equilibria in pure-exchange economies.  

(See Scarf, 1967a and Scarf with Hansen, 1973.)  Scarf’s algorithm calculates equilibria by finding 

approximate fixed points of mappings from the unit simplex of price vectors into itself. The 

algorithm finds an approximate fixed point by moving from one subsimplex — a small subset of 

a grid of points — to another on the unit simplex. The algorithm starts at a corner of the simplex 

and cannot cycle.  Since the algorithm has to terminate, it necessarily ends at an approximate fixed 

point. Scarf’s algorithm can be viewed as a constructive proof of Brouwer’s fixed point theorem. 

 We show that keeping track of the orientation of vertices on the subsimplices along the path 

traveled by Scarf’s algorithm leads to a simple proof of an alternative version of Eaves and Scarf’s 
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(1976) index theorem.  This index theorem also suggests a restart algorithm that builds on the same 

principles as Scarf’s original algorithm. To illustrate the value of this restart algorithm, we describe 

an economy that has a large number of equilibria and provide an example with 15 equilibria, in 

which all of the equilibria are connected via the computational algorithm we propose.    

2. A simple pure-exchange economy  

Consider a Walrasian pure-exchange economy with m  consumers. Each of these consumers has a 

strictly concave and monotonically increasing utility function : n
iu     that specifies his or her 

preferences over nonnegative vectors of consumption of n  goods ).,,(=ˆ 1
i
n

ii xxx   Each consumer 

is also endowed with a vector of these goods 1= ( , , )i i
i nw w w  that is strictly positive. An 

equilibrium of this economy is a vector of nonnegative prices, not all zero, )ˆ,,ˆ(=ˆ 1 nppp   and an 

allocation of consumption vectors to the consumers )ˆ,,ˆ( 1 mxx   such that  

1. for each consumer i , ix̂  solves  

1max  ( , , )i i
i nu x x  

1 1
ˆ ˆs.t. 

n ni i
j j j jj j

p x p w
 

   

0i
jx  ; 

2.  for each good j ,  

 
1 1

ˆ
m mi i

j ji i
x w

 
  . 

Given our assumptions on utility functions and endowments, the utility maximizing response of 

consumer i  to a price vector p  can be expressed as a function ))(,),((=)( 1 pxpxpx i
n

ii   that is 

continuous, at least at strictly positive price vectors. Since the budget constraint does not change 

if all prices are multiplied by a positive constant, the demand function is homogeneous of degree 

zero:  

 ( ) = ( )i ix p x p  for all > 0 . 

Furthermore, since utility is monotonically increasing, the demand function satisfies the budget 

identity  
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 ' ( ) = 'i ip x p p w . 

 (Here, ' ( )ip x p  is the inner product )(
1=

pxp i
jj

n

j .) 

There is a minor technical problem that the demand function may not be continuous at price vectors 

in which some 0ip  .  The easiest way to solve this problem is to impose the additional constraints   

 
1

2
mi k

j jk
x w


   

in the maximization problem of consumer i , 1,...,i m .  Since the demand function of each 

consumer is continuous, none of these constraints can bind in some open neighborhood of any 

equilibrium. 

The aggregate of all the consumers’ responses to a price vector p  is summarized in the excess 

demand function : \{0}n nf    , ))(,),((=)( 1 pfpfpf n , where  

 
1

( ) = ( ( ) )
m i i

j j jk
f p x p w


 . 

The properties of the individual demand functions )( pxi  imply that )( pf  is continuous and is 

homogeneous of degree zero,  

 0,> allfor  )(=)(  pfpf  

and obeys Walras's law,  

 
1

' ( ) = ( ) = 0
n

j jj
p f p p f p

 . 

Specifying consumer responses in terms of excess demand functions, we can simplify the 

definition of an equilibrium to a vector of prices ˆ \{0}np   such that  

 ˆ( ) 0jf p  , 1, ...j n .
 

Walras’s law ensures that excess demand is actually equal to zero if the corresponding price is 

positive. In terms of our previous definition, the equilibrium is 
1ˆ ˆ ˆ,  ( ), , ( )mp x p x p . Since )( pf  

and the individual )(pxi  are homogeneous of degree zero, we need to impose some sort of 
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normalization on prices:  two price vectors p  and q  are essentially the same if qp =  for some 

0.>  

Given the properties of the excess demand function, we can restrict our search for equilibrium 

price vectors to the unit simplex  

  1
1,  0

nn
j jj

S p p p


    . 

Let us define  

 
1 1

max[ ( ),0]
( ) =

max[ ( ),0] ... max[ ( ),0]
j j

j
n n

p f p
g p

p f p p f p



   
, 1,...,j n , 

for all p S .  Then it is easy to verify that g  is continuous and maps S  into itself, :g S S .
 

Furthermore, any fixed point ˆ ˆ( )p g p  is a competitive equilibrium.
   

  

3. Computation of equilibria  

Brouwer’s (1912) fixed-point theorem says that there exists a price vector p̂ S  such that 

ˆ ˆ( )p g p , which implies that there exists a competitive equilibrium.  Scarf (1967a) and Scarf with 

Hansen (1973) provide an algorithm for computing a fixed point of any continuous mapping of S  

into itself.  Hence, Scarf’s algorithm can be viewed as a constructive proof of the existence of 

competitive equilibrium. 

To make Scarf’s algorithm concrete, consider the two-dimensional unit simplex depicted in Figure 

1. In general, a k -dimensional simplex is the convex hull of 1k   vectors, called vertices, 

11 ,, kvv  , that have the property that the k  vectors 
111 ,,   kkk vvvv   are linearly independent. 

The three vertices of the simplex S  depicted in Figure 1, for example, are (1,0,0) , (0,1,0) , and 

(0, 0,1) . A face of a simplex is a simplex whose vertices are vertices of the larger simplex. In 

Figure 1, for example, the point (1,0,0)  is a zero-dimensional face of S , and the line segment  

that is the convex hull of (1,0,0)  and (0,1,0)  is a one-dimensional face. A simplicial subdivision 

(sometimes referred to as a triangularization) of S  divides S  into smaller simplices so that every 

point in S  is an element of some subsimplex and the intersection of any two subsimplices is either 

empty or a face of both. The particular simplicial subdivision of the ( 1)n  -dimensional unit 
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simplex that we employ has as vertices points of the form 1( / ,..., / )na D a D , where 1,..., na a  are 

nonnegative integers that sum to D . We refer to D  as the grid size.  Figure 1 illustrates this 

simplicial subdivision, the Freudenthal (1942) subdivision first used for computation of 

approximate fixed points by Kuhn (1968), for the case 3n  and 10D .1 

Scarf’s algorithm can be viewed as a constructive proof of a version of Sperner's (1928) lemma:  

Sperner’s Lemma:  Assign to every vertex of a simplicial subdivision of S  a label, an integer 

from the set n,1, , with the property that every vertex v  on the boundary of S  receives a label 

i  for which 0=iv . Then, there exists a subsimplex Ŝ  whose vertices have all of the labels 1, , .n    

It is easy to show that if we label interior vertices in such a way that vertex v  receives a label i  

for which ( )i ig v v , then any price vector in a completely labeled subsimplex, ˆp̂ S , is an 

approximate fixed point, ˆ ˆ( )p g p   , and hence an approximate equilibrium.   

