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Interpreting the Long-Run Relationship Between
Money and Prices in the Presence of a Mundell-Tobin Effect

1. Introduction

Lucas' (1978) elevation of the quantity theory to the "status

of Natural Law" motivates this study of the quantity-theoretic proposi-

tions and their frequently discussed but empirically untested modifica-

tions. His ingenious but unstated use of Sims' (1972) approximation error

formula to extract the long-run properties of time series for a single

economy is analyzed in detail in the next section and several examples are

presented. An important possible caveat to the quantity theory proposi-

tions noted by Lucas is the Mundell-Tobin effect of a monetary expansion:

the resulting inflation lowers the real yield on money balances and hence

induces an asset shift to real capital. Section 3 begins an examination of

the importance of this effect in the context of Lucas' (1975) equilibrium

model of the business cycle.

The use of the Lucas model necessarily makes this study similar

to Fischer's (1979) examination of neutrality; the important difference is

that the current study is of an explicitly stochastic economy. This

modification allows the study of monetary interventions to which agent's

decision rules are invariant, but raises a difficult analytical issue: the

solution of stochastic difference equations which are not derived from

optimum problems. To overcome this difficulty, a general, efficient

method for the solution of stochastic difference equations is developed

and discussed extensively in Section 4. Application of this method in

Section 5 yields a model equilibrium embodying the standard cross-equation

rational expectations restrictions which is then used in Section 6 to

study the response patterns of the price level and capital stock to mone-

tary innovations for different settings of the Mundell-Tobin effect. The
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relation of these results to the Lucas empirical results is presented in

Section 7, and some thoughts concerning further research are given in

Section 8.

L
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2. The Quantity Theory and the Mundell-Tobin Effect

One of the most familiar formulas of economics is the quantity

equation

(2.1) M(t)V(t) = P(t)Y(t)

where P(t) is the price level at time t, Y(t) is real output at t, and V(t)

is the velocity of turnover per period of the money stock M(t). Unadulter-

ated, (2.1) is a truism: the value of output must equal the effective

volume of nominal assets used to purchase it. Constrained, (2.1) has been

used for modeling purposes. In the simplest incarnation of (2.1), velocity

is assumed constant: V(t) = VY t. The resultant form

(2.2) M(t kY(t)
P(t) -

is enshrined on the pages of beginning and intermediate textbooks as an

element of an "economic model." (2.2) indicates that an increase in the

nominal money stock must either increase the price level, output, or both.

In more sophisticated usages, a version of (2.1) arises as a characteristic

of equilibrium. For instance, in the simplest versions of the classical

model, a cleared labor market serves to fix Y(t), and equilibrium is

characterized by

dM(t) dP(t)
(2 3) M(t) - P(t)

which is produced by (2.2) when Y(t) = Y. (2.3) is the mathematical

formulation of the quantity theory of money: a jump in the money stock at

t induces a proportional jump in the price level at t, and has no real

effects. In explicitly dynamic frameworks, (2.3) often appears as

M(t) P(t)
M(t) - P(t)
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so that an increase in the rate of growth of the money stock causes an

equal increase in the rate of inflation.

Of course, the quantity theory relation is not a characteristic

of all models of economic behavior. Models which are as defensible as the

classical model which produced (2.3), but in which (2.3) does not hold,

include simple versions of the Keynesian model and Tobin's (1955) dynamic

aggregative model. 1 Indeed, it was the failure of the simple, ad hoc,

deterministic, continuous time classical model to conform to empirical

observations which led to the development of the Keynesian framework.

But the quantity theory will not die. The current generation

Keynesian macroeconometric models have failed on a scale similar to the

supposed inability of the classical model to explain the unemployment of

2/
the 1930s.- As a result, some researchers, led by Robert Lucas and Thomas

Sargent, have resurrected the classical model in a sophisticated, explic-

itly stochastic, dynamic form.3 / Hence, the quantity theory is again

receiving attention, though not necessarily in the form (2.4). Economists

now explicitly recognize that a variety of forces might cause (2.4) to hold

only an average or not at all. But Lucas (1978) suggests that one

ought to take a version of (2.4) seriously.

4/
Lucas argues that the quantity theoretic propositions-- are

unique among propositions of monetary economics in that they "possess that

combination of theoretical coherence and empirical verification which

merits the status of Natural Law" (1978, page 1). By "theoretical" coher-

ence, Lucas means that formulas like (2.4) arise as necessary conditions

for equilibrium in well-posed models of economies in which agents optimize

and markets clear, as in Sidrauski (1967a, 1967b). Equally importantly,

this general equilibrium theorizing points to possible qualifications of

the quantity theory.
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The most obvious caveat stems from the possibility of a Mundell

(1963)-Tobin (1965) effect of an increase in the money stock: the resul-

tant inflation lowers the yield on money holdings and induces an asset

shift to real capital. In the presence of a Mundell-Tobin effect, an

increase in the rate of money creation would cause inflation to rise by a

lesser amount, and would have real effects. In some models, a Lucas

(1973)-type Phillips curve can produce a Mundell-Tobin effect, so the

effect has received some attention. But in standard models, the effect, if

present, is typically thought of as a second-order one, though, in an

important class of models stemming from the work of Samuelson (1958), the

Mundell-Tobin effect is the primary one.5/

By "empirical verification," Lucas means the variety of studies

appearing to confirm (2.4). One such study cited by Lucas is Vogel's

(1974) study of average inflation and money growth in Latin America. Vogel

found that average inflation and money creation rates for a cross section

of Latin American countries lay on a 45 degree line. This approach is

typical: in most studies of (2.4) the data are a cross section of time

series for several countries. But there are obvious comparability issues

in such an approach, and a natural question is: how does one study (2.4)

for a single economy? In essence, Lucas does this by studying very long

distributed lag regressions of inflation on money creation, and his

pictures tend to confirm (2.4). The method is novel and somewhat subtle,

and an understanding of his results requires some discussion of his

approach.

Lucas took time series for money creation (lt) and inflation

(it) and applied a two-sided filter to each. For instance, he replaced the

time series {9 by6 /
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(.5) Ii(S)} 1-:{( O I )

with 0 < B < 1. He then generated plots of the pairs (pt(),1t (B )) for

various values of 5, and found that for near one, the filtered observa-

tions approximately fell on a 45 degree line; i.e., his graphical method

discovered R2 and a near one in the regression7 /

(2.6) 7t(B ) = api ( ) + t.

In order to judge his method and results, it is necessary to review some

results from projection theory.

Consider the projection of nt on the entire pt process:

(2.7) t = Ykt-k + t
k=-00k

where nt satisfies Etut-k t = 0 V k. Defining S (e ) and S (e ) as the

spectral densities of {Tt } and {t }, the coefficients Yk can be recovered

by (inverse) Fourier transforming

-iw -iw -iw
(2.8) y(e ) = S (e )/Su(e )

where S (e ) is the cross spectrum of (8t,pt) The "frequency domain

R2" obtained by using (2.8) is given by the coherence:

w I Sn,(e -i w ) 2

(2.9) coh(e- w) = ..
S (e-iW) (e-iw)

In practice, (2.7) is impossible to estimate: it contains an

infinite number of parameters. Some restriction of {yk) is necessary.

Though there are many such restrictions, by far the most common is trunca-

tion, i.e., yk = 0 V k > N 1 > 0, yk= 0 Y k < N2 < 0. In any event, let

{y) be a restricted version of {yk} so that {y}) (Y7 for any such

restriction. The restricted regression to be implemented is
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Co

(2.10) Tt = k Yt-k + ut
k=-ao

^ T
Least squares chooses {Y' to minimize the sum of squared residuals u2

t=0
Again turning to population arguments, this sum of squared residuals is

proportional to the area under the spectrum of ut, S (eiw). Substituting
u

(2.7) into (2.10) and rearranging yields

CO

(2.11) ut = (Y -Y')+tk + t

k=-Co

From (2.11), the spectrum of ut is

iw -iW -iw 2 -iw 2
(2.12) S (e ) = Y(e )-Y(e )IS (e ) +u 121T

Co

where Y(e- ) = yke . Hence, least squares chooses {Y'} to minimizek k
k=-Ok

1rIY(e-)Y l))-Y 1se(eiw Sew)dw

which is Sims' (1972) approximation error formula. Clearly, the approxi-

mation will be "best" at frequencies w over which S (eiw) is the largest.

Since

w*period = 27,

good "long-run" approximations require relatively high power in {pt} at

low frequencies. If the long-run properties of {yk} are important, it may

be useful to filter Vt with a filter which has large power at low frequen-

9/
cies.-

Lucas notes that the filter in (2.5) has Fourier transform

(2.13) B(eiw) (1-)2

1+82-2Bcosw

which, for large B, concentrates most of the power at low frequencies. His

graphical method forces the a of (2.6) to approximate {k ~
o of (2.7), sok -o



-8-

surely approximation error is present, and Sims' formula (2.12) is useful:

Lucas' methods amount to choosing a to minimize

fI (e - i)-a S (e lw)dw.

-iw

When S (0)(e - i w ) has power at low frequencies, S (e-iw) will, for B near

one, have most of its power concentrated at low frequencies. Indeed,

-iw -iw
S (e  ) will be S (0 )(e ) at zero frequency and zero elsewhere.

Thus, when S (eiw) is itself low-pass, a will be a good approximation

of y(1), the sum of lag coefficients in (2.7). The quality of the estimate

is governed by coh(w) for small w, the coherence at low frequencies of pt

and tt.

10/
Examples of the types of calculations performed by Lucas-- are

given in Figures 2.1-2.7. The figures illustrate the effects of seven

filters on ft(S) and vt(B). Since the coherence of rt and Ut is unaffected

by filtering, this quantity is presented only once, in Panel a of Figure

11/2.1. In the following figures, Panel a illustrates the gains- of the

filter used throughout that figure. The absolute value of the Fourier

transform of {yk 12/

iw
-iw SI S I ( p(0) (e- )

s (e- i w ) '

13/is also unaffected by symmetric- filtering, but is presented in each

figure as a reminder of what the a of (2.6) is approximating. Panels b and

d present spectra of it() and rt(B), while Panel e displays a scatter plot

of t() and nt(B).

The data are 289 monthly observations from December 1953 to

December 1977, not seasonally adjusted, on M1 and the Consumer Price Index.
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The spectra, the transfer modulus, and the coherence were calculated as

follows. First, means were extracted from the logarithms of M1 and the

CPI. First differences were then taken to obtain pt and irt. These series

were regressed against a consant, 24 own lags, and 11 seasonal dummies;

i.e.,

24

= t = YJt-j + constant + seasonal dummies + residual
j=1

24
t = t- + constant + seasonal dummies + residual.
j=1

24 24 .
Denote the whitening filters 1 - y~ L and 1- L by (L and

j=1 j=1
fR(L). The residuals from these regressions were then Fourier transformed

ot ~w ~w 14/
to obtain ~ and 1 ,-- e.g.;

w r 288 2rijt
(- ) = e 288 j = 0, 1, ... , 287.

288 t=

The periodograms and cross periodogram were obtained as

S(.)v (*)/(2r264), ~ (.)w (*)/(2.264), and ~ (.)w (.)/(2.264). These

quantities were smoothed using a triangular spectral window with a base of

7 ordinates to obtain the "prewhitened" spectral estimates Spw(*), STw(*),

w w
and SfWpw (). The coherence of Panel a of Figure 2.1 was computed as

ISi w (( ) W(2)

while the tranfer modulus appearing in Panel c of all figures was computed

as

Iiw ) f-( I
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Denote the gain of the low-pass filter / by I (e-iw)I , and that of the

quarterly averaging filter (L 1 
+1+L)/3 by q(e-iw2. The spectra pre-

sented in the several figures were computed as

I( ) 
22 ( 

2 2

The data for the Panel e scatterplots, ut() and t(B), were calculated as

follows. First, ut and 7t were Fourier transformed. The transforms of the

series were then multiplied by the Fourier transforms Z (e ) and

q(e ) of the low-pass and quarterly-average filters. The resulting

quantities were then inverse Fourier transformed to yield pt(B) and

T ()17/

In Figure 2.1, 5 of (2.5) is zero. Hence, the filter treats all

frequencies identically: it is as if no filter were applied. Therefore,

the spectra of Panels b and d are for the unfiltered data. Notice that

although money growth displays seasonals evidenced by peaks in the spec-

trum at seasonal frequencies, inflation has no peak in its spectrum except

that at zero frequency. The scatter plot of the raw data in Panel e does

18/
not reveal any systematic relationship. Indeed, the estimated-- a from

(2.6) is 0.02.

In Figure 2.2 the filter is beginning to take effect. The higher

frequency peak in the spectrum of money growth has been sharply reduced. A

similar reduction of high frequency power in inflation has occurred, but it

is difficult to see. But (2.5) with B = 0.5 does not appear to extract

much from the data: the scatter plot Panel e is still disorderly and a is

only 0.08.

