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1. Introduction

In 1956 Milton Friedman {5] and Phillip Cagan [2] formulated and ap-
plied the adaptive expectations hypothesis, Shortly thereafter, John F. Muth
{131 solved the following "inverse coptimal predictor“l/ problem: for what dis-
crete-time, uﬁivariate stochastic process is the discrete-time version of the
adaptive expectations mechaniasm optimal in the sense of delivering linear least
squares forecasts? Much later Sargent [20] solved the following extended inverse
optimal predictor problem: in the context of a discrete-time version of Cagan's
model of portfolio balance, for what bivariate money creation, inflation sto-
chastic process does a discrete-time version of adaptive expectations deliver
linear least squares forecasts for inflation?

This paper solves the continuous-time version of both of these inverse
optimal predictor problems. In the context of a continuous-time version of
Cagan's portfolio schedule, we find the continucus-time, generalized stochastice
process for the money supply and price level that makes the adaptive expectations
mechanism yield linear least squares forecasts for inflation., This problem is of
interest, if only because Cagan actually formulated his model in continuous time,
as have many others, even though he eventually ended up estimating an approxi-
mating discrete-time model. In order to determine the "optimal" discrete=time
approximating medel, this paper goes on to deduce the diserete~time procgess for
point-in-time observationa on the money supply and the price level that is
implied by that continucus-time model which makes adaptive expectations rational
in continuous time. This permits us to determine a sense in which the discrete-
time adaptive expectations scheme can be viewed as approximating a model in which
agents are optimally forming adaptive expectations in continuous time. We are
alsc able to derive an exact formula linking the discrete-time adaptive expecta-
tions decay parameter X to the continuous-time decay parameter 8. We compare

this formulz to the approximation A = exp(-8) used by Cagan.
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The continuous-time stochastic process for inflation and money crea-
tion which makes adaptive expectations optimal for predicting inflation ipso
facto has the property that money creation fails to Granger cause [6] inflation
in continuous time. However, for discrete-time samples drawn from this con-
tinuous-time process, money creation does Granger cause inflation. This is an
example of the effects of aggregation over time in interrupting Granger non-
causality patterns that hold for continuous time, a phenomenon that Sims [22, 23]
has studied. The present model is simple enough that we are able to analyze this
effect quite completely.

It is our hope that the calculations contained in this paper are
interesting for their own sake, and also because they illustrate a way of analyz-

ing the effects of aggregation over time that could be applied to a variety of

linear rational expectations models,
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2. The Continuous-Time Inverse Optimal Predictor Problem
We begin with Cagan's portfolio balance schedule in continuous timeg/
(1) m(t) - p(t) = aDp(t) + a(t), o < O

where p(t) is the logarithm of the price level, m(t) is the logarithm of the
money supply, a(t) is a random disturbance to the portfolio balance schedule, and

D = d/dt is the time derivative operator. We find it convenient to define the

derivatives
p(t) = Dm(t)
(2) x(t) = Dp(t)
n(t) = Da(t).

Differentiating (1) and using the definitions (2) gives

u(t) = x(t) = aDx(t) + n(t)

or

(3) (=p=D)x(t) = =-pu(t) + pn(t)

where p = 1/2.

We shall posit that up(t) and n(t) are generalized stochastic pro-
cesses, specified in such a way that Cagan's adaptive expectations formula turns
out to be implied by the hypothesis of rational expectations. Now the realiz-

able, time invariant solution of the differential equation (2) for x(t) is

x(t) -pEt(:%:g)u(t) - pEt(:%:ﬁ)n(t)

or

(4) x(t)

_pEtfgépuu(t+u)du . pEtfgepun(t+u)du
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where Et(-) is the linear least squares projection of (+), conditioned on the

information set {u(s),x(s): s < t}. Our objective is to determine stochastic

processes for u(t) and n(t), which in conjunction with (4) imply the optimality
3/

of Cagan's adaptive expectation mechanism.= That is, we wish to find specifica-

tions for u(t) and n(t), which together with (4) imply that

-B(t-s)

gtx(t+1) = Bffap x(s)ds, B >0, T > 0.

