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Time Consistency of Optimal Plans: A Primer

Introduction

A planning problem consists of the following elements:

l. A designated agent, termed the primordial planner, who

chooses a (possibly infinite) planning horizon, the

initial time of which is chosen, without losses of gener-
ality, to be t = 0. The final time of the horizon is
denoted T, with T =« for an infinite horizon.

2« A set of present and future sequences (or continua) of
decisions, termed plans. A subset of these plans are
determined by the primordial planner to be feasible,
given his perceptions of the problem's constraints.

3. A system linking the feasible plans to outcomes they
cause.

L. Performance criteria used by the primordial planner to

rank the desirability of feasible plan outcomes. A
highest rank feasible plan (if one exists) is termed an

optimal, or equivalently, a primordial plan.

As the optimal plan is implemented, other planners may
want to change it. They may have fundamental differences with the
primordial planner about one or more of the planning elements
above. For example, new instruments may become available which
change the constraints determining the feasible plans. Unfore-
seeable new information may become known about the system. Or,
society may demand that the planner fundamentally change the per-

formance criteria initially adopted. 1In any of these events, it
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seems appropriate that the "optimal" plan be changed to reflect
the new elements.

It is possible, though, that future planners will be in
agreement with the primordial planner about the latter three
planning elements. Because they evaluate the plans starting at
later dates than did the primordial planner, though, their plan-
ning horizons are not the same as the primordial planner’s.
Future planners will only concern themselves with the impacts
their proposed plans have on their own present and future, ignor-
ing their own pasts. This myopic (from the viewpoint of the
primordial planner) behavior on the part of future planners may
lead them to deviate from the primordial plan, even if they all
agree with the primordial planner on the other planning elements
2-4. From a normative poiht of view, if one views the primordial
planner's choice of horizon as the appropriate choice, then this
myopic behavior is undesirable. Can it somehow be avoided?

If the primordial planner cannot force the future plan-
ners to implement the optimel plan, he can only hope that future
planners will, of their own free will, choose to implement it. A
planning problem which has the property that its optimal plan will
be implemented by all future planners, each of whom is free to
change it but won't do so, is termed a planning problem with a

consistent optimal plan. Even if a planning problem does not have

consistent coptimal plans, it may be true that some future planner
at time T < T will freely chocose to implement that part of the
optimal plan under his control. A planning problem whose optimal

plan has this property is termed a problem with a t-consistent

optimal plan.
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As we will see, only certain problems with very special
structures have consistent or T-consistent optimal plans.
Strotztl) and Burness(zj have shown that these structures also
require that, in any problem which involves discounting the fu-
ture, the discount function mist be of a very special forme In
economie planning problems, Kydland and Prescott,(B) Calvo,(h) and
Fischer(5) have shown that these special structures require that
expectations be adaptive rather than being rational or being, in
some other sense, determined by future policy decisions. Finally,
we will also show thet problems with whaet are usually termed
nonseparable performance criteria do not possess consistent opti-
mal plans.

Thege results are presented in a unified way through the
use of a discrete time optimal control model. The model is broad
enough to encompass all of the above speclal structures, yet
simple enough to be understood by people unfamillar with dynamic
optimization techniques. 1In the process, though, the reader will
become acquainted with the so—called Bellman Principle of Opti-
mality, which 1s & necessary conditien characterizing optimal
plans in planning problems with certain special structures. We
will see that, when discounting is not employed, the problems
vhose optiml plans are characterized by Bellman's Principle are
precisely those problems whose optimel plans are consistent. When
discounting 1s employed, though, this is no longer the case, and a
different test for consistency is required.

In problems whose optimgl plans are not consistent, the

primordial planner mst either find some way to force future
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planners to implement her plan, or adopt some other strategy. If
the former course of action is impossible, the primordial planner
may choose to propose some other plan which will be freely im-
plemented by future planners. Such a plan is termed consistent,
and in general there may be many consistent, albeit suboptimal,
plans. In problems not involving discounting, plans which are
consistent are precisely those plans derived via the use of the
Bellman Principle, regardless of whether or not it characterizes
the optimal plan. As mentioned above, these consistent plans are
suboptimal unless the problem has a structure in which Bellman’s

Principle does characterize the optimml plan.

The Optimal Planning Problem

The most general optimal planning problem considered

here can always be placed in the form:

(1) max o U(X,Dyyeee X

DysesesDp D oX

TS T+l’t)

s.t. X = ft(xt,DO,...,D

41 t,...,DT); X, given, t=0,...,T

For each t, the primordial planner chooses a vector D, from a

choice set Ct(xt) to solve (1), producing an optimal or primordial

plan (Dg,...,Dﬁ). The vector valued state equations f, determine
the evolution of the state vector X . Note that we permit the
possibility that future decisions masy affect current states. This
simple setup is broad enough to exhibit all known causes of incon-

sistency while avoiding complications corcerning the existence and
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computation of optimal plans inherent in both infinite horizon and

stochastic planning problems. An illustrative example follows.

