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The R.S. Insurance Environment

We begin by discussing a version of the insurance en-
vironment familiarized by Rothschild and Stiglitz (1976), Wilson
(1977), and Spence (1978). In this environment, there are a
continuum of agents who may be divided into a finite number of
types indexed by i; i =1, ++s, n. Each agent is faced with the
possibility of either of two states of nature occurring; a "loss"
state and a "no-loss" state. Let s = 1 be the "no-loss" state,
and s = 2 be the "loss" state. Realizations of these states are
independent across agents, and a type i agent faces probability p;
of the "no-loss" state occurring. The p; obey 0 < p; < Pp < ses <
P, < 1. 1If any agent ends up in state s, he receives endowment of

« Since s = 1 is the "no-loss"

the single good in that state eg

state, e; > ep, with endowments being identical across types.

Let Cis denote the consumption of a type i agent in
state s. All agents have a common utility function defined on R,
denoted U(c), with U'(e) > 0, U"(c) < 0 # ¢ € R;. Finally, let u*
= {ul*,...,pn*) be a vector consisting of the measures of each
type of agent, so that Ju;* = 1, and p; > 0 ¥ i.

Having described the environment, it is necessary to
describe the information structure for this economy. Each agent
knows his own type prior to trade, but this is private information
ex ante. Hence, this is a standard adverse selection insurance

environment.



A Two-Stage Game

In addition to the agents described above, let there be
a set of firms F = {1,...,M}, indexed by m, who can costlessly
enter the activity of selling insurance policies. These policies
offer type i agents state contingent consumption pairs (cil=cj.2);
i =1, «esy; n. Then we imagine insurance firms involved in the
following game, which evolves in +two stages. Let Bk =
(ekl,...,ekn) be a vector specifying the measure of type i agents
who purchase a policy from firm k. Thus, 0 ; € [O,ui*]. Firms

then announce, in stage 1 of the game, an allocation rule which

specifies the consumption pairs received by type i agents contin-
gent on (a) 6,, and (b) the allocations received by agents at
other insurance firms. Let F denote the set of firms (which may
be infinite), let 8 = (87,u04,0)_1,04,847,0+0), and let 6 =
(815000504 _15044750++) An allocation rule is denoted as fol-
lows. Let Ckis be the state contingent consumption level offered
to type i agents by firm k. Let cpy = (Cpi1sCki0)s S =

(Ckl,...’ckn)’ c = (cl’...’ck‘"l,ck’ck"'l,...), and C_k = (C,.-a,Ck_

15Cx41s+++)> Where each of these is to be understood as a vector

n
of functions, and let A" be that subset of RE obeying E ¥ &
r=1
1: ¥y = (yyseeesy,)s Then an allocation rule for firm k is a
mapping
e, ..t AT X( xA") X( X C)+R
kis +
meF meF
m#k m#k

specifying the consumption level of a type i agent in state s at
firm k, where C denotes the space of allocation rules. We will

write an allocation rule as ckis(ekge_k,c_k).
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Of course, certain restrictions mst be imposed on the
allocation rules announced by firms. An allocation rule mst be

resource feasible, i.e., satisfy
n
1) L By lpy ey ey (830 a0 L)) +

(e, 56 Nl >o

(1-pi)(e2-c 3

Ki2 X%k

¥ 0 e X 6“, ¥c e X C.
keF meF

m#k
Also, since agent types are not observable ex ante, it mist be the
case that type 1 and only type i agents wish to obtain the con-

sumption pair (ckil’ckiQ)' An allocation rule is incentive feasi-

ble if

(2) pU[c (8, 36 (o )] >

kil k? L

)1+ (1-p, Jule

x°Cx wio ‘O30 s g

(6 36 ,c )] + (1—P WUle

mjl' m’ -m’ -m mj2 k’e

piU[c ¥z

%%k

¥i, J =1, eeey, n,¥ me F,

Henceforth, we restrict attention to resource and incentive feasi-
ble (henceforth feasible) allocation rules.

At stage 1 of our game, then, each firm announces a 0-
contingent allocation rule. In the second stage of our game,
given the rules announced by each firm and taking the vector 6 as
given, each agent decides which firm to "purchase a policy" from.
SBince all firms announce incentive feasible allocation rules, each

agent simply purchases a policy from that firm offering him the

most preferred pair [cys1(8y30 1, 1) ,CLan(6130 1 ,c )]
K1k k k ki2‘ ¥k k k
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It is now possible to say something about the values

Gk. Clearly

(3a) Oy = wy¥ if piU(ckil) + (1-p;)U(ey40) >
p;Uley47) + (1-py)U(c 30) ¥ me F, m # k.

(3b) By ;i = 0 if pyU(e,47) + (1-p;)U(eyyn) < p3Ule 51) +
(1-p;)U(c,y0) for some m e F.

However, there is considerable arbitrariness in specifying the
values eki if type i agents are indifferent regarding which firm
they purchase a policy from. First, then, in keeping with stan-
dard practice, we assume that if all firms announce the same
allocation rules, all agents are divided among firms according to
their population proportions. Then, without loss of generality,
we could proceed as if there were one firm. As a notational

convention, then

@
]
I

(3c) =y, if ¢ (0) =c (0) ¥k, me F, ¥ 6 ¢ A",

If firms announce different rules, however, there is no equally
obvious convention to adopt. One possibility would be to let a
particular firm pick the value 6,; anywhere in the interval
[O,Ui]. A second possibility is that if all firms but one (say
firm k) announce the same allocation rule, then eki > 0 iff type 1
agents are made strictly better off by purchasing their policy
from firm k. We proceed as follows then. Our focus below will be
on symmetric equilibria. Hence, eki will fail to be proportional

to My only for a firm which is deviating from a candidate set of
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equilibrium strategies. Therefore, we will only require a speci-
fication of the eki in the case of type i indifference when all
firms but k announce the same rule. We employ alternately the

following two assumptions:

(3d) By; € [0,u3%*] if pyUleys9) + (1-p4)U(cyyp) =
piU(cmil) + (1"P1)U(Cmi2) and if cmis(e) = ctis(e)
¥vym teF, mt#+k, v0 ¢ A",

(3e) By = 0 if pyU(eyqq) + (1-p;)Uleys0) € pyUle 1) +

(1“P1)U(°m12) for some m e F.

It remains to say something about firm profits, and
about what strategies firms can pursue. Let m, denote the profits

of firm k, with T given as follows:

(4) M = n(Bk,ck;B_k,c_k) =
n
izl eki{pi[el—ckil(ek;e_k,c_k)]

*+ (1-py ) leg=cy o (0y30 ey )11,

with the values 6, determined either by (3a)-(3d), or by (3a)-(3c)
and (3e). Finally, firm strategies are choices of feasible allo-

cation rules.

A Nash Equilibrium

Prior to defining a Nash equilibrium for the game just
described, we impose one additional restriction on the set of
allocation rules which firms can announce. We begin with the

following
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Definition. An allocation c,;(8,); k € F, is 8, -Pareto optiml if
¥ k € F there does not exist another feasible, incentive compat-

ible allocation Ekis(ek) such that

p,Ule,;, ()] + (1-p,)ule, ,(8,)] >

iz O

p,Ule, ;1 (8] + (1-p,)Ule (001,

¥ i=1, «ve, n, with strict inequality for some i, and if
n ~
izl 8; fo; [oygq (8 )-cy gy (0 )] +

(1-p, ) [, 4 (8, )¢, ;5 (8,1} < O,

with 6_, and ¢ ;. (6_,), me F, m # k taken as parametric (where an
obvious abbreviation of notation has been employed).

Finally, let C¥ denote the set of admissible allocation
rules for firms. Then ciks(e) e C* if ¢, . is 6, Pareto optimal ¥
B e x An, and satisfies (1) and (2). The reason for requiring
admizgigle allocation rules to be 8, Pareto optimal ¥ k is that
this prevents a firm from threatening to give poor allocations if
their policies are purchased by (too many of) certain types of
agents. This restriction might be justified as follows. Suppose
Bk_ represented the actual measure of types purchasing policies
from firm k. Then it mst not be possible for some firm, taking
the allocations received by customers of other firms and 0_, as
given, to attract away all of the customers of firm k and thereby
earn a profit.

Having defined the set of admissible allocation rules,

we may now define a Nash equilibrium for our two-stage game.
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Definition. A Nash equilibrium is a set of announced allocation

rules c¥. € C*; k ¢ F, and a vector 6% ¢ X A" such that

kis KkeF
(5) ) o = pt.
keF -~
* - *
(6) p;Uley gy (850X c® )] + (1-p JUle, ., (0¥;0% ,c*, )] >

*. * - * ®¥.Q0% *
p;Ulck. (6%;0% ,c* )| + (1-p,)ulcX  (o%;6% ,c* )]
¥ i, ¥k, me F.

* ) > (8

. *
(1) T (ORsoR 302 000, ) > 1 (0 050 5 0e8)

¥ ¢ € C¥, for all (6,,0_,) consistent with (either) (3a)-(3d) (or

(3a)-(3c) and (3e)), and such that (6,04 ) € X il ) 8, = uk.
meF meF

Hence, a Nash equilibrium is a set of announcements by

firms which are admissible and which leave no incentive for any

firm to change its announcement, and an allotment of agents among

firms given these announcements such that no agents have an incen-

tive to purchase a policy from any other firm, given the purchases

of other agents.

A Set of Allocation Rules

A mich studied allocation rule is one which solves the

problem (for fixed 6 >> 0)

(8) max PnU(Cnl) * (1-Pn)U(Cn2)
subject to
(9} PiU(cil) + (l-pi)U(Cig) 2

U(cjl) + (l-pi)Ufcjg) . ¥ 2T, wess B
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(lOa) plU(cll) + (lhpl)U(Cl2) 2 Ul

(10b) p;Ules1) + (1-p;)U(cyp) > Ei(s); 1 =2 ey B Le

(11) o, [p, (e, q J+(1-p, ) (e
i=1 '

¥l 5 .05

27C%40

where the values -I'J-i(a); i =1, eee, n = 1 are defined recursively

by

(12) ﬁi = max pIU(Cll) + (1—P1)U(C12)

subject to pl(cll—el) + (1-—p1)(c12—e2) = 0.

(13) Ui(B) = max p;U(c;q) + (1-p;)U(cy5)

subject to

(11‘) ij(ch) + (l—pJ)U(ch) > -ﬁj(e), 1<j<i-1
i

(15) jEI 8, [p, (e)-cy )+ (1-p, )(ey-c )] > 0

(16) PJU(CJI) + (1_pJ)U(CJ2) 2

ij(ch].) + (1-PJ)U(Ch2); ¥ j, h; Js h < i.

Solutions to this problem have been associated with '"Wilson-
equilibria" by Spence (1978) and Miyazaki (1977). We will claim
that a subset of solutions to the problem (8)-(11) is a Nash
equilibrium allocation for our two-stage game. Prior to stating
this result, however, we need to make two remarks about this
problem,

First, in our setting it is possible that 6,; = 0 for

some i, for some firm k. Then it is necessary to say how firm k



-9 -

treats the incentive compatibility conditions (9) (and (16))
involving this i. Clearly, if 04y = 0, and if this is a preferred
state of affairs for firm k, then firm k mist structure its allo-
cation rule so that type 1 agents will not purchase its policies
designed for type j agents, j # i. Hence, we append the following

constraint to the problem (8)-(11):
(17) piU[ckjl(ek;e—k’C_k)] + fl—pi)U[ckje(Bk;B_k,c_k)] <

piU[cmil(em;e-—m’c-m)] + (l—Pi)U[CmiQ(e 6 )]

'ﬂ‘l; —m’c—m

¥ j, ¥ m € F such that Gmi > 0, ¥ 1 such that eki =0,

where firm k takes the values (c_;q,C.i0) as parametric. Tt is

mi2
necessary to assume that these values are taken as parametric to
prevent firms from attempting to menipulate other firms' alloca-
tions.

The second remark we need to make is as follows. As
Miyazaki (1977) points out, the solution to (8)-(11) (and (17))

need not be unique. Henceforth, let c¥*, (6, ;6 ) denote the

kis' k>’ -k’C—k

allocation rule which solves (8)-(11) and (17) % 6 ¢ . A", and

where Cf:is is that solution which gives the highest expected

utility to type n - 1 agents if there is no unique solution.
Similarly, if there are two solutions which result in identical
values of expected utility for type n - 1 agents, c;is is that
which gives highest expected utility to type n - 2 agents, etc.
Notice, then, that c}‘:is need not produce exactly the Miyazaki-

Spence-Wilson equilibrium allocation, since Miyazaki argues that

the logic of the Wilson equilibrium concept results in the follow-
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ing: if the solution of (8)-(11) is not unique, an equilibrium
allocation will be the solution least preferred by type n - 1

agents, etc.

Existence of Equilibrium

The primary result of this section is

Proposition 1. If all firms announce the allocation rule

(

Bk;e-k’c-k)’ this along with 8, = u constitutes a Nash equi-

c;is
librium.

This is, of course, in contrast to Rothschild and Stiglitz (1976)
or Wilson (1977), where no Nash equilibrium need exist in pure
strategies. The proof of Proposition 1 for the case of n > 2 is
somewhat involved, and makes use of the assumption (3e). Hence,

we begin by proving our result for the case of n = 2, for which we

need only use (3a)-(3d).

Proof of Proposition 1: 2 Types

The proof proceeds as follows. Suppose all firms an-
nounce the allocation rule c;is' If this is not an equilibrium

for some economy, then there exists for this economy a firm d € F,

A~

an alternate admissible allocation rule Cais and a set of wvalues
A‘: -~ . -~ - * _ -~
64 and 0_, (with f 0, = M 6,) such that
keF
k#d
P;Uley;1 (0,50 yhc )] + (1-p,)Ule, (0,58 e )] >
PyUlenyy (838 oo )] + (opy le 5 (6,50 pae )]s

¥ k € F such that ek >0, ¥me F,

and
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~

A A- A ey ”
(18) "d(ed’cd’e—d’c—d) > ﬂd(u,cd,u,c_d)

when all other firms announce c;is' We show that assuming (18)
leads to a contradiction. In order to see this, we will need a
lemma, and in order to state the lemma we will require some addi-
tional notation.

Suppose, following Prescott and Townsend (1984), that
insurance firms could offer consumption lotteries contingent on
the realization of the state of nature for each agent. Let X
denote the set of possible realizations of the lottery, with
typical element x & X. Let cis(x) denote the consumption of a
type i agent in state s if the realization of the lottery is x,
and let us think of some set of agents choosing probabilities qj,g

of x occurring for type 1 agents, subject to Z =1lwx1i-=

xeX ixs

1, «ee, n. A feasible lottery satisfies (for u)

(19) )

. 1“1 xgx{qixlpiI°11(X)"31]+qix2(1‘Pi)[cie(x)“ezj} € 0,

and an incentive compatible lottery satisfies

(20 T fag;Ulegy (x)14ay,, (1opy Wlegy ()1} >
N {qjxlpiU[cjl(x)]+(1-pi)qjx2U[cj2(x)]};
xeX

i 351 weeyg 03 1 # J.

Suppose we now consider the problem

max ) {qnxlan[cnl(x)]+qnx2(1-pn)U[Cn2(x)]}
xeX

subject to (19), (20),
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(21) E {a; a3 Uley; (x)]4+(1-p; Ja, ,Ule, ,(x)]}
>TU,3 i =1, eee, n =1,

with'ﬁi defined in a manner analogous to equations (13)-(16) and

subject to
(22) E qixs=l5i=1s ses, N3 s =1, 2.
Then we have the following result.

Lemma. The solution to this problem has Yy = 1 for some x; i =

1, sssyn, s=1, 2.

Proof. The solution to the above problem is a Pareto optimum

(Prescott and Townsend (198L4), p. ), and any Pareto optimal
consumption lottery has g;,, = 1 for some x, ¥ i, s. (Prescott
and Townsend, p. j

We may now prove Proposition 1. First, suppose n = 2

-~

and suppose there is some d € F, some allocation rule cd, and some

set of values (ed,e_d) such that (18) holds when all firms other

than d announce Ciis' Since the profit function of firm d is

given by (4), eid > 0 must hold for some i. Consider, then, what
must be the case for eid > 0 to hold. In order to attract type 2

agents, clearly firm d must offer an allocation rule such that

(23) pQU[cdgl(ed;e e )]+ (1= pg)U[cdep( d,e d,ctd)l >

poUlek,, (ususe )] + (1-p,)Uled o (ususe )]
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Then, if type 2 agents are attracted in some nonnegative number by

firm d, type 1 agents can be attracted iff

-~ ~ ~ -~ ~

* = . *
8358 _goolagl] * (L-myJUle (0,458 goe

(24) U[ a4

(o YT &

Ca11

* i ¥ * .
p,Ule  (ususe )1 + (1-p )UleX (usu,e )], # keF,

k#d
or
~ -~ .A ~ -’\ %
(25) D Ule ;19 (8458_gsc%,)] + (1~ pl)Uchlp( P A
" —A .A Lad ."\
p,Ulek (u-8,30_, ,e_