Proving the existence of a fixed point requires a non-constructive step in which we take a sequence 

of simplicial subdivisions generated by a sequence of iD  with iD , so that the mesh of the 

simplicial subdivision — the maximum distance between any two points in a subsimplex — in 

Figure 1 tends to 0.  The sequence of points, each of which lies in a completely labeled subsimplex, 

generated by this sequence of iD  has a convergent subsequence (and perhaps more than one).  The 

continuity of f  implies that a point to which this subsequence converges is a fixed point of g and 

therefore an equilibrium of the economy.   

Notice that an approximate equilibrium satisfies a condition of the form ˆ( )f p  , where the 

continuity of f  implies that we can reduce   by increasing D  and thereby reducing the mesh of 

the simplicial subdivision.  The distinction between approximate equilibria and exact equilibria is 

important for some economic problems: see, for example, Kubler and Schmedders, 2005.  This 

distinction is not as relevant here.  Although we could invent examples in which an approximate 

equilibrium is far from an exact equilibrium for a simplicial subdivision with a course mesh, that 

is not the case in the example with 15 equilibria that we study.  For each of the 15 equilibria, we 

                                                            
1 Scarf (1967a) and Scarf with Hansen (1973) do not use simplicial subdivisions but rather a concept called primitive 
sets. See the Appendix for a discussion. 
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use Newton’s method to calculate the equilibrium, using the midpoint of the completely labeled 

subsimplex as the starting point.  Newton’s method is convergent as long as we start close enough 

to an equilibrium, which is a solution to the system of equations 

 1 1( ,..., , ) 0i n nf p p p  , 1,..., 1i n  , 

where we normalize np  as fixed at its initial value at the approxiate fixed point.  (When and if 

Newton’s method converges, we can renormalize prices so that 1 1... 1n np p p    .)  Sure 

enough, in each of the 15 cases, Newton’s method converges very rapidly to a vector of prices 

extremely close to the starting guess, and at this vector of prices, all n  excess demand functions 

are equal to 0 to a specified tolerance determined by the machine accuracy of the computer. 

The algorithm for finding a completely labeled subsimplex starts in the corner of S  where there is 

a subsimplex with boundary vertices with all of the labels n,2, .  Notice that the algorithm starts 

at the bottom-left corner in Figure 1. If the additional vertex of this subsimplex has the label 1, 

then the algorithm stops. Otherwise, it proceeds to a new subsimplex with all of the labels .,2, n  

The original subsimplex has two faces with all of these labels. One of them contains the interior 

vertex. The algorithm moves to the unique other subsimplex that shares this face. If the new vertex 

of this subsimplex has the label 1, the algorithm stops. Otherwise, it proceeds, moving to the unique 

subsimplex that shares the new face and has the labels .,2, n  The algorithm cannot cycle. Cycling 

requires that some subsimplex be the first that the algorithm encounters for the second time, but 

the algorithm must have previously encountered both of the subsimplices that share the two faces 

of the subsimplex with the labels .,2, n   Nor can the algorithm try to exit through a boundary 

face:  the only boundary face that has the labels n,2,  is the corner in which the algorithm started, 

and we have just argued that the algorithm cannot cycle. 

The crucial replacement step in the algorithm is easy to carry out. The first subsimplex encountered 

by the algorithm in Figure 1, for example, has as vertices the vectors 

 .

.1

.1

.8

,

0

.1

.9

,

.1

0

.9
















































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Since these vertices have the labels 2, 3, and 2, respectively, we move to the new subsimplex by 

keeping the second and third vertices and dropping the first vertex. Given the regular structure of 

the Freudenthal simplicial subdivision, elementary Cartesian geometry tells us that we can do this 

by completing a parallelogram, adding the second and third vertices and subtracting the first: 

 .

0

.2

.8

=

.1

0

.9

.1

.1

.8

0

.1

.9


































































 

This procedure can be readily extended to higher dimensions. A minor complication is that we 

need to know which two of the 1n  vertices we have to add together before subtracting the vertex 

being dropped.  Scarf with Hansen (1973) provide a simple Fortran program for carrying out the 

replacement step.   

Some readers will notice that to keep our discussion simple, we have focused our analysis on the 

original algorithm of Scarf with Hansen (1973).  In doing so, we have ignored the rich literature 

on computation of fixed points — and the associated algorithms — that followed it.  Zangwill and 

Garcia (1981) provide an early survey of this literature.  One point worth noting is that there are 

algorithms that make the mesh of the simplicial subdivision smaller and smaller during 

computation, thus avoiding the need to use Newton’s method at the end, as we do.2  Merrill (1971) 

developed the first such algorithm.  This sort of algorithm finds an approximate fixed point for a 

fixed simplicial subdivision, then refines the grid, in effect increasing D . It then finds a new, 

presumably more accurate approximate fixed point for the finer grid.  Because this sort of 

algorithm starts with a solution for the previous simplicial subdivision to generate an almost 

complexly labeled subsimplex to start the algorithm for the subdivision with the smaller mesh, it 

is sometimes called a restart algorithm.  The algorithm that we use also restarts at a previous 

solution, but it keeps the simplicial subdivision fixed and restarts in search of additional 

approximate fixed points rather than a more accurate calculation of the same fixed point. 

4. The index theorem 

We can show that there are an odd number of solutions to Scarf's algorithm for approximating 

fixed points — that is, an odd number of completely labeled subsimplices:  the path followed from 

                                                            
2 Scarf with Hansen (1973) do something similar to using Newton’s method starting at an approximate fixed point. 
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the corner subsimplex with labels n,2,  leads to a unique completely labeled subsimplex. 