Example 1l: Capital Budgeting

Consider the following problem faced by a firm's primor-
dial planner, who chooses a plan to allocate a fixed capital
budget K among T competing projects. Project t starts in period t
and, for simplicity, is assumed to last one period. A dollar
invested in the proJect starting {and ending) in period t earns a
dividend of Bt' An investment of Dt dollars in period t is then
assumed to yield dividends of BtDt' In addition, retained earn-
ings in period t, denocted Xt’ are taxed in that periocd at the rate
Pge

The undiscounted return to the firm in period t is then:
(2) Ut(xt,Dt) = DtBt - Ptxt, t=0, sy To

At time t = 0, the firm's primordial plasnner correctly perceives a
future interest rate series, (il,...,iT). In deriving her plan,
she discounts the return in period t by the factor l/(l+il) .

(1+12) * «oe + (1#i;). Defining the discount function

(3) r(t,7) = 1/{1+ip,) (I+i ) oon (144y),

r(0,0) = 1

the primordial planner's meximand is then:

T
=0
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To complete the specification of the primordial plan-
ner's problem, we derive the state equation for retained earnings
Xie Starting at t = 0, the planner invests DO from the total
capital fund K, leaving before tax retained earnings of K - Dj.
After tax retained earnings of X; = (1-Py) (K-Dy) are then left
for future investment purposes. In period t = 1, investment of D,
leaves before tax retained earnings of Xl - Dl’ and after tax
earnings of X, = (1-P;) (X;-D;) are available for future invest-

ment purposes. Continuing in this manner, we see that:

h —
(5) xt+l = (1-pt) (xt-nt} = ft(Xt,Dt), =0y wwng: T3 xo = K

The primordial planner's problem is then:

T
(6) mx ) r(5,00U,(x,,D,)2u(x ;D

), P I t)
DO,...’DT t=0

05"'9 kil Lk %

gdte X & 00D )y RO, weny T X = K D @ CL{X, )

t 0 t t 't

where f, is given by (5).

Classification of Optimal Planning Problems

There are several subclasses of problem (1) that prove
useful in the following. One subclass of problem is termed non-

anticipatory, and constitutes those problems in which the current

state vector depends only on current and past decision vectors,

i.se0,

(7) Xp41 = Fe(XgsDgseeesDy), =0, ooe, Te
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By redefining the current state Xt to include the past decision
vectors DO, see, Dt—l’ a nonanticipatory problem's state equations

can always be written in the form
(8) Xt+1 = ft(xt,Dt), t=0, see 2

The most general nonanticipatory problem is illustrated in Figure

l. Another important subclass of problems are the monotonically

separable problems, in which the objective function U is separable

and monotone in the following sense:

(9) U(XgsDgsee e sXpsDpsXpy,) =

g[UO(XO’DO)’Ul(xl'Dl)"'-’UT(XT’DT)’UT+1(XT+1)I =

Yoo . B - ))]

gl[UO(XO’Do)!gz(Ul(XlDDI),"'!UT(XT,D ’ T+1 T+1

T

and

for any fixed value of Uy, g; is a monotonically non-

decreasing function of go.

A common type of monotonically separable problem is the additive

separable problem:

T
Ocov,xT,DT,xT+l) = £ Ut(xt,Dt) + UT+1

(9a) U(XO,D
£=0

(Xres )

T+1

diagrammed in Figure 2; and the discounted additive separable

problem

(9b) U =

(t,0)u, (X
b b

0

,Dt} + r(T+1,0)U(X....)

t T+1

e~
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where r(t,0) is a real valued discount function, giving the pri-
mordial planner's discount factor for decisions implemented at

time t.

Definition of Consistent Plans

Roughly speaking, a consistent plan is a sequence of

~

decisions (DO""’DT) having the property that, for each time

T3 DT is the first decision in a plan which maximizes the "objec-

~ ~

tive remaining" after DO’ sy Dt—l have been determined. At each

-~

T, the above maximization treats the state evolution Xl,

ses,y XT parametrically, and calculates the impacts of DT on the

~

‘future states X eeey, X and utilities U

+1° T s cees UT' More

precisely, we adopt two formal definitions within our planning
framework; one for undiscounted problems and the other for dis-
counted problems.