To produce the desired (u(t),n(t)) process,ﬂf let (wT(t),wz(t)) =

w(t)T be a continuous-time white noise vector with Ew(t) = 0, and
Ew(t)w(t-s)T = V8(t-s)

where V is a positive definite matrix and §(e) is the Dirac delta generalized
function. Assume that u(t), n(t) are described by the continuous-time, general-

ized stochastic processeséf

u(t)

Su (6) + wy(t), 8> 0
()

n(t)

-&DW1(t) + k1w1(t) + kzwz(t)

where k1 and k, are arbitrary constants.éf To investigate the implications of
(5) in conjunction with (U4), we need a formula for evaluating the predictions of
the terms of the form Eofggpuz(t+a)du that appear in (M).I/ Let a vector z(t)
have the representation

r
(6) z2(t) = ]

(D)w,
J-T¢J( )wJ(t)

where [NT(t)""’wr(t)] is a fundamental white noise vector for z(t), and ¢j(0)

are rational polynomials in D.§/ Then in the present context it can he
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established that the following formula of Hansen and Sargent [10] applies:g/

§ b (D)-d: (=-p)
( b p )wj(t).

(7) Etfgepuz(t+a)du =

By using formula (7), it follows from (4) that with the u(t), n(t) processes

given by (5), the x(t) process is

(8) x(t) = 2y (o).

Thus, with the (u(t),n(t)) processes (5), we have that the joint process for the

variables (x(t),u(t)) can be represented as—g/
x(t) DB o\ eyt

(9) = 5 .
u(t) b 1 w2(t)

We proceed to verify that for the joint (x,u) process (9), Cagan's
adaptive expectations formulation is rational. The first equation of (9) can be

Using Etw1{s) =0 for s >0, and E w,(s) = w1(s) for s < 0, gives

o t 8
(10) Etx(t+T) = ?f_mw1(s)ds = Ew1(t}, T > 04

" D+8 D . ;
Next, notice that x(t) = 5 Y4 (t) implies that W, (t) = ﬁ:ﬁx(t)' Substituting

this last equality into (10) gives
(11) E x(t+1) = =o=x(t), T5> 0
t * D+ ' "0 .

Since Ef%x(t) z BIEe'Bux(t-u)du, equation (11) establishes that the adaptive
expectations scheme for x(t) is rational under the joint (x,u) process given by

(9).
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The second line of (9) can be written as
% t+T
W(t+T) = wy(t+T) + B[ w. (s)ds + B[ w,(s)ds, T > 0.

Hence we have

~

Etu(t+T? = BIEmw1(s)ds z gw1(t)
or

(12) Etu(tﬂ) = ﬁ%"(t)’ T> 0.

Equations (11) and (12) characterize the Granger-causality structure of the
system (9). In the continuous-time system (9), W fails to Granger cause x, as
(10) establishes. However, x does Granger cause |, as (12) establishes. Even
stranger, current and lagged u's fail to help predict p, once current and lagged
x's are taken into account. That these features characterize our system (9) is
not surprising, since we constructed (9) in order to guarantee that Cagan's
adaptive expectation mechanism (11) is consistent with optimal forecasting. 1In
light of equation (4), if Cagan's mechanism is to be rational, there must be

extensive feedback from x(t) to u(t).
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3. Effects of Aggregation Over Time

We use the definitions Dp(t) = x(t), Dm(t) = u(t) and (9) to deduce the

generalized stochastic process for p(t), m(t):

p(t) - o[ puy)
D
(13) - :
B , 1
m(t) 55 o] L¥o(®)
> :

The presence of D and D~ in the denominator of the "moving average" polynomials
on the right side of (13) indicates that (p(t),m(t)) is a nonstationary process.

We are interested in deducing the implications of (13) for point-in-
time sampled, discrete-time observations on (p(t),m(t)). We shall assume that
point-in-time observations on (p(t),m(t)) are available at the integers t=0, 1,
2, «ess It turns out that the second differences of (p(t),m(t)) form a station-
ary discrete-time process with a very simple representation.

We consider now the discrete-time process that is formed by taking
second differences of point-in-time observations on (p(t),m(t)) at the integers.
We first note that the lag operator L can be represented as L = e_D. Then the
first difference operator is (1-L) = (T-e_D), while the second difference opera-

tor is (T-L)2 = (1—e_D)2. Applying this operator to (13) gives

-D.2

(1-L)2p(t) (== (g.p) 0 W, ()
D

(14) = )
=D.2 -D.2
2 (1-e ) (1-e )
(1-L)2m(t) g U= ) /v 0)
11/

Now recall the following Laplace transform pairs:—

1—e=S {t tef0,1]
_—

s 1 t > 1



w B o=

(15)

t tef0,1]
-3,2
(1'62 ) ot te[1,2]
3
0 t > 2.

Using the Laplace transforms (15) and (14) gives the desired representation:

(1-1)%p(t) = [ (Bre1)u, (t-T)dT + [3(8(2-1)-1)w, (t-T)ar

(16)

(1-L)%m(t) = [l8rw, (t-1)dT + [Z8(2-T)w, (t-T)dT

+ f;wz(t—r)dt - I?wz(t-T)dT.

