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We shall specify a model of hog supply in which individual
agents slaughter and breed stock based on rational expectations of the
output prices and feed costs they will face in the future. Individual
agents treat prices as exogenous to their individual decisions in line
with the usual assumptions of perfect competition, yet prices are actually
determined by the interaction of aggregate supply and demand.

This analysis results in the specification of restrictions on
a vector autoregression of prices and output such that they are consis-
tent with individual maximization, perfect competition, and market
clearing. The free parameters of this system are then estimated by a
maximum likelihood methed. Using these parameter estimates, the effects
of various policies can be evaluated by re-solving the maximization
problems and deriving the forms of the processes under the new policy

regimes.,

Production in a Deterministic World

We consider the swine industry to be composed of n identical
competitive firms each possessing a stock of animals of different ages.
The firm breeds, feeds, and slaughters animals to maximize expected
profit. We will first solve the problem of a producer facing nonsto-
chastic, hence known, future prices of output and his one input, feed.
It will be easy to move from this specification to one in which the
prices are stochastic processes with known properties.

At the beginning of period t, a representative firm possesses

a certain stock of mature animals (kt) and a stock of newly-born animals

oo

(at). The firm faces known sequences of future output prices {pt+j}
oo j=0
and feed costs {ct+j} . The firm makes a decision to breed X, of the
j=0
kt mature animals to produce at+l=£xt young animals at the beginning of



the next period. The firm slaughters the animals not bred and feeds
this period's newly-born barrows and gilts to maturity. The technology

may thus be summarized by the following set of difference equations

a

|
%

t+1 Tt

k

I
w
+
)

t+1 t t’

where f is the average litter size. The firm chooses a sequence

oo

{xt+.} to maximize its present value defined as
(1) v, = § bj{p (k.. .-x_,.)-c (x_, .+a )-i(x -X )2}
t j0 e T = o T = oy R o % T S o R/ % Ml o o4 O |

0<b<1l, d>20

where b is a discount rate and pt+j and c are the price of an animal

t+j
slaughtered at the beginning of period t+j and the cost of feeding a
living animal during period t+j respectively. We have assumed so far
that the slaughter weight of mature animals and the feeding rates

of mature and young animals are parameters outside of the control of the
firm. We have also assumed that adult and newly-born animals have the
same feed requirements--an assumption that is easily changed by multiply-

ing a, in equation (1) by a coefficient which expresses the different

+j
requirements of mature and young pigs. The third term in the expression
enclosed in parentheses in equation (1) reflects the increasing costs of
making large adjustments in the scale of operation in a single period.
In order to facilitate solution of the firm's problem, it is convenient
to rewrite equation (1) by expressing kt+j's and at+j's in terms of xt's

using the substitutions
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The maximizing sequence of xt's must satisfy the following first-order

conditions

(3) db - d(1+b)x
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j=0, 1, ..., T-1
subject to the transversality condition
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and the value of Xt-l'

To find a solution to equation (3), we first rewrite it as

1 1.2 ~
(4) (1-QQ+ L+ FL )Xt+j+l = A(L)pt+j+1 Ed D(L)ct+j+l
where
woil g agel .
A(L) = £5(-b 4L -b+L)
D(L) = 2-(b &L
bd ).

The polynomial in L on the left-hand side of (4) may be factored to

yield



w o

1

(6) (1-L) (1~ FL)xt+j+1 B A(L)pt+j+1 * D(L)Ct+j+l'

If we multiply both sides of (6) by the "forward inverse" of (1- %L)

defined as

S S
(1~ %L) T e
we obtain
bt
ALyxpqyq == 7 AOIP P WIC L 040)
1-bL
or
(7) X - o — (bL"lA(L)p WL T D(Ye )
t+i+1 f: l—bLnl t+j+1 t+j+1’ "

By using the definitions of A(L) and D(L) and passing back to explicit

notation for leads and lags (7) can be rewritten as

bli-v2ep
0
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which holds for all j=0, 1, .... (It can be shown that (8) holds for
j=-1 as well.) Equation (8) is the breeding decision rule of an optimiz-
ing producer facing known future sequence {pt} and {ct}.