But in Figure 2.3, order begins to emerge. The seasonal in money

growth has been removed relative to the peak at zero frequency. This is

L
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A

reflected in Panel e, where now a = 0.87 and the points begin to fall on a

line.

Finally, in Figure 2.4, the spectra are essentially narrow
A

spikes at low frequency. In Panel e, a = 0.99 and there is a clear

relationship between ut(0.99) and it(0.99). Apparently, one can reject

the hypothesis 19 / that the sum of lag coefficients Yk of (2.7) is zero.
k=-ok

Because it and ut are highly coherent near zero frequency and the transfer

modulus is near one there, the estimate of Yk near one appears to be a
k=-0

good one.

There are several points to be made about these figures. First,
00

as (2.13) indicates, obtaining a good estimate of C Yk by estimation of c
k=-OO

in (2.6) requires a sharp reduction in power at high frequencies. This is

made clear in Figures 2.5 through 2.7 where the calculations of Figures

2.2-2.4 are reproduced with a slightly different filter. In Figures 2.5-

2.7, 7t(B ) and it( B) were computed as

ut(B) = (1+L)2it

1t(S) = (1+BL)2lt

with S = 0.5, 0.9, and 0.95. As Panels a indicate, (1+ L)2 is a low-pass

filter, though not nearly so low pass as I BILk. As a result, the
k=-oo

scatterplot Panels e show no order: the estimated a's are near zero.

Second, ac of (2.6) is an estimate of yk', not " yk. It is
k= - " k=0

only the case that yk = 0 for k < 0 when { t} fails to Granger (1969)-cause

{lti . It is of interest to note that if {t~ fails to Granger-cause {lt ,

then {It()} fails to Granger-cause {it(B)I. This is because It(B) and

lt(B) are calculated from lt and Ut by applying the same filter.



Third, though the filtering procedure leaves substantial serial

20/correlation in the residuals of (2.6),-0/ there should be no correction for

it. This point is made by Sims (1972), and rests on the fact that sharp low

frequency power in Ut() is necessary for a good estimate a in (2.6). In

this case, t (B ) is also low pass, and for large , the residuals in (2.6)

will also have this property; they will be serially correlated.

Finally, Panel e of Figure 2.4 indicates that for the long run,

the quantity theory (2.4) holds. But in what sense? Does figure 2.4

reject the "hypothesis" that the Mundell-Tobin effect is present? Is

Figure 2.4 compatible with a Lucas (1973)-type Philips curve?

The answer to these questions requires some structure. To this

end, a model first proposed by Lucas (1975) will be used. Lucas' interest

was in generating equilibrium business cycles by concealing certain infor-

mation from agents. Though similar in spirit to Lucas, the usage here more

21/closely resembles that of Fischer (1979).-I There the intent was to study

the responses of real variables and prices to certain deterministic mone-

tary interventions. The development below will allow these issues, as well

as the Mundell-Tobin and Phillips effects, to be addressed.

I
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3. The Model

A discussion of the model's theoretical foundations will be

facilitated by having some notation and a structure in hand. Hence, the

model will be presented first, with its underpinnings to be discussed

below. Also to be postponed is the discussion of a version of the model

exhibiting Phillips curve effects.

Let yt denote the log of output of t; kt, the log of the capital

stock at t; rt, the log of the real return to capital at t; mt, the log of

the money stock at t; and pt, the log of the price level at t. Output is

generated according to

(3.1) yt = 6 + 1kt 61 > 0

while capital's real return follows

(3.2) rt = 60 --6k t  6S >0

(3.1) and (3.2) can be thought of as arising from a setting in which

markets are competitive and workers supply their services inelastically to

22/
firms whose technology is Cobb-Douglas in capital and labor.--

There are two assets in the model, real capital and real

balances. The demand for capital is governed by

(3.3) kt+= + a 1Etrt+1 + a2(Etpt+1-Pt) + a3k t

23/

where al > "2 > 0; aee(0,1), and Etx, the mathematical expectation 23 / of x

conditioned on information known at t, is defined by Etx E E(xlt). The

information set nt includes current (date t) and past values of all the

variables listed above as well as knowledge of the structure of the model.

24/
The demand for real balances is given by--
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(3.4) mt- Pt = - B1Etrt+ - "(Ett+1p t ) + B3kt

with $2 > 81 > 0 and S3e(0,1).

The capital stock is fixed at date t and has a one-period gesta-

tion; i.e., date t output from the production process (3.1) is divided

among new capital (date t+1), consumption, and government expenditures

which are financed totally by money creation. The sequence of money

25/supplies mt }t= is taken to be a linearly regular-- covariance station-

ary stochastic process with moving average representation

(3.5) mt = hkt-k
k=O0

where

Sh2 < 't = mt - E(mtlmt 1'mt-2""]
k=O

i.e., {IEt is fundamental for {mt}. (3.5) expresses mt as the convolution

of the two sequences {hk} and {k)}. With the understanding that h(L) =

hkLk, where the lag operator L is defined by Lnxt xt-n, (3.5) can also
k=O
be written

(3.5') mt = h(L)Et .

In addition, assume {mt} possesses an autoregressive representation -

-1
H(L)mt E h(L) mt =t'

The interesting system dynamics are completely determined by

(3.3), (3.4), and (3.5). The demand for capital, given in (3.3), is

positively related to capital's own expected return Etrt+I and inversely

related to the expected return to money holdings pt - EtPt+1. Clearly,

I
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when a2 = 0, there is no Mundell-Tobin effect. Thus, 2 measures the

magnitude of nonneutralities. Similarly, the demand for end-of-period

real balances, given in (3.4), is positively related to the own expected

return and negatively related to the expected return to real capital.

There are a number of ways to view (3.3) and (3.4), but they

cannot be viewed as necessary conditions for equilibrium in an environment

in which markets clear and agent's preference functionals are explicitly

stated. Lucas "makes virtue of analytical necessity" 27 / by directly

postulating versions of the two equations, while noting that one's intui-

tion is aided by the artificial separation of the agent's choice problem

implied by (3.3) and (3.4). In Fischer's setup, a number of agents are

born at each date and live for two periods. The young supply labor, the

old supply capital. Labor's share of output is divided between consumption

and saving in the form of real balances and capital. This savings decision

is embodied in the (again, postulated) equations (3.3) and (3.4).

Two slightly more mechanical "justifications" for (3.3) and

(3.4) can be advanced. First, their simultaneous solution gives rise to a

restricted vector autoregression which is "integrable"; i.e., by a theorem

of Mosca and Zappa (1979) a quadratic objective functional can be found

which, when maximized, produces (3.3) and (3.4) as first-order necessary

conditions. This is only mildly comforting in the present context because,

given the above assumptions, the resultant functional is quadratic, and

the constants linear, in the logarithms of the variables of interest.

28/
Also, the objective functional thus obtained is correct only-- if pt is a

decision variable; an assumption inconsistent with the concept of competi-

tive markets which clear at each date. Second, (3.3) and (3.4) can be

thought of as log-linear approximations-9 / to the nonlinear Euler equa-

tions which might arise as necessary conditions for maxima in nonquadratic
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optimum problems. Indeed, (3.3) and (3.4) look very much like the Taylor

expansions given in Lucas (1972,1980a, and 1980b). According to this view,

(3.3) and (3.4) should not be perceived as demand functions, but their

parametric solutions could be. For instance, the solution of (3.3) for

kt+1 with {pt } taken exogenously mimics the demand function for capital

which appears in Sargent's (1979) linear quadratic rendition of the Lucas-

Prescott (1971) model of investment under uncertainty. Though separate

solutions of (3.3) and (3.4) can be regarded as decision rules, the simul-

taneous solution of the pair of equations cannot: (3.3) and (3.4), taken

together, describe the evolution of {kt} and {pt} in equilibrium.

(3.3) and (3.4) compose a cumbersome mathematical object, albeit

one that occurs frequently in economics. Consequently, methods for solv-

ing systems like (3.3) and (3.4) have been dependent on the particular

problem under study. One of the purposes of this paper is to describe a

general, easily applied solution method for these systems. In order to

compare this solution method to the standard procedures, it is useful to

briefly review the approaches adopted by Lucas and Fischer.

Lucas begins-- by noting that the state of the system (3.3) and

(3.4) at date t is completely described by (mt,kt). Then the solution for

31/(kt+1, t) should be a linear- / function of the state:

(3.6) kt+1 = -10 + T11kt + "12mt

(3.7) pt = 2 0 + 2 1kt + T22 mt.

The unknown E 's are found by substituting (3.1), (3.2), (3.6), (3.7), and

an expression for the money process, mt+1 - mt = j (constant), into (3.3)

and (3.4), and equating coefficients on constants and state variables.

This yields six nonlinear equations which determine the j..'s uniquely. 3 2
13



- 17 -

Lucas found r 12 = 0 and 22 = 1. Hence, once-and-for-all

changes in the level of the money stock leave real balances and the capital

stock unchanged. However, r10 depends on p, so changes in the rate of

growth of money do have real effects.

Several observations about the Lucas solution are in order.

First, note that (3.6) and (3.7) do not express the unknowns kt+I and pt

solely in terms of their own history and the driving process mt. For

Lucas' purposes, this is no fault, but if one is interested in the sepa-

rate dynamics of {kt} and {pt}, an alternative solution might be more

appropriate. Second, the guesses (3.6) and (3.7) were made judiciously.

In particular, the number of lagged money stock terms is determined by the

order of the difference equation generating money: had money been charac-

terized by a second-order (deterministic) difference equation, (3.6) and

(3.7) would have included terms in mt-1 . Finally, it is disquieting that

determination of the Tij's requires the solution of nonlinear equations,

the number of which increases at twice the rate of increases in the order

of the difference equation generating the driving process. Complicated

money processes could make the Lucas solution method intractible.

Fischer's intent was to study the responses of prices and

capital to a general class of changes in money, and his solution procedure

differs from Lucas'. Fischer begins with the parametric solution of (3.3)

for kt+1 in terms of kt and past expected rates of inflation. This

equation, along with (3.2), is then substituted into (3.4) to yield

(3.8) Pt = b 0 + blpt-1 + b2 Etpt+1 + b3 Et- Pt + b mt + b5mt-1

The "guess" at the solution33- / for pt is given by

Co Co

(3.9) Pt = + .Pt + + iEtmt i +  eiEt-lmt-+i'
i=0 i =0
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The Tr.'s and 8.'s are determined by using (3.9) to obtain expressions for
1 1

EtPt+ and EtIPt, substituting these into (3.8), and then equating co-

efficients on like quantities in (3.8) and (3.9). It turns out that (3.9)

can be written as-

(3.9') Pt = 6 + XPt-1 + a G bEtmt + c dE m + em t
i=0 i=O0 t- t+i t-1

Given a process for the money supply, say (3.5), the Hansen-Sargent (1980)

35/formula-- can be employed to convert (3.9') into an expression containing

only current and past values of the money stock. However, Fischer is

interested in processes for the money stock of the form

(3.10) mt = t tO
t 1 t = to,

36/
a "transitory" increase in mt at to,-' and

(3.11) m = t< tt 1 t > to,

a "permanent" increase in mt at to, not in processes for {mt} like that

given in (3.5).37/ By using (3.10) and (3.11) directly in (3.9), Fischer

is able to draw pictures displaying the response patterns of prices to

changes in the money stock.

As in Lucas' solution, Fischer's guess (3.9) is a judicious one

which is by no means obvious. An examination of the forms of the guesses

(3.6), (3.7), and (3.9) indicates that one must possess good prior knowl-

edge about solutions to employ this method of undetermined coefficients.

Even given this prior knowledge, Lucas and Fischer found it necessary to

solve a variety of other problems before the conjectured coefficients

could be found. While the ingenuity of the above solutions cannot be

discounted, one hopes that more mechanical solution procedures exist.
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For the purposes of this study, it would be enough to use (3.9),

various versions of (3.5), and the Hansen-Sargent formula to generate

"reduced forms" for the price level and the capital stock. 8 / It would

then be a simple matter to investigate the responses of pt and kt+1 to

innovations in the money stock under alternative settings of the Mundell-

Tobin effect. However, it will prove useful to adopt a slightly different

solution strategy. This method, like the Lucas and Fischer approaches, is

a method of undetermined coefficients. Yet, unlike the procedures above,

there will be only one undetermined coefficient. 9 ! It is not a costless

simplification, though. The intuition and ingenuity of the Lucas and

Fischer solutions will be traded for investment in mathematical tools,

with the hope that the acquired tools will prove useful in other problems.
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4. A Solution Strategy

The approach taken here relies on the fact that one can, without

loss of information, "travel" from the space of square-summable sequen-

40/
ces -- to the space of Lebesque square-integrable functions defined on the

unit circle. That is, the two spaces are related by an invertible trans-

formation. This transformation, known as the "z-transform" can be de-

scribed as follows.