To represent things compactly, we define

(1-L)2p(t)
y(t) =

(1-L)%m(t)

Then we can write (16) as

1 (Bt+1) 0 w1(t-r)
(17) y(t) = Io dat
BT 1 wz(t-T)
B(2-1)-1 0} | w,(t=T)
+ f? 1 dt.
B(2=1) -1 wz(t-T)

Evidently, by virtue of the white noise property of (w1(t),w2(t)), y(t) sampled
at the integers is a first-order, bivariate moving average process with uncondi-
tional mean Ey(t) = 0. The autocovariogram of the y(t) process is readily

computed fromlg/

PO = Ey(t)y(t)T



and

and

(18)

f2 B(2-1)=-1 0 Vi v12) B(
1
8(2~-T) =11\ VY59 Vop 0
= Ey()y(een)T = 1]
=T . =0 for j> 1.
Evaluating the above integrals, we obtain
1,2 1
2v11[§8 +1] 2v11[§
v
1,2, 12 148
2V11[-§B +V11] ZVH[B'S
1,2
vyqlg8 -1l

I

r-

r

J

= Ey(t)y(t-nT

81 1

B(2=T)-1
0 -1

B(2=-T)

T=1)+1 8(t=1)
dt

1

v -
82+ (=12))
1"

.
& (=22

Vag  F

81 1
1 3138-1+vyp 581

Vi

Va2

- =5

i

1,2
vy (58

dt
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4, Predicting Inflation Using Information
on Lagged Inflation Only
We first consider the wunivariate Wold representation for the
(1-L)2p(t) process. From (18), (1-L)2p{t) is a first-order moving average with

covariance generating function
(19) g(z) = e(Dz™ " + ¢(0) + e(1)z

where from (18) c(0) = 2v11[%82+1], ce(1) = v11[%82~1]. We seek the Wold moving

average representation for (1-L)2p(t), which is of the form
2 -
(20) (1-L)%p(t) = (1-A L)e ., prl < 1

with gpt a discrete-time white noise that is fundamental for (1-L)2p(t); the
is 02 . From a routine
pt €p

application of the spectral factorization theorem,lz/ we have the following

variance of the one-step-ahead prediction error ¢

2
formulas for lp and UEp’

2
1 e(0) + [c(0)
(21) A = - = =
p 2 c(1) hc(1)2

-1

subject to |kp| < 1

Q
n
no

Ep. 1+A i

Using the preceding formulas for ¢(0) and e(1) we have

(182+1) (182+1)2
I R -
(ez) N "N 2!
EB -1 (EB =-1)

subject to |lp| C
Now consider the discrete-time inflation rate X(t) which we define as

X(t) = p(t) - p(t-1) for t at the integers. Representation (20) can then be
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written
(23) (1=L)X(t) = (1—xpL)ept.

As shown by John F. Muth [13], the optimal j-step-ahead forecast of X governed by
process (23), given current and lagged values of X alone, is the discrete-time
version of Cagan's adaptive expectation schemes

~ = .
(2u4) EX(t+3) [X(£),X(t=1), vuv = (1=2)) ¥ alx(e-1), 3> 1.

Pi-o P -

Now equation (24) is precisely the discrete-time representation which

Cagan used for approximating the continuous-time adaptive expectations scheme

~

B x(t+T) = sfge'ssx(t-s)ds, T > 0.

Cagan took lp to be related to 8 via the equation

=R
(25) kp =e .

For various values of B, Table 1 reports the values of Ap given by
formula (22) and Cagan's formula (25). For 8 close to zero, equation (25)
provides a close approximation to (22). However, for large values of 3, exp(-8)
is approximately zero, while equation (22) implies a kp of approximately =-.25.

This comparison is of interest in the following context. Suppose that
our continuocus-time model is correct, and that an analyst possesses discrete-
time observations on p(t), t belonging to the integers. A procedure recommended
by Nerlove [15] and Nerlove, Grether, and Carvalho [14] would be to determine the
optimal predictors for the univariate process for p(t), and then attribute them
to the private agents in the model. This procedure is motivated by an appeal to
the rational expectations hypothesis, and is termed the method of "quasi rational