This decision rule accords well with our intuition about the
producers problem. All feed costs enter equation (8) with a negative
sign. Hence, an increase in any current or future feed cost has the
effect of decreasing breeding (and increasing current slaughter) because
of the reduced profit which can be realized in future periods by enlarg-
ing the herd today. The current price of slaughtered animals, pt+j+l’

enters the breeding schedule with a negative sign indicating that a
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higher price for today's slaughter will, with future prices unchanged,
call forth more current slaughter.
This decision rule is even easier to understand if we simplify
(8) still further to yield
1 I ¢ 1.3
@) %41 T X T Pt T diZOb LR 43Pl i

This can be transformed to vield

£ it Crtie13

_ @ 5 802 r
(10} (XX = “Pyyy ¥ ,Z LR LR T

i=0
The left side of equation (10) is the marginal adjustment cost of
breeding an additional unit. The right side of (10) is the net change
in the present value of the producer's profit stream resulting from
foregoing current slaughter to breed an additional animal. The first
term on the right side of (10) is the income foregone by not slaughter-
ing; the summation on the right side of (10) represents the present
value of the profits made from each future litter of the animal being

bred.

Production Under Uncertainty

We shall now consider the problem of a producer operating
under the same technology as before but faced with uncertain prices for
this output and his input, feed. The individual producer considers the
{pt} and {ct} processes as exogenous to his decision. That is, the
producer assumes that his decision will have no impact on the future
values of pt and Cpe Because of our linear-quadratic setting of the

problem, we can express the producers optimal breeding decision as a

function of his expected values of p and ¢ in future periods.
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The producer seeks to maximize

d 2
)—-c (x .+a  .)- F(xt+j_xt+j—1) }
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where E(z)=Ez[It is the mathematical expectation based on unspecified

t =) ®

information set It' We assume that {pt} and {ct} are stochastic
t=0 t=0
processes of exponential order less than (1/b), i.e., there exist con-

stants M>0 and N>0 such that

1.k
|Ept+j[ < M)
t

1.k
|§Ct+j| <NE

for all j>0 and for all t.

The first-order conditions for the maximization are

(12) db E Xt+j+l - d(1+b)xt+j + dxt+j—l =
t+]
2
-b"LEp_,. -b Ep, ,. +p .,. +bLEc,,. +c .
t+] t+ij+2 £+ t+ij+l t+] £+ t+i+1 t+j
=05 Iy cwew

The two boundary conditions are provided by the value of X 1 and the

transversality condition

(13) lim b E{~p ac = 0.

T )}
Tes | £ t+T “t+T-1

t+T Ct+T

We may solve (12) by defining a new operator B by the condition that

B "Ez = Ez .
¢ t+k ¢ t+k+1

Equation (12) may be rewritten as
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(14) (1+(1+ )B+(—OB ) E x = A(B) Ep

t+j+1 t+j+1
+j J +j 3
+ D(B) E ¢
£ t+i+1
where
A(B) = 1-(-b%gB 1-b+B)
bd
and
D(B) = i(bl+L)
bd '

The polynomial on the left side of (14) factors just as before to yield

(15) (1-B) (1- %B) E x
t+]

= A(B) E p
tt)

+ D(B) E ¢

t+j+1 ot

t+j+1 t+j+1°

Operating on (15) with the forward inverse of (1- %B) yields relation

-1
-bB
(16) (1-B) E x = = (A(B) E p +D(B) E ¢ )
£+ t+i+1 1-bB 1 £+ kTl £+ t+i+1
or
EXipgt1 = Feay ~ "_‘L:I (87A(B) Pitj +l+B (e E Crpia1)
t+j 9 1-bB t+j 9 t+j
More explicitly
(17) E x = X - l-E P
£+ t+Hj+1 t+j dt+j t+ij+1
1°§ i 2
= )b E b -ble . =B o Ya
d1-—-0 £+ t+j+i+3 t+j+i+2 TtHj+Hitl
The solution for xt+j+l is derived by expanding the information set in

(17) to include all information actually available at the beginning of

period t+j+1 when xt+j+l is chosen.
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t+j+1 t+] d" t+j+1 di=0 e+

(18) bl

t+i+i+3 2L g i Cragaie)

Equation (18) is the stochastic version of the deterministic
breeding rule (10) in the previous problem. The producer balances
expected future profits from breeding against the known price of currently

slaughter.