Consider the space of square summable sequences xkk=-, f i.e.,

k IXkl2 < .-1 The z-transform of a member {xk} of this space is
k=-0oo 42/
defined by--

oo

x(z)= : kzk

k=.wk

where z is a complex number. Notice that x(z) exists at least on the unit

circle (Izl=1):

00

x(z) = xkzk
x(z)= x kz

k=- o

kco

In addition, if xk = 0 for k < 0,

00

x(z) = xkzk.
k=O

In this case, x(z) exists on the unit disk, i.e., x(z) exists for all

-iw
zI < 1. This can be demonstrated as follows. Write z = re where r =

2 2 -1 Im(z)
ue(z) + Im(z) and w = tan (z) Then

Re(z)

x(z) = x rkeikw
k=O

00 l0 xk I k

k=Ok kr
k-0
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which converges for all r Iz I < 1. The sequence {x } can be recover-

ed from its transform according to-

Xk - rx(z)z (k+ldz

where § denotes contour integral and F denotes any contour in the annulus

of convergence.--- A version of the Riesz-Fischer theorem indicates that

I§ x(z) 2 dz2i rl z
So the z-transform is a bijective transformation from the space of square

summable sequences to the space of square integrable complex valued func-

tions on the unit circle. Hence, knowledge of a sequence is equivalent to

knowledge of its z-transform and the notation x(z) x { xk} has an obvious

meaning.

When {x t }  is a zero-mean covariance stationary stochastic
o

process with moving average representation xt = k ktkE Ext is given by
k=0 t-k t

Ex2 = E( S£-cc
k=0 k=0 t-k

SZ2E E2
k= t-k

k=O

-E(Et)
2  

k

k=O

which is finite only if < . Hence, there is an intimate link
k=O

between the space of square summable sequences and that of covariance

stationary processes.

It is useful to note that the z-transform:

a. Is isometric (preserves linear structure). If

SIkxk1 2< lykI 2 < C, x(z) +{xk 'k=- k=-m

y(z) +tk, and eR ,

1
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then

co

x(z) + y(z) = (xkk)zk
k=-°°

and

aIx(z) = . XkZk ,

k-00

i.e.,

x(z) + y(z) 4 {xk+Yk}

cx(z) 4 ixk}.

b. Is isomorphic (preserves "distance").

1 / 2 2

{ ,§r x(z)-v(z)I 2 d  = k Ixkyk 2 1/2

k=-OO

c. Is easily led or lagged,

-n k
z x(z) = 0Xk+nz

i.e.,

nX(Z) Xk+ n

d. Produces the convolution relation

x(z)y(z) z{ xkYtk t=-."
k=-k 

t-k 
t=-

e. Is analytic for one-sided sequences. If xk = 0 for k < 0 and

Ix 2 < 0, then x(z) is analytic inside the unit disk.
k=O

Property d is well known and provides the primary basis for the

use of the z-transform: it simplifies the manipulation of objects like the
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moving average (3.5) above. Property e follows from the fact that a power

series can be integrated term by term inside its circle of convergence.

Because zn is entire, this integral is zero. By a converse of the Cauchy-

Goursat theorem known as Morera's theorem, the power series is then analyt-

ic on its convergent disk. The property is useful in prediction problems

and is exploited extensively in the solution strategy to be discussed

below.

Before turning to the solution of difference equations, it will

be useful to examine the inversion operation. For the most part, the

sequences of interest will be one-sided. Hence, property e will play a

major role in the discussion of the inversion of the z-transform.

There are many ways to invert the z-transform. Of the methods to

be discussed, all but one rely on the reduction of a complicated transform

to the sum of a number of very simple transforms. For the following

discussion, make the identification

Co

x(z) = xkzk

k=O

so that attention will be restricted to one-sided sequences. In addition,

assume x(z) exists for all zl < 1 + 6, S > 0. The following draws heavily

on Chapter 4 of Gabel and Roberts (1973). The interested reader should

consult the original.

1. Inspection

If x(z) is a polynomial in nonnegative powers of z, the sequence

{xk k=O can be found directly. For instance, consider

j=o

n=

I
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Then clearly

x0 = a 0

X = a 1

or

xk k=0 = a ,a l ,a 2 ....

2. Polynomial Long Division

When x(z) is a ratio of polynomials (a rational function) the

sequence {Xk} can sometimes be found by performing the required division.

For instance, consider the z-transform

26 9 2 1 3
1 -z + Z -

x z) = 1
1

Performing the division,

5 12
1 -5 + z

1 t2 6

26 9 2)~1- z + 9z2
24 24

1
1-

13
24z24C

20 92 1 3- -Z + z - -z
24 24 24

20 5 2
- z + Z

24 24Z

42 13-z - -z
24Z 24

42 12
24 24

0

1 - -z11
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By inspection,

1

x =
2 =

X. =
J

1

5
6

6

0 V j > 2.

It will frequently be the case that this division will yield a remainder

polynomial; i.e., let

P(z)x(z) = Q(z)

m n
with P(z) = I Pjz , Q(z) = q.z , and m > n. Then, the result of the

j=0 j=0
division might be

n-1
b .z j

m-n j j
x(z) = am.z +

j=0 J  n j
q.z

j=0

Here another inversion method, the method of partial fractions, is useful.

3. Partial Fractions

This method relies on the fact that when Ilx < 1,

1-Xz
j=0

converges, and when IXI > 1,

- -(1/Xz) I--z-"
1-Xz

j=O

is convergent. Consider the transform

x(z) = (1--z) (1-3z) .2 3
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Write x(z) in the partial fractions expansion

x(z) A +B
1 11-*z 1-az
2 3

2A 3B
(z) - + 3-z2-z 3-z

Then

(2-z)x(z) = 2A + 2-z(3B).
3-z

So that

(2-z)x(z) Iz=2 = 2A.z=2

Similarly

(3-z)x(z)
Sz= 3 = 3.

Hence,

2A 2(2-z)

(2-z)(1-z) Z 2
3A

A = 3.

Similarly,

3B 3(3-z)3B ( ( )
(3-z)(1--z) z=

2

B = -2.

Therefore,

x(z) = -
1

1--zi

or

2
2'1--
3

3
-

2

S 2
11--z
3

i
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From above,

x(z) = 3( (') z )- 2 ( ) J)

j=o0 j=0o
1Ij j j

j=o

Hence,

x = 3(1)k - 2()k k > 0.
k 2 3

In most cases, the method of partial fractions is the easiest to apply.

4. The Inversion Integral

As noted above, the sequence {Xk} can be recovered from its

transform according to

1 -(k+1)
k 2§ri x(z)z dz.

In the cases considered here, the contour F is the unit circle U. Notice

that if z = eiw, x(z) is the Fourier transform of lXkl, and the inverse

Fourier transform

1 (e-iwiwk

xk 2 T x(e )e dw

can be used to recover the sequence {Xk}. This is computationally conve-

nient, since very rapid FORTRAN Fourier transform routines exist. In some

cases, though, the inversion integral can be used directly. Take the

example above,

26 92 1 3
1- -z + - -- Z

x(z)
1 - -z

From the inversion formula,

1 2-1x-'§u x(z)z dz.
0 2ii U
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Notice x(z)z- 1 has one isolated singularity, z = 0, inside U. The residue

-1
of x(z)z at z = 0 is

lim z(x(z)z-1) = x(0) = 1.
z-+0

Hence, by the residue theorem, x 0 = 1. The next term is

1 1 -2
x X(Z)z - dz

Here the

integrand

integrand has a second-order pole at 0.

at z = 0 is x'(0). Now

1 26 18 3 2 26 9S (1-z)(--+2-z--z ) - (1-- z+4z
X' Z) =

The residue of the

2 1 3 1-- z )(- )

(1-z 2

so that

26 1
(1)( -) + 20 5

x'(0) = )2 = - -  -

2 24 6

C )

Hence, xl

is simply

5 x"(0) x(m) (0)
--6. Similarly, 2 = x2 , and in general, m = Xm This

a special case of the following general theorem.

Theorem. If the z-transform x(z) is analytic on the unit disk,

dmx(z) 1
dz

m> 0

x0 = x(0).

Though it is mathematically elegant, this result emphasizes the fact that

z-transforms can be difficult to invert. In some cases, one need only

refer to a table of transform pairs to "invert" the transform in question.

One very important member of such a table is the Hansen-Sargent formula

(HS1):
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JEtmt+k}z 1-Xz h(X)h(z))1
S-1)m(z

j=0 1-Xz

where mt = h.m . This formula is used frequently in the solution
j: t-j

j=0

procedures which can now be discussed.

Consider the difference equation

(4.1) Etxt+l-(X1+X 2)xt + XlX 2xt-1 Yt

where 0 < jX11 < 1 < I I and yt is a linearily regular covariance station-

ary stochastic process with moving average representation

Yt = Bkt-k -B(L)E
k=0

and autoregressive representation

S(L)Yt = et' Et = Yt - E(YtYt-1 'Yt-2'" .. )

The information set implicit in (4.1) consists of current and past values

of Yt', or, equivalently, current and past values of et .

Since {yt} is the only driving process, guess at a solution of

the form

xt = Y t + fi e  - (y+Lf(L))E g(L)E
it0tt t-i-1 - ti=0

= (y+Lf(L))S(L)yt .

As it turns out, yis the single undetermined coefficient. For purposes of

solution, {xt} may be thought of as one-sided: xk = 0, k > t, and {Ekxk+ }

is clearly one-sided. Make the identification

xkz = x(z), s £kZ = e(z)
k=0 k=0

and note that
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x(z) = (y+zf(z))(z).

Write

Etxt+1 j=L tj a(L)et.
j=t

46/
By the famous Wiener-Kolmogorov formula,--

c(z) = [+zf(z)]
z +

where the annihilation operator [ i means "ignore negative powers of z."

But

[Y+zf(z) = yz1+f(z) = f(z).

Then, using properties a - d above, the z-transform of (4.1) can be written

(4.1') f(z)e(z) - (X 1 +X2 )(y+zf(z))e(z) + X1X 2 z(y+zf(z))E(z) = B(z)e(z).

(4.1') must hold for all realizations of {Et , so

f(z) - (X 1 +X2 )(y+zf(z)) + X1 2z(y+zf(z))= _ (z).

Collecting terms, write

f(z)[(1-X1z)(1-x 2z)] = B(z) + (X 1 +X2 )Y-X 1 X2 zy

or

8(z) + z [-(1-Xz)(1-12z)+1]y
(4.2) f(z) (

(1-1Z)(1-2Z)

f(z), being the z-transform of a one-sided, square-summable sequence, must

be analytic on the unit disk by property e. But f(°) has an isolated

singularity-- at X2 which is inside the unit circle. Fortunately, the
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-1free parameter y can be chosen to make X2 a removable singularity, or,

-1
equivalently, to make the residue of f at 1 equal to zero. Hence, the

proper choice of y guarantees the required analyticity of f. This can be

demonstrated as follows.

-1From (4.2), the residue of f at 1 is
2

f(X 2
1 ) + 2 [- ( 1- 1 j1

2  )(1 1)+1]y
lim (1-X2z)f(z) 2

1 2-1
z+12 (1-- 121)

-1
(1X2 ) + X2y

-1
1-1121

For this quantity to equal zero, y = -X21 (X2 ). Then,

g(z) =

-X 2 (X 2 1)(1-X1z)(1-x2z) + z$(z) - a2 (x2 -(1-XzI)(1-X 2 z)+1)

(1- 1Z)(1-X 2 z)

-1 -1
zB(z) - x 8(X )

(4.3) =_2
(1-x1z)(1-X 2z)

Hence,

a(z) - 12 z 1(x 1
(1- 1z)g(z) -

-1
z - 12

12 -1 -1
2 1 - X 2

Using property c, this can be written

1 -1T -1_ -1
1 8(L)-121L-1 (12I

xt : lxt-1 (  1-121L -  )t

or

-1 -1 -1
1-x 2L 1(1 2 )6(L)

(4.4) xt = 1xt-1 - - 1 1  t
1-12 L
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According to Hansen and Sargent (1980) (hereafter HS2),when

6(L) = 60 + 1 L + 2 L
2 + ... + nLn

(4.4) can be written as

n-1 n k-m
(4.5) x t = 1xt - 2 1  1 k k}Lm]y

m=1 k=m+1

giving xt in terms of its own past and current and past values of yt.