expectations" by Nerlove, Grether, and Carvalho [14]. In an infinitely large



Table 1

3] kp exp(=R8)
0 1.000000 1.000000
:25 .778290 778801
.50 .603289 .h06531
15 L163584 472367
1.00 .351000 .367879
1.25 .259528 .286505
1.50 ; . 184661 .223130
175 . 122966 LAT3TTH
2.00 L0T1797 . 135335
2.25 .029094 . 105399
2.50 -.006757 .082085
25715 -.037033 .063928
3.00 -.062746 .049787
3.25 -.084705 .038774
3.50 -.103558 .030197
3.75 -.119828 .023518
4,00 -.133939 .018316
4,25 -. 146237 014264
4.50 -.157003 .011109
4,75 -.166469 .008652
5.00 -.174828 .006738
5.25 -.182238 .005248
5.50 -,188832 .004087
515 -.194722 .003183
6.00 -,.200000 .002479
6.25 -.204746 .001930
6.50 -.209027 .001503
6.75 -.212899 .001171
7.00 -.216413 .000912
7.25 -.219609 .000710
7.50 -,222524 .000553
T.15 -.225189 .000431
8.00 -.227632 .000335
8.25 -.229875 .000261
8.50 -.231940 .000203
8.75 -.233845 .000158
9.00 -.235605 .000123
9.25 -.237234 .000096
9.50 -.238746 .000075
9.75 -.240150 .000058
10.00 -.241457 .000045
+00 -.267949 0.000000
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sample, the analyst could recover the parameter Ap given by formula (21), if he
followed Nerlove, Grether, and Carvalho's method. Using formula (22) or Table 1,
the analyst could then infer the value of 3. Table 1 provides a fairly complete
characterization of Cagan's approximation (25) as a vehiele for inferring 2 from

A..
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5. Predicting Inflation Using Information on Lagged
Inflation and Lagged Money Creation

We noew turn to the bivariate moving average of the discrete-time pro-
cess for inflation and money creation. A Wold moving average representation for

((1-L)%p(t), (1-L)2m(t))T = y(t) is

(26) y(t) = u_ + Fu,__

1

where ug is a (2x%1) vector discrete-time white neoise with EutuT =V, where V is a

t

positive semidefinite matrix: u, = y(t) - Ey(t)|y(t-1),y(t-2), ...; and the

eigenvalues of F are less than or equal to unity in absolute value., Given PO and

I'1 from {18), F and V are determined by solving the following equations

(I+Fz)TI-(I+Fz'1)T = Ffz-1 *Ty + FTZ
or

Tq =V + FUFT
(27)

', = FV.

The spectral factorization theorem discussed by Rozanov [19] implies that these
equations have a unique solution with the properties indicated above. In prac-
tice, we have solved the above equations for V and F by using an algorithm
described by Rozanov [19]. By following Rozanov's suggestions, Hansen and Sar-
gent [9, Appendix B] describe explicit closed-form formulas for V and F as func-
tions of the elements of PO and F1.
Letting Xt = p(t) - p(t-1), Mt = m(t) - m(t=-1}, we can write (26) as
(1-L)X,

(28) = ut + Fu

=1
(T—L)Mt

By carrying out a series of calculations paralleling these of Muth [13], it is

straightforward te verify that (28) admits the alternative representation
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Xt [
" = (I+F)(I+FL) y + U g
| t+1 L. "6
or
X a1 ° [ X4
(29) = (I+F) } (-F) £y 1
M i=0 M, .
- t+’_ e t-'l

From the fact that u is fundamental for (X,M), it can be readily verified that
there obtains the following bivariate generalization of Cagan's adaptive expec-

tations scheme:
) xt+j ¥
(30) E | X oMy o Xy _qoMp_qsees

Mt+j =0 Mt-i

" Rt
= (I+F) § (-P)" y 23 1.

The one-step-ahead prediction error vector is u,_,, which has covariance matrix
v.

Representation (28) is usefully compared to the one constructed by
Sargent [20]. He posited a discrete-time model of the inflation, money creation,
process which makes the discrete-time version of adaptive expectations rational
when taken in conjunction with a discrete-time version of Cagan's portfolio
balance schedule. Sargent's model is the discrete-time, bivariate, first-order

moving average

(1-LI%, 1 0\ /e, -A 0\ /€41
(31) = + ( ( )
(1-L)Mt 0 1 €t (1=A) =1 €51
where (€1t’€9t)T =5y is a discrete-time vector white noise with arbitrary

contemporaneous covariance matrix EeteT = W; €_ is fundamental for ((T-L)Xt,

t t

(T-L)Mt); and |A| < 1. It is evident from the first equation of (31) that Cagan's
discrete-time adaptive expectations formulation for inflation is rational, given
{130

In form, (31) matches (28). One of our tasks now is to study the

relation between the (2x2) matrix F in (28) and the corresponding matrix



= 18, &

< 0
(1=A) =1

in (31). Notice that the eigenvalues of the matrix E are -1 and -A. It can be
provedli/ that one of the eigenvalues of F in (28) is -1. A comparison between
the value of —kp given by equation (22) and the nonunit eigenvalue of F is one
interesting measure of the effects of time aggregation.