The Rational Expectations Equilibrium

To this point, we have not derived any testable restrictions
on data. Equation (18) is the relationship between the breeding level
of an optimizing agent and his expectations of future prices and costs.
The linear-quadratic technology we have assumed allows us to express the
agents decision as a linear function of the means of his subjective
forecasts. Although E was defined as the mathematical expectation
conditioned on some data set, everything in the derivation of (18) would
be valid if E were any (linear) procedure used by the agent to forecast
the {pt} and {ct} processes. In order to construct a model which
restricts data, we must specify the agents method of forecasting and
several other aspects of the markets in which he deals.

Several attributes of these markets must be specified and
combined with our model of individual production to yield testable
implications for time series data. First, we will assume that agents
behave as if they make optimal or ratiomal forecasts of future prices
based on all of the relevant price and production data available.
Second, we shall derive the aggregate supply behavior of a large number
of identical small producers. Third, we will specify the demand curve

for industry output and the supply curve for the input feed. After
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adding all of these elements, we can solve the model to generate restrictions

on the stochastic processes for feed costs, output prices, and production.

a. The Rest of the Model
The demand curve for the output of the industry is assumed to

have the form

(19) Dy * AO - Alqt + u, for all t

where 9, is the quantity of slaughtered pork, u, is a (possibly serially
correlated) random shock and AD and Al are positive scalars. This is a
downward-sloping linear demand schedule which is subject to parallel
shifts caused by a random variable u, perhaps most realistically visualized
as a business cycle or income shock.

The supply curve for feed faced by the industry is assumed to

be upward sloping of the form

(20) e, = CO + let + e, for all t

where ft is the quantity of feed supplied, e, is a serially correlated
random shock, and CO and Cl are both positive. It is probably most

natural to think of e, as either the effect of weather on feed harvests
or perhaps the price effect of demand by domestic and foreign purchasers
of feed grains and close substitutes.

The technology of the preceding sections will remain as before

except that we will assume that production of the pig crop is stochastic

and is described by the relationship

(21) a, = £xt—l + n,
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where a is the number of pigs born at the beginning of period t, X _1
is the number of sows bred at time t-1, £ is the average litter size
and, n, is a (possibly serially correlated) random shock. Perhaps a

more natural way to model stochastic production would be to assume that

the production disturbance is multiplicative, i.e.,

(22) a

= (£+nt)xt.
In the current task, we will prefer to use (21) because it, while less
intuitive, it preserves the linearity which helps to simplify the
solution of the current model.

We assume that the industry is composed of N individuals who

are identical in endowments, technical skills, and information. The

output of the industry can be expressed as
(23) g = Nh(kt-xt)

where h is the average slaughter weight expressed in the units of Qe

If we express kt in terms of past values of the breeding variable X, and
substitute equation (23) into equation (19) to eliminate qp» we obtain
the demand curve for industry output in terms of the individual decision

variable X, -

- - V(=
(24) P = Ay — A (x4x,  Hx i

¢ 0 ) +u

t-1 £

where Ai = AlNh. From now on Al should be interpreted as Ai from

equation (24) instead of A, from equation (19).

1

The amount of feed used by the N identical producers may be

expressed as

(25) £ = Nh'(xt+at)
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where h' is the average amount of feed consumed per period by each
animal. Substituting for a in equation (25) and then for ft in equa-

tion (20) yields the supply curve for feed in terms of X, .

=  §
(26) e, =Cyt Cix Hx _,4n ) +e

t 0 t*

As with Ai in equation (24), we will drop the prime (') in subsequent

uses of Cl.

b. Rational Expectations

We shall maintain that agents treat the {pt} and {ct} processes
as exogenous to their individual problem. We shall further maintain
that agents act as if responding to the optimal linear forecasts of
future prices based on all information on past prices and the current
state. Actually the prices of output and feed will be determined by the
intersection of the supply and demand curves for industry, output, and
feed.

The rational expectations equilibrium of this system is a
triple of stochastic processes {xi}, {pi}, and {ct} such that {xg}
maximizes expected profit given {pt} and {Ct} and also that {pt} and
{ci} clear the pork and feed markets if production process {xt} is
followed.