The method used to obtain (4.4) is essentially a "frequency

domain" version of the method first proposed by Muth (1960) and later used

by Taylor (1977), but is most closely related to the methods of Saracoglu

and Sargent (1978) and Saracoglu (1977). Futia (1979a,1979b) has develop-

ed and used these methods to slightly different ends. This frequency

domain undetermined coefficients method has three virtues. First, only

one coefficient must be determined, regardless of the complexity of the

moving average representation for the driving process. This is in contrast

to the "time domain" methods used by Lucas and Fischer which, in general,

require the determination of infinitely many coefficients. Second, for

many purposes, the transition from the easily obtained (4.3) to the more

complex (4.5) need not be made. For instance, all of the interesting

frequency domain behavior of xt} can be determined by using z = e - i w and

viewing (4.3) as a function on [-r,rl. Time domain methods, however, are

constrained to find (4.5) first, obtaining (4.3) as a transform. Clearly,

(4.3) is easier to obtain than (4.5). Third, the above method sidesteps a

48/difficult certainty-equivalence-- issue; (4.1) can be thought of as an

Euler equation for a stochastic linear quadratic dynamic optimum prob-

lem -9 where xt is a decision variable and yt a state variable. Properties

of the objective function allow the researcher to ignore the expectation in
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(4.1), treat {yt } as known, and solve the deterministic (certainty-equiva-

lent) version of (4.3) to obtain

-k
t = lxt-l1 + 2 t+k

k=O

At this stage, expectations are taken to produce

-kx= 1xt 1  + E yxt = 1xt-1 k 2 Etyt+kk=O

Successive applications of the two formulas of Hansen and Sargent yield

(4.4) and (4.5). This procedure is easy to apply, although it is somewhat

cumbersome. But it is often the case that expressions like (4.1) are

postulated directly without the benefit of a parent optimum problem.

Clearly, solution of (4.1) does not require the certainty-equivalence

property, but attempts to use it on slightly more complicated problems may

be unsuccessful. For instance, a straight-forward application of certain-

ty-equivalent procedures to the system formed by (3.3) and (3.4) gave a

correct answer for the deterministic problem, but the decisions as to how

to incorporate expectations were very difficult. 5 0 /

Presented below are two additional examples of the ideas sketch-

ed above. These examples are taken from Sargent (1979). Comparisons of

his manipulations to those to appear below indicate that one can indeed

trade ingenuity for algebra.

Consider Cagan's (1956) portfolio balance equation

(4.6) mt- pt = p a(EtPt+ -Pt)' a < 0

where m and p denote the logarithms of the money stock and the price level.

According to the above procedure, assume {mt} possesses autoregressive and

moving average representations
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6(L)mt Et, mt (L)t, t = mt - E(mtmt-1"" ) "

Postulate

00

Pt = g(L)et = (y+Lf(L))et, f(L) = fL .
i=0

From the z-transform of both sides of (4.6), there arises the equality

S(z) - (y+zf(z)) = (f(z)-(y+zf(z))).

Then

f(z)(-a-z+az) = -$(z) + y - ay

or

f(z)(a+(1-a)z) = a(z) - y(1-a),

whence

Now a< 0

a/(a-1) <

f(z) = 1 S(z) - y(1-a)
a 1-a-i 1z1 - e-lz

implies (a-1)/a > 1. Hence, f(o) has an isolated singularity at

1. The residue there is

lim (1- z)f(z)

za-i
a-1

a- ) - y(1-).oI-I

This will

ic on the

be zero when y = (1-a) 1( $( ). f(*) is (as required) analyt-
a-1

unit disk for this value of y. Then

-a )(1 (a-1)z( )
g(z) (a 1)8 a )(1-- z) + z$(z) - ( _-I-z1(__ I

(z)a (a1)

(1 a.Z)a
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-B( )(a-(a-1)z) (a-1)za( )a-1a-1 + z

- + z(z(z)

a(i 1) (-)

-(z 

- -

z

-1

aa -

Pt 1[ - -L-1  -1 )(L)]
1 a-1 a--- z)

1-a a -1 t
1 -1 a-a-1

1 _ a--L

which is the result of applying the Hansen-Sargent formula, HS1, to

a 1- i I tmt+k't t- -
k=0

the expression obtained by Sargent (1979, p. 269).

The final example is interesting because two distinct informa-

tion sets appear. The model is a modification of one used by Muth (1961).

Pt is the price of a commodity at t, Ct the demand for consumption, I t the

inventory of the commodity, Yt the commodity's output, and x t is a linear-

ily regular covariance stationary stochastic process with moving average

representation

xt = d(L)t

and autoregressive representation

-1
d(L) xt = Et"

r
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x t might represent the effect of weather on supply. The model is

Ct = BPt 8 > 0 (demand curve)

Yt = YEt- Pt + xt Y > 0 (supply curve)

It = (EtPt+1 Pt) a > 0 (inventory demand)

Yt = Ct +  (ItItl) (market clearing)

Substitution of the first three equations into the fourth yields

(Y+a)Et-Pt + (a+)Pt - cEtPt+1 - Pt-1 = -xt

Assume Pt can be written as

0o

Pt = g(L)t = (r+Lf(L))Et, f(L) = fiL
k=0

The z-transform of the above equation must then satisfy

(y+a)zf(z) + (xa+)(r+zf(z)) - af(z) - az(r+zf(z)) = -d(z).

A little manipulation yields

d(z) + (a+8)r - arzf(z) a(1-Xlz)(1-X 2 z)

where a I and X are the roots of 1 - (y + y 2 = . 1 and X2 satisfy

0< 1 < 1< X2

X1 + X2 = (2++y)

X1x2 =1.

-1For f(*) to be analytic inside the unit circle, its residue at z = X must
2

be zero. Hence
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-1Res(f(),X2 ) = lim (1- 2z)f(z

21 -1= d(x2 ) + (ca+)r - arrX2 2

must equal zero. This occurs when

d(X 1)
r = ax I - (a+B)"

Then

g(z) = r + zf(z)

(a-(a+y)z) ) + zd(z)
- (+ 1) + zd(z)

(1-X 1 z)(1-X2 z)

For most purposes, this g(z) is an appropriate form for the solution. It

can be shown that g(z) emerges after application of HS1 to

I [ aXy+ o1 tkEt-lt+k kEtMt+kPt t +- I  k=O k=O0

which is the correct solution for the commodity price. It is not the

"solution" obtained by Sargent; though it was not intended to be, his

solution is essentially the inverse transform of f(z), not of g(z). This

is suggestive: certainty-equivalent procedures sometimes fail. While it

is the case that these procedures combined with extensive checks will

eventually lead to the correct solution, the method presented above leads

directly to the frequency domain representation of the desired result.

With the method of frequency domain undetermined coefficients

firmly in hand, the system (3.3), (3.4), and (3.5) can be easily solved.

In the following development, an expression like (4.3) will be called a

"solution." The relation between z-transforms and Fourier transforms will

then be exploited to examine the behavior of the system.
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5. Frequency Domain Solution of the Model

For the present purpose, the model consists of (3.2), (3.3),

(3.4), and (3.5'). Under the assumption that all variables are measured in

deviations from their means, the four equations can be written

r t = -1kt

kt+1 1Etrt+1 2(Ett+-Pt) + a3 kt

mt-P t 1-BEtrt+I - B2 (Etpt+1-Pt) + S3k t

OD

(3.5') mt = hkt-k' t = mt - E(mtlmt-1,mt-2"',...), h = 1.
k=O

To obtain a more convenient representation, use (3.2) to find

Etrt+1 1--lEtkt+1 •

But since k is known at t,

Etrt+ = -1kt+1'

Substituting this into (3.3) and (3.4) yields

kt+1 -a11Ikt+1 + a2(Ett+1-Pt) + 3kt

mt- Pt = 11kt+1 - 2(EtPt+1-Pt) + a3kt,

which can be rearranged to read

(5.1)

-f1 6S

) -E2 k t+
1 I2 

Etpt+1

a1 > a2 > 0, a3 E (0,1)

2 > > 0, B3 E: (0,1).

a3 -a2 kt 0 0 0

3 (+2 t0 -1 m
JS2] t3 Lint]

(1 C

According to the analysis in Section 4, assume

(3.2)

(3.3)

(3.4)

I
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kt+1 = lk t-k = 1(L)Etk=0

Pt k gkt-k = g(L)t'
k=0O

where g(L) = y + Lf(L) with f(L) = I fkL k . y is the single coefficient to
k=0

be determined. Now take z-transforms of both sides of (5.1) to obtain the

condition

F 1I I
1+al 1 -a 2  1(z)-811 2 f(z)

a3 -+2 zl(z)

LS3 (1+2) Ly+zf(z)

0L 0 0
0 -1 h(z)

which can be written

A( z)[
A(z) 1(z

Lf
L(; 2 y-hz

(1+ 2)y-h(z)

with

1+ 1 1-a3z -a 2 +a 2 z
A(z) = 1

-61-83z 82-(I+82)z

Then invert A(z) to obtain

1(z)l 1
(5.3) -

det A(z)
f(z)

It is shown in Appendix A that

1 < X2 and A > 0. Hence, (5.2)

(5.4) = L ] 1

f(z A(1-X 1z)(1

L 2-(1 + 2 )z X6 1+ 3 z z -Ia 2

a2-a2z 1+az 1-. 3 I L(1 + 2 ) y - h ( z )

det A(z) = A(1-X11z)(1-X 2 z) where 0 < 1 <

can be written

-X2z)
a2
1+ i +

1+al 1

-a 3  2Y -h(z

-3 (1+52 )Y-h(z)

(5.2)
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1(z) and f(z) are z-transforms of one-sided square summable sequences and,

thus, are analytic on the unit disk. But clearly, (5.4) has an isolated

-1
singularity inside the unit circle at z = X2 y is chosen to make this

singularity removable, i.e., y is chosen to set the residues of f(*) and

-1
1(*) at X1 to zero:

2

1(z) []
lim (1-12z) I .

-1 Lf(z)i 0i
zX 2

Appendix B gives this value of 51/ as (1-X2 1 1 Thefrequency domain

solution-- of the system (1.1)-(1.5) is obtained by substituting (1-X21)

-1
h(X2 ) for y in (3.4):El(z)1 SF2 a2
(5.5) 1(z) 1

f(z) A(1-X1z)(1-X
2 z) 1 +cI6j

[-(1+2) 3  z -a2(1-2 1)h(X21 )

-a2 -3 (1+2)(1-X2 )h(X2 )-h(z)

In Appendix C, formulas analogous to Fischer's (3.9) are derived. The

resultant expressions are:

(5.6) kt = 1kt + (1-L)m++k
t+1 1 tk=O 2 t t+1+k

(5.7) pt X1p + 1 {(1-X1L) I 2-kE (1+a 6 -a3L)m

c0 -k- (1i+a l 61 -a3  2 E (1-L)mt+l+k

Operational time domain solutions containing only current and past values

of the money stock are derived in Appendix D. The resultant expressions

are :

r
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(5.8) kt+I = ikt +

a2-n-1 n

2 +(1-2)h(2)+(1-2)h(2 )H Lm mt.
2 m=1 k=m+1

(1 +a 61-a) 1
(5.9) P = 1Pt-1 + 2- 2  h(2 )mtt X2(1-X2) 2)t

n1
+ 2(1+1 --3)h(12)( 12-kHk-a) -

2(a3-X1(1+a"16))} mt- I

1h(X 1  ) n-3 n
2 (1+a 61-a 3 )  m-kHk

2 2 m=O k=m+3 k -

a kHk Lm mt 2

k=m+2

(1+ 1616- 3)a -1

x 2 (1- 2 ) 2X2 )Hnmt-n

It is a general characteristic of systems like these that the autoregres-

sive parameters in (5.8) and (5.9) are the same. This point is emphasized

in Zellner and Palm (1974).

In the absence of a Tobin effect (ac2=0), the model simplifies

greatly. From (5.6),

t+1= l1k t

Since i11 < 1, the capital stock approaches its mean value, zero, and

innovations in the money stock have no real effects. In Appendix E it is

shown that (5.7) simplifies to

(5.9') 1 ( kE

2 k=O 2
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which is the same as (4.7), the "solution" for Cagan's portfolio balance

equation. That the behavior of kt+1 and pt becomes so simple should not be

surprising since a2 = 0 destroys the link between (3.3) and (3.4).

The investigation of the system's behavior when a2 4 0 is more

involved. However, (5.5) makes easy the computation of numerous illumi-

nating quantities such as spectra, gains, phases, and moving average and

distributed lag coefficients.

The spectrum of a process is an orthogonal decomposition of its

variance by frequency. The spectrum of the money stock is, from (3.5'),

proportional
5 3 / to h(e i w ) 2 ; i.e.,

(5.10a) Sm(e-iw) = 2h(e )i2

Accordingly,

(5.10b) Sk(e-iw) = 2 2(e ) 2

(5.10c) S (eiw) alg(e-i2W) 2

The variances of these series can be obtained via a well-known property of

spectra:

var(m) = a2 2J1 h(e ) w dw

2 1 r e-iw 2
var(k) = a kf71(i( )j dw

2 1 -iw 2
var(p) = a 1 g(e ) w.

From Section 2,

frequency x period = 27.
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Hence, (5.10) can be used to obtain the variances corresponding to

"short-," "medium-," and "long-" runs.