For various values of V and B we have calculated F and V. In addition,
we calculated Ap and czp in the univariate Wold moving average representation for

(1-L)X, :
(1-L)X, = (1-ApL)ept, lkpl <1
2

EpP
ahead prediction error variance for (1-L)Xt. We also calculated the univariate

where gp is a fundamental white noise for (1—L)Xt and o = Eeé is the one-step-

Wold moving average representation for (1'L)Mt

(1-L.)Mt = (‘I-J\mL)emt

where €t is a fundamental white noise for (T-L)Mt and cim = Eei is the one-step-

16/ Recall that V.. is the discrete-

ahead prediction error variance for (T-L)Mt.—— 11

time, one-step-ahead prediction error variance for predicting Xt on the basis of

lagged X's and lagged M's, while V., is the discrete-time, one-step-ahead predic-

22
tion error variance in predicting Mt on the basis of lagged X's and lagged M's.
Therefore, (oip-v11)10§p is a measure of the marginal assistance of lagged M's in

predicting Xy s while (cgm—V22)|c§m is a measure of the marginal assistance of
lagged X's in predicting Mt. These quantities, which we call "percentage gains"
in Tables 2-7, are measures of the strength of the Granger causality that occur
between the discrete-time X and M processes. We recall that in the continuous-
time model (9), which we are maintaining, M(t) fails to Granger cause X(t). How-

ever, in the discrete-time model, M, will in general Granger cause Xt due to the

t



- 16 =

effects of aggregation over time.ll/ The percentage gain (in'v11)rcip is a

measure of the failure of the discrete-time process to reveal the Granger causal-
ity structure of the underlying continuous-time model.

Tables 2-4 report complete characterizations of ?, F, Uip’ Uim, kp, and
km for three values of B, and for three settings for the "intensity" matrix V.
Tables 5-7 give less complete characterizations of V and F for a large number of
values of 8.

One outstanding characteristic that emerges from these tables is that

for small values of B, not only does exp(-8) approximate Xp well, but the matrix

F approximates the matrix

=9 0
((w-x) -1)
well with A taken to be Xp or exp(-8). Further, for small 8, money creation only
very weakly Granger-causes inflation in the discrete-time data.

On the other hand, for large values of B, exp(=-R) fails to approximate

lp well, and F fails to resemble the matrix

-\ 0
((14) -1) '
In addition, for large 8, substantial Granger causality can extend from money
creation to inflation in discrete time.
For values of kp in the range estimated by Cagan [2] and Sargent [20],
these results are moderately comforting, since they suggest that aggregation
over time imparts at most a very small asymptotic bias to Cagan's estimator of

g, 18/

They also are compatible with the weak evidence in discrete time for
Granger causality extending from money creation to inflation.
On the other hand, the tables also indicate that for high values of B8

the effects of aggregation over time can be considerable. In particular, while



Table 2

V:I,B:-Os

-.9512240 -.5079E-05 1.05084 .02840
F = ,?=
.0487756 -1.00000 .02840 1.00084
2 ; i oy -
csp = 1.05084; % gain = 0; lp = .951224
2 . S s . -
B 1.05084; % gain = 4,758; Am = 951224

eigenvalues of F: -1.,0, -.951229

v:I,8=2005
.0139974 -.133791 4,76243 2.73743
F = , v =
1.0140000 =1.133790 2.73743 2.712u3
2 .. . in . -
cep = 4,78290; % gain = .428; lp = .0626363
2 3 . -
Ocm = 4,78290; % gain = 43.289; Xm = ,0626363

eigenvalues of F: =1.0, -.119794

v =1I,8=10.05
1.83797 -1.75125 60.9131 54.8881
F = ,V:
2.83797 -2.75125 54.8881 50.8631
2 . N . _
Uep = 65.5079; % gain = T7.014; kp = =,241708
2 : oy = Y B m
Oem = 65.5079; % gain = 22,356; A\p = -.241708

eigenvalues of F: -1.0, .0867212
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Table 3

10 0
V = ) 8 = IO5
0 1
-.9512230 -.507230E-04 10.508400 .258385
F = i V =
LOLU8TT6T 1.00005 .258385 1.008300
2 :
= ‘10, s = 0; A_ = .951224
GEp 10.5084; % gain = 0 5 95122
2 . . . _
Tem = 1.16661; % gain = 13.563; Xm = .853612

eigenvalues of F:

-1.0, -.951274

0 0
V = i B = 2,05

0 1

329567 -.694458 46.7499

F = , Vo=

1.329570 -1.694460 26.4999
ng = 47.8290; % gain = 2.256; A, = .0626363
o2 = 28.7633; % gain = 40.028; A_ = -.20874
eigenvalues of F: =1.0, -.36U4891

