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0. Introduction

The equilibrium of a typical dynamic rational expecta-
tions model is a covariance stationary (nxl) vector stochastic
process z(t). This stochastic process determines the manner in
which random shocks to the environment impinge over time on
agents' decisions and ultimately upon market prices and quanti-
ties. "Surprises," or random shocks to agents' information sets
prompt revisions in their contingency plans, thereby impinging on
equilibrium prices and quantities.

Every (nxl) covariance stationary stochastic process
z(t) can be represented in the form of a vector autoregression (of
any finite order). Consequently, it is natural to represent the
equilibrium of a dynamic rational expectations model in terms of
its vector autoregression. A vector autoregression recovers a
vector of innovations which yield characterizations of the vector
stochastic process via the "innovation accounting" techniques
invented by Christopher Sims.

In interpreting these innovation accountings, it is
useful to understand the connections between the innovations
recovered by vector autoregressions, on the one hand, and the
random shocks to private agents' information sets, on the other
hand. From the viewpoint of interpreting vector autoregressions
that are estimated without imposing restrictions from formal
economic theories, it would be desirable if the innovations re-
covered by a vector autoregression could generally be expected to
equal either the random shocks to agents' information sets, or

else some simply interpretable functions of these random shocks.
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This paper describes two important classes of theoretical models
in which no such simple connections exist. In these contexts,
(without explicitly imposing the restrictions implied by the eco-
nomic theory), it is impossible to make correct inferences about
the shocks impinging on agents' information sets. In addition to
describing these situations, we briefly indicate in each case how
the economic theory can be used to deduce correct inferences about
the shocks impinging on agents' information sets.
let z(t) be an (nxl) vector, covariance stationary
stochastic process. Imagine that z(t) is observed at discrete
points in time separated by the sampling interval A. A vector

autoregression is defined by the projection equation

(0.1) z(t) = § Y 2(t-a3) + a(t-aj) t=0, +a, +28, ...
3=

J
where a(t) is an (nxl) vector of population residuals from the
)T

= V, and where the 2125 are (nxn) ma-

J

trices that, in general, are uniquely determined by the ortho-

regression with Ea(t)a(t

gonality conditions (or normal equations)
(0.2) E z(t-43)a(t)T = 0, i5 1,

The Ag's in general are "square summable," that is, they satisfy

(0.3) Y tr aS AT o 4o,

j=1 Jd J
Equations (0.1)-(0.3) imply two important properties of a(t).

First, (0.1) and (0.2) imply that

E a(t)a(t-03)T = 0 3% 0,
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so that a(t) is a vector white noise. Second, (0.1) and (0.3)
imply that a(t) is in the closed linear space spanned by {z(t),
z(t=A),z2(t=2A),e0e}e Further, by successively eliminating all

lagged z(t)'s from (0.1), we obtain the vector moving average

representation

(0.4) z(t) = E C a(t-4j)

where the Cﬁ's are nxn matrices that satisfy

J

I s=0

where Ag = .I. The c?'s in (0.k4) satisfy

(0+5) Y tr e 2 4 @,

5=0 J J
Equations (0.4) and (0.5) imply that z(t) is in the closed linear
space spanned by (a(t),a(t-A),a(t-2A),...). Thus, the closed
linear space spanned by (z(t),z(t-A),...) equals the closed linear
space spanned by (a(t),a(t-A),...). In effect, a(t) is a stochas-
tic process that forms an orthogonal basis for the stochastic
process z(t), and which is constructed from z(t) via a "Gram-
Schmidt" process. The property of the vector white noise a(t)
that it is contained in the linear space spanned by current and
lagged z(t)'s is said to mean that "a(t) is a fundamental white
noise for the z(t) process."

It is a moving average representation for z(t) in terms
of a fundamental white noise which is automatically recovered by
vector autoregression.~ 1/ However, there are in addition a variety

of other moving average representations for z(t) of the form
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(0.6) z(t) = §
J=0

&% S(t-a1)

J
where E(t) is an (nxl) vector white noise in which the 1linear
space spanned by (a(t),a(t-A),...) is strictly larger than the
linear space spanned by current and lagged z(t)'s. Current and
lagged z(t)'s fail to be "fully revealing" about the a(t)'s in
such representations.

Representation (0.l4) induces the following decomposition

of j-step ahead prediction errors

22 = T
B(2(t)E,_2 () (2(t)E,_,z(t))

_Jz
(0.7) J=1 P
= ) C, V Cpe
k=0
By studying versionsg! of decomposition (0.T), Sims has shown how
the j-step ahead prediction error variance can be decomposed into
parts attributable to "innovations" in particular components of
the vector z(t).

Christopher Sims has described methods for estimating
vector autoregressions and for obtaining alternative fundamental
moving average representations. He has also created a useful
method known as "innovation accounting" that is based on decompo-
sition (0.7). In the hands of Sims and other skilled analysts,
these methods have been used successfully to detect interesting
patterns in data, and to suggest possible interpretations of them
in terms of the responses of systems of people to surprise events.

This paper focuses on the question of whether dynamic
economic theories readily appear in the form of a fundamental

moving average representation (0.4), so that the vector white
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noises a(t) recovered by vector autoregressions are potentially
interpretable in terms of the white noises impinging on the infor-
mation sets of the agents imagined to populate the economic
model. This question is important because it influences the ease
with which one can interpret the variance decompositions (or
innovation accounts) and the response to innovations a(t) that are
associated with the fundamental moving average (0.k4).

This paper is organized as follows. ©Section 1 describes
a class of discrete~-time models whose equilibria can be repre-

sented in the form

(0.8) By = Z Dj -

where €, is an (nxl) vector white noise; Dj is an (nxn) matrix for

T
each n; and tr Z D.D < o, Here €y represents a set of shocks

0d J

to agents' informatlon sets. We study how the €y of representa-

oo

tion (0.8) are related to the a(t) of the (Wold) representation

(0.4), and how the DJ's of (0.8) are related to the C?'s of

(0.4). We describe contexts in which a(t) fails to match up with

€t and C?

fully revealing about w(t). Such examples were encountered ear-

fails to match up with D‘j because z(t) fails to be

lier by Hansen and BSargent [1980], Futia [1981], and Townsend
[1981]. The discussion in Section 1 assumes that the sampling
interval A equals the sampling interval in terms of which the
economic model is correctly specified.