The gain of one process over another measures how the amplitude in

the latter contributes to the amplitude in the former by frequency. This

quantity is the modulus of the cross spectrum. In the current case, it is

given by

-iw a2 Il(eiW)h(eiW)
(5.11a) Gk(e-) =

km E

and

-iw 2 g(e-iwh(eiW) I
(5.11b) G (e ) = g

pm E

The phase lead of one process over another is a frequency-by-

frequency account of the number of radians by which cycles in the first

series lead those in the second series. This quantity, the principal

argument of the cross spectrum, is given here by

-iw -1 Im(1(e-iW)h(e
i w ) )

(5.12a) Phk(e ) = tan ( ).
Re(l(e- )h(e ))

-iw iw
(5.12b) Phmp(ew) = tan (Im( g (e )h(e ) )

Re(g(e-iW)h(ei w ))

Since Phm(el) =Phm(ei(w+2), (5.12) can only indicate whether the

series are "in-phase" or "out-of-phase."

A quantity closely related to the gain, the transfer modulus, is

given by

(5.13a) Tkm(e-iW ) = l(e-iW)/h(e-iw)l

-iw g(e-iw )/h( iw
(5.13b) Tpm(e ) = g(e )/h(e ) .

r
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(5.13a) and (5.13b) are the moduli of the Fourier transforms of the distri-

buted lag coefficients of capital and prices on money. The sum of lag

coefficients from these regressions is obtained by evaluating Tm(e- ) at

w = 0.

To obtain the distributed lag coefficients themselves, simply

inverse Fourier transform the ratios used to compute (5.13). To fix these

notions, consider the distributed lag regressions

(5.14a) kt+1 = kmt-k + lit Erltmt- s = 0Vs
k=lco

(5. 1 4b) Pt = kmt-k + Evtmt_ = o s.
k=0s

Then

-iw
(5.15a) = 1 rl(e ) eiwkdw

k 2-7- h(elw)

(5.15b) S (ew) eWkdw.
k 2T -Irh(e-iw)

Because hk = k = gk = 0 V k < 0, k = 0 = k k < 0, so that the

regressions (5.14) are one-sided in current and past values of the money

stock. This is equivalent with the statement that kt+1 and pt fail to

Granger-cause mt.

The moving average coefficients i i and gi are obtained by

54/inverse Fourier transforming (5.5);54/ i.e.,

1r -iw i dw
S = - 7 l(e )e dw

1 ~rr -iw iwk
gk -_g(e )e dw.

These coefficients measure the responses of kt+ and pt to unit to unit

impulses in mt. To take an example, assume {gk} turns out to be
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(1,.9,.81,...).

A sequence {et} displaying a unit impulse in mt is

(0,...,0,1,0,0,0,...).

Then from (5.2),

00

Pt gkt-kk=0

the response in {pt} can be found:

Pt = g 0 t + gt-1 + "' =g = 1

t+ = 0 %t1 t+ 1  glEt + "' = g' = .'9

etc. Of course, the inversion techniques described in the previous section

could have been used to recover those parameters; the Fourier transform

technique is simply easier to apply.
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6. Examples of System Behavior

Examples of (5.10)-(5.15) are given in Figures 6.1-6.5. Five

different money supply processes generated these figures. The processes

were:

FIGURE 6.1: mt = Et

-1
FIGURE 6.2: mt = (1-.5L) et

-1
FIGURE 6.3: mt = (1-.9L)-t

FIGURE 6.4: mt = (1-.9999L)-1(1-.5L)E

FIGURE 6.5: mt = (1-.9999L)- 1 (1-.9L)e

where {(t) has variance equal to one, and, in each case, is fundamental for

mt)}. Hence, Figure 6.1 displays results for a white noise money supply,

Figures 6.2 and 6.3 for an autoregressive money process, and Figures 6.4

and 6.5 for a "transient-permanent" money process. The processes used in

Figures 6.4 and 6.5 are special cases of a process used by Muth (1960) 55 /

To show that this process exhibits transient and permanent behavior,

consider the process

1-XL
mt - 1-pLt

with 0 < X, p < 1. This can be written

m = (1-XL)(1+pL+pL+...)e

= (1-XL)(st+Pet 1+...)

= et + (p-X)et- 1 + ( 2- t- 2 +
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Now allow p + 1. Then

mt = et + ( 1- X)(et-1+et-2+. " .)

Consider an "innovation sequence," i.e.,

1 k = t

0 k t

Then

mt = et + ( 1 - X)( t - +e t- 2 + .. ) = 1

mt+ 1 = Et+1 + (1-X)(Et+et1+...) = 1 -

mt+2 = t+2 + (1-X)(s +et +e +...) = 1 - 1

Thus, the innovation et is transmitted directly to mt , displaying a "tran-

sient" increase in m. But the innovation also causes mt+1, mt+ 2 , ... , to

increase by 1 - X < 1, displaying a "permanent" increase in m.

The five figures share two additional common elements. First,

recalling that the model can be written

(1+a 161)kt+l - ac2 EtPt+1 = 3k - a2Pt

- B1ikt+I + B2EtPt+I = B3kt + (1+B2)Pt-mt,

in all cases = 1, = .5, .5, 5, 82 = 1, 3 = .5, and = 1. Second,

the Mundell-Tobin effect parameter a:2 was varied between 0 and 1. The

values were
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a2 = 0 (solid line)

a2 = 0.25 (dotted line)

a2 = 0.5 (dash-dot)

a2 = 0.75 (dashed line)

a2 = 1.0 (long dash).

Figures 6.la and 6.1b display the moving average coefficients

and corresponding spectrum (from 5.10) for the white noise money process.

The spectrum is flat, indicating that all frequencies contribute equally

to the "noise in m."56 / This is in contrast to the processes generated by

the moving average coefficients displayed in Figures 6.2a and 6.3a. Those

coefficients die out at the exponential rates .5 and .9, respectively. The

corresponding spectra are smooth, with peaks at zero frequency. In contra-

distinction, the spectra for the transient-permanent processes presented

in Figures 6.4b and 6.5b show what approximates a "spike" at zero

frequency. These several money processes generate the price and capital

behavior of Panels c - 1 of the five figures.

Panels c and d display the spectra of prices and capital. These

spectra are in one sense similar to, and one sense different from, the

money spectra. The difference is that in each figure, the Panel d spectrum

of capital shows a uniformly smaller amplitude than the Panel b spectrum of

money, indicating that, in this system, capital possesses a smaller

variance than the money supply. A similar result obtains for the price

levels generated by the white noise and autoregressive money supplies, as

indicated in Panel c of Figures 6.1, 6.2, and 6.3. However, the price

spectra for the transient-permanent processes displayed in the c panel of

Figures 6.4 and 6.5 appear to enclose a greater area than the money
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spectra: for this class of money processes, the price level variance

exceeds that of the money supply.

The similarities of the money and prices-capital spectra are in

their shapes. For instance, when a 2 = 0, the flat money spectrum of 6.1b

leads to a flat price spectrum in 6.1c and an identically zero capital

spectrum in 6.1d. 57 / Also, the spectra are all maximal at zero frequency.

The spectra of prices and capital do not display peaks at the business

cycle frequencies, although the spectra of inflation and investment would.

This does not mean that prices and capital would not show interesting

cyclical behavior. Sargent (1979) notes that business cycles can be

thought of as high pairwise coherence of important aggregates at the busi-

ness cycle frequencies. The series in this model have this property, but

in a trivial way: the absence of "noise" in (3.3) and (3.4) makes money,

prices, and capital perfectly coherent not only at the business cycle

frequencies, but at all frequencies. In Lucas' (1975) use, the model does

generate cycles, but an additional device is used: information is conceal-

ed from agents.

Another common interesting feature of these spectra is that

their amplitudes increase uniformly in a 2 .  Because the variance of a

process is equal to the area under its spectrum, it is clear that the

Mundell-Tobin effect is a variance-inducing one. In addition, the k-step-

ahead forecast error variance is proportional to the variance of the pro-

cess; e.g., for the process (3.5'), the k-step-ahead forecast error

variance ao2(k) is given by

2 2 k-1
a (k) =, a h2

j=0 3

Therefore, the Mundell-Tobin effect decreases the accuracy of capital

stock and price level predictions.
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The responses of prices and capital to unit innovations ("sur-

prises") in money are displayed in the moving average panels e and i of

Figures 6.1-6.5. Notice that in 6.1e these coefficients mimic those of

money when a 2 = 0. Hence, in the absence of a Mundell-Tobin effect, a

shock in money is felt immediately in prices with no persistence. When a2

is not zero, prices settle back to the preshock level, but only after

several periods. Figures 6.2 and 6.3 indicate that a shock from an autore-

gressive money process persists indefinitely, with prices returning to the

preshock level only in the limit. The price behavior of Figures 6.4 and

6.5 is markedly different. There the money innovation causes a contempo-

raneous jump in the price level, but prices settle to a permanently higher

58/level than that characterizing the preshock period.5

The impulse responses of capital are never positive. Of course,

when o2 = 0, the capital stock and the money supply are independent: the

moving average coefficients in 6.1i-6.5i are zero. The qualitative be-

havior of the capital stock in response to a money innovation is similar

for the five processes. In each case, the money shock induces an initial

drop in capital. Thereafter, capital increases back to its preinnovation

level.

The price-capital response patterns of Figures 6.1e, i-6.5e, i

are similar to those found by Fischer (1979). The results most comparable

to his are displayed in Figures 6.4 and 6.5. The results there, like

Fischer's, indicate that a transient-permanent innovation in money pro-

duces both transient and permanent price changes, but only transient

changes in capital. The virtues of the results of Figures 6.4 and 6.5 over

Fischer's are that the figures presented here were generated in a system
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where randomness plays a crucial role, / and that the transient and perma-

nent changes in the money stock are not artificially separated.

The implications of the system's dynamics for regressions of

prices and capital on money are displayed in the distributed lag panels f

and j of the five figures. Panel f indicates that the contemporaneous

coefficient in a distributed lag of prices on money is the largest, and

that the lag coefficients die out rapidly. For the white noise and autore-

gressive money processes with a2 = 0, this "dieing out" is immediate:

nonzero lag coefficients are zero. In Figure 6.1 this occurs because white

noise money produces white noise prices, and no lags appear because money

is fundamental for prices. Only zero order lags appear in Figures 6.2 and

6.3 because, by HS2, the order of the lags on money in (5.9') is one less

than that in the univariate money autoregression. In all figures, distrib-

uted lag coefficients beyond the first are nonzero when the Mundell-Tobin

effect is nonzero. As is evident in Figures 6. 4 and 6.5, even when a2 = 0

and the system dichotomizes, it is possible to obtain nontrivial lag dis-

tributions by complicating the money process.

Except when a2 = 0, the distributed lag coefficients of capital

on money presented in Panel j are always initially negative. In Figures

6.1-6.3 where no persistence of the money shock exists, these coefficients

are never positive. But in Figures 6.4 and 6.5, the first lag coeffi-

cient60 / is negative while all the rest are positive, damping smoothly to

zero after a peak at lag three.

The moduli of the Fourier transform of the lag distributions are

displayed in Panels g and k. As noted in the previous section, the zero

frequency value of this quantity gives the absolute value of the sum of the

lag coefficients. The figures indicate that prices are always positively
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affected by money, and more so the greater the Mundell-Tobin effect for the

white noise and autoregressive money processes. But for the transient-

permanent money processes of Figures 6.4 and 6.5, the sum of lag coeffi-

cients is essentially the same, independent of the Mundell-Tobin effect.

In addition, this sum is one: all of the increase in money is reflected in

prices. Indeed, the sum of coefficients in the capital regressions is zero

for these money processes.

The lead of money over capital and prices by frequency is depict-

ed in the phase plots of Panels h and 1. 61 / The figures indicate that the

lead of money over prices is small at all frequencies. As expected, money

and prices are perfectly in phase for a2 = 0 in Figures 6.1, 6.2, and 6.3.

The interesting feature of Panel 1 is that money and capital are very

nearly 180 degrees (3.14159 radians) out of phase at all frequencies for

all settings of the Mundell-Tobin effect.

By way of summary, it is useful to delineate the most interesting

characteristics of the system under study. First, prices always respond

positively to money innovations, capital never does. Second, the variance

in capital and prices as well as their responsiveness to money shocks

increases with the magnitude of the Mundell-Tobin effect. Third, "perma-

nent" changes in money lead to "permanent" changes in prices but not in the

capital stock. Finally, the Mundell-Tobin effect does not influence the

sum of lag coefficients in regressions of prices and capital on money when

money is generated by the "transient-permanent" process. The sum is essen-

tially one for prices, zero for capital.
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7. Implications for Interpreting Lucas' Empirical Results

Some care must be exercised in using the model of Section 3 to

address the empirical issues raised in Section 2. The reason is that the

objects t' t, t of Section 2 are the first differences of the objects pt, mt
62/of Section 3.6-- Hence, to translate the Section 6 spectra of prices and

money to Section 2 form, the spectra must be multiplied by the gain of the

filter (1-L). This gain is zero at zero frequency, four at frequency T,

and is concave on the interval (0,7). The modified Section 6 spectra will,

therefore, display peaks not at frequency zero but at w > 0. This seems to

rule out the simple processes of Figures 6.1-6.3: the modified spectra do

not resemble those of Section 2.