Suppose that there is an additional completely labeled subsimplex. It then shares its face with 

labels n,2,  with a unique other subsimplex. Restart Scarf's algorithm at this subsimplex. Either 

the additional vertex to this subsimplex had the label 1, in which case it is completely labeled, or 

it did not, in which case it has another face with all of the labels n,2, . Move to the unique other 

subsimplex that shares this face and continue as before. The restarted algorithm cannot encounter 

any subsimplex in the path from the corner to the original completely labeled subsimplex.  To do 

so, there must be some subsimplex in the path that is the first that it encounters for the second time, 

but it then must have previously encountered both of the two subsimplices that share the two faces 

of this subsimplex with the labels n,2, . The algorithm must therefore terminate in yet another 

completely labeled subsimplex. Consequently, all completely labeled subsimplices come in pairs, 

except the original one located by the algorithm starting in the corner. 

We can say more.  Notice that if we order the vertices of the completely labeled subsimplex located 

from the bottom left by the algorithm in Figure 1 by their labels 1, 2, 3, then these vertices are 

oriented counterclockwise.  Our index theorem says that if we assign a completely labeled 

subsimplex the index +1 if its labels are oriented counterclockwise and the index −1 if the labels 

are oriented clockwise, then the sum of the indices of all the completely labeled subsimplices is 

+1.  Consequently, if we can ensure that any completely labeled subsimplex must have the index 

+1 — that is, its vertices must be oriented counterclockwise — we know that there is a unique 

completely labeled subsimplex. 

Index Theorem:  Let îS  be a completely labeled subsimplex, and let  1 2
ˆ ˆ ˆ, ,...,S S S  be the set of 

all completely labeled subsimplices.  Then, 

   1 2
ˆ ˆ ˆ ˆ, ,...,

ˆindex 1
i

iS S S S
S


 


. 

A simple proof of this index theorem follows the same lines as the previous argument that there 

are an odd number of completely labeled subsimplices; we need just to keep track of the orientation 

of vertices as we move along a path. Notice that in the path from the bottom-left corner in the first 

subsimplex, the vertices are oriented counterclockwise if we order them nnew vvv ,,, 2  , where jv  
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is the boundary vertex with label j  and newv  is the interior vertex. It is easy to verify that 

counterclockwise orientation of the vertices corresponds to the determinant of the 33  matrix  

 2 3

.9 .9 .8

[ ] = 0 .1 .1

.1 0 .1

newv v v

 
 
 
  

, 

which is .01, being positive. Since newv  has the label 2 in this example, the algorithm does not 

stop.  It moves to another almost completely labeled subsimplex with vertices 2~v , 3~v , newv~ , where 

33 =~ vv  but newv~  becomes 23 vvv new   and 2v  becomes newv . These steps — multiplying 2v  by 

−1 and adding 3v  and newv , then interchanging the resulting vector with newv  in the above matrix 

— do not change the algorithm’s determinant:  

 2 3

.8 .9 .8

det[ ] = det .1 .1 .2 = 0.01

.1 0 0

newv v v

 
 
 
  

   .

 

 Continuing this process, we see that the oriented path index defined by the sign of the determinant 

of the matrix of ordered vertices ][ 32 newvvv  remains equal to +1 along the path. When the path 

reaches the completely labeled subsimplex, we define the index of the subsimplex to be  

 2 3sgn(det[[ ]) = 1newv v v  . 

Along paths that connect two other completely labeled subsimplices, we need only note that the 

index changes sign at the first step but then remains constant.   

In Figure 1 there are seven completely labeled subsimplices. There are three along the path that 

starts at the lower left-hand corner and the two restarts from the first completely labeled 

subsimplex. Notice that the first completely labeled subsimplex has index +1 because its vertices 

are oriented counterclockwise: 

2 3 1

.6 .5 .5

det[ ] det .2 .3 .2 = 0.01

.2 .2 .3

v v v

 
   
  

. 
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In contrast, the completely labeled subsimplex near the lower right-hand corner has the index −1 

because its vertices are oriented clockwise:  

 2 3 1

.2 .2 .3

det[ ] = det .6 .7 .6 = 0.01.

.2 .1 .1

v v v  
 
 


    

If we start at this subsimplex, at the first step, we replace the vector 1v  with the vector 

,=~ 132 vvvv new   which changes the sign of the determinant.  Along the subsequent path to 

another completely labeled subsimplex, the index remains equal to +1, finally arriving at a 

completely labeled subsimplex whose index is +1 — that is, one whose vertices are oriented 

counterclockwise.  

The above index theorem is general in three respects. First, the index of a completely labeled 

subsimplex depends only on its local properties and not on the algorithm used to locate it. It does 

not even depend on the shape of the subsimplex, as long as the mesh is fine enough.  For example, 

we could have started the algorithm in the almost completely labeled subsimplex with boundary 

vertices with the labels 1 and 2, as shown in the top corner of Figure 1, and although we would 

have generated a completely new set of paths, the indices of the completely labeled subsimplices 

would have remained the same. Second, the argument is easily extended to n  dimensions. Third, 

the argument can be applied to any simplicial subdivision. 

By developing conditions that guarantee that completely labeled simplices have positive indices, 

we could develop conditions that are necessary and sufficient for uniqueness of solutions to the 

fixed point algorithm. This approach is rather awkward, however, since the integer label contains 

little information about the underlying function )( pg . Eaves and Scarf (1976) take another 

approach and prove an index theorem for a version of Scarf's algorithm in which a vertex v  

receives a label that is a vector that includes all of the information about the value of )(vg . Taking 

limits as the mesh of the subdivision gets smaller — as the grid size D  increases — we can show 

that the index of the Eaves-Scarf theorem for vector labels (almost always) agrees with the fixed 

point index introduced into economics by Dierker (1972):  

  ˆ ˆindex( ) = sgn det[ ( )]p I Dg p . 
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 Once again, 

   ˆ ˆ ˆ= ( )
ˆindex( ) = 1

p p g p
p  ,

 

 and the condition that ˆindex( ) = 1p   at all equilibrium prices p̂  is necessary and sufficient for 

uniqueness of equilibrium.3  See the Appendix for a discussion of other index theorems found in 

the economic literature. 

5. The restart algorithm 

The proof of the index theorem that we provided in the previous section suggests a restart algorithm 

to compute approximate equilibria other than those found by the Scarf approach.  Our restart 

algorithm builds on the same principles as Scarf’s algorithm and requires adding only a few lines 

of code to the Fortran routine provided by Scarf with Hansen (1973). 