Section 1 describes a class of continuous time model
whose equilibria are represented in the form

-]

(0.9) 2, = [ p(x)ult-1)
0
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where w(t) is a continuous time white noise and p(t) is an (nx1)

(= -]

function satisfying tr [ p(r)p(T)TdT < +», In (0.9), w(t) repre-
sents shocks to agents? information set. It is supposed that
economic decisions occur in continuous time according to (0.9),
but that the econometrician only possesses data at discrete inter-
vals of time. Section 2 studies the relationship between the w(t)
of (0.9) and the a(t) of (0.4), and also the relationship between
p(t) of (0.9) and the C? of (0.4). In general, these pairs of
objects do not match up in ways that can be determined without the

imposition of restrictions from a dynamic economic theory.
1. Unrevealing Stochastic Processes

We consider a class of discrete time linear rational
expectations models that can be represented as the solution of the

following pair of stochastic difference equations

(1.1)  H(L)yy = B, (L) px,
Xy = K(L) €
where
my
H(L) = Hy + HiL + ... + HmlL
" mo
(1.2) J(L) = Jg + JqL + .eu + JmeL
K(L) = ] K 1, R |

=0 9 °

ey = %y - Bxg|xp_ 1, Xg_ps oo
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In (1.1), y; is an ny x 1 vector, while x; is an np x 1 vector.
In (1.2), JJ and HJ are (nyxny) matrices, while KJ is an (npxny)
matrix. In (1.1), p is an (nyxny) matrix. We assume that the
zeroes of det H(z) lie outside the unit cirecle, that those of det
J(z) lie inside the unit circle, and that those of det K(z) do not
lie inside the unit circle.

A wide variety of discrete time linear rational expecta-
tions models are special cases of (1.1). TFor example, interre-
lated factor demand versions of Iucas-Prescott equilibrium models
are special cases with J(L‘l) = H(L™1)T ana with H(L_l)T H(L)
being the matrix factorization of the Euler equation that is
solved by the fictitious social planner (see Hansen and Sargent
[1981] and Eichenbaum [1981] for some examples). Kydland-Prescott
equilibria with feedback from market-wide variables to forcing
variables that individual agents face parametrically form a class
of examples with H(L‘l)T # J(L"l) (see Hansen and Sargent
[1984]). Other examples with H(L~1)T # J(L~1) arise in the con-
text of various dominant player equilibria of linear quadratic
differential games (see Hansen, Epple, and Roberds [198k4]).
Finally, market equilibrium models of the Kennan [1982]-Sargent
[1979] variety, an example of which is studied below, solve a
version of (1.1) with H(L 1T # J(L). Models of this general
class are studied by Whiteman [1983].

Hansen and Sargent [1981] have displayed a convenient
representation of the solution of models related but not identical
to (1.1). To adapt their results, first obtain the partial frac-
tions representation of J(z=1)=1, We nave J(z~1)~1 = get J(z=1)

adj J(z=1). Iet
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det I(z™Y) = Agl1-dgz™0) se (L-Nz™)

where k = my, * n; and |AJ| < 1 for J = 1y eesy ke The Aj‘s are

the zeroces of det J(z“l). Then we have

(1.3) 3z < ) —“*"L*l*
jet (120
3
where
(1.4) M e Gl e m T,

J

Z+\,
dJ

Substitute (1.3) into (1.1) to obtain

o
(1.5) H(L) y, = E — _p X,
L l-AjL-l t

Hansen and Sargent [1980] establish that

M LK(L)—AJK(AJ)

X =M
J.p[

(1.6) E — 1 X

t

E .
1k L =y t

Define the operator M by

(1.7)  M(K(L) = § M, pl———d7).

Then, using (1.5), (1.6), and (1.7) we have the repre-

sentation of the solution

(1.8) H(L) yy = M(K(L)) €

t

Xy = K(L) €t

A vector stochastic process (yf,xf) governed by (1.8)

generally has a singular spectral density at all frequencies
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because (yt,xt) consists of n; + n, variables being driven by only

n, white noises. Such a model implies that wvarious of the first

n, equations of the following model, which is equivalent to (1.8),

H(L) v, = M(K(L)) K(L)™T x

Xg K(L) €t

will fit perfectly (i.e., possess sample —ﬁz's of 1) To avoid
this implication of no errors in various of the equations of the
model, while still retaining the model, one path that has been
suggested is to assume that the econometrician seeks to estimate
(1.8), but that he possesses data only on a subset of the vari-
ables in (yt,xt). (See Hansen and Sargent [1980].) One common
procedure, but not the only one possible, is the following one de-
scribed by Hansen and Sargent [1980]. Assume that (1.8) holds,
but that the econometrician only has data on a subset of observa-
tions xpp oOf Xy Further suppose that the second equation of

(1.1) can be partitioned and restricted as

X1t Kl(L) 0 €
(1-9) x = = i

X 0 K2(L) €ot
Then (1.8) assumes a special form which can be represented as
HL) o\[v, M(K, (L)) M(K, (L)) fe
(1.10) = .
0 I Xop 0 K2(L) €
The idea is to imagine that the econometrician is short of obser-

vations on a sufficient number of series, those forming X1¢, to

make the {yi’xgt) process described by (1.10) have a nonsingular
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spectral density matrix at all frequencies. To accomplish this,

it will generally be sufficient if the dimension of the vector of

variables of (yt’XEt) is less than or equal to the dimension

of (E?t,agt}. For the argument below, we will consider the case

often encountered in practice in which (yT e ) and (sT . )
p R TR* et

have equal dimensions. Thus we assume that X1t is an (nlxl)
vector, so that €;, is an (nlxl) vector of white noises.2!/
Equation (1.10) implies the moving average representa-
tion for (yy,xp)
Y, H(L)™M(K (L)) H(L) "MKy (L)\ [,

(9.0 = ;

Xpt 0 K2(L) €

2t
Equation (1.11) is a moving average that expresses (yi,xp:) in
terms of current and lagged values of the white noises (€1t=€2t)
that are the innovations in the information sets (xlt,xet) of the
agents in the model. Equivalently, (elt,egt) are '"fundamental for
X145 x2t'" the one step-ahead errors in predicting xji, Xp from
their own pasts being expressible as linear combinations of €44,
€ope

Granted that the linear space spanned by current and
lagged (Elt’EQt) equals that spanned by current and lagged wvalues
of the agents' information (xj4,X5¢), there remains the question
of whether this space equals that spanned by current and lagged
values of the econometrician's information (yt,x2t). From (1.11)
and as is evident from the theory used to construct (1.11), the

former space is included in the latter. The question is whether

they are equal. This question is an important one from the view-
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point of interpreting vector autoregressions because a vector
autoregression by construction would recover a vector moving
average for (yt,th) that is driven by a vector white noise at
that is fundamental for (yy,x5:), i.e., one that is in the linear
space spanned by current and lagged values of (yt,th). If this
space is smaller than the one spanned by current and lagged values
of agents' information (elt’€2t)’ then the moving average repre-
sentation recovered by the vector autoregression will in general
give a distorted impression of the response of the system to
surprises from agents' viewpoint.