-~

For undiscounted problems, a plan (DO’”"DT) is con-

sistent if and only if for each 0 < T < T, D_r is the first com-

ponent in a solution of the following problem:

(10) DT,?ef,DT U(XO’DO’XI’DI""’xr-l’DT—l’xT—l’xt’Dt’xt+l’
DT+1,...,KT,DT,XT+1)

~

Sete Xt+1 = f‘t(xt'DO"”’Dt-l’Dt’""DT); t=T, see, 11

with X, given and (xl,...,XT) is the state evolution

-~

D.,) and the state equations ft'

resulting from (DO""’ p
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This property can be weakened by requiring only that DT be the
first component of a solution vector to (10) for some particular T

> 0. This weaker property is termed t-c¢onsistency. The plan is

consistent if and only if it is T~consistent for all 1 = 1, e,
T,

For discounted problems with the performance index {9b),
the formulation (10) will not do. This is because (10) assumes
that the maximand of a planner at time t is

) 4+ r(P+1,0)U (X

T+1 )s

T -
{11) )} r(t,0)U, (X ,D

t=t T+1

t

which implies that the planner at t discounts his own current and
future utilities as héavily as did the primordial planner t per-
iods earlier. A more realistic assumption treats any future
| planners and the primordial planner symmetrically by assuming that
the planner at t discounts future utilities Uiy, .., Up in the
same way that the primordial planner disccunts her own future
utilities Uy, <., Up 4. For example, if it is assumed that the
primordial planner does not disccunt her current utility Uns then
we alsc mist assume that the planner at t does not discount his
own current utility Ut’ Denoting the discount factor for Ug of a
planner at time t by r{t,T), we say a plan (BO""’ET) is dis~

counted coﬁsistent if and only if for each t, 0 < T & T, DT is the

first component in a solution wvector to the following problem:
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T
(12) p_,PaX p 2 r(t,'r)Ut(Xt ,Dt) + r(T+1,‘r)U,I,_|_1(XT+1)
T T t=t
Sete Xt+l = ft(xt,DO,.oo,Dt-l,Dt,oo.,DT), t=t, LI T.

If, for some pearticular 1 > O, BT is the first compeonent
in a solution vector to {9b}, we say that the plan is t~discounted
consistent. |

Of course, the optimal plan (Dg,...,D%) in either an
undiscounted or a discounted problem may or may not be consistent
or discounted consistent. In the following sections, we explore
the relationship between consistency and optimality.

The Relationship Between Conslstency and
Optimality for Undiscounted Problems

Bellman's Principle of Optimality

Richard Bellman formulated the basis for his optimiza-
tion technique, called Dynamic Programming, in his 1657 book with
the same title.(s) The basis for the technique, called the
Principle of Optimmlity, is a necessary condition characterizing
optimel plans for certain types of planning problems. It is
reprinted below:

"An optimal policy has the property that
whatever the inltial state and initial de-
¢cision are, the remaining decislions mst
constitute an optiml policy with regard to
the state resulting from the first decision.”

In our Jargon, the applicability of Bellmen's Principle implies

that the optimal plan (Da,...,D%) in an undiscounted problem is l-
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consistent. This is because it says that (D{,...,D*) solves (10)

T
for t = 1, so its first component Df is the first declsion in the
optimel plen. If Bellman's Principle applies at each 1 > O,
considering the initial state to be X¥ and the initial decislon to

be D*

-1° then the optimal plan is consistent.

As shown by Mitten,(T) and restated in Nemhauser,(a)
Bellman's Principle applies at each T for nonanticipatory, mono-
tonically separable problems, which proves that they have consis-
tent optimel plans. The application of Bellman's Principle in the
tmportant special case of nonanticipatory, additive separability

is demonstrated below. The problem is:

(13) Dys oot 5Dy U = Ug{Xg,Dg) #eeet UL (XD ) #ewot Up(Xy,Dp)

+ UT+1(XT+1)

Sete X_t+1 = ft(Xt,Dt), XO given, t=0, ses, T, Dt 4

Ct(xt)* and is diagrammed in Figure 2.

To apply Bellman's Principle, we first note that the
nonanticipatory nature of the state equation allows us to recur-

sively compute X, , as follows:

X; = £5(Xg,Dg)

Xp = £1(X1,0q) = £1{f((X0,D0),0,)

(1h)

i« = »

£ (XysDy) =
ft(ft—lfft—2(...(fO(XO’DO)’Dl)’Dg)".. ) !Dt}'
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Thus, any future state depends solely on decisions made prior to
that time and the initial state X;, which is clear from a glance
at Figure 2. By substituting the above relations into the addi-
tively separable objective function U, we see that the problem

becomes:

(15) DO’??f’DT Ub(xo*Do) + Ul(fO(XO,DO),Dl) +

U2(fl(f0(x0’DO)’D1)‘D2) teeet

Up(XpsDp) + U gy (X )

with X, given and Dy chosen from the set Ci(X;), t=0, «e., T.
It is the special structure of (13) that permits the
application of Bellman's Principle. Noting that D, doesn't occur

in Up, (13) can be solved by:

(16) = ﬁgx[Ub(XO,D0)+Dl’??§,DTUl(Xi,Dl)+...+UT(XT,DT) +

U, X

'I‘-l—l( '1‘1-1)] ?