Consider a completely labeled subsimplex reached by the Scarf algorithm. Adjacent to this simplex 

are 1n  almost completely labeled subsimplices, including the penultimate subsimplex visited by 

the algorithm. Assuming for concreteness that the algorithm began from a subsimplex with all 

labels but the label 1, dropping label 1 from the final subsimplex would take us back to this 

penultimate subsimplex. Furthermore, following the Scarf procedure after this step would lead 

back to the corner in which the algorithm started. On the other hand, dropping any vertex other 

than the vertex with label 1 would lead to an almost completely labeled subsimplex not yet visited 

by the algorithm. Restarting the algorithm from this new subsimplex — making sure not to reverse 

the original step in the second step, which is trivially guaranteed by imposing a first-in, last-out 

rule — starts a new path through the subset of almost completely labeled subsimplices, which 

yields a natural way to search for completely labeled subsimplices other than those reachable by 

the standard Scarf search algorithm. 

This search method has several virtues beyond the simplicity inherent in Scarf’s algorithm. First, 

by the same argument we used in the previous section to establish that the number of completely 

                                                            
3 The typical statement of the index theorem has the index defined as  ˆ ˆindex( ) = sgn det[ ( )]p I Dg p  and the sum 

of the indices as ( 1)n .   
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labeled subsimplices must be odd, a restart cannot return to the subsimplex from which it started. 

Likewise, the algorithm cannot exit through a boundary, non-corner subsimplex. 

The restarted algorithm can, however, lead to a corner subsimplex. Consider, for example, the case 

in which a unique completely labeled subsimplex exists. Then we know that the path followed by 

Scarf algorithm from each of the n  corners leads to that unique subsimplex. It follows immediately 

that any restart from that subsimplex must lead to a corner. 

If the restarted algorithm does not lead to a corner, then it must lead to a completely labeled 

subsimplex. Each new subsimplex, in turn, gives 1n  new ways to restart the algorithm and 

navigate different parts of the subset of almost completely labeled subsimplices. Note that 

implementing this method requires only a rule to restart the algorithm once a completely labeled 

subsimplex or a corner is encountered. Once a corner is encountered, returning to the previous 

completely labeled subsimplex and dropping a different vertex is a natural way to proceed. 

Implementing this procedure thus requires recording restarts already executed from completely 

labeled subsimplices. Doing so also prevents the algorithm from becoming trapped in long cycles. 

While individual restarts cannot return to the subsimplex from where they started, they can display 

longer cycles involving two or more completely labeled simplices.  

Figure 1 illustrates the possible outcomes of restarts. The solid path that starts in the lower-left 

corner finds its first completely labeled simplex in eight steps. The two possible restarts from that 

simplex lead to the same completely labeled simplex from which one new restart possibility opens 

up, which leads to yet another completely labeled simplex and two more restart possibilities.  

To see how the restart algorithm can produce long cycles, consider the dashed path from the top 

corner. A first restart from the resulting completely labeled simplex leads to an adjacent completely 

labeled simplex. A restart from that new subsimplex brings us back to the first subsimplex 

encountered from the top. 

A simple rule that prevents the repetition of a restart performed from an equilibrium simplex 

already found prevents the algorithm from cycling. With this rule in place, the restart search 

algorithm must end after a finite number of steps. Each newly found approximate equilibrium 

offers 1n  restart possibilities. Navigating each of the corresponding paths takes but a few 

seconds in applications of typical sizes. The algorithm continues only as long as it keeps yielding 
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new equilibria. Once all possible restarts lead either to already discovered completely labeled 

subsimplices or to a corner, the procedure ends. Naturally, there is no guarantee that this method 

will reveal all completely labeled subsimplices. It does, however, yield all completely labeled 

subsimplices that are connected by a path of almost completely labeled subsimplices to the 

equilibria reached from a corner by Scarf’s algorithm. 

6. Constructing exchange economies with many equilibria 

To illustrate the search algorithm described in the previous section, we consider a family of pure-

exchange economies with 2k  goods and 2k  consumers, where 1, 2,3,...k  , and select parameters 

such that each of these economies has a large number of equilibria.  

We first consider the case in which 1k   — that is, the case with two goods and two consumers.  

Consumer i , 1, 2i  , chooses 1 2ˆ ˆ( , )i ix x  to solve 

1 1 2 2( ) 1 ( ) 1
max  

i i b i i ba x a x

b b

 
  

1 1 2 2 1 1 2 2ˆ ˆ ˆ ˆs.t. i i i ip x p x p w p w    

0i
jx  . 

To make things simple, we choose the parameters i
ja  and i

jw  to be symmetric in the sense that 

1 2
1 2a a , 1 2

2 1a a , 1 2
1 2w w , and 1 2

2 1w w .  This symmetry implies that 

1 2(0.5,0.5) (0.5,0.5)f f . 

Walras’s law then implies that (0.5,0.5)  is an equilibrium.  A sufficient condition for the economy 

to have multiple equilibria is that index(0.5,0.5) 1  .  Symmetry implies that this condition is 

also necessary because if 1 2ˆ ˆ( , )p p  is an equilibrium, then 2 1ˆ ˆ( , )p p  and 

1 2 2 1ˆ ˆ ˆ ˆindex( , ) index( , )p p p p . 

In the case in which 2 2kn   , we can calculate  

  1 1 2
1 2

1

ˆ ˆ( , )
ˆ ˆ ˆindex( , ) sgn det[ ( )] sgn

f p p
p p J p

p

 
     

; 
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that is, the index of an equilibrium in a two-good pure-exchange economy is –1 if the graph of 1f  

crosses 0 from below.4   

There are two classic results from general equilibrium theory that provide sufficient conditions for 

uniqueness of equilibrium:  that the demand function f  satisfies the weak axiom of revealed 

preference, or that it exhibits gross substitutability (see, for example, Kehoe, 1998).   

Before discussing conditions that imply the weak axiom of revealed preference, we note that the 

utility functions are homothetic because there is a monotonically increasing transformation of iu  

that is homogenous of degree one, 

 
1

( ) 2 b
i ig u bu  ,  

1

'( ) 2 0
b

b
i ig u bu



   . 