But there is a similarity in the spectra of the two sections.63 /

The Section 2 spectra look as though the underlying processes might be

"transient-permanent." For instance, it appears as though

t = lim 1-XL
p+1 (1-pL)t'

A {pt} process which generates this nt is

(1-XL)
Pt = lim 2ct,

P+1 (1-pL)

whose spectral density is shaped like the ones in Figures 6.4 and 6.5.

That is, there is a rough correspondence between the Section 2 spectra and

those of Section 6, appropriately modified. Thus, there is some, albeit

casual, evidence in Section 2 for the model of Section 3.

In one very fundamental sense, it does not matter that the series

in Section 2 are differenced and those of Section 3 are not: differencing

has no effect on the transfer modulus (Panels g and k, Figures 6.1-6.5)

and, hence, none on the sum of lag coefficients estimated in 2.6. Thus,
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according to the results of Section 6, an estimate of the sum of lag

coefficients in (2.7) does not, in general, say anything about the magni-

tude of the Mundell-Tobin effect.
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8. Thoughts on Further Research

Some idea about the appropriateness of the Section 3 model can

be obtained by regenerating the Section 6 pictures for a money process

estimated from the data. One way to generate the moving average coeffi-

cients for such a money process is to invert an estimated univariate

autoregressive representation. Another method is the direct estimation of

moving average coefficients via frequency-domain maximum likelihood proce-

dures. This is not simple, and will require some work.

One can view the model of Section 3 as embedding a Lucas (1973)-

type Phillips curve if one assumes that a2 is strictly positive. As in

Fischer (1979), this Phillips curve effect arises when the difference

between actual and expected prices is "tacked on" to the output equation

3.1. A more well-founded approach based on, say, a theory of the labor

market is somewhat subtle but of interest.

Although the methods of Section 2 provide substantial insight

into the long-run relationship between money and prices, the results of

Sections 6 and 7 indicate that more information is necessary before Figure

2.4 can be interpreted as evidence of the quantity theory. In particular,

Panel g of Figures 6.4 and 6.5 indicates that in the Lucas model a unit sum

of lag coefficients in a prices on money regression is consistent with any

setting of the Mundell-Tobin effect when the autoregressive representation

for money possesses a unit root. Thus, Figure 2.4 combined with evidence

that money's autoregressive representation has no roots near one would be

evidence against the Mundell-Tobin effect. Unfortunately, such evidence

is difficult to obtain. The problem, discussed by Sims (1974), is that

under the least squares metric, a given lag distribution can be approxi-

mated arbitrarily well even when one of its roots is fixed a priori.
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Though the Sims paper indicates some methods to circumvent this problem, it

appears that direct estiamtion of a2 may be more fruitful. This approach

6'4/requires the joint estimation of (5.8), (5.9), and (3.5).- But (5.8) and

(5.9) are exact relationships; there is no error term. Hence, estimation

requires a certain rethinking of (3.3) and (3.4). A theory giving rise to

versions of (3.3) and (3.4) and the presence of, and a deep theory for,

error terms in (5.8) and (5.9) would be of interest.

1
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Appendix A

The text contains the expression

(Al) det A(z) = (l+act1 1 ) 2 - a2BIG1

-[(l+ i6I) (1+s 2 )- 2 1 6 1+a 2S3+ 3B 2 ]z

+ [a3+a2 3+a3 2]z2

Let

A = (l+ai61)2 - 2B161

a = (a23+a3 2)/A

b = a2/A

c = ((l+i c)3+3 , 1s /A

d = ((l+al6 1 ) (1+a 2)-a2a611 )/A = (l+l S1 +A)/A.

From these definitions follow the following lemmata:

Lemma Al: det A(z) = A(l-(a+d)z+(ad-bc)z2).

Proof: Clearly, the constant in (Al) is A and the coefficient on

z is -A(a+d). It remains to be shown that ad - bc =

(a3+a2 3+a3 B2) / A.

Now
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a + d = (a2 3+a3 2+(l+l161)+)/0

ad = (a2 3+a3 2)(1+al dl + A ) / 62

= (a 2 3+a32+1a2361+ala3261+ l2283+ 32)/

bc = (a2a3 1 1+a2 3+ala2361/ 2 .

Then

ad - bc =
(a3 2 + 1 3 2 61+2 3 3 a+ 3 -a2a36) 1 2

= (a 3 2 (l+a 16 1 )-a2a 3 1 a 1+2 S3 A 33 2 )/A 2

= (a3 +a23 +a 32p)/2

= (a3+a2 3+a3s2)/A

as was to be shown.

Lemma A2: A > 0, d > 1.

Proof: Write A = B2

assumed that

+ 1(al 2-a21) " But in the text it was

al > a 2 - 0, B2 > 1 > 0, 61 > 0, and

a2,B3e(0,1). Then "12 - a2B1 > 0, and A

Then clearly d = 1 + (l+a161)/A > 1i.

> 0 follows.

Write det A(z) = A(l-l 1 z)(1- 2 z) where A1 + a2 = a + d,

1l2 = ad - be. Then A1 and A2 can be ordered as

0 < Xl <1< AX2

Proof: Using Lemma Al, write

Lemma A3:
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= (a+d)/2 + (1/2)/(a+d) 2 -4(ad-bc)

= (a+d)/2 + (1/2)/(a-d)2 +4bc.

Since b and c are positive, X2 (and hence X1) is real.

Then

h2 > (a+d)/2 + (1/2)v(a-d) 2

= (a+d)/2 + ja-d /2

a a > d

d G d > a

Hence, X2 > max (a,d) > d. But by Lemma A2, d > 1. Then

a2 > 1. Above, it was shown that

ad - bc = 1 A2 = a + a 3/A.

The assumptions above, the definition of a, and Lemma A2

give X1 2 > 0. Clearly, then, X1 > 0. Now

X1 + 2 - X 2 = 1 (1-x 2) + 2 = a + d - (ad-bc).

But from above,

a + d - (ad-bc) = (1+l 161+A- 3 )/A

= (1- 3+lGl)/A + i.

Then, since a3E(0,1),
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a1 ( 2 1 2 > 1

A1 (1-A 2 ) > 1 - A2

and

a <11

since 1 - a2 < 0 from above. Hence, there obtains the

ordering

0 < 1 <1< 2'

In addition to the above lemmata, we can now demonstrate

the following

Facts:
1 + "61 - a3/ 2

Al. A1 + 11 3 2= d.
1 (1-1/A2)A

Demonstration: From above,

1 + 1 A2 - A1 2 = 1 + (1+a1l-a3)/A.

Hence,

1 (1-X 2 ) = (1+a 1 61 -a 3 )/A + 1 - A2

1 = (1+aI- 1-a3+A- 2 A)/A(1-A 2 )

= -((1+al16+A- 3 )/A 2 )/A(1-1/12).
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Then

A1 + (1+a 1 61 -a 3/X 2 ) / (1-1/x2)A

= (l+c 1 61 -c 3 /X2 -((l+t 1 61 +-a- 3 )/A 2 -A))/A(i-1/A 2)

= ((l+a 1 6 1 + A ) (1-1/12)-a3/X2+a3/X2)/A(-1/ 
2 )

= (l+al61 +A) (1-1/a 2 )/A(l-l/X 2)

= d.

A2. ( 12-1 12 +a)/(1-11) = a.
A2. (d 1 121

Demonstration: Recall that 11 + a2 = a + d (Lemma A3). Then

= (A1 (d-X 1 - 2 )+a)/(1-A 1 )

- ( 1 (d-(a+d))+a)/ (l-X1 )

-= a(l-x 1 ) / (1-a 1 )

- a.

A3. 12 (l+ 1 6 1 ) - a3 = A(d-A 1 )(a 2 -1).

Demonstration: From above, (1+ci 1 ) = A(d-l) and

A1 + X2 - 1A 2 - d = - a3/A (Lemma A3). Then

c +«lbl +a)/a

2
(dXl- -1 1 2+a)/(1- 11 )
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3 1 2 1 2-d)2(l+al) - "3 = 2A(d-1) + A( +2- 12-d)

= A ( 2d+1- l2-d)

= A(A2 (d-A l )-(d- 1 ))

= A(1 2 -1)(d-Al).

A4. If a2 = 0,

(i) A = (1+a 1 61 )a2

(ii) a = a3/(l+ 1l1)

(iii) d = (1+S2 ) / 2

(iv) 11 = a, A2 = d.

Demonstration: (i) is obvious from the definitions. Given

(i), (ii) and (iii) are obvious. To show (iv), notice a2 = 0

implies c = 0. Then by lemmata Al and A2,

det A(z) = A(l-az) (l-dz) = A(l-Alz) (1-X2z). Then since

a < 1 (or d > 1) we have AI = a, A2 = d.1 2
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Appendix B

In the text there appears the expression

(l-xlz) (1-a 2 z) S

1 1

a -6 (1+ -a
11al a 

S3 
-a3

-1Sought is the y for which the residue of [1(z)f(z)]' at z = X is zero.
2

This residue is

lim (1-12z)
-1
2

1(z)

f(z)

1

1
A(1- )

2

82
2

A(x2- 1

8161

82 a2 -(1+S2) -a2 1
i l+ 23

1+a2

X2

+ 22

a2

1+ct6 -2-
1 + 

a161

- 2 Y

(1+82) Y - h(-)
2

(BI)
1(z)

f (z)
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1

A(12 1)

1

A 2 1

1

A (A2-A1)

(12 2-1- 2 )(-a2y) + ( 2Y2-a2)[(1+B2)Y-h( 2)]
2

2113 2Y) + 2(1+a1d2)-a3)[(1+22)Y-h2-)](X B 6+B )(2

'-a 2Y 2+(1+B2)a 2 Y+ 2a2 (1+%)Y-c 2 (21+2)Y

-( 2 2- a2 ) h (1)

- 2 5 11 2 Y-a2B3Y+X 2 (1+a16 1 ) (1+ 2 )y - a3(1+2)Y

-( 2 (1+a 6 1
) -

3 )h (--)
2

1
a22 Y- (a22 - a2 ) h (-2)

x2Y [-a2161+(1+ 2) (+a1 61) ]-Y [a 2 3 +(1+B 2 )a3]

-( 2 (i+alc 1)-a3)h(2)
(2

a 2  2 - ( 2 - 1 ) h ( 2 ) )

1 2Y-y(ab -

l2yAd-A(ad-bc)- 
2(12+al1)-a3)h(-)

by virtue of Lemma Al and the definitions given there. From Appendix

A, A1 2 = ad - bc. In addition, Fact A3 gives 1 2 (1+ 1 1 ) - a3

(d-A 1 ) ( 2 -1)A. Then



- 65 -

lim (1-A2 z)21
-1

2

1(z)

f (z)- -
A2

A(A2- 1)

A -1
2 1

------ h y ))
2 2

A -12 1
yAd-yAl-(d-Al)( )h(1

2 2

A -1
2

2

1

2

2 1
(d-X1) (Y  2) h () )

2 2

-1 -1
when y = (1-A2 )h(A2 ,

2
a_-

0

0

"2
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Appendix C

In this appendix, (5.5) will be used to derive (5.6) and

(5.7).