sete Dy € Co(Xg) Dy, € Cyl(Xy)e

Xo given X* = £ (X.,D

1 0'"0 0}
xt+1 = ft(xtgnt) t = 1, LRI T

This 1s precisely what Bellman's Principle says, i.e., that the

remaining decisions (D{,...,D%) mist constitute an optimal plan

with regard to the state (X;=fO(XO’DB) resulting from the first
decision DS. Also, this ability to decompose the optimization

problem shows that the optimal plan solving (10) is l-consis-

tent. A planner at time 1 who reconsiders the optimal plan
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Di‘, ¢ss, DX computed by the primordial planner would solve (10)
for T = 1, taking x; = fO(XO,DB) as given. Pictorially, the
planner at time 1 ignores the part of Figure 2 to the left of X;
in calculating his plan. This 1is the same problem {so produces
the same solution) as the inner maximization in (1€) computed by
the primordial planner. In fact, at each T > 0, Bellman's Prin-
ciple still applies to (10}, whose solution is thus T-—consistent

for all t, i.e., consistent. To see this, note from {16) that its

inner maximization can be similarly decomposed into two parts:

max fu. (x, ,D, )+ (X

by
¥ U (X, ,D,)+U )|
D peew Dy LTI A T e L e

(17)
T
= max U (X,,D,)+. max _ U_(x%,D.)+ § (U (X_,D )+
Bi AR Rt A R I A A R

UT+1(XT+1))]" D, € C (X))

s.t. Dy £ Cy(X;) D, € Ci(X,)
* =
X, glven X3 = £, (X;,0,)

Xppy = ft(Xt,Dt) t =2, asa, T

because Ul doeg not depend on the future decisions Doy eee, Dt'
Thus, Bellman's Principle applies again, and the optimal plan is
alsoc 2Z-consistent. Continuing in this manner, the original T+1
variable optimization problem ({(13) can be decomposed into T+l
gingle wvariable optimization problems, yielding the dynamic pro-

gramming decompesition

(18) DO’??ﬁ’DT U= EEX[UOCXO'Do)+ﬂ?XIU1(X1*D1) + oees *

H;x[UT(XT,DT)+UT+leT+1))] leol
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where Xg,, = f{X,,D), t=0, ..., T and Dy e C.(X). So,
Bellman's Principle applies at each T > 0, and the optimal plan in
the undiscounted, additive separable, nonanticipatory problem is
consistent. A planner at any time v > 0 thus ignores the part of
Figure 2 to the left of X. in computing his plen. As was men-
tioned earlier, Bellman's Principle will also apply at each T in
the more general class of undiscounted monotonicslly separable,
nonanticipatory problems maximizing (9) sublect to (8). Optimal
plans for these problems are then also consistent. To summarize,
Bellman's Principle applies to undiscounted, monoctonically sep=-
arable, nonanticipatory problems. In any undiscounted problem,
the applicability of Bellman's Principle at each T implies that

the optimal plan is consistent.

Discounted Consistency for Discounted Problems

The discounted, additive separable, nonanticipatory
problem of maximizing {9b) subject to {8} can also be solved by
applying Bellman's Principle at each t. This is easily seen by
noting that redefining U. to be r(t,0)U.(X,,D.} brings (9b) into
the form of (13). Then, one applies the proof just given.

This fact, though, has no bearing on whether or not the
optimal plan is discounted consistent. While the primordial plan
satisfies (10} for each T, discounted consistency requires the
gsatisfaction of {12) for each 7. In a continuous time setting,
Burness, generalizing a result of Strotz, found necessary and
sufficient conditions that mst be satisfied by r{t,t) to ensure
discounted consistency of the optimal plan. His proof involves

the use of the calculus of variaticns. Our discrete time formu-
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lation allows us to derive the discrete time analogue of his

result using simple calculus.

Discrete Time Burness Theorem

A necegsary and sufficlent condition for the discounted

consistency of an optimal plan maximizing (9b) subject to {8) is

that

r{t,t) _ rit,r')
r(s,t) = ris,t')’

(19}

for all s, t, T, T'.

A simple corollary of this is that if the discount

function is given by (3), then the optimal plan is discounted

consistent.

Proof. We first prove necessity. The final decision

D% of the optimal plan is found by solving

(20) gax r(T,O)UT(X%,DT) + r(m1,0)U0 . (f (X M)
T

T+1 T T

where X% is the state at time T of the primordial plan. Assuming

an interior maximum, solving {(20) yields:

U 83Uy, 31y
r(T,0) 5z T (x% D’.i,) + r{T+1,0) 3?1 aD (x%,D2) =
3l by
or
3u,
(21) r(re1,0) _ ___ Pr
r(T,0) af,,
T‘"l _(x* D*)
3f, 9D, T

A planner at time Tt would solve (12}, with his final

decision Dp, computed by solving:

(£ (X._,0.))