The vector white noise (€14,€5 ) is fundamental for
(y4»xpt) if and only if the zeroes of

H(z) MK (2))  H(z) "MK, (2))

det
0 Kg(z)

= det H(z)"™M(K(z)) * det Kp(z)

do not lie inside the unit circle. The zeroes of det K2(z) do not

lie inside the unit cirele by assumption, and det H(z)™1 =
1/detH(z) is a function with all its poles outside the unit cir-

cle. Therefore, the necessary and sufficient condition that

(e14>€p) be fundamental for (yi>xpt) is that
(1.12) et M(K (z9)) = 0 = [2°] > 1.
or, equivalently, using (1.7),

0 0
z K. (z7)=A K, (\,)
= s ) =0 => |zO| > 1.

k
(1.12') det ) M, p (
j=1 J zZ —Aj
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In general, condition (1.12) is not satisfied. For some
specifications of K;(L) and J(L™1), which determines the Mj, AJ
via (1.3)-(1.4), condition (1.12) is met, while for others, it is
not met. Hansen and Sargent [1980] encountered a class of ex-
amples where (1.12) isn't met. Furthermore, the class of cases
for which (1.12) fails to be met is not thin in any natural
sense. Our conclusion is that for the class of models defined by
(1.1)-(1.2), the moving average representation (1.11) that is
expressed in terms of the white noises that are fundamental for
agents' information sets in general cannot be expected to be
fundamental for the econometrician's data set (y;,xpt). Equiva-
lently, current and lagged values of (yi,xpy) fail to be fully
revealing of current and lagged values of (slt’EEt)’

For convenience, let us rewrite (1.10) as

(1:13) S(L) zy = R(L) €

t
where
H(L) © M(K, (L))  M(K,(L))
s(L) = » R(L) =
0 I 0 K, (L)
€1t Iy
g, = > 2y = .
Egt th

The condition that €; be fundamental for zy is then expressible as
the condition that the zeroes of det R(z) not lie inside the unit

circle. If this condition is violated, then a Wold representation

for z{, which is what is recovered via vector autoregression, will
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be related to representation (1.13) as follows. It is possible to

showd! that there exists & mtriz polynomial G(L) satisfying
g(r) gz~ )T =1

and such that the matrix
R*¥(L) = R(L) G(L)

has a characteristic polynomial det R¥(z), none of whose zeroes

lie inside the unit circle. Let us define

_1)

e* = G(L e

t

Then a Wold representation corresponding to (1.13) is

(1.14)  S(L) =z,

* *
R*(L) ef.

In general, R¥(L) = R(L)G(L) is quite a complicated transformation

of R(L). Further, e¥ is a complicated function of past, present,
and future Et's, one that has the effect of diminishing the amount

of information in {Eg,ei_l,...} relative to that contained in
{St,et_l,...}.
We now describe a concrete hypothetical numerical ex-

ample, one in which the econometrician observes no x's, only y's,

so that (1.10) takes the special form
(1.15) H(L) y¢ = M(Cq(L)) €14

The model is one of the dynamics of demand and supply,
and is similar to that studied by Sargent [1979] and Kennan

[1982]. Suppose that there are two types of agents, each of whom
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solves a quadratic optimum problem. The first agent, the sup-
plier, maximizes the objective
® h
Fo t£0 Bt{Ptqt‘stqt' = qte_ %[(1'1')%12}

where p; is the price at time t, qt is the quantity supplied at
time t, Sg is a supply shock at time t, B is a discount factor
between zero and one, and hy and g are parameters of the cost
function. The term ((l-L)qt)2 is introduced to capture costs in
adjusting the output from period t-l1 to period t. The supplier
views the price and the supply shock processes as if they were
uncontrollable. All variables are treated as deviations from
their population means. The stochastic Euler equation for the

supplier's optimum is given by
(1'16> "Et{[hs+gs{1_L)(l—SL_1)]qt} + Pt = Sta

The second agent, the demander, maximizes the objective

-} h g
t a 2 & 2
Bo tzo B lppa-diai- 5 9 -3 [6*(L)g 1)

where d; is a shock to preferences, hd and gy are preference
parameters, and G*(L) = 1 + .8L + .6L2 + .4L3 + .2Lh. The price
term enters into the demander's objective because of an implicit
substitution from the demander's budget constraint. The term
G*(L) is introduced to capture the notion that purchases of q in
recent past time periods give rise to services today. The de-
mander treats the price and demand shock processes as if they were

uncontrollable. The stochastic Euler equation for the demander's

optimum problem is given by
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(1.17)  -E {hy+gq [6*(L)G*(BL™1) 1} oy - py = 4.

To complete model specification, we specify the stochas-
tic law of motion for the forcing processes, i.e., the demand and

supply shocks. These shocks are assumed to satisfy

(1.18)

sy = Bg(L)vgy

dy = Bg(L)wg

where Bs(z) and Bd(z) are scalar polynomials with zeroes that are
outside the unit circle. The Wgt and Wyi Pprocesses are mitually
uncorrelated white noises so that Vgt is the innovation in the
supply shock, S5 and Vit is the innovation in demand shock, dy.
Economic agents are presumed to observe current and past values of
both shocks and hence also the innovations in both shocks.

This model fits into our general set up (1.1) as fol-

lows. Ilet
v, = 9 _ wst
t A N *

Py Vat

Ko(L) = 0, xpt = O

B (L) 0

K, (L) = B .

0 Bd(L}

Define a matrix polynomial

~(n +g_(1-L)(1-6171)) 1
E(L) = y
-(hd+gdG*(L)G*(BL_1)) -1



o |

Then polynomial matrices H(L) and J(L) that are one-sided in

nonnegative powers of L can be found such that
J(r~1) H(L) = E(L)

and such that the zeroes of det J(z) lie inside the unit circle,
while the zerces of det H(z) lie outside the unit circle. (See
Whiteman [1983], and Gohberg, Lancaster, and Rodman [1982] for
proofs of the existence of such a matrix factorization, and for
description of algorithms for achieving the factorization.llj

In this model, it is possible for the demand and supply
shocks to generate an information set that is strictly larger than
that generated by current and past quantities and prices. So an
econometrician using innovation accounts derived from observations
on quantities and prices may not obtain innovations that are
linear combinations of the contemporanecus innovations to the
demand and suply shocks.