Antonelli (1886), Gorman (1953), and Nataf (1953) show that if utility functions are homothetic 

and identical but endowments are different, then aggregate excess demand behaves as if it were 

excess demand of a single consumer. Consequently, it satisfies the weak axiom of revealed 

preference.  Small perturbations to an economy with identical homothetic utility functions do not 

necessarily result in an economy whose excess demand function satisfies the weak axiom, but they 

do result in an economy with a unique equilibrium. The reasoning is simple:  the equilibrium price 

set varies continuously at a regular economy.  If 1 1 2 2
1 2 1 2( , ) ( , )a a a a , then the economy has a unique 

equilibrium in which  

1 1 2

1

ˆ ˆ( , )
0

f p p

p





; 

therefore, it is a regular economy.  Consequently, to construct an example with multiple equilibria, 

we need to have consumers with sufficiently different utility functions; that is, 1 1
1 2( , )a a  should be 

very different from 2 2
1 2( , )a a .  In the Appendix, we show that we need a large deviation from  

1 1 2 2
1 2 1 2( , ) ( , )a a a a  to obtain multiple equilibria. 

                                                            

4 We could also calculate 2 1 2
1 2

2

ˆ ˆ( , )
ˆ ˆindex( , ) sgn

f p p
p p

p

 
   

. The homogeneity of degree zero of f  and the 

assumption that 1 2ˆ ˆ( , ) 0f p p  imply that the two partial derivatives have the same sign. 
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Eisenberg (1961) and Chipman (1974) show that if utility functions are homothetic but possibility 

different and the endowment vectors 1 1
1 2( , )w w  and 2 2

1 2( , )w w  are proportional, then aggregate excess 

demand again behaves as if it were excess demand of a single consumer. As in the case of identical 

homothetic utility functions, we can argue that to construct an example with multiple equilibria, 

we need to have consumers whose endowments are sufficiently non-proportional. In the Appendix, 

we show that we need a large deviation from proportional endowments to obtain multiple 

equilibria. 

Even if  1 1
1 2( , )a a  is very different from 2 2

1 2( , )a a  and 1 1
1 2( , )w w  is far from proportional to 2 2

1 2( , )w w , 

the economy has a unique equilibrium if the individual demand functions exhibit gross 

substitutability. The reasoning is simple in the two-good economy.  To have  

1 1 2

1

ˆ ˆ( , )
0

f p p

p





, 

we need to have the income effect in the Slutsky (1915) decomposition of demand for at least 

one consumer dominate the income effect, which is always negative.  As is well known, if the 

CES curvature parameter b  satisfies 0b   so the elasticity of substitution, 1 / (1 )b   , is 

greater than or equal to 1, then  

1 2( , )
0

i
j

j

x p p

p





. 

Consequently,  0b   is sufficient for uniqueness of equilibrium.  Mas-Colell (1991) points out 

that a weaker, more general condition on individual demand functions,  

2' ( )
4

( )
i

i

x D u x x

Du x x
 , 

implies a monotonicity property that implies that demand is strictly deceasing in its own price.  

He credits this result to Mityushin and Polterovich (1978), although it turns out that Milleron 

(1974) has the same condition.  In the case of CES utility functions, the Milleron-Mityushin-

Polterovich condition becomes 

2' ( )
1 4

( )
i

i

x D u x x
b

Du x x
   . 
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Consequently, for arbitrary utility parameters 1 2( , )i ia a  and endowments 1 2( , )i iw w , the condition 

that 3b    — or equivalently, 1 / (1 ) 0.25b   — is sufficient for uniqueness.  Therefore, we 

need 3b   — that is, 1 / (1 ) 0.25b     — for non-uniqueness. In the Appendix, we show 

how much lower than −3 b  has to be for there to be multiple equilibria. 

Consider the example of a two-good pure-exchange economy of non-uniqueness developed by 

Kehoe (1991, 1998): 

1 1
1 2

1 1
1 2

  1024     1

   1     1024  

a a

a a

   
   

    
, 

1 1
1 2

1 1
1 2

  12   1

 1   12  

w w

w w

   
   

    
, 

and 4b   .  Kehoe (1998) draws the Edgeworth box for this economy, which depicts its three 

equilibria: 1ˆ (0.88708,0.11292)p   with 1ˆindex( ) 1p   , 2ˆ (0.50000,0.50000)p   with 

2ˆindex( ) 1p   , and 3ˆ (0.11292,0.88708)p   with 3ˆindex( ) 1p   .   

The referee has suggested two interpretations of this example. The first is a world with two 

symmetric countries that open to trade. In the non-symmetric equilibria, the countries are treated 

very differently.  It is worth noting that since all three equilibria are in the core, each country 

benefits from opening to trade, but one benefits far more. The second interpretation is an economy 

with uncertainty, in which two groups of consumers have very different subjective probabilities 

and are very optimistic in the sense that they put large probabilities 1 2/ ( )i i i i
j ja a a    on the states 

where they are rich.  In this interpretation, we see that competitive markets can generate highly 

unequal final allocation even if there is no aggregate risk. 

We now consider families of economies with 2k  goods and 2k  consumers.  The economy in which 

1k   is the previously mentioned two-good economy with two consumers.  The economy in which 

2k   has four goods and four consumers.  Consumers 1 and 2 have preferences and endowments 

of goods 1 and 2 very close to those in two-good economy, but they also put small utility weights 

on, and have small endowments of, goods 3 and 4.  We can think of consumers 1 and 2 and goods 

1 and 2 as forming a sub-economy.  Similarly, consumers 3 and 4 and goods 3 and 4 form another 
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sub-economy that is symmetric.  We impose parameters so that the relationship between sub-

economy 1 and sub-economy 2 is the same as the one between consumer 1 and consumer 2 in our 

original two-good economy. 

In the 2k -good economy, consumer i , 1,...2ki   orders consumption vectors 2kix   according 

to the utility function  

 
2

1

( ) 1
( ) =

k
i b
ji i

i ji

x
u x a

b


 , 

where 0i
ja   for all i  and j  and < 1b .  Letting ( )i i

j ja    for all i  and j , consumer i 's demand 

function is  

 

2 2
21 1

12 21 1

1 1

2
2 21

1 12 1

1

  if 0 and 2

( ) =

2             if 0 or if 2

k k

k

k k

k

k k

k

i i i i
j j i

j ii i
j ji

j
i i
ji i

ji ii
j

p w p w
p w

p p p p
x p

p w
w p w

p p

   

 

 

 





 
 

 


 




  





 


  
 

 


    


    

 
 

 

 

for all 2k

p  , where i
jw  denotes consumer i 's endowment of commodity j . (Remember that 

bounding the individual demand functions by twice the aggregate endowment of the corresponding 

good has no effect on the aggregate excess demand function in an open neighborhood of any 

equilibrium, nor does it have any effect on our index theorems.)  The excess demand function for 

commodity j ,  1,...2kj  , is  

  2

1
( ) = ( )

k
i i

j j ji
f p x p w


 . 