T TTT

(22) B;x r(T,T)UT(iT,DT) + r(T+l,T)UT+1
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where XT is the state at time T and is taken parametrically.

Solving (22) yields:

BUT A A

—(X_,D_}

(o3 Emny r T T
r{T,T) 3y A a o~
_..Ef.:_L.__.._T.(x D.)
afT BDT Y

Consistency of the optimal plan reguires that the se-

quence of future planners at each time T chooses the same decisien

-

that the primordial planner did. This means that DO = D'S, Dl =

A~

DI, ey DT T’ vhich, through the state equations, implies

that X, = X*

1 1 X2 = , cevsy XT+1 x;'-l»]_. In particular, consis-
teney of the primordial plan requires XT = X% DT = D,?t,, so that

the right-hand sides of {21) and (23) are equal. Thus, we see

that
' r{T+1,0) _ r{T+1,1) _
(24) T (T.0) = HT - 1, sea, T,
r(m™+1,1)

i.e., that the ratio _r(T_"r_)_ is independent of T.
2

Next, consider the primordial planner's choice D",i,_l.

This is formed by solving:

(25) gax  [r{r-1,0)U, (X% Dy ) +

B;x[r(T’O)’UT(fmulfxé-l’DT-l)'DT)

+ r(T+r,0)u_. (£, (f )Dp, 1333

T+1'I"I’1 Tl 'I'l

whose solution satisfies the condition that the partial derivative

of (25) with respect to Dp_; equals zero, or
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. U v, of,
T-1 iy T-1
(26) r(T-1,0) ———— (X¥ ) + r(T,0)
anT_l 7-1°P71 arT_l BDT_l

% *
(3_15D%_;)
Wpyy Ofp g,

BﬂT afT—l aDTLI

+ r(T+1,0) (x* ) = 0.

T-l’

Dividing by r(T,0) and rearranging leaves:

r(r-1,0) Vrq _ Up g,

r(T,0) oD, .  af, . 8D

(27) e
7-1 T-1 “7T-1

r(T+1,0) EUT+1 Ay 3fT-1

r(T,0) 3fy, 3fy ; 3Dy o

+

where all derivatives are evaluated along the optimal plan.
The planner at any time T who reconsiders this choice of

Dp_q would solve:

(28) gax [r(T-1 T)UT 1( e .y 1) +
T-1

B;x [r(T » T )UT(fT—l (xr;_l ’DT-]. ) !DT)

(x* )>Dy 1.

+ r('I'-I-l,T)UT 3e1°Pp1

_1(fT(f

T-1

Consistency requires its sqlution to be the same as that of (25),

so a modified condition (27) results, with O replaced by t:

r(r-1,7) V1 Up 3fp,

r(T,1) BDT_l T 3f,_, 3D,

(29)

+

r(re1,7) ey fp ¥Fp

el T, T) fp 3fm_y 3Dp
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r(T+1,1)
As we have Jjust seen, dEWEC%T- is 1ndependent of T.
r{T-1,1)
Therefore, {29) implies that —;TEZ%T—-Hnst also be independent of
t, including, by (27), T = 0. But then, of course, :(?’i :) mst
bt ]

also be independent of T.
Considering the primordial and future planners’ problens

for finding Dp_p, and imposing consistency, we similarly find

;(g-; :) is independent of T. This implies that the ra-
ek )

r(?,1) r{T+1,1)
tios ;széj?y and ?Tﬁr§f?T are also independent of t. Continuing

the process for DT—3’ ssey Dy, it is tedious, but simple, to find

that

that it is necessary that a discounted consistent, optimal plan in
a nonanticipatory, additive separable problem satisfies {19).

The proof of the sufficiency of {19) for the discounted
consistency of the optimal plan 1is straightforward, and will be

omitted here.

The Relevance of Strotz-Burness

The problem both Strotz and Burness use to discuss this
result is a problem where the primordial planner, who also plays
the role of all future planners, 1is planning her own future con-
sumption stream. If the planner'’s preference ordering over future
consumption streams is not representable Yy a discounted separable
utility (9b) with r(t,T) of the necessary form (19), then the
primordial plan 1s not consistent. Strotz views the lack of
consistency as damaging to & normative theory of behavior, which
prescribes that the plan which should be implemented is the pri-
mordial plan. From this viewpoint, the consumer who doesn't

implement her primordial plan is myopic. Strotz says (1, p. 173)
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"An individual, who because he does not

discount all future pleasures at a constant

rate of interest finds himself continuously
repudiating his past plans, may learn to

distrust his future behavicor, and may do

something about it."

Strotz proposes that such an individual may choose

either of two courses:

1. At time zero, the individusl chooses to precommit
her future decisions irrevocably, or
2 the individual will decide to successively recalcu-

late the optimal plan.