The equilibrium of the model has representation
(1.18)  s(r) [t )=wr [ o

Py Yat

where S(L) = H(L) and R(L) = M(Cl(L)), and where S(z) is a (2x2)
fourth-order matrix polynomial in L, with the zeroces of det S(z)
outside the unit circle. The zeroes of det R(z) can be on either
side of the unit circle in this example. Only when the zeroes of
det R(z) are not inside the unit circle can the one-step ahead
forecast errors from the vector autoregression of prices and
quantities be expressed as linear combinations of the contempora-

neous demand and supply shock innovations (Wst’wdt)'gj
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In our numerical example, we chose the parameter speci-

fication

BS(L) = (1+A1L)(1+12L)(1+A3L)

o
[}
Ed
~
n

(1+u1L)(1+u2L)(1+u3L).

The parameters lj and My for j =1, 2, 3 were selected among the
values {.2, .4, .6, .8}. In our systematic search among various
combinations of lj's and uJ's, we found that there always was at
least one zero of det R(z) that was inside the unit circle. For

instance when

(A5 A Ag) = (o6, ub, <2)

and
(“1’ u25 U3) = (-8'.- '6s -h)

det R(z) had a zero at -.339.

For this example, Table 1 displays both R(L) and R¥(L)
for a fundamental representation, as well as S(L). Figure 1
graphs the moving average coefficients S(L)“l R¥(L) for two alter-
native orthogonalization orderagf used to normalize R¥(L). The
"innovation in price" for the fundamental representation for
(qt’Pt) traces out a moving average response that mimics fairly
well the responses of the (qi,py) system to a supply shock. This

is true for either orthogonalization order. The response to an
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innovation in quantity fails to resemble the response of the
system to a demand shock.

In examples such as this one, in which some of the
zeroes of det R(z) lie inside the unit circle, the innovations
(wgi»Wq) cannot be expressed as linear combinations of the inno-
vations a; in the vector autoregression. If all of the zeroes of
det R(z) are outside the unit circle, then LA (wst’wdt) is
related to ay by an exact linear relation, wy = Fat, although to
know the matrix F, one needs to know the parameters of the agents'
Euler equations, and the laws of motion of the supply and demand
shocks. When the zeroes of det R(z) are all outside the unit
circle, there is at least some comfort in the fact that there
exists some linear transformation of the a;'s that would recover

the innovations to the agents in the model.

Remedies in Discrete Time

The preceding difficulty can be circumvented if a suffi-
ciently restrictive dynamic economic theory is imposed during
estimation. Hansen and Sargent [1980] describe methods for esti-
mating S(L) and R(L) subject to extensive cross-equation restric-
tions of the rational expectations variety. The approach is to
use the method of maximum likelihood to estimate free parameters
of preferences and constraint sets, of which the parameters of
S(L) and R(L) are in turn functions. These methods do not require
that the zeroes of det R(z) be restricted, and in particular are
capable of recovering good estimates of R(z) even when some of the

zeroes of det R(z) are inside the unit circle.
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Given such an estimate of (S(L),R(L)), it would be
possible to recover consistent estimates of the ey that are inno-
vations to agents' information sets by using the following pro-
cedure. Let R(L) be factored as R(L) = Ry(L) Ry(L) where the
zeroes of det Rl(z) lie inside the unit cirele, while those of det
Ry(z) lie outside the unit circle. Such a factorization exists by
results described in Gohberg, lancaster, and Rodman [1982]. Then,
using the above decomposition in S(L}zt = R(L)et, we can obtain
Ry(L)e, = Ry(L)™1 S(L)z,, where Ry(L)~! is interpreted as the
"stable inverse" in nonpositive powers of L. This equation ex-
presses €; as a square summable sum of past, present, and future
values Zy o By using this equation, it would be possible to re-
cover estimates of the innovations €4 to agents' information sets
from a time series record on {zt}. This equation once again makes
the point that €4 fails to lie in the linear space spanned by

current and lagged z; only.
2. Time Aggregation

Consider a linear economic model that is formulated in

continuous time, and which can be represented as

(2.1) z(t) = [ p(t)w(t-1)dr

o— 8

where z(t) is an (nx1l) vector stochastic process, w(t) is an (mx1)
vector white noise with Ew(t)w(t—s)T = §(t-s)I, 8§ is the Dirac

delta generalized function, and p(t) is an (nxm) matrix function
oo

that satisfies [ trace p(T)p(T)T dt < + oo, We 1let P(s) =

@ 0

[ e®Tp(t)dat, i.e., P(s) is the Iaplace transform of p(t). Some-

0
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times we shall find it convenient to write (2.1) in operator

notation

(2.2) z(t) = P(D)w(t)

where D is the derivative operator. We shall assume that the
Laplace transform P(s) has no zeroes in the right half of the
complex plane. This guarantees that square integrable functionals
of (z(t-s), s > 0) and of (w(t-s), s » 0) span the same linear
space, and is equivalent to specifying that (2.1) is a Wold repre-
sentation for (2.1).

A variety of continuous time stochastic linear rational
expectations models have equilibria that assume the form of the
representations (2.1) or (2.2). Hansen and Sargent [1981] provide
some examples. In these examples, the continuocus time white
noises w(t) often have interpretations as innovations in the
uncontrollable processes that agents care about forecasting, and
which stochastically drive the model. These include processes
that are imagined to be observable to both the econometrician and
the private agent (e.g., various relative prices and quantities)
and also those which are observable to private agents but are
hidden from the econometrician (e.g., random disturbances to
technologies, preferences, and maybe even particular factors of
production such as "effort" or capital of specific kinds). The
w(t) process is economically interpretable as the continuous time
innovation to private agents, because the forecast error of the
variables in the model over any horizon t + T which the private

agents are assumed to make at t can be expressed as a weighted sum
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of w(s), t < s <t + t. Thus, to private agents the w(t) process
represents '"news" or "surprises."