07 0
V = ; B = 10,05

0 1

5.07515 -5.39143 526,424
F = . ? =

6.07515 -6.39143 466,174

2 - . 5 - b4 = -

UEp = 655.079; % gain = 19.640; kp = -.241708
cgm - 630.971; % gain = 33.924; A = -.265206

eigenvalues of F:

-1.0, -.316278

26.4999

17 .2499

466.174

416.924
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Table 4

1 0
v: ,B=005
0 10

-.9512240 -.507996E-06 1.0508400 .0258385
F = s ? =
.0487755 -1.00000 .0258385 10.0008000
2 :
= 15 4, = 0; = .951224
Uep 1.0508L4; % gain = 0 Xp 95
2 ; o = 2 -
Oem = 10.1589; % gain = 1.556; Am = ,984313

eigenvalues of F: =1.0, -.951225

1 0
, B = 2.05
0 10

V =
-.0540333 -.0149769 4,78062 2.75562
F = , v =
.9459670 -1.0149800 2.75562 11.73060
2 ” b ’ _
ng = 4,78290; % gain = .048; kp = ,0626363
aim - 17.9960; % gain = 34.816; A_ = .516757

eigenvalues of F: =-1.0, -.0690102

1 0
V= , 8 = 10.05
0 10
LU466067 -.244613 6l ., 8440 58.8190
F = 2 V =
1.466070 -1.244610 58.8190 63.7940
2 . — . .
GEp = 65.5079; % gain = 1.013; Xp = -,241708
2 . S . -
cEm = 86.7970; % gain = 26.502; Xm = -.0787326

eigenvalues of F: =1.0, .221454
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.05
.15
.25
.35
45
.55
.65
.75
.85
.95
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

exp(-8)

.951229
.860708
778801
.T704688
.637628
.576950
.522046
U72367
JU427415
.386741
.367879
.135335
049787
.018316
.006738
.002479
.000912

.000335 -

.000123
.000045
.000017
.000006
.000002
.000001
.000000
.000000
.000000
.000000
.000000
.000000

% gain p

.000
.000
.000
.000
.001
.003
.005
.010
.017
- 026
.032
.396
1.216
2.253
3.297
4,251
5.090
5.817
6.445
6.989
T.462
7.876
8.240
8.562
8.850
9.107
9.339
9.548
9.738
9.911

Table 5

V=I

% gain m

4,758
12.957
19.662
25.133
29.581
33.181
36.073
38.375
40.186
41,585
42,153
43,475
38.864
34.399
30.901
28.251
26.228
24,656
23.409
22 .401
21.573
20.881
20.297
19.797
19.364
18.987
18.655
18.361
18.098
17.863

o

.951224
.860587
.778290
.703413
6351556
.572824
.515811
463584
415673
.371661
.351000
071797
.0627L6
. 133939
. 174828
.200000
.216413
.227632
.235605

.245871

-.2U9278
-.251959

.254106
.255850
.257287
.258483
.259490
.260345
.261077

eigenvalue

of F

.951229
.860708
.778799
.T70L680
.637604
576890
.521922
472138

-.427030

.386136

-.367138
-.127017

.026334
.021749
. 047553
.062746
.072361
.078800
.083308
.086582
.089031
.090909
.092380
.093554
.094504
.095285
.095933
.096478
.096940
.097335



Table 6

10 0
V=
0 1

eigenvalue

R exp(=R) % gain p % gain m Ap of F
.05 .951229 .000 13.563 .951224 -.951274
.15 .860708 .000 30.723 .860587 -.861784
.25 .778801 .001 39.841 .778290 -.783221
.35 .704688 .003 44,530 .703413 -.715367
U5 .637628 .010 46,743 .635156 -.657499
.55 .576950 .023 47.568 .572824 -.608589
.65 .522046 .0l6 47.620 515811 -.56748Y
.75 72367 .083 47.253 463584 -.533032
.85 427415 .135 46.673 415673 -.504170
.95 .386741 .205 45,996 .371661 -.479957
1.00 .367879 .2u8 45.6L4Y .351000 -.169338
2.00 .135335 2.120 40.205 071797 -.367138
3.00 .049787 5.169 37.661 -.062746 -.339L08
4.00 .018316 8.313 36.325 -.133939 -.328647
5.00 .006738 11.104 35.519 -.174828 -.323453
6.00 .002479 13.460 34.985 -.200000 -.320572
7.00 .000912 15.421 34.606 -.216413 -.318813
8.00 .000335 17.054 34,323 -.227632 -.317663
9.00 .000123 18.426 34,105 -.235605 -.316871
10.00 .000045 19.586 33.931 -.241457 -.316303
11.00 .000017 20.578 33.790 -.245871 -.315881
12.00 .000006 21.434 33.672 -.249278 -.315559
13.00 .000002 22.179 33.573 -.251959 -.315309
14.00 .000001 22.831 33.489 -.254106 -.315110
15.00 .000000 23.408 33.416 -.255850 -.314949
16.00 .000000 23.920 33.352 -.257287 -.314817
17.00 .000000 24,379 33.296 -.258u83 -.314708
18.00 .000000 24.791 33.2U46 -.259490 -.314617
19.00 .000000 25.164 33.202 -.260345 -.314539
20.00 .000000 25.502 33.162 -.261077 -.314473
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20.00