The latter would produce a plan in which, for each T, the chosen
BT is that found by solving (12} for t. By definition, this
procedure always generates a discounted consistent plan, which is
not the primordial plan unless r{t,tr) is of the necessary form
{20).

Strotz's alarm is unjustified in problems like those he
discugssed, where there is only a single decision meker, i.e., the
primordial planner. Unless the primordial planner has changed her
mind about the appropriate horizon, or about the appropriate
performance criterion, state equations and constraints cperative
over that horizon, she never would reconsider the primordial
plan. Tts consistency (or lack of) is then a moot point. If the
primordial planner did change her mind about one or more of the
above planning problem elements, then she would not necessarily
consider the primordial plan to be optimel anymore. The fact that

It 1s alsc inconsistent in this event does not imply that the
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primordial planner is myopic. Rather, the economist who posits
that such a decision maker will implement the primordial plan has
made an incorrect assumption.

Many economic modellers of a single decision maker's
behavior have asgsumed that the primordial plan will be imple-
mented. These modellers assume that the single decision maker
(e.g., a firm or a consumer) maximizes some objective (e.g.,
profits or utility) over some fixed horizon, usually chosen to be
infinite. Fxamples include the dynamic competitive firm models
treated by Sargent.(g) Among theories of the firm, the mest
widely accepted behavioral assumption 4is that firms maximize
discounted profits, using the discount function {3) of our capital
budgeting example. Among theories of the consumer, there is less
agreement on the admissible formé of the consumer's Iintertemporal
utility function. However, the assumption commenly employed in
the recent rational expectations models of Sargent and others is
that a consumer's intertemporal preferences are representable by a
discounted, additively separable, time lnvariant utility function:

1

< t T ot
(30) tzo (5p) ule,) A tzo ru(c,)

where r = 1—3‘_1- is a "constant rate of time preference.”

The corollary to the Purness Theorem implies that non-
anticipatory models of the firm with a discount function (3) will
be consistent. Thus, even if the firm's management planner

changes its decision horizon and reconsiders the primordial plan,

the primordial plan will still be implemented. Nonanticipatory
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models of the consumer with a discounted, additively separable
utility of the form (30) will also be consistent, as noted by

Strotz. This is because the constant rate discount function used

in them is:
o oJteT 1 yt-T _ 1
(31) rle,0) = 07 = ()T o Ty
A
t-T times

and is thus of the same form as (3), with i, = i, for all t. Of
course, even if a consumer's utility function is additively sep-
arable, it i1s possible that the consumer's discount function will
not be of the form (19). In this event, an economist who admits
the possibility that the consumer will change his horizon and
reconsider his primordial plan, mst then also admit that the
primordial plan is inconsistent and will not be implemented.

Strotz's claim that inconsistency of primordial plans
leads to undesgirsble myopic behavior has more validity in models
with future planners other than the primordial planner. Their
decision horizons differ from that of the primordial planner. In
these models, even if all future planhhers agree with the primor-
dial planner's choice of performance criterion, and with her
assegssment of the state equations and constreints, they still may
not implement the primordial plan unless r{t,t) satisfies (19).
If one belleves that the primordial planner's cholce of horizon
is, in some sense, the correct choice, then the inconsistency
certeinly seems to cause undesirable nyopic behavior.

Optimal growth models which maximize social welfare over

long or i1infinite horizons mst admit the existence of future
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planners. Ineonsistency of their optimal plans is 1likely, for
they are often proposed for use in planning environments where it
1s impossible to precommit the behavior of future planners, and
because thers is seldom any good reason to believe that discount-
ing will be of the form (19). Several theorists assume that the
social welfare function is of the form {30), in which case the op-
timal plan is consistent. But the price that these models pay is
the same pald by models of individual agents which assume this
form. These theorists must rule out the pogsibility that the
planner's preference orderings may not be representable by social
welfare functions of that form. Kbopmans(lo) has found axioms
characterizing preference ordering which are representable by
(30). Whether or not these axioms =are plausible Ian positive
models, or desirable in norﬁative models, has never Tbeen

determined.

Anticivatory Behavior as a Cause of Inconsistency

Anticipatory behavior as a pervasive cause of inconsis-
tency has been stressed by Prescott and Kydland, Fisher, and the
introductory article in Lucas and Sargent.(ll) The concept can be
fully illustrated by the simple, additive separable, anticipatory

problem illustrated in Figure 3. The planner's problem is to:
(32) Dnoua:ﬁl Ug(XgsDg) + Uy (%) ,D,) + U, (X,)
Sets Xl = fO(XO,DO’DIJ’ XQ = fl{xl,Dl}v

Substituting the state equations in the obJective function, prob-

lem {32} is to find D¥ and DY solving
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(33) Dm&ﬁ UO(XO’DO) + Ul(fO(XO’DO’Dl)'Dl) + U2(fl(xl,D1)).
01 '

The solution of {32) will, in general, be inconsistent. The
problem is undiscounted, so consistency requires that ({33) be

decomposed by the Bellman Principle:
* *
(34) Bex [UO(XO,DO)-PBT:[U]_(XI,D1)+U2(f1(X1,D1))l]

where (XE,X;) is the state trajectory determined by f, f;, and
the cptimal plan D¥, Di.