In rational expectations models, typically there are
extensive restrictions across the rows of P(D). In general these
restrictions leave open the possibility that the current and
lagged values of the w(t) process span a larger linear space than
do current and lagged values of the z(t) process. This outcome
can possibly occur even if the dimension m of the w(t) process is
less than or equal to the dimension n of the z(t) process. This
is the continuous time version of the phenomenon that we treated
for discrete time in the previous section. In the present sec-
tion, we ignore this phenomenon, by assuming that P(s) has no
zeroes in the right half of the complex plane.

For this continuous time specification, there exists a

discrete time moving average representation
(2.3) z, = C(L)ay

where C(L) is an infinite order, (nxn) polynomial in the lag
operator L, where ay is a vector white noise with EatatT =W, and

vhere a, = z; = E[zt|z ]. The lag operator C(L) and the

t—l, LR
positive semi-definite matrix W solve the following equation,
subject to the side condition that the zerces of det C(z) do not

lie inside the unit circlengj

(2.4)  cle™ 1w c(et?)? = f” P(iw)P(=iw)T.

When z, has a discrete time autoregressive representa-
tion, the discrete time innovations a; are related to the w(t)

process by the formula
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ay = C(L)~1 P(D) w(t)

(2.5) a

V(L) P(D) w(t) = V(L) | p(t) w(t-t)drt

oO'— 8

where we have defined V(L) = ¢(L)™1 = § VJLJ, Vo = I. Here -V,
J=0
is the n x n matrix of coefficients on the jth lag in the vector

autoregression for z. It follows directly upon writing out (2.5)

that

(2.6) a, = [ £(t)w(t-1)ar
0

whereil/

(2.7) gle) = ) v p(t=3)
J=0

It also follows from (2.6) and the identity for integer t, C(L) ay
= P(D) Wy, that

o
(2.8) ple) = ) e, 2le-1)s

j=0 J
Equations (2.6) and (2.7) show how the discrete time innovation a
in general reflects all past values of the continuocus time innova-
tion w(t).

Analyses of vector autoregressions often proceed by
summarizing the shape of C(L) in various ways, and attempting to
interpret that shape. The innovation accounting methods of Sims,
based on decomposition (0.7), are good examples of procedures that
summarize the shape of C(L). From the viewpoint of interpreting
discrete time vector autoregressions in terms of the economic

forces acting on individual agents, it would be desirable if the
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discrete time and continuous time moving average representations
were to match up in some simple and interpretable ways. In par-
ticular, the following two distinct but related features would be
desirable. First, it would be desirable if the discrete time
innovations ay closely reflected the behavior of w(s) near t.
Probably the most desirable outcome would be if a; could be ex-
pressed as
1
(2.9) 8, = [ £(1) w(t-1)dr
0

so that in (2.6), f(t) = 0 for T > 1. In that case, a; would be a
weighted sum of the continuous time innovations over the unit
forecast interval. It would be even more desirable if (2.9) were
to hold with f(t) = p(t), for then a; would equal the one step
ahead forecast error from the continuous time system. Second,
assuming a smooth p(t) function, it would be desirable if the
discrete time moving average coefficients {C;,C;,Cs,...} resemble
a sampled version of the continuous time moving average kernel
{p(t),t>0}. This is desirable because the pattern of the Cj's
would then faithfully reflect the response of the system to inno-
vations in continuous time. We shall consider each of these
desiderata in turn.

We first study conditions under which f(t) = 0 for t >

l. Consider the decomposition
g, =g(t) = E[z(t)lw(t—s),s>l]
+ E[z(t)]w(t—s),a)l] = E[ztlz

greee)

1 "
= [ p(t)w(t-t)dt + [ p(t)w(t-1)dr
0 1
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A~ L&

- B[ plr)wlt=t)dr|z, ;,...]s
1
This last equality implies that if (2.9) is to hold it must be the

case that
(2.10)  Elz(t)|w(t-s),s>1] = E[zt|zt_1,...],

which in turn implies that p(t) = f(t) for 0 < T < 1. The inter-
pretation of requirement (2.10) is that the discrete time and
continuous time forecasts of z(t) over a unit time interval coin-
cide.

When condition (2.9) is met, the link between P(D) and
C(L) is particularly simple. Using f(t) = 0 for v > 1, equation

(2.8) becomes

(2.11) p(t) = ij(T-J) for J< 1< J+ 1.

Equation (2.11) implies that for the particular class of continu-
ous time processes for which f(t) = O for T > 1, the continuous
time moving average coefficients are completely determined by the
discrete time moving average coefficients and the function f(Tt)
defined on the unit interval. The aliasing problem is manifested
in this relationship since f(t) cannot be inferred from discrete
time data. In the absence of additional restrictions, all func-
tions f(t) that satisfy

2

[ (et ar = w

0
are observationally equivalent. Relation (2.11) also implies that
in general, without some more restrictions on p(t), condition

(2.9) does not place any restrictions on the discrete time moving

average coefficients.



~ B8

However, in many (if not most) applications, it is usual
to impose the additional requirement that the continuous time
moving average coefficients be a continuous function of T.géy
This requirement together with (2.11) then imposes a very strin-

gent restriction on the discrete time moving average representa-

tion. In particular, (2.11) then implies that
(2.12) ¢, £(0) = ¢y £(1)

where f(t) is now a continuous function on the unit interval.
When w(t) and z(t) have the same dimension (m=n) and f£(0) is

nonsingular, relation (2.12) implies that

c, = [£(1)£(0)~1]d

and
c(L) = [I-£(1)g(0)~1n]-1.

Hence, if (2.9) is to hold, the discrete time process must have a
first order autoregressive representation. We have therefore
established that condition (2.9) and the continuity requirement on
p(t) substantially restrict not only the admissible continuous
time moving average coefficients but the admissible discrete time
moving average coefficients as well.

Thus, with a continuous p(tT) function, in general,
relation (2.9) does not hold. Instead, a; given by (2.6) is a
function of all current and past w(t)'s, a function whose compli-
cations can pose problems in several interrelated ways for inter-

preting ay in terms of the continuous time noises w(t) that are
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imagined tc impinge on agents in the model. First, as in the
discrete time case, the process w(t) need not be fundamental for
z(t) in continuous time. Second, the matrix function f(t) in (6)
is not usually diagonal, so that each component of a; in general
is a function of all of the components of w(t). This is a version
of what Geweke has characterized as '"contamination," which occurs
in the context of the aggregation over time of several inter-
related distributed lags. It is also related to the well-known
phenomenon that aggregation over time generally leads to Granger-
causality of discrete sampled y to x even though y fails to
Granger—cause x in continous time. Third, the matrix function
f(t) in (2.5) in general is nonzero for all values of T > 0, so
that a; in general depends on values of w(t-t) in the remote past.