We can derive a representation of this trivariate stochastic
process in terms observable values of its own past and past value of the
three exogenous shock process {ut}, {et}, and {nt} by completing four
steps. TFirst, we substitute equations (24) and (26) into equation (14)
to obtain a representation of X, in terms of its own past and the past,
present, and expected future values of the u., €, and n_. Second, we

t

specify a stochastic structure for u, e, and n, and develop closed
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form expressions for expected future values of them in terms of current
and lagged values. Third, we substitute the forecasting relations from
step two into the equation derived in step one in order to express X,
only in terms of current and lagged shocks. Finally, we cast the process

in the form

(27) e o1 Vit Yit-1
Py = V(L) Pr_1 + LOW + W(L) W2t-1
€t Ce-1 Vit ¥3t-1

where V(L) and W(L) are matrices whose elements are polynomials in
nonnegative powers of the lag operator L and the w, are stochastic
processes of shocks. In this form, the parameters of the model can be

estimated by the maximum likelihood method of Wilson [ ].

L Express xt in terms of shocks
We will manipulate the three equations which are reproduced
here for convenience.

(14) (db-d (1+b)B+dB%) E x

t+i t+j+1

(—bzza‘l-b+3) Ep + (bf+B) E ¢

£+ t+i+1 £+ t+j+1
_ 2
(24) pt+j = AO Al( 1+B+£B )xt+j - Alnt+j—l + ut+j
(26) ct+j = c0 + cl(1+£B)xt+j + clnt+j + et+j.

Equation (14) is the Euler equation of the firm's maximization problem;
equation (24) is the demand curve for output; and equation (26) is the

supply curve for feed.
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Substitution of (24) and (26) into (14) yields

2 3 4 B
(28) (g0+ng+g2B +g,B7+g, B ) E.Xt+j+2 =
t+]
(—bzﬁ—bB+Bz) E U2 + (ba£B+Bz) E L
t+j oo t+j 3
+ (£.B+f.B%4+£.B°) E + D
e Perj+2 T P00
t+j
where
(29) g = Albzﬂ
~ 2
g, = Al(b £-b) Clbu£ + db
g, = —Al(—bzﬂz—b—l) - Cl(ba2£2+l) - d(14b)
gy = —Al(bi—l) - cluz +d
8, = Alﬂ
and
F o= bzﬁA + bodc
1 i 1
(30) £, = bA, + C;
£y = -7
and
(31) D, = AO(-bzz-bﬂ) + Gy (balHl).

In order to solve equation (28), we wish to factor the fourth-order
polynomial in B on the left side of the equation. To insure that the
transversality condition (13) holds, we will solve the unstable roots of
that polynomial into the future to express X, in terms of some future

values of the right-hand side variables.
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The roots of an arbitrary fourth-order polynomial may be all
stable, all unstable, or any combination of the two types of roots.
However, the pattern of the gi's gives us a good clue to the size and
location of the roots of G(B). The coefficients are "almost" symmet-

rical, i.e.,
(32) g, = b2g and g, = bg
0 4 1 3

In such a situation, the roots of G(B)=0 occur in two pairs such that

the product of each pair of roots is b, i.e., G(B) may be expressed as

b b
(33) G(B) = (1-A B)(1- ‘}qB)(l—?\ZB) (1- EB).

Note: This is easily validated. For concreteness, we'll consider the
case where G(B) is fourth-order and restriction (32) on the coefficients

hold. Let us take any root A#0, i.e.,

2 3 4

(34) 8o + glk + gzl + g3h + gal = 0.
We wish to show that

b b, 2 b, 3 Bk
(35) gy * g, (PN + g, P+ 83(19 + 34(7) = 0.

A
Multiplying (35) by (—gﬂ with b#0, yields
b

=4 g
0,4 1,3 2 2 _
ZA + 5 AT+ gzh + g3bl + gab = 0.

b

(36)

But gofb2=g4, etc., so substituting from (32), (36) becomes

4 3

2
by = 0.
(37) AT+ g3k + gZA + 8, + 8o 0

&4
If the discount factor b is equal to one, then the roots of G(B)=0 would

either all be on the unit circle or would occur in reciprocal pairs, one

member of each pair inside the unit circle and one member outside. For
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b<l, the roots may be paired (one inside, one outside) for a considerable
range of values. We shall continue to solve the model under the assump-

tion that the two smaller roots of G(B)=0 are both less than b, i.e.,

A <b <1 and AZ <b < 1.