 An equilibrium price for this economy is a price 2ˆ \{0}
n

p   such that 0)ˆ( pf j  for all j . In 

fact, given our utility functions, any equilibrium price must be strictly positive, which, by Walras’s 

law, implies that 0=)ˆ( pf j  for all j . 

The economy in which 1k   is the two-good economy with three equilibria that we have studied.  

Notice that in this economy, 
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1 1
1 2

1 1
1 2

  4  1

1  4  

 

 

   
   

    
. 

To specify utility functions, we use the parameters i
j , rather than i

ja , because they are less messy.  

With each increase in k , we double the size of the economy by building on two-good, two-

consumer sub-economies, as shown in tables 1 and 2: 

Table 1:  Utility parameters i
jq  

 ji ,  1 2 3 4  2 1k   2k  

 1  4k  14k  max[ 2,0]4 k  max[ 2,0]4 k   1 1 

2 14k  4k  max[ 2,0]4 k  max[ 2,0]4 k   1 1 

3 max[ 2,0]4 k  max[ 2,0]4 k  4k  14k   1 1 

4 max[ 2,0]4 k  max[ 2,0]4 k  14k  4k   1 1 

                
2 1k   1 1 1 1  4k  14k  

2k  1 1 1 1  14k  4k  
 

Table 2:  Endowments i
jw  

   ji ,  1 2 3 4  2 1k   2k  

 1  12k  112k  max[ 2,0]12 k  max[ 2,0]12 k   1 1 

2 112k  12k  max[ 2,0]12 k  max[ 2,0]12 k   1 1 

3 max[ 2,0]12 k  max[ 2,0]12 k  12k  112k   1 1 

4 max[ 2,0]12 k  max[ 6,0]12 k  112k  12k   1 1 

                

2 1k   1 1 1 1  12k  112k  

2k  1 1 1 1  112k  12k  
 

We have already seen the parameters for the economy in which 2 2kn   .  For the economy in 

which  2 4kn   , 
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1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

4 4 4 4
1 2 3 4

      16  4   1   1

       4  16  1   1

 1   1  16  4      
 1   1   4  16      

   

   

   

   

   
   
      
   
    

, 

and 

1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

4 4 4 4
1 2 3 4

      w 144   12     1      1

      w  12   144    1      1

  1      1    144    12      
  1      1     12    144      

w w w

w w w

w w w w

w w w w

   
   
      
   
    

. 

To construct the parameters for the economy in which 2 8kn   , we take the 4 4  utility 

parameter matrix for the economy in which 2k  , multiply every element by 4, then put this 

matrix as the upper-left diagonal submatrix and as the lower-right diagonal submatrix in the 8 8  

utility parameter matrix for the economy in which 3k  .  We set every element in the two 4 4  

off-diagonal submatrices equal to 1.  We construct the endowment matrices in the same way, but 

we multiply by 12 at every step.  Two of the crucial features of replicating the economy by 

increasing k  are that we maintain symmetry, which implies that 1 2
ˆ ˆ( ,..., ) (2 ,..., 2 )k

k kp p    is an 

equilibrium, and that ˆdet[ ( )] 0J p  , which implies that there are multiple equilibria. 

We now demonstrate that we can use the restart algorithm to find all of the equilibria of the 

economy in which 2 4kn   .  We use the Freudenthal simplicial subdivision of the unit simplex 

of prices in which = 1,000,000D .   We start Scarf’s algorithm in the corner (1,0,0,0) .  Once the 

algorithm locates the first approximate equilibrium, there are three almost completely labeled 

subsimplices adjacent to the equilibrium simplex from which the algorithm can be restarted, 

corresponding to each column of the equilibrium matrix other than the one last added by Scarf’s 

algorithm. As Figure 2 shows, each of these three restart possibilities leads to a new equilibrium. 

Applying our restart algorithm to these new equilibria then leads to additional equilibria. In fact, 

exhausting every possible restart produces 15 equilibria, displayed in Table 3. Figure 2 displays 

one of several possible road maps through this set of 15 approximate equilibria based on our restart 

algorithm. 
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Table 3:  Equilibria 

  equilibrium   1p    2p    3p    4p    index  

 1  0.25000   0.25000   0.25000   0.25000   −1  

2 0.43187 0.06813 0.43187 0.06813 −1 

3 0.43187 0.06813 0.06813 0.43187 −1 

4 0.06813 0.43187 0.06813 0.43187 −1 

5 0.06813 0.43187 0.43187 0.06813 −1 

6 0.25640 0.25640 0.42036 0.06684 +1 

7 0.25640 0.25640 0.06684 0.42036 +1 

8 0.42036 0.06684 0.25640 0.25640 +1 

9 0.06684 0.42036 0.25640 0.25640 +1 

10  0.49969  0.49969  0.00031  0.00031  −1 

11  0.12828  0.87110  0.00031  0.00031   +1  

12 0.87110 0.12828 0.00031  0.00031  +1 

13  0.00031  0.00031  0.49969  0.49969 −1 

14 0.00031  0.00031  0.87110  0.12828   +1 

15 0.00031  0.00031  0.12828  0.87110   +1 
    

The fixed point indices in the final column can be calculated by calculating either the orientation 

of the completely labeled subsimplex in the grid with = 1,000,000D that approximates p̂  or the 

sign of ˆdet[ ( )]J p .  The two calculations agree. 

 A natural question to ask is whether there are equilibria other than those connected to equilibria 

encountered from one corner of the simplex by our restart algorithm.  Notice that the indices of 

our 15 equilibria sum to +1, so that our list of 15 equilibria satisfies a necessary condition to be 

exhaustive. A further search that starts Newton’s method at every point in a fine grid on the unit 

simplex strongly suggests that there are no other equilibria in our example. See the Appendix for 

details about this exhaustive search. 

Mas-Colell (1977) proves that for any non-empty, compact set of prices on the unit simplex, there 

is an economy with utility maximizing consumers for which the prices in this set are the set of 

equilibria.  For many of the sets of prices, however, the equilibria are not regular.  Mas-Colell 

therefore restricts himself to regular economies and proves that for any set of an odd number of 

prices, there is an economy with utility maximizing consumers for which the prices in this set are 
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the set of equilibria and that they satisfy the index theorem.  Applying Mas-Colell’s result to our 

example implies that we could choose two additional price vectors and make them into equilibrium 

price vectors, one with index +1 and the other with index −1.  The economy that would have these 

17 equilibria, however, would presumably have a very different aggregate excess demand function, 

at least near the two new equilibria.  The strong assumptions imposed by our choice of symmetric 

CES utility functions limit the relevance of Mas-Colell’s (1977) results for our family of examples. 