OO O0J Fuwmn —

exp(-B)

.951229
.860708
.778801
.704688
.637628
.576950
.522046
472367
427415
.386741
367879
135335
049787
.018316
.006738
.002479
.000912
.000335
.000123
.000045
.000017
.000006
.000002
.000001
.000000
.000000
.000000
.000000
.000000
.000000

v

% gain p

-.000
.000
.000
.000
.000
.000
.001
.001
.002
.003
.003
.0l44
. 145
.284
433
.575
* 70”
.819
.920

1.009

1.087

1.157

1.218

1.272

1.321

1.365

1.405

1.441

1.474

1.504

Table 7

(

;

0

O)
10
% gain m

1.556

4.524

7.308

9.917
12.361
14,647
16.785
18.782
20.645
22.382
23.205
34.465
38.882
39.554
38.302
36.158
33.687
31.186
28.804
26.607
24,614
22.825
21.226
19.800
18.529
17.394
16.378
15.467
14,648
13.910

Ap

.951224
.860587
.778290
.703413
635156
.572824
.515811
.463584
415673
.371661
.351000
071797
.062746
+133939
. 174828
.200000

-.216413
-.227632

.235605
.241U57
. 245871

-.249278
-.251959

.254106
255850

-.257287

.259490
.260345
.261077

eigenvalue
of F

-.951225
-.860599
-.778341
-.703540
-.635403
-.573236
-.516434
-. 46uL61
-.416843
-.373162
-.352679
-.077935
.052290
. 120272
.158938
.182582
. 197926
.208380
.215792
221222
225312
.228465
.230945
.232929
.234541
235867
.236971
.237900
.238688
.239363
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Cagan's approximation )\ = exp(=R) prevents )\ from assuming negative values,
negative \'s can occur in the appropriate discrete-time model.

Fortunately, there is no need to count on the parameter 8 staying in
the range in which time aggregation effects are small. It is straightforward to
implement procedures for estimating the parameters of the continuous-time model,
B8 and V, given records of discrete-time data. Equation (28) is a bivariate
moving average representation for { (1-L)Xt,(1-L)Mt}, which can be estimated
using either time domain or frequency domain versions of method of maximum
likelihood.lg/ The likelihood function would be maximized over the free para-

meters, B and V, of the continuous-time model.gg/
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6. Conclusions

We have produced a continuous-time model which solves the inverse
optimal predictor problem for a continuocus-time version of Cagan's model of
hyperinflation with adaptive expectations. We have gone on to deduce the re-
strictions thch this continuous-time model places on discrete-time data. This
has permitted us to describe exact formulas linking the parameters of the dis-
crete-time representation to the parameters of the continuous-time model. These
formulas permit us to evaluate the quality of the approximations that Cagan and
others have used in linking the discrete-time and continuous-time parameteriza-
tions.

The computational techniques used in this paper are useful for study-
ing the effects of aggregation over time in a variety of dynamic models under
rational expectations. In subsequent research we plan to use these tools to
study the effects of aggregation over time in substantially richer dynamic

contexts.



Footnotes

1/

~"Linear inverse optimal control and linear inverse optimal predictor
problems are analyzed in discrete time by Mosca and Zappa [12].

g-‘fIn this paper we use the following operational calculus, Let F(t) be
a function or generalized function defined on te(-w=,+x), Let f(s) be the Laplace
transform of F(t), which we denote by f(s) ++ F(t). Let D be the time derivative
operator, and let x{t) be a stochastic process or generalized stochastic process.

Then we have £(D)x(t) = ffxf(r)x(t-T)dt. In conjunction with this equality, we

)
use the following Laplace transform pairs in this paper: 1/3 « 1; 1/8™ + t;

1 -eat, t<0
—_— , a > 0y
s-a 0, t>0
1 { 2% t 50
g y 2205
s-a 9, t<0
e™@% o 5(t-a) where 8(*) is the Dirac delta generalized funetion; and e 3°/s +»

u(t-a) where u(t) is the Heaviside unit step funection, u(t) =1, t > 0, u(t) = 0,
t < 0. For descriptions of Laplace transforms, see Churchill [3] or Doetsch [4].
For a useful treatment of the operational properties of delta functions and other
generalized functions, see Papoulis [17].

g-/'I‘his is the continucus-time version of the inverse optimal predictor
problem studied by Sargent [20].