However, {3k) does not follow from {33}, so (33) is not
l-consistent. This is because z future planner's choice of D, at
time period 1, taking the state X%* as given, will solve the inner

1
maximization in (34), i.e.,

(35} Bix IUl(X’l*,Dl)+U2(fl(x§,Dl))I,

producing a decision 61 which, unlike the optimsl plan's DE, takes
no account of the indirect impset D; has on Uy through X, =
fO(XD,DO,Dl). Thus Bl # Di, so the optimal plan 1is inconsis-
tent. This is obvious from Figure 3, where we see that a future
planner at time 1 who accepts Xg as given, will, of course, ignore
the effect Di has on X« The future planner worries only about
the effects Dy has on Uy, Xp, and DQ.

Prescott and Kydland argue that the assumption of
perfect foresight or rational expectations in mscroeconomic plan-
ning models introduces such anticipatory phenomena into them,
which cause the primordial plans to be inconsistent. In our

paradigm, a macroeconomic planning model has the government choos-

ing policy variables Dy, «s+, Dp to maximize some performance cri-
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terion U subject to the behavioral rules of firms and consumers,
as given in the form of state equations. These rules take the

general form:

(36) Xpop = Ty (Xt’DO""’Dt’D:+1"°"D;)’ t=0, eee, T

vhich means that the relevant behavior of firms and consumers in
the next period is some function of past behavior and government
decisions as well as their expectation of future government deci-
sions D:+1, cen, D;. The assumption of perfect foresight in the

deterministic model above is that:

(37) D D, .,, J=1, ees, T=t; for each t=0, ees, T=1

8 =

t+) t+)

which creates the most general possible planning problem (1)

considered here. Unlike the previous example, the state X, in

each period t depends on future decisions. Then, not only is the

optimal plan inconsistent, it is not even T-consistent for any Tt.
Furthermore, this negative result still holds when the

assumption of perfect foresight is weakened. For example, con-

sider the myopic perfect foresight case illustrated in Figure L.

There, the behavioral state at time t depends not on all future

decisions, but only on that decision made in period t+l:

€ )Y=r¢f(X.,D.,D. ..)e

(38) X =f (x ’D t+1 TP R iat T S, |

t+1 t't t'D

The same thing that happens in Figure 3 happens in each period, so
that an optimal plan for an economy with myopic perfect foresight

is neither consistent nor t-consistent for any t > O.
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In fact, any systematic relationship between expected
and actual future decisions will cause inconsistency. In more
gsophisticated stochastic models where future expectations are
random variables, the rational expectations hypothesis that D:+j

equals the mean of Dt+3 will ceuse inconsistency for the same

reason. In fact, even systematically biased, but still future

e

deternined expectations Dt+J

= g {mean of Dt+3)’ wvhere g is some
function, should cause inconsistency.

Prescott and Kydland give some microeconcomic examples of
anticipatory phenomena, which fit into the simple two-period model
of Figure 3. For example, they mention the case of optimal gov-
ernment patent policies. There, it is optimal to offer a number

of patents (Da) initially, to induce an optimal level of inventive

ectivity (Xg). But in period 1, after these inventions are cre-

ated, it seems best to remove all the patents, leaving no (51 = 0}
patents, rather than leaving Dl = Dg patents, so that the inven-
tions can be produced by competitive markets rather then by monop-
olies. Inventors who expected this to thappen (i.e., Df =
51 = 0) would not have undertaken the optimal level of inventive
activity, (Xi), though. So, the optimal level of patents that
should remain, D{ # 61 = 0, and the optimal plan 1is inconsistent.
Both Prescott and Kydland and Fischer discuss the incon-
sistency of optimal taxation plans in worlds where firms have
future determined expectations. However, they offer radically
different remedies for this problem. The former advocate Strotz's
first course, l.e., that future decisions be precommitted by the

primordial planner. They propose to do this by having the pri-
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mordial planner substitute simple policy rules, wherein future

rlanners are bound to use predetermined rules to make decisions
only nominally under their control, for the discretion future
planners would otherwise have in meking decisions. Although these
rules are clearly suboptimel from the primordial planner's point
of view, Prescott and Kydland's simulations show that these rules
appear to outperform the suboptimal solution which would otherwise
be Implemented at the discretion of future planners. However, as
Fischer pointed out, there will generally still be an incentive
for future planners to break these suboptimal (from their view-
point) rules. Of course, one might sargue thet the primordial
planner coculd adopt constitutional or other binding constraints to
force the future planners tco follow these policy rules. But if
that were feasible, why couldn't the primordial planner adopt
constraints to prevent the optimal plan itself from ever being
changed?