In fact, intuition strongly suggests that this economy generates exactly 15 equilibria. As tables 3 

and 4 make clear, the economy juxtaposes two sets of two consumers — consumers 1 and 2 on 

one hand, and consumers 3 and 4 on the other — that care primarily about two distinct sets of 

goods. We know that each of these two sub-economies would independently yield three equilibria. 

Juxtaposing these two sets of consumers thus gives us nine possible permutations in which the 

consumers in each sub-economy trade primarily with one another. These are the first nine 

equilibria listed in Table 3.  

What explains the presence of the other six equilibria?  Equilibria 10, 11, and 12 feature price 

vectors that assign little value to the endowments of consumers 3 and 4. Consumers 1 and 2 

therefore have most of the income in equilibrium and, as a result, exert a dominant influence on 

relative prices. Since they symmetrically value goods 3 and 4, all equilibria must be such that

3 4p p . On the other hand, the three possible relative prices between goods 1 and 2 that obtained 

when consumers 1 and 2 traded only with one another remain possible. In effect, therefore, shutting 

down the influence of consumers 3 and 4 produces three new equilibria. Symmetrically, shutting 

down the influence of consumers 1 and 2 by putting low values on their endowments — goods 1 

and 2 — gives us another 3 equilibria: equilibria 13, 14 and 15 in Table 3.   

Notice that a similar phenomenon occurs with the two equilibria besides 2ˆ (0.5,0.5)p   in the two-

good economy.  Since 2index( ) 1p   , we know that there have to be at least two more equilibria.  

In one of them, in which 1ˆ (0.88708,0.11292)p  , the influence of consumer 2 is shut down by 

the low value of his endowment.  In the other, in which 3ˆ (0.11292,0.88708)p  , the influence of 

consumer 1 is shut down. Notice that the sum of the indices of the first nine equilibria in Table 3 

is   –1, which implies that there have to be at least two more equilibria.  When we shut down the 

influence of one of the sub-economies, however, a two-consumer sub-economy with three 
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equilibria still determines prices.  In the two-good economy, however, shutting down the influence 

of one of the consumers leaves us with a one-consumer sub-economy that necessarily has a unique 

equilibrium. 

This reasoning suggests that as k  grows large, the number of equilibria becomes large as well.  

We can quite precisely predict the progression of that number. Let kN  be the number of equilibria 

in the k-fold replica described in tables 1 and 2. When the size of the economy doubles — as we 

go from k to k+1 — each of the   2

kN possible permutations of the equilibria that existed at stage 

k produces an equilibrium at stage 1k  . It also becomes possible to shut down the influence of 

each of the two sub-economies that compose replica 1k  . This yields another 2 kN  equilibria. 

Our logic prompts us to conjecture: 

Conjecture:  For all 0k  ,  2

1 2k k kN N N   . 

Given the compelling economic intuition that underlies this conjecture, it should come as no 

surprise that the expression above, as the sum of an odd and an even number, is always odd, as it 

must be if the conjecture is correct. In addition, while we leave a formal proof of the conjecture 

for future work, it is clear that the expression above provides at least a lower bound on the number 

of equilibria the construction outlined in this section can generate. That lower bound quickly 

becomes large, as Table 4 illustrates. 

Table  4:  Number of equilibria in k-fold replica 

 𝑘 2k  kN  

 1  2 3 

2 4 15 

3 8 255 

4 16 65,535 

5 32 4,294,967,295 
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Appendix 

Simplicial subdivisions and primitive sets 

The original version of Scarf’s algorithm (Scarf, 1967a) did not use simplicial subdivisions of the 

unit simplex.  Rather, Scarf used subsets of neighboring points that he called primitive sets, a 

concept that he had found useful in proving the existence of an allocation in the core of cooperative 

games (Scarf, 1967b) and that he later used in studying profit maximization by firms with 

increasing returns to scale and indivisibilities in production (Scarf, 1986).  Kuhn (1968, 1969) 

modified Scarf’s algorithm to use the simplicial subdivision depicted in Figure 1, which is the 

Freudenthal (1942) subdivision. Kuhn sent Scarf an early version of Kuhn (1968), and Scarf 

realized that the simplicial subdivision used by Kuhn resulted in an algorithm that was almost 

identical to the Scarf (1967a) algorithm in which the primitive sets had the regular form developed 

by his student Terje Hansen. Scarf with Hansen (1973) and Scarf (1991) explain the history and 

the connections between simplicial subdivisions and primitive sets.  There is a minor difference 

between the two algorithms in that Scarf’s algorithm starts at a subsimplex at a corner, a zero-

dimensional face, of the unit simplex, and Kuhn’s algorithm starts at a subsimplex on the side, an 

(n−2)-dimensional face.  What is identical is the simple formula for moving from one subsimplex 

to another, which we present in Section 3.  Our analysis uses Scarf’s version of his algorithm and 

is based on the description of the algorithm by Arrow and Kehoe (1994). 

Alternative versions of the index theorem 

The index theorem used by Dierker (1972) and that developed by Eaves and Scarf (1976) are 

special cases of the Lefschetz fixed-point theorem (Lefschetz, 1926).5  Other economists, starting 

with Varian (1975), have used indices for equilibria from the Poincaré-Hopf theorem for vector 

fields on a manifold (Milnor, 1965 and Guillemin and Pollack, 1974).  They normalize prices to 

lie on the intersection of the positive orthant with the unit sphere, 

  2

1
1,  0

nn
j jj

S p p p


    , 

                                                            

5 It was Solomon Lefschetz who submitted Harold Kuhn’s 1968 paper to the National Academy of Sciences for 
publication in its Proceedings. 
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and observe that Walras’s law implies that f  generates a tangent vector field on S .  If we define 

the index of a 0 of f  as  

  ˆ ˆindex( ) = sgn det[ ( )]p J p , 

where ˆ( )J p  is the ( 1) ( 1)n n    matrix formed by deleting one row and the same column for the 

Jacobian matrix ˆ( )Df p , then the Poincaré-Hopf theorem says that 

  ˆ ˆ( ) 0)
ˆindex( ) = 1

p f p
p


 . 