1

This assumption assures that %—, and %— are both greater than 1. If
this assumption doesn't hold, ihe deriiatiou of the ensuing expressions
would be different. After estimation, we can inspect the estimates of
kl’ AZ’ and b to see if the following expansion is the appropriate one.
Under this assumption about Al and RZ we solve the unstable

roots into the future as follows. Since G(B) can be factored as seen

above, we may write (28) as

b b
(38) (1-x,B)(1- =—B)(1-2,B)(1- —B) E x_, . =z
1 Al 2 AZ - t+j+2 t+j
where we define zt+j as the entire expression on the right side of (28).

If we operate on both sides of (38) by the forward inverses of (l—b/Kl)

and (l—b!lz), we get

A
. L A1
bl - ‘.B-'B
(39) (1-2,B)(1-A.B) Ex_,.,, = zZ, .
-A -A
1 2 e t+j+2 1 _}B_l 1. _EB-l t+]j
b b
or
AA
12 -2 1
—l -— = B .
(40) (1-21B) (1=49B) E X1540 = 72 X X 2 g
t+] b fie La by 2Ly
b b
Using the fact that for any 31%82
8 )
(41) - 1 —= 3 }e 1 — - 2 —
-6 =B -0 -0
(1 lB ) (1 2B ) 1 2 1 1B 1 2B

we may simplify (41) to yield
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(42) (1-1,B) (1-1,B) E x G L B
1 £+ t+j+2 leﬂz)
b _ b_
Ay Ao i
1- g 1. By
Al Ay

This may be rewritten as

(43) tfaxt+j+2 = Ohy) Eth+ a1~ MhoFeT

z h, E z
] Fi4d
120 Lpgs t+j+i

where
ALA A
- -
(44) hy = DR “2)i41
i b(ll 2)

By substituting for zt+j we obtain

(45) §Xt+2 = (ll+lz)§xt+l - hllzxt

+ z h {-b 2Eu .~bEu ABu .}
i=0 ¢ t+2+1 t t+1+i ¢ t+i
+ 1£0h {bazEet+3+ E & youg)

+ Jh {VoE“t+1+i 1 G 2§“ 1+ T Dy

where

= bﬂ(bAl+aCl)

<
|

bAl + C1

<
H
I

(46)

v, = -Al




M2 Dy

Dy = x X

1 2
b(A =3, (1= £ (1= )
By passing to the information set as of time t+2 and then relabelling

the time axis we express Xt as

(47) x, = (Fx g - MAE

v 2
¥ .z by b"LEBu oy -bEu o HEu )
i=0 t t t

+Ee | .
i e+14d ¢ ETE

Il o~ 8

hi{baﬁze
i=0 t

+ LhtveEn o v En bvoBn L, o3+ D).
i=0 t t t

Equation (47) expresses X in terms of its own past and the past,
present, and expected future values of the disturbance process {ut},

{et}, and {nt}.

2. Develop closed-form forecasting equation
We must now specify the stochastic structure of the shocks
{ut}, {et], and {nt} and develop explicit forecasting equations for

their future values. We assume that each can be expressed in mth order

autoregressive form with independent, while disturbances, i.e.,

m
() u, = .z Pi%-i * f1t
i=1
m
(48) (b) e = L¥e . +e,
i=1
m
(@) m = Lom , +ey
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where git's are independent and

Ee
&

fedh ™ 0 for i=1, 2, or 3 and for all k>1.

For ease of exposition, we shall maintain that the order of each process
is m. The same calculations are possible if the orders differ. The

process (a) may be expressed as a first-order system in the form

(49) Ye Py Py P3 Py Py Y1 €1t
) ) . 0 : + 0
. - n-1 * *
Yeontl 0 u 0
t-n
where In-l is an (n-1) identity matrix. We may rewrite (49) as

e b T T
where & p'
t
z, = : and Al =
Yt-nt+l L

where p' is the row vector (pl - pm). Similarly, we may express the

es and n. processes as

(50) (b) =z A

2t = A2%pe-1 T €

(€) 23, = Agz5, ; + &5,

where ZZt and th are defined in terms of et and nt and A2 and A3 are

defined in terms of wi's and 0,'s, respectively.

3.

For any of the zit's it can be shown by recursive substitutions

that
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Kk k-1

(51) z, = Aiz. + Z A

it+k i 1t+k—]

By applying the E operator to both sides of equation (51) and noting

t
= >
that EEit+k 0 for k>1 we know that
k
(52 fzit+k = AjZie

The matrix Ai can be written in Jordan canonical form

_ -1
Ai = PiﬂiPi

where Pi is the matrix of the eigenvectors and Ai is matrix with the
eigenvalues of Ai on the diagonal, possibly some 1's on the next diagonal,
and zeroes elsewhere. If we assume that all of the eigenvalues are
distinct, then Ai is a diagonal matrix with the eigenvalues along the

diagonal. It is easily seen that
- e aphearh =kt
= i i iii s i i

and, in general

ad = p dp7L,
1 11 1
Let us further define ¢ as the row vector (1, 0, 0, ..., 0) of length m.

Then the expectations u., €., and n_ may be expressed as

= J l
(53) §Ut+j cPyA3Py 2,
_ ip
Eet+j cP, AP 2 %2t
Ent+j CP3ﬂ3P323t

for all j>1.
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These are exactly the forecasting relations we seek. Each expresses the
expected value at some date in the future as a function of current and
past values. The next step involves expressing equation (47) for x, as

a function of only current and lagged values of itself and the shocks.

3. Eliminate expectation terms from the X, equation
If we use the relations in (53) and substitute into equation

(47), we have

(54) X%, = (l1+K2)xt_1 ~ llAZXt-z
ALA o A i+l A i+l
+2 1 +1_ -1
fz LD -6D v eer 17 ber i
b( 2 120 i i 1

i-1
4 cPlﬁlPl )}zlt

A i+l A i+l

1 2 i i+1 =1
¥ B0hyh ), & Z {((—) —(-) ) (baleP, A, P, e Pzﬂsz )22t
A A @ As I+l A, 141
2 l 2 i+l _-1 -1
+'—f”-—;—y z {(( —(E"D )(VOCPBAB Py HE P3A3P3
i-1_-1
+ vch3A3 P3 )z3t + Dl.

By noting that

J steente™ = cpp 7 st

i=0 i=0

we can expand the 21, term on the right-hand side of equation (54).

A A o M i+l Ay i+l i+1 -1

172 % 2 -1 B
(55) ew= e ML b D (e iR ber 1 T

1 "27i=0

+ cP ﬁ P l)}z
s [ | 1t
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X A o A, i+2
12 2 b 1 i+2, -1

———=—[-bLeP. {7— ] =) A7 }P
b(A;-2,) 1A 4, P 171

@ A, i+2
+2, -1
+ e (27 q;g) ﬁi 2}Pl

1" 2420

o AL i+1
1 i+l, -1
BB, { izo(b—) Ay 38y

© A, itl

2 141 _~1
3 hcpl{izo(g—ﬁ ¥y

A I U |
1 L i. -1
+ eBd 5 )iéocb—) A }E]

Ay

R W |
ol o I T i R |
i=0
It easily verified that if wi's are the diagonal elements of Al and 6<1

and j is some fixed integer, then
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where the right-hand side of (56) is a diagonal matrix of dimension m
whose ii-th element is
i
8 b3
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Then (55) can be expressed as
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This expression is inner product of the first row of a complicated

matrix and the vector zlt' We may define this first row as (Gl, iy

am) and then the entire expression may be written as Gzlt. If we

simplify the expressions in Zoe and Z3e in a similar way, (54) may be

written as

(58) X = (k1+l2)x _qo= Xk + oz, + 822 + vz . +D

t e-1 = "1%2%e-2 1t t 3 ie
Using the definitions of the zi's we may write
m
£59) ¥ = OpFhdxe g = A% ¥ izo(aiut—i+81et—i+Yint—i) * Dy

This is an equation that expresses x_ in terms of its own past and

t

current and past values of the disturbances u, e, and n.

4. Express vector autoregression in estimatible form
We obtain a form of the model which can be estimated by combining
equations (59), (24), and (26). By substituting equation (59) for the
contemporaneous term in X, in equations (24) and (26) we can express the

system as a trivariate vector autoregression, e.g.,

(60) X, Al + kz 0 0 X1
= 3N —

Py A lApkr=1) 0 0 Pe_1

X, cl(kl+kz+£) 0 0 g
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where HO, Hl, and H2 are all expressed as functions of ¢, B, Y, A, and
cl. If we define
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then system (60) becomes
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where Vl and V2 are just the appropriate matrices from (60).

The parameters of the model can be estimated by a maximum

likelihood method by minimizing the determinant of the variance-covariance

matrix of the ait's in system (61).