Rather than advocate the substitution of simple rules
for discretion, Fischer contends that the use of discretion on
occasion may be warranted. The patent example cited earlier can
be uged to illustrate Fischer's reasoning. If the future planners
repeatedly revoke patents granted earlier to investors, then
eventually all future inventors would expect this to happen and
would ceagse inventing. Repeatedly revcking patents in a rational
expectations environment 1s thus undesirable. However, the oc-
caslonal revocation of patents which would have produced vast
menopely profits will probably not reduce total inventive activity

very mich, and will produce much social benefit through lowered
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monopely profits. Fischer raises the possibility that randomiza-
tion of decisions may be of use in devising such a strategy. In
the patent example, the government might randomly cancel patents,
using some preanncunced and expected probability distribution to
do so0. The resulting outcome of this stochastic plan may be
better than that of a simple, deterministic rule, patrticularly if
the inventors most willing to bear the risk are also the most
likely to produce valuable inventions. Once agalin, though, why
wouldn't future planners have an incentive to change a previously
adopted randomization rule?

All of the problems created by time consistency due to
anticipatory phenomena are the result of a fundamental paradox.
This paradox is due to the logical inconsistency of the following
three assumptions common to analysts' models of optimal planning

with aﬁticipatory phenomena:

{Al) Assume that agents correctly anticipate future
planning actions {i.e., decisions, policy rules,
randomization rules, etc.) which are relevant to
thelr own welfare.

(A2) Assume that future planners can observe the agents'
past anticipations of current and future planning
actiqns.

{A3) Assume that future planners have the discretion to

implement actions which were not anticipated in the

past by agents.
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Time inconsistency implies that planners endowed with the powers
of (A2) and (A3) will actually implement actions which were not
anticipated by past agents, thus vioclating the "rational expecta-
tions" assumption (Al). Alternatively, if an analyst insists that
(A1) and (A2) mst be valid, then {A3) must be violated, i.e., the
analyst cannot admit the possibility that future planners have the
discretion to change the primordial plan. In this case, future
planners have no "free will"™ to act if agents can correctly antie-
ipate these actions beforehand. They are preordained to follow
the prior anticipations of agents which, due to time inconsis-
tency, would not be realized if planners did have "free will.™
Because of this, it is difficult tc understand the logiec of esti-
mating the effects of "policy regime changes" in models (see,
e.g., (11)) that purport to have rationasl expectations Eperating

both before and after regime changes.

Nonseparability As a Cause of Inconsistency

Fven in problems without anticipatory elements, a non-
separable performance criterion can lead to 1nconsistency of the
optimel plan. To see this, consider the simple, undiscounted two-

period problem helow:

max U(X. ,D.,X. ,D.)
Do,ﬁl 0* 0 171
(39)

Sets X = fO(XO,Do), Xy given D, € ct(xt)

Consistency requires that the Bellman Principle applies

to the optimal solution, i.e, that for any fixed Xj:
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(ko) Dgfﬁl U(xo,no,xl,nl) = ng B?x U(XO’Do*fb(XO’Do)’D Yo

Unfortunately, it is well known that the joint maximization of a
function of two variables cannot always be decomposed intc the two
one-variable problems that consistency requires it to be. As
mentioned earlier, Mitten(T) has found simple sufficiency condi-
tions (9) on the form of U which guarantee that Bellman's Prin-
ciple applies. The additive separable case (5) satisfles these
conditions, as does the mltiplicative form

T

(k1) U(xo,oo,xl,nl,...,XT,nT) = tzo Ut(xt,nt)

when the Ut's are constructed so that Uy > O for all D €
Ct(Xt). As was argued earlier, it is not at all clear that opti-
mal growth problems will, or should, have additively separable
utility functions. TIf the utility function is not even monotoni-
cally separable, then the primordial plan will, in general, be

incensistent, even though disccunting is not employed.

Conclusions
We have seen that any of the following elements will

lead to incensistency of primordial plans:

1. Discounting with a discount function not satisfying
{19).

2. Anticipatory elements, such as expectations which
sare, In some sense, determined by future policy
decisions.

3. Nonseparable performance criteria.
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We have argued that discounting may not be of the appro-
priate form in optimal growth problems. Anticipatory elements
seem likely in any economic problem where controlled agents have
both an incentive to forecast future decisions, and the skills
required to forecast in some way which is systematically related
to the actual future decisions. Nonseparable performance criteria
may occur in problems involving intertemporal preferences over
future consumption streams, unless one is confident that the
restrictive axioms needed to Justify additive separable utilities

characterize actual or desirable behavior.



Figure 1 Nonanticipatory Problem
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Figure 2 Additive Separable Nonanticipatory Problem
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Figure 31 Additive Sepérahle Anticipatory Problem
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