 It is easy to perform elementary row and column operations on ˆ( )I Dg p  that do not change its 

determinant to prove that its determinant has the same sign as that of J  (see, for example, Kehoe, 

1980).6  Furthermore, Kehoe (1980) shows that the index theorem can be applied to economies in 

which some goods can have a price equal to zero in equilibrium and to economies in which excess 

demand is non-differentiable at some prices as long as the non-differentiability does not occur at 

an equilibrium.  Guillemin and Pollack (1974, Chapter 3) prove the equivalence of the 

differentiable version of the Lefschetz fixed-point theorem and the Poincaré-Hopf theorem.  They 

even provide some intuition for the connection between the definition of the index based on 

derivatives and that based on orientation of subsimplex in a simplicial subdivision, as in Lefschetz 

(1926) and in our index theorem in section 4.  

Critical economies 

We show how large the deviations from the three conditions 3b   , 1 1 2 2
1 2 1 2( , ) ( , )a a a a , and

1 1 2 2
1 2 1 2( , ) ( , )w w w w , each of which is sufficient for uniqueness on equilibrium in the economy with 

2n  , need to be. To do this, we calculate the parameters of the critical economies where we relax 

these conditions one by one until the unique symmetric equilibrium bifurcates into three equilibria. 

                                                            
6 It is worth noting also that the Lefschetz fixed point index, as well as the Poincaré-Hopf index of a 0 of a vector 
field, can take on any positive or negative integer value, but indices that are not +1 or −1 occur only when the relevant 
determinant is 0.  Debreu (1970) proves that almost all economies, in a very precise sense, have only regular equilibria 
— equilibria in which the relevant determinant is not 0.  Critical economies, where the relevant determinant is 0 at 
some equilibrium, are interesting.  They are points in parameter space where the set of equilibria can change 
discontinuously and the number of equilibria can change.  Critical economies are examples of mathematical 
catastrophes. 
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We know that if we choose 3b   , keeping i
ja  and i

jw  fixed, then the economy has a unique 

equilibrium because of the Milleron-Mitiuschin-Polterovich result.  We can calculate that the 

critical economy where  

1

1

(0.5,0.5)
0

f

p





 

occurs at 3.33333b   .  For 3.3333b   , the economy has a unique equilibrium, and for 

3.3333b   , it has three equilibria.  We also know that if we choose 1 1 2 2
1 2 1 2( , ) ( , )a a a a , keeping 

b  and i
jw  fixed, then the economy has a unique equilibrium because of the Antonelli-Gorman-

Nataf result.  Setting 1 2
2 1 1a a  , we can calculate that the critical economy that divides the 

parameters for which there is a unique equilibrium from those parameters for which there are three 

equilibria occurs at 1 2
1 2 41.65972a a  .  We also know that if we choose 1 1 2 2

1 2 1 2( , ) ( , )w w w w , 

keeping b  and i
ja  fixed, then the economy has a unique equilibrium because of the Eisenberg-

Chipman result.  Setting 1 2
2 1 1w w  , we can calculate that the critical economy occurs at 

1 2
1 2 9.71429w w  . 

Exhaustive search in the economy with 4n   

To search for equilibria in the example with 4n  , we start Newton’s method at every point in the 

simplex of the grid of prices of the form 

1 2 3 4 1 2 3 4( , , , ) ( / , / , / , / )i i i i i i i ip p p p a D a D a D a D , 

where i
ja  are integers such that 0i

ja  , 1 2 3 4
i i i ia a a a D    , and 100D  . This is a grid of 

156,849 points. To get some intuition for the number of points in the grid, we observe that in 3 , 

the unit cube of points 1 2 3( , , )i i ip p p  where 1 0i
jp   contains 3100 1,000,000  grid points of the 

form 1 2 3( / , / , / )i i ia D a D a D , where i
ja  are integers such that 0i

jD a   and 100D  . It easy to 

verify that, while the unit cube in 3  has volume 1, its subset, the tetrahedron in 3  of points of 

the form 1 2 3( , , )i i ip p p , where 0i
jp   and 1 2 3 1i i ip p p   , has volume 1/6. Since we are ignoring 
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grid points on the boundary of this tetrahedron, we should expect there to be fewer than 

3100 / 6 166,667  grid points of this form.  

We start Newton’s method at each point in the tetrahedron ,0 ,0 ,0
1 2 3 1 2 3( , , ) ( , , )i i i i i ip p p p p p : 

1, , ,
1 1 1

, 1 , ,1 2 3
1 1 1, , ,

, 1 , 2 2 2
2 2 2

1 2 3, 1 ,
3 3 , , ,

3 3 3

1 2 3

( ) ( ) ( )
  

( )
( ) ( ) ( )

  (

( ) ( ) ( )
  

i k i k i k

i k i k i k

i k i k i k
i k i k i

k

i k i k
i k i k i k

f p f p f p

p p p
p p f p

f p f p f p
p p f p

p p p
p p

f p f p f p

p p p











 
       
    

             
    
 

    

,

,
3

)

( )

k

i kf p

 
 
 
 
 

, 

once again leaving ,
4
i kp  fixed at ,0

4 1 2 31i i i ip p p p     and renormalizing so that 

1 2 3 4ˆ ˆ ˆ ˆ 1i i i ip p p p     when and if Newton’s method converges.  Every regular equilibrium has an 

open neighborhood in which Newton’s method converges to it.  For each of equilibria 1–9 in Table 

3, this open neighborhood is large, with thousands of grid points providing initial values of prices 

for Newton’s method to converge to it.  For equilibria close to the boundary of the simplex, 

equilibria 10–15, there are fewer such grid points, but each equilibrium has hundreds of grid points 

that provide initial values of prices for Newton’s method to converge to it. Our exhaustive search 

locates all of the equilibria in Table 3, each of them many times, and it locates no other equilibrium. 

Convergence of the algorithm is enhanced, especially starting at grid points near the boundary, by 

using a small step size for the first two iterations, 1 2 0.2   , then using 1k   for 3, 4,...k  .  

We abandon Newton’s method if it leads to a price vector with a nonpositive element or if it has 

not converged after eight iterations. Lack of convergence after eight iterations happens seldom. 

For most grid points as starting values, Newton’s method either converges rapidly or explodes and 

leads to nonpositive prices. 
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Figure 1:  Scarf’s algorithm with restarts 
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Figure 2:  A road map to all equilibria 

Notes: The boxed numbers are the equilibria as numbered in Table 3. The numbers alongside the arrows show the 
label of the column to drop to go from one completely labeled subsimplex to another. The road map depicted here is 
not unique. There are many ways to navigate the set of equilibria. 
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