From (5.5)

I
l(z) A(l z )(i12z) [-a 2 y( 2-(1+82)z)+a 2(l-z)((l+a 2 )y-h(z))]

1
A(1-X1z)(1-1 2z) [-a 2 2y+ 2 (1+S 2 )Y+Ya2(1++2)z- 2 (I+82()Yz

-a2(1-z)h(z) ]

1
A(1-Z)(1-12z) [a 2Y-a2(l-z)h(z)]

_ 2 -1 -1
- 1)C-2[(1- 2 )h(AX2 )-h(z)+zh(z)](1-Az)(1-2) 2 2

2

A(l-X1 z)

a2

A(l-1Z)
1

-1 -1
-2 z -1 -1 -1

( - -1 ) ( h ( 12 )-h(z)- 2 h( 2 )+zh(z))
1- 2 z

2

-1
h(z)-h(A2 1)

1 - 2
A -1
2 z-X 22

2 1

A(l-a z)1 2

h(z)-X 1 h(X1 )S2 2
- 1  )

2

Using the Hansen-Sargent formula HS1, this can be written
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k a2  1-ka 2  1k = )  )Em - CE)t+1 A(1-AL) k=0 t t+l+k A(1- L)

(t)kEm
k-O- tt+kk=0 2

or

a2
k = Ak + 2t+l 1 t it

2

1 kE (1-L)m
k=O t 2 t t+l+kk=0 2

To find the solution for pt; from (5.5),

f(z) = (l2z) 1+3z)(-ya2)+(l+al -a3z)a(-A~z)(- 2z) 1 1 3

* ((1+8 2 )y-h(z))]

1
A(1-Alz) (l-A 2 z) [-a2 1 6 ly- 2 3 yz+(I+a iI)Y+(1l+a7T 1

-a3 (1+2)yz-(1+aI6 1 -a 3 z)h(z)]

(1-l1z)(l-12z)[AY(d-l 2Z)- (l+rl1-a3z)h(z)]

by Appendix A.

a3
1+ 1 X2By Fact Al, d = 1 + 2

A(1-2 )
Hence,

a3
l+ 1 61  2 -AX2z

f(z) (l- 1 ) (l- 2 z) [y(A 2
A(1-X 2)

1+a161-a3z

- ( A )h(z)]

(5.6)

(Cl)
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a3
- h

I 1 -1 1 12
(1-az) (1-Az[(1-2 )h(A 2 ) 1(1- 1 2 z) +

S2 A(l-A 2 )

(l+ca161-a3z)
A h(z)]

-1
1 l+a16 1 -+ 3 3 2  -1

(1-L 1 z) (l-A 2 z) [Y(1-12z)+ h(12

(l+c 61 2 z (1+l 61)+ 2 z (l+ 61 )-c 3 zh (z))
1 1

1 1(1- lZ) (1- 12z) [1(y(-12z) ( -2z)(+a l 1)h(z)

-1 -1 -1
-1 A ((1+ S1 )A 2 - 3 2 zh(z)-h( 2 ))]

1 1 - z-l

(1-(1+6 1 )h(z)-A ((1+ 1 1) 2 - 3)z

) -- 1-1 -12
[h(z)-A 2 z h(A )]-

[ ]-f(z) = y + lz) - -l+ 1  )h(z)+A -2 ((1+ 1 1 )A 2 -l 3)-1 -1 -1h(z)- 2 z h(A 2 )

-1 -11-a 2 z
f(z) = I [A1zfz) - A (1+al 6)h(z)+A A2 ((1+ 1 1)A 2 -a 3

h(z)-A 2Xz-h(Ax1)

-1 -1
1-A z

2
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-(l+c-l2)h(z))-1-1 --

h(z)- 2 z h( 1

2 2-a -1
1-) 2 z

which gives, by the Hansen-Sargent formula HS1,

Ep-1 -1 -1
Ett+ 1  lp t - A (l+l 1 )mt A((1+) 1 )a 2-a3 )

k t (m2tt+k1k
k=O 2

-1 -1* 1 k= at - A (l+a6)mt + A (l+61 )) E ( Em

k=0 2

L a( Em
3 2 k= t t+k

2=0 2

-1 -1 1 k= A P + (l+ a i)A A- 2
1  ) kE

it  
1 1 2 =02 tmt+l+k

-1 -1 1k

-I -1 1 k3 2k_ = 2  tmt+k

(C2) Et t+ XPt + 1  1 E t((l+l 1-a3L)mt+l+k
k=0 2

To find the solution for {pt}, substitute (5.6) and (C2) into (5.1).

Now (5.1) is equivalent to

l+l 6 -a3 L

- { 2 k -Ep = p.

Then, from (5.6) and (C2),
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P = lP + A-I 2 1 1 ( )kE (l+a 6 -a L)mt t 2- t 1 3 t+l+k

-1 -1 a11-3L
A1

1 kt-L k
k=O t t+l+k

-1-1 -1 1 k

P = A2 (1-l) -1 (2--)kE (l+allaL)ml
kt 2 1 t 1 1 3 t++k

(l+a6-a3L

1-XL
1-L

Pt = Pt-i +

1 (2)kE (l-L)m).
k=0 2 t t

-1 -1 -1 1 kx (1-1 )  { (1-A L) ( -) Et(l+alG1-a L)
2 1k=0 21 3

* mt1-(1+a6-a3L (-)kE (l-L)mt }
k=0 t t

As a check on (C3) it can be shown that calculation of EtPt+1t t+1
using (C3) yields (C2). Shifting (C3) forward yields

Pt+l = x1 Pt
S-- -1 -1 lkE (l+L)2+ k

2 (l 1-- ) Ea2 t+l 1 1 3 t+2+k

k__=0 (2) kEt(l+al 1-a3L)mt+2+ k1k

- (+ ) ()+) (-aL)m
= X2 t+1 3 t+2+k

k0

= (-)kE (1-L)m }.

k=0 2 t t+l+k

Applying the expectations operator,

Hence,

(C3)
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t t+1 = t +

which is (C2).

-1 1 -- 1 1 k
SA 2 (1-A1 ){ (-) Et(1- 1 L)(1+la6-a3L)

k=O 211 3

1 k
mt+2+k k- 2) 

E t (l 1-a 3 L) (l-L)mt+2+k
k=0 2

-1 -1 k

=XP t A 2 (1-I)-1 [1 1(-) k E t (1-L-1+L)
I t A21 1 k=O 2 t 1

* (1+a6l1-a 3 L)mt+2+k}

= 1 P t 2 t ikEt(1+a1-a3L)mt+1+k

To provide another check on (C3), it can be shown that

transforming it leads to the f(z) that produced (C2). By the Hansen-

Sargent forumla HS1,

(2kE m = -am +
k t mt+l+k= 2t 2

k=O 2

00

k 1 )kE m= t t+kk=0 2

Then (C3) can be written

(1-A 1 L)Pt
A (1-)(11L)[1+ 2(_mtk= () kEtmt+kA 2(1- 1 ) 1 1 21 k=O 2

- 3k ()kEtmt+k]-(1+l 1 -3L)

co 00

00 k1A 2 ( 1-1) [[(1-1L) (1+Il )- (+a161 -3L)] [-12mt

+ [(1-i1L)((+all) 12-a 3 )

-(1+a6 1- 3L)(12-1)] 1 )kEtmt+k
k=O 2
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Then the appropriate transforms must satisfy

(1-xlz)g(z)= 2(1-2 () {[( + 1 )-(1+a1 6-3z

[-X2h(z)] + [(1-Xlz)((l+alc1 ) X2-a 3)

-1-1 2 3h(z)-A2 z-lh(A2
1 )

(1+ 1 61-~3 z ( 1X2-1) 2 -1 -1
1X21 z

or

(C4) g(z) = A( 1 {1 [(1-X1 z)(1+ac l61-a 3 2
1 )-(1+c~ 1 -_a3 z)(C4) g(z) C 1)(c) (3, lZ1

(-1 z-lh 1))
-1

-1 2 2 1* (l-X2 )] }+

11 1

-1 z
1.A2 Z

- (1+61-[3Z) ]}h(z).

The "coefficient" of h(z) is

1 -1
-1 -1 [(1-Alz)(1+ 61-3 2 )-(1+C z61- 3)A(1-X 1)(1-l 1 z)(1-1 2z) 1 )

-1 -1 -* (1-a2 )-(1-X 2 z )[(1- 1z)(1+al61)-(1+al61 -)C3z)]}

1 -1 1 13

A(1- 1 )(1-A1z)(1-X 2 z )
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(i+i l-a6Z)+(l+a -z )+(+X-1 -1 -1
- (+l1-a3z)+(1+1-a 3 2 -(1- 2 z )

* [1+a 1 -A1 z(1+a l )-(l+a l6)+a3 z]}

1 -1 -

1 {_a - l + z+(A - z) (1I+a6 )
-1 -1 3 2 3 2 1 1 1)A(1-A) (1-Az) (1-a 2 z )

-1 -1 -1
(1-)a32 z-( 2 z )( 3z-A1z(1+c 1))

1 1 -1

() 1 -1 ( 2 - 1z)(1+cl61 )-(1- 1 )c 3 2 z

-1 -1
+ (1+aulb) z(1-a 2 z )

-1- (1-Al)(1-3 2 z}

1 -1 -1-1 -1 (1-X 1 )[(1+a 61 2 - -azA2

A(1-)(1-z)(1-X 
2 z ) 1 1 2 3 2

= [(1+ 6 -a z)z}A(1-A 1 z)(X 2 z-1) 1 1 3

-1-1 -1= A-l(1-Alz)-l(-12z)-1{(l+ 6 1-a3z)z}.

-1The "cofficient" of h(q) in (C4) is (q = X2
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1 -1
-1 -1 1(- z)(+al 1- 3 2 )-(1+61- 3z)A(l- l ) ( 1-Xlz)(1- 2 z-)

(l-X2  )2 z )

1 {(l-AxZ) (l+cl-a31 )

A(l-)(l-X 1z)(l-12 z) 1 1 3 2

(-1
-(1+al61-a3z)(1-X2,

-1 -1
(l-2 1) (l+a l6-a 3 2

2{(1-X z)-A(1-XI )(l-X1 z)(l-1 2 z) 1 1 -1
2

(l+a161- 3 z)}

-1
(l-x2 ) (l+I l1-a3z)

2 1(1-X z)(d-A ) }(1-A 1 )(1-lz)(l-X2 z) 1 1 A

by virtue of Fact Al. Then the h(q) "coefficient" becomes

-1
1-X2 l+ 1 6a1 {d- - A -

(1-A1 )(1-A 1z)(1-X 2z) A 1
a3

( l ( d - l ) - )z}

-1
1-1

2 2[l--( l z l)- [ - l C l x2 - a ] z
(1- 1 )(l-alz) (l-A 2 z)},

by virtue of the facts leading to Lemma Al. Now

l1 (d-A1) [a 1X 2-a]
= a1-;

by Fact A2. Then the coefficient becomes

-1
1-X 2

(1 _1z)(1 12z){1-az}.
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Hence,

1 (1+a 1 6 1 -a 3 z)
g(z) 1 {y(l-az) - zh(z)}.(1-X 1 Z) (l-X 2 z)a

-l
But f(z) = z (g(z)-y) by assumption. So

1 -1
f(z) = ( )( 2z ) z {y[(l-az)-(1-lz) (1-12z)]

(l- az)z(-) 2z) 2

(1+al 61-a3z)
- zh(z)}

1 -i
Z)1-2{yz [1-az-1+( +X2)z- X 2z ]

(1+al61-a3z)

A h(z)}.

Since (Appendix A) i + X2 - a = d,

1 (l+al61-a3z)(l+a z)f(z) 1Y[d-AlA2Z] - - 3  h(z)}.f(z) = (1- z)(1- 2 z) -A Az] - h(z)}.

Comparison of this expression with (Cl) indicates, finally, that (C3)

is the correct solution for {pt}.
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Appendix D

The task here is to derive (5.8) and (5.9) from (5.6) and

(5.7). Write (5.6) as

a2
k =Ak+
t+l 1 t 2AA

2

-k

o12kE (1-L)m
k 2E t -L)mt+l+k

k=0

a2
k Xk+
t+1 i t AX2

-k-X2kEtmt+l+k
k=0

a2

.o 2

-00

S2 t t+k
k=O

-1Assume that in (3.5'), h(L) = H(L) - I + 2 n
HL + H2L + ... + H Ln .
1 2 n

Then by HS1 and HS2,

00-k

O 2 tmt+k
k=0 O

n-i n
= h(X )[I+ I kk}Lm]m .

m=1 k=m+1

Notice that

00-k

k ; 2 Etmt+l+k
k-=O

-k

2 kEtmt+1+kk0

-1
Etmt+l + ;2 Etmt+2 +

-1 -1
S(A + Em +...)
2 2 t t+1  2 t t+2

SX(-m + kEtmt+),
k=O

n-i n
S-X m + X2h( 1)[I+ { }L-kH k ] m

2 t 2 m2 k=m+
m=1 k=m+1

Then

so that
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Then (5.6) becomes

(5.8) k =Xk + A2 -1 -1
t+1 1 t A 2+(1- 2)h( 2 )+(1- 2)h( 2

2

n-I n

m=1 k-m+1

To obtain (5.9), first separate terms in (5.7):

1+161

Pt 1= t-1 + AX2 (1-X 2)

00

X-kE m
k= 2 t t+1+k

k=0O

S-k
2 t t+k

k=0

Xl(l+al61)

AX2 (1-x2)

0 -k la3SEtlmt+k E m +
k=0 2 t-1 t+k AX2 (1-x2)

O-k

k=02 t-lmt-l+k
k=0

l+ 1 6 1

X1 (1-X 2) x2kEtmt+l+k
k=O

l+c 2

AX2 (1- 2)

00
-k

X Em
k=0 2 t t+k

a 3
2 3

AX2(1- 2)

AX 3-
k=0 2 t-1 mt+k A2 (1-a2)

S-kXk 2E mt
k=O 2 t-1 t-1+k'

which can be rearranged to read

Pt = lP t-1 +
S(1+a i-a3) ak Em +(C -A 2 (1- 2 )  1 1 3+al -O t t+k 3 12 2 k=0(a-A

-kS(1+at6)) kE m +(X1 -)a
1 1 2  t-lmt+k+( 1 3

k=O

k=- mt-+k

k_02 t-1 t-1+kk=0O

a3

AA2(1-X2)

_ _



r

But,

-1
= Et lmt + 1 2 t-lmt+l ...