We now turn to our second desirateratum, namely that the

sequence {cj};=0 resemble a sampled version of the function
p(t). For studying this matter, we set m = n, because we are
interested in the circumstances under which {Cj} fails to reflect
p(t) even when the number of white noises n in a; equals the
number m in w(t). We can represent most of the issues here with a
univariate example, and so set m = n = 1 in most of our discus-
sion. It is also convenient to study the case in which zy has a

rational spectral density in continuous time. Thus we assume that
(2.13)  8(D)zy = ¥(D) w(t)

where z, is a scalar stochastic process, and 8(s) = (s-17) (s=1p)

e (s-lr), V(s) = Yo *+ V1 s + eee + ¥4 sT=1,  We assume that

the real parts of Al, veng A which are the zeroes of 6(s), are

ri
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less than zero, but that the real parts of the zeroes of Y(s) are
unrestricted. Only if the real parts of the zeroces of Y(s) are
less than zero do current and past values of z(t) and w(t) span
the same linear space. If any zeroes of Y(s) exceed zero in real
past, then current and lagged w(t) span a larger space than do

current and lagged z(t). The above equation can be expressed as

(2.1k) = P(D) w(t)

At

where P(D) = y(D)/6(D). A partial fraction representation of p(D)

is

)

—J

(2.15) P(D) =
1 D-A

J

Il ~1%

where

(2.16) §, = 1lim P(s) (s-AJ).

J s-i—k'j

We therefore have
v J
(e17) plr)= ) 6, e .

Thus, the weighting function p(t) in the continuous time moving
average representation is a sum of r exponentially decaying func-
tions. Our object will now be to get an analogous expression to
(2.17) for the discrete time coefficients By .

It is known that the discrete time process Zy implied by
(2.13) is an rth order autoregressive, (r-1) order moving average

Tk thls be 7, =Sl s i (L) —rfl 1, a(L) =
process. s be z, = F163) ag ere ¢ = ¢ L,

r Jj=0
) dJIJ. To find this representation, we must use (2.4). Hansen
J=0
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and Sargent [1981] show that for the process (2.13), the term on

the left side of (2.4) can be represented

J +iw
o r w w,.e e
Y P(iw) P(-iw) = ) [ X J +—d X ]
j:-m J':]_ (1_8 je 11.{) (l-e je+iw)

where

vy = ;i?, P(s) P(-s) (s—kj).
J

Ietting z = e™2¥, to find the required mixed moving average auto-

regressive representation, we mst solve

-1 ¥
(g SEBE D5 il x4 ]
* -1 A

d(z)d(z™") gj=1 j
subject to the condition that the zeroes of c(z) and d(z) all lie
outside the unit circle. The term on the right side of (2.8) can

be expressed as

¥ r r -1 r r r 1. -1
Yow, T (1-a,z) I (l-a,z )+ Y woa, I (1-a,z) I (1-a.z )z

PR i o L = S = i = S

r r -1

I (l-a,z) I (l-akz )

j=1 9 k=1
A

where aj = e J. Note that ’“jl < 1 by virtue of the assumption

that re(kJ) < 0. Thus, the denominator is already factored as

required, so that

(2.20) d(z) = E
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The numerator must be factored to find c(z). Standard procedures
to find the zeroes of scalar polynomials can be used to achieve
this factorization, as described by Hansen and Sargent | 1l

Thus we have that

(8.21) z, =-§%%% 8, = c(L) a,

Proceeding in a similar fashion as we did for the continuous time
moving average representation, we can find a partial fraction

representation for C(L), namely
r
(2.22) c(L) = § ——

where

(2.23) Yj = lim C(z) (l—ajz).

zZ+0
A
Recalling that ay = e J, equation (2.22) implies that
r ljk
(2.2L4) C, = _X ;e .
Jj=1

Collecting and comparing the key results, we have that

AT
GJ e d T €[0,»).

~15

(2.17)  p(1) =
J=1

r
(2.24) ¢ = v, e o wol, 1, B, sees

Equations (2.17) and (2.24) imply that C, will be (proportional
to) a sampled version of p(t) if and only if leéj = yY,/8; for all
J = 2, «eey, re It can be shown directly by using (2.17) and

(2.24) in (2.7) and (2.8) that this condition will not be met for
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any r » 2. Thus, only if z(t) is a first-order autoregressive
process does Ck turn out to be a sampled version of p(T).

Table 2 presents a numerical example that illustrates
the preceding ideas. For the univariate process (D3+.6D%+, 4D+.2)
z(t) = w(t), we have calculated p(t), f(t), c(L), d(L), B(L) =
c(L)/d(L), lj, Yy for j =1, 2, 3. In this example, we have that
Yj/Tl £ 53/61 for j » 2, so that the shapes of the moving averages
in continuous and discrete time, p(t) and Cxs respectively, are
different. We also have that f(t) # 0 for some T's greater than
l. In particular, notice that f(t) is larger in absolute value
over most of the interval [1,2] than it is over the interval
[0,1]. The failure of f(t) to be concentrated on [0,1] and the
failure of B, to resemble a sampled version of p(t) are both
consequences of the fact that this is a third order autoregressive
system in continuous time, rather than a first order one.

The preceding results and the example generalize readily
to the case of a vector stochastic process zy. Matrix versions of
(2.17) and (2.24) hold, where the lj's are the zeroes of det 6(s)
and the GJ'S and Yj's are (nxn) matrices given by (2.16) and

(2.23).
Locally Unpredictable Processes and Linear Quadratic Models

The stochastic process z(t) in Table 2 is mean square
differentiable, as evidenced by the fact that p(0) = 0. A sto-
chastic process of the form (2.1) is j times mean square differ-
entiable if p(0) =p'(0) = p"(0) = 0. = p(J'l)(O) = 0 (see Hansen

and Sargent | | for a proof). Consequently, the process (D3 +
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.6D2 + LD + .2)z(t) = w(t) can be verified to be twice (but not

three times) mean square differentiable. It is the smoothness and

proximity to zero near T = 0 of p(t) that makes it difficult for

C‘j to resemble a simpled version of p(t), and that makes a(t) a
poor estimator of f p(t)w(t-1)dr.

Sims [198&1 has argued that there is a class of economic

variables that are best modeled as failing to be mean square

differentiable. For these processes, p(0) # 0. Processes of the

form (2.1) in which p(0) # O are said to be locally unpredictable

because if p(0) # 0, then

Et(x(t+6)-Etx(t+6))2
(2.25) lim 5— = L
§+0 Et(x(t+5)-x(t))

Here Et is the linear least squares projection operator, condi-
tioned on {x(t-s),s > 0}. Now condition (2.25) can readily be
shown to imply that
2
E, (x(t+8)-E x(t+8))

(2.26) lim 5 = 1
§+0 Et(x(t+6)-Ex(t+5)|x(t),x(t-a),x(t-25),...))

where E is the 1linear least squares projection operator. In
(2.26), E;x(t+8) is the linear least squares projection of x(t+6)
conditioned on (x(t-s),s » 0), while (Ex(t+6)|x(t),x(t-6),...) is
the projection of x(t+8) on the discrete time sample x(t),
x(t=8),.40. Condition (2.26) holds for any locally unpredictable
process, and states that for small enough sampling interval §, the
§-ahead projection error from the continuous time process is close

in the mean square error sense to the &-ahead projection error
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from the &-discrete time data. Thus, when p(0) # 0, for small
enough &, the innovation a; in the S-counterpart to (2.21) 1is
arbitrarily close to fap(s)w(t-s)ds in the mean square sense.
Now supposeothat z(t) is given by (2.1), with p(0) = 0,
so that z(t) is mean square differentiable. Following Sims

[1980], suppose that the economist is interested in studying the

expectational variable x*(t) given by
(2.27)  x*(t) = E[J e”®z(t+s)as|(z(t-1),720)]
0

where p < 0. Hansen and Sargent [1981] have shown that

00

:ELE%EEL:El]W(t) G(D)w(t) = £ g(s)w(t-s)ds.

m

(2.28)  x*(t) = |

where P(s) = | e "°p(t)dt is the laplace transform of p(t). Now
0
if G(s) is the Iaplace transform of g(t), with support [0,=), the
initial value theorem for lLaplace transforms states that
g(0) = 1im s G(s).

5@

Using the initial value theorem together with (2.28), we find that

S+p
g >0
(We know that P(-p) # O because P(s) is assumed to have no zeroes
in the right half of the complex plane by the assumption that p(s)
is the kernel associated with a Wold representation for z(t).)
Therefore, even if p(0) = 0, g(0) # 0, so that the geometric

expectational variable x¥(t) fails to be mean square differenti-
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able and therefore is locally unpredictable. For such expecta-
tional variables, (2.26) holds. Therefore, for such variables,
for small enough sampling interval 8, the discrete time innovation
a(t) corresponding to (2.21) 1is close to fap{s)w(t—s)ds in the
mean squared sense. °

These results imply that for a variable x*(t) and suffi-
ciently small sampling interval &8, the situation is not as bad as
is depicted by the example in Table 2. As Sims has pointed out,
there are theories of consumption and asset pricing which imply
that consumption or asset prices behave like x¥(t) and are gov-
erned by a version of (2.27). For example, with x*(t) being
consumption and z(t) income, (2.27) is a version of the permanent
income theory. Alternatively, with x*(t) being a stock price and
z(t) being the dividend process, (2.27) is a simple version of an
asset-pricing formula.

However, there is a wide class of generalized adjustment
cost models discussed by Hansen and Sargent [1981] in which ob-
servable variables are such smoothed versions of x*(t) that they
are mean square continuous. In adjustment cost models, decisions
are driven by convolutions of x*(t), not by x*(t) alone. For

example, the stochastic Euler equation for a typical quadratic

adjustment cost problem is

I

(D-p)k(t) = E (52 (t).
where g > B,

or
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Here k(t) is "capital." The solution for capital is then

k(t) =

= px*(t)

or

k() = () [FERIECR )]s

(=]

where z(t) = [ p(s)w(t-s).
0

Let

k(t) = [ n(t)w(t-1)ar
0

oo

where H(s) = [ e
0]

“n(1)ar

Hls) = ( 1 ](—P(S)+P(—p)]_

sS=p s+p

Using the initial value theorem to calculate h(0) we have
h(0) = 1im sH(s) = 0.
e
Thus, k(t) is mean square differentiable and so is not locally
predictable. (The convolution integration required to transform
x*¥(t) to k(t) "smooths" k(t) relative to x*(t).)

More generally, the endogenous dynamics of adjustment
cost models typically leads to mean square differentiable endoge-
nous variables, provided that the agent is posited to be facing
mean square differentiable forcing processes (z(t)). This means
that for such models, the difficulties of interpretation that are
illustrated in Table 2 cannot be eluded by appealing to an ap-

proximation based on the limit (2.26).
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Table 2

An Example
(D) =1

.2 + 4D + .6D° + D3

D
—
[
—
n

AJ (zeroes of 08(s)): =.5L24, =,0288 + .6066

8, in Partial Fraction Representation of 1p(D)/6(D}l:

§,/8,
g Real (§,) Imaginary (§.) Real Imaginary
1 1.5831 0 1.00 0
2 -.7915 6701 ~:50 423
3 -+T915 6701 -.50 -.423

Zeroes of Spectral Factorization of Numerator Polynomial:

Imaginary

Real Part of Zero Part of Zero Modulus
1 -.0Lk41 0 0Lk
2 -.4359 0 1436
A, in Partial Fraction Representation of C(L):

Gi/Gl
Real (A,) Imaginary (X,) Real - Imaginary

1 1.7984 0 1.000 0
2 -.3992 2.0310 -.222 1.129
3 -.3992 -2.0310 -.222 -1.129

Discrete Time Mixed Moving Average, Autoregressive Representation:

1 - 2.1779L + 1.8722L° - .5485L3

j=h

—_—
v

—
]

1 + .480OL + .0192L°

[g]
—
|
—
]



.100
.200
.300
400
.500
.600

. 700
.800
.900
1.000
1.100
1,200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
3.000
4,000
5.000
6.000
7.000
8.000
9,000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18,000
19.000
20.000

()

0
.004900
.019198
.042288
.073563
112414
.158231
.210L0L4
.268324
.331386
.398987
457506
.Lok395
.510679
.507397
485602
.L4L6360
«390751
.319860
.234786
.136629

-.073263
.032542

-.014212
.006197

-.002701
.001178

-.000513
.000224

-.000098
.000043

-.000019
.000008

-.00000k
.000002

-.000001
.000000

-.000000
.000000
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p(T)

0
.004900
.019198
.0L2288
.073563
112414
.158231
.210404
.268324
.331386
.398987
470529
545421
.623079
. 702926
. 784396
.866935
.949999
1.033059
1.115601
1.197125
1.860267
2.029242
1.593759

.692895
-.361072

-1.2089L44

-1.576723

-1.368770

-.692635
.188765
.956663

1.350008

1252755
. 725963

-.203403

-.T722582

-1.131496

-1.124345

C

Discrete Time MA

1.000000

2.657971

3.935901
L, 144677
3.116763
1.188521
-.972014
-2.631591
-3.259333
-2.705194
-1.233866
.588609
2.107332
2.810459
2.498675
1.336741
-.22L260
-1.6197Lk9
-2.374213
-2.261452
-1.369232
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Remedies in Continuous Time Analyses

The preceding problems of interpretation are results of
estimating vector autoregressions while foregoing the imposition
of any explicit economic theory in estimation. These problems can
be completely overcome if a sufficiently restrictive and reliable
dynamic economic theory is available to be imposed during estima-
tion. For example, Hansen and Sargent [1981,1982] have described
how the function p(t) can be identified and estimated from obser-
vations on discrete time data in the context of a wide class of
linear rational expectations models. The basic idea is that the
rich body of cross-equation restrictions that characterize dynamic
linear rational expectations models can be used to identify a
unique continuous time model from discrete time data.

If an estimate of p(t) is available, then by using only
discrete time data on {zt}, it is even possible to recover an
estimate of the one-step ahead prediction error that agents are
making in continuous time. This is accomplished by treating the
continuous time forecast error as a hidden variable whose covari-
ances with the discrete time process {z;} are known. Thus, given
estimates of p(t), let us define the one-step ahead prediction
error from continuous time data as e* = fjé p(t) w(t-t) dt. Then

T

it is straightforward to calculate the following second moments:

T o _ o s
Elzyz, ] = [o plt+i)p(t) ar = kéo CeasWCys 3 > 0
1 4T
. [op(t)p(t43) ar j>o0
Ele¥*z ] = 5
£t 4] 0 5 <0
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m

We can estimate the projection E
J=-m

D, =z in the projection
: 1
equation

2
% = <+
e _): DJ Zt-—J uy
J"-ml
where ug is orthogonal to Zgoj for all j = -my «.., mo. The DJ's
can be computed from the normal equations

m
T 2 T

* =
€t o4k B

E - 3 zt-J zt+k’
J_"'ml

k= -m ses, I

2’ 1°

These calculations could be of use if one's aim were truly to
extract and to interpret estimates of the forecast errors made by
agents. In continuous time versions of various models, such as
those of ILucas [1973] or Barro [1977], agents' forecasting errors
are an important source of impulses, so that it is of interest to
have this method for characterizing their stochastic properties

and estimating them.
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FOOTNOTES

-éfThis is, after all, the construction used in Wold's
decomposition theorem.

EyRepresentations of the moving average form (0.4) are
not in general unique, once one relaxes the restriction in (0.1)
that Aé = -I, which in turn implies that Cg = I. If this re-

striction is relaxed, then any representation generated by slipp-

ing a uoT in between 0 and a(t-Aj) in (0.4), where U is a unitary

J

matrix (UUT=I), is also a fundamental moving average representa-

tion. That is,

v T
z(t) = } (CﬁU) (Ura(t=43))
j=0
is also a fundamental moving average representation, since UT a(t)

spans the same linear space as a(t). In terms of such a represen-

tation, the decomposition of prediction error covariance becomes

B(z(t)-E,_,a(t)) (a(t)-E,_z(t))"
J=1
) c? uvul C?T,
k=0

which is altered by alternative choices of U. Sims' choice of
orthogonalization order amounts to a choice of U.
§jAn earlier version of +this paper considered four
classes of examples, the other two being nonlinearities and aggre-
gation across agents. Due to length constraints, we decided to
restrict this paper to the two classes of examples studied here.
EjDanny Quah has conveyed to us the viewpoint that

implicit in the desire to match the {w} process of the economic
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model (8) with the {a} process of the vector autoregression (1)
must be a decision problem that concerns the data analyst. For
example, on the basis of variance decompositions based on (0.7),
the analyst might want to predict the consequences of "interven-
tions" in the form of alterations in various diagonal elements of
the innovation covariance matrix V, interpreting these altera-
tions, e.g., as changes in the predictability by agents of various
economic process, e.g., the money supply.

éjThis assumption is made in the interests of providing
the best possible chance that the process a(t) and w(t) described
in the introduction match up. If €1t is a vector of dimension
greater than n,, then in general current and lagged values of
(Elt’SQt) span a larger linear space than do current and lagged
values of (yt,xEt).

blsse Homanov [ ] or Townsend | le

i/It is interesting to note that although this system is
one in which there are no strictly econometrically exogenous
variables, or even any variables that are not Granger—caused by
any others, its parameters are in principle identifiable. Identi-
fication 1is achieved through the cross-equation restrictions.
Even when (wst=wdt) lie in the space spanned by the one-step ahead
errors in predicting (q¢,py) from their own pasts, it is necessary
to know the structural parameters of the model in order to deduce
the former from the latter innovations.

8/

QJSee Sims | | for a treatment of orthogonalization

orders. Different "orthogonalization orders" in the sense of Sims
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amount to different triangular choices of the orthogonal matrix U
that appears in footnote 2. If UT is chosen to be upper triangu-
lar, then the first component of a; corresponds to the first
component of the new (basis) fundamental noise Ut ay e On the
other hand, if uT is chosen to be lower triangular, the last
component of a; gets to go first in the Gram-Schmidt process that
is used to create UT ay .

}.Q../Practical methods for solving this equation for the
case in which P(s) is rational are discussed by Phillips | I
Christiano | |, and Hansen and Sargent | Js

11/ alternstive derivation of (2.7) uses operational
calculus. Setting L = e_D, express (2.5) as a, = V(e'D) P(D) w(t)
= £(D) w(t). Here the function f(1) is the inverse Fourier trans-

form of F(iw), which is defined by
F(iw) = C(e™1¥)~1 p(iw).

Equation (2.7) follows from the above equation by the convolution
property of Fourier transforms.

12/por example, the function p(T) will be continuous
whenever P(D) is rational, a common specification in applied
work. The functions p(t) and £(t) are only defined up to an L°
equivalence. Consequently, we can only impose continuity on one

version of the continuous time moving average coefficients.
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