E/Kwakernaak and Sivan [11] and Papoulis [161 contain useful introduc-
tions to the properties of continuocus-time white noises and continuous-time
stochastic processes constructed by integrating and differentiating them.
Arnold [1] contains an introduction to the Ito stochastic integrals which are
used to define and manipulate continuous-time white noises in a mathematically
rigorous way.

E/Notiee that u(t) and n{t) contain white noise and derivatives of
white noise components, respectively. Consequently, neither of these processes
is physieally realizable., OQur defense for positing these ideal or generalized
stochastic processes is that they lead to well-defined, physically realizable
stochastic processes for the diserete-time observations on the mcney supply and
price level,.

Q/Using the operational calculus described in footnote 2, we have

%w1(t) = Bfng(t—s)ds

which 1s a Wiener process that has infinite variance at t because it is viewed as

starting up in the infinite past, Two alternative devices could be used to
assure that all the c¢bjects manipulated have finite variances for all finite t,



The first would be to start up the system with fixed or random initial conditions
(x(t ),n(t )} for some finite time t;. The second would be to start the system

up 1nf1nitely far in the past, but to approximate terms like —x(t) by

B _ Ys
Day¥ x(t) Sfme x(t-3)ds

for very small positive values of y, The results in this paper can be produced by

8

replacing ) Y > 0, and by taking the limit as vy » 0. In this way, the

8
by Ds+y’
results in this paper ccould all be obtained without resorting to manipulations

. . . ot B
involving terms with infinite variances, such as —w. (t).

D1
Z/‘r\ﬂ'n'.ttle [24] describes the continuous-time versions of the Wiener-
Kolmogorov linear least squares prediction formulas used here.

g/Rozano*..lr [19] uses the concept of a fundamental white noise. A white
noise process (w (t),...,w (t)) is said to be fundamental for z(t) if for 1 > 0

z{t+T) - E[z(t+r)|z(s) s<t] can be expressed as an integral of [w (z),...,w {(z)]
over the interval t < z < t + T,

E/Hansen and Sargent [10] derived the formula under more restriative
conditions than apply here. Nevertheless, it can be verified directly using the
continuous~-time prediction formulas given by Whittle [24) that the formula is
correct.

lg/Note that neither the x(t) process nor the p(t) process is physi-
cally realizable due to the presence of white noise components in each.

11/See Churchill [3] or Doetsch [4].

lg/We are using the rules for taking expected values of products of
integrals of white noises that are described by Kwakernaak and Sivan [11, pp. 97-
39].

13/Th18 theorem is discussed by Rozanov {19] in generality. Sargent
[20, pp. 265-268] provides a nontechnical discussion of factoring the covariance
generating funetion of a first-order moving average process.

1u/ThlS is because the first difference of inflation is a first-order
moving average, and because the Wold moving average representation for (1-L)Xt,
(1-L)Mt is triangular, implying that (1-L)Mt fails to Granger cause (T-L)Xt. See
Sims [23].

li/First, note that

(1F2)T(IeF2" )T =T _ 27"+ Toz + Tz

and that therefore the zeroes of det(F_1z'1+Foz+F1z) are comprised of the zeroes

of det(I+Fz) and the reciprocals of the zeroes of det(I+Fz). Next, note that the
zerces of det{I+Fz) are minus the reciprocals of the eigenvalues of F. By using

formulas (18) it can be proved that unity is a zero of det(F z" +FO+FTZ), which
implies that -1 is an eigenvalue of F.



16/Each of these univariate moving averages was calculated by using
the covariances given in (18) together with formulas (21).

ll/In a more general context, Sims [22, 23] has emphasized that §'s

failing to Granger cause X in continuous time does not imply that ; fails to
Granger cause ; in discrete time.
l§/St-:‘e Sargent [20] for an argument that Cagan's procedure for esti-

mating A is statistically consistent, provided that expectations are rational
and that the money creation inflation process is given by (31).

19/Such approximations are discussed by Hannan (7], Hansen and Sargent
[8], and Phadke and Kadem [18].

gQ/WE note that without a priori restrictions on V, Cagan's parameter o
is not identifiable. Identification could presumably be achieved by employing
the strategy which Sargent [20] employed in discrete time, namely, the strategy
of a priori restricting the covariance matrix of the shocks to the portfolio
balance schedule and the money supply rule.
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