2 2 ( 1 2 l E  m+122E )m+...2 t-lmt 2 t-1mt+l + "

2 -1m_ l+ 02 t-l t-l+k
k=O

1
pt llt-l + 2( 1-12){- 2 (a3-11(+al ))mt- 1 +(l+al 1-c 3 )

-k +
S12 Etmt+k + [ (1-)a3+2(a3 1 (l+a161) )]k=O

-k

k-2 t-lnt-l+k '
k=0O

an expression analogous to Fisher's (3.9). From Fact Al and Lemma Al,

a23+a3 2
(A 1 -1)a 3 + X2 (a 3 -X 1 (1+a 1 61 )) = -(l+al 1 - 3 ) A

= -(l+cy-a 3 )a.

Applying HS1 and HS2,

n-1 n
1 -1 m -k

t lt1 AA2 (1 2 )( 1+ 1- 3)h(A2 )I 2  Hk2 2 m=1 k=m+l

n-1 n
Lm]mt - (l+al 1 - 3 )ah(2)[I+ A -kHk}Lm]mt-

m=l k=m+l

- A2(a3- 1(i+al1 ) )mt-_1}

Then

2 t-1 t+k

so that

(D1)
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(l+161-3 -I
(5.9) Pt = Pt- + A 2 (l- h(a1 )mt

t 1 t-1 AA2(1-x2) 2 t

1 -1I l-k
a(1-)(+al1-a3)h ( 2 2 Hk-a)

2 2 k=2

- X2(a3-A (1+a16 )) )}mt

-1

h(X1) n-3 n

2 ) L [(1+U161-23 m-kyk

n ma1-r-k )L L m

- a a2  HkIL}mt-2
k=im+2

(1+a161-a 3)a -1

a 2 ) h(X 2 )Hnmt-n
AA2(1-A2) 2

I
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Appendix E

Facts A4 assure that (5.7) can be written as

1+216t+
l+l l () (1C ) k E l-aL)m

t 2 (+a )X 2 (1-XL 1) t t+l+k

1L k=0 2

But again, Facts A4 give a = A1 ' A2 = (1+S2)/ 2. Then

t (1+$2)(1-x2 k=0 1+ 2  t 1 t+1+k
1 2 2 k

= (2 kE
1+B 1+2 tmt+k'

which is precisely the result obtained above (4.7) for Cagan's system

with a = -S2. The reader should not be alarmed at the absence of kt+1

in the above, though (3.3) seems to indicate that it ought to be present.

But notice that if a2 = 0, (3.3) gives kt+l as the solution to a (stable)

deterministic difference equation. But the above represents only the

indeterministic (regular) part of {pt } . The price level itself is

given by the above plus (ac3 /(l+al 16)tk0 .

I
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Footnotes

1/
- These models are discussed in some detail in Sargent (1979).

2/
- By predicting, in the 1970s, the possibility of sustained four

percent inflation with four percent unemployment.

See, for instance, Lucas and Sargent (1979).

- (2.4) and a similar result concerning the interest rate.

5/See Cass-Yaari (1966), Diamond (1965), Lucas (1972), Wallace
(1980), and Bryant and Wallace (1979, 1980) for examples of these models.

6/

6/The filter was truncated in a particular way at the end of the
data record.

Assume means have been extracted.

8/
- (2.8) is a population relation. When applied to data, it is

known as Hannan's inefficient estimator.

A filter which retains low frequency power but reduces high
frequency power is a "low-pass" filter.

10/1- Lucas (1978) only presents the analogue to Panel e.

1- If h(L) = h L J is a linear filter (L is the lag operator),
j=. 00w2

-iw 2
the gain of the filter h is I h.e

12/
See (2.7). Subsequently, Iy( ) I will be referred to as the

"transfer modulus."

In this context, "symmetric filtering" means applying the
same filter to both series.

14/The superscript w denotes "whitened." The residuals have
zero mean and run from entry 25 to entry 288. A series of length 288 was
used in each case, with 24 leading zeros followed by 264 residuals.

In Figures 2.1-2.4, the Lucas filter, whose Fourier transform
is given in 2.13, was used. The filter used in Figures 2.5-2.7 is dis-
cussed below.

16/The quarterly averaging filter is itself a "low-pass" filter.

17/Points plotted are ( t+k (), +k(B)) for k = 1, 8, 16, ... ,

192 and t0 = 1958. Only 24 points are plotted to avoid clutter. The first

and last four years were deleted to avoid "start-up" bias induced by the
two-sided filter.
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1--On observations from 1958 to 1973.

19/The marginal significance level is of necessity left vague:
the filtering leaves substantial serial correlation in the residuals of
(2.6). This point is discussed below.

20/2- For instance, the Durbin-Watson statistic for the residuals
implicit in Panel e of Figure 2.4 is approximately zero, as is the marginal
significance level of the Box-Pierce (1970) Q-statistic.

21/
2- In subsequent pages, the articles by Lucas and Fischer will

be referred to repeatedly. Lucas (1975) and Fischer (1979) will not be
noted each time: it will be apparent when they are being referenced.

22/
2- Lucas describes this setup, but Fischer is more specific

about the production process.

23Thus, expectations are rational with respect to a given
information set. See Muth (1960).

2/The dating of the money stock is that used by Fischer; Lucas
uses mt+ in (3.4). The dating is of little consequence once an interpre-

tation is given (in the text below), and will mitigate some of the forth-
coming computational burden.

5/The standard reference on these subjects is Whittle (1963).

26/6- This assumption is equivalent to the assumption that h(z) is
analytic in a region containing the unit disk.

27In note 4, page 116.

28/8- It appears that this problem might be resolved by the addi-
tion of a lagged real balance term to (3.4), a suggestion made by Lucas in
his paper.

A point similar to this is made by Lucas in note 15.

30/This is Lucas' "first pass." He solves a more complicated
version of the system in a subsequent section of his paper. Though the
models do not coincide, the solution methods do.

31/Because the system is linear.

3Lucas demonstrates the uniqueness of his solution. In
general, one cannot, of course, rely on six equations to uniquely determine
six unknowns.

33/Operationally, (3.9) is not a solution for pt, but rather, is

another characterization of the price process. A solution for pt, to be

useful, must be in terms of known quantities; future values of the money
stock must not appear.
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34/

a, b, c, d, e, e, and 6 can be derived from information
provided by Fischer.

35/With {m t generated by (3.5), the Hansen-Sargent formula

(hereafter HS1) gives

fkEtmt+k = mt_ = q(L)mt
i=0 j=O

where

-1
1-fL h(f)H(L)

q(L) =
-1

1-fL

A little algebra yields a similar expression for r1iE  mt+ 1.
i=O

36/These increases are unanticipated if t0 is the "present,"
anticipated if t0 is the future.

3 7/Use of processes like (3.10) and (3.11) make Fischer's world
one with expectations but without uncertainty. The assumptions leading to

(3.5) make this version of the model explicitly stochastic.

O38/nce a reduced form for p is found, a reduced form for k t
is easily derived.

39/Recall that Lucas had to determine many, Fischer infinitely
many, coefficients.

4- For instance, the distributed lag coefficients implicit in
(3.9').

4- This set is considered by Sargent (1979). For a more thorough
treatment see Naylor and Sell (1971).

2/ -iw -iw
-- If z = e , x(e ) is the Fourier transform of {xk}.

-This property, as well as those to be stated below, is
developed in many places, notably Sargent (1979), Gabel and Roberts
(1973), and Liu and Liu (1975).

4/For general two-sided sequences, r must be the unit circle.

-Covariance stationarity requires finite innovation variance.

See, for instance, Whittle (1963) or Sargent (1979).

47/See Churchill, Brown, and Verhey (1976) or Saks and Zygmund
(1971).
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148/8/- To generate the "certainty-equivalent" of a stochastic prob-
lem, replace random variables by their mean values.

49/This problem is treated in Sargent (1978,1979).

50In fact, an intial, very intuitive "solution" was incorrect.
The problem was that there were too many reasonable ways to incorporate
expectations. The intuition necessary to solve the problem at the first
attempt seems similar to the intuition which generates good time domain
guesses. The desire to circumvent the ingenuity required to make so many
seemingly arbitrary decisions led to the development of the relatively
mechanical solution procedure outlined in the text above.

-/Though it seems remarkable that one undetermined coefficient
can be chosen so as to make two residues equal to zero, an appeal to the
fact that {kt}, Ipt }, and {etT-all span the same space indicates that it is

not surprising that the residues are proportional.

2/A solution requires g(z), a quantity easily obtained from
(5.4).

53/These calculations make use of the link between Fourier and
z-transforms; the development follows that of Sargent (1979).

See note 42 above.

5/There is an obvious scaling problem in the Moving Average Co-
efficient Panels a and e for money and prices in Figures 6.4 and 6.5. For
instance, the scale in Figure 6.4a should be from 0 to 1, not 39 to 40. The
problem is that although there are, in essence, infinitely many nonzero
moving average coefficients, only a finite number can be computed. In most
cases, the problem can be circumvented by simply computing more moving
average coefficients. That this is not practical in Figures 6.4 and 6.5
can be demonstrated as follows.

Consider the process

1pLet, 0 < p < 1, t = mt - Elm tm t m t 2 . . . ] .

The moving average coefficients for this process are 1, p, p2, .... The
method used to generate these coefficients in Figures 6.1-6.5 is to inverse

Fourier transform (l-pe- i w ) for w = 0, 2i(1/128); 2J(2/128), ... ,
2(127/128). In this manner, 128 moving average coefficients are generat-

ed. The coefficients so generated are not 1, p, p2, ... , but rather a set
of coefficients which are exactly zero beyond the 128th. Notice that the
process

1_128 128

t 1 -pL t
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has moving average coefficients 1, p, p2,..., 9127, 0, 0, 0, .... Thus,

though the inverse Fourier transform of (1-pe-iw)-1 is sought, the
procedure described above recovers the inverse Fourier transform of (1-
128 -i128w -iw

p e )/(1-pe ). When pis "small," the difference between what is
sought and what is recovered is inconsequential. For instance, since

128 -5
(.9) < 10-, Panel a of Figure 6.3 is approximately correct. But since

(.9999)128 > .98, Panel a of Figures 6.4 and 6.5 are misscaled. There are
three consolations. First, the shapes of the moving average coefficient
distributions in Figures 6.4 and 6.5 are correct. Second, calculations
done totally in the frequency domain (transfer moduli and phases) are
unaffected by the above problem. Third, calculations of the distributed-1
lag coefficients involve ratios of objects like (1-pL) , and hence Panels
f and j are approximately correct. One might think that better approxima-
tions to the moving average coefficients could be obtained by adding a

correction factor to (1-pe - i w ) before inverse transforming. This is true,
and easily done for the money coefficients in Panel a. But as equation
(5.5) indicates, the correction for the price coefficients in Panel e is
not so simple.

Hence the term "white noise."

57/The spectrum is zero because when a2 = 0, there is no indeter-

ministic part in kt . Although the pictures seem to indicate that the

price spectra in Panel c of Figures 4 and 5 are zero over some frequencies,
they are not; this is just resolution in the graphs.

In the figures, prices are (very weakly) damped. This is
because the autoregressive parameter for money is 0.9999, not 1.0.

59/See note 37 above.

60/Recall that capital at time t + 1 can only be affected by
events at time t and earlier.

61/When the modulus of the cross spectrum is zero, the phase is
undefined. When this occurred, the phase was arbitrarily set to zero.
Thus, whenever the transfer moduli in Panels g and k are zero, the phases
in Panels h and 1 were arbitrarily set to zero.

62/-- .e., t = (1-L)pt' ut = ( 1- L)mt.

Once seasonal components have been removed from mt.

64/The typical cross-equation rational expectations restric-
tions are embedded in (5.8) and (5.9).
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Figure 2.5
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Figure 2.7
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Figure 6.1 (cont.)
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Figure 6.1 (cont.)
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Figure 6.1 (cont.)
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Figure 6.2
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Figure 6.2 (cont.)
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Figure 6.2 (cont.)
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Figure 6.3
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Figure 6.3 (cont.)
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Figure 6.3 (cont.)
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Figure 6.3 (cont.)
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Figure 6.4

MONEY
a. MOVING AVERAGE COEFFICIENTS

8 4 8 12

b. SPECTRUM

IT

48

39

4

2

8

71
X1

8



Figure 6.4 (cont.)
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Figure 6.4 (cont.)
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Figure 6.4 (cont.)
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Figure 6.5
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Figure 6.5 (cont.)
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Figure 6.5 (cont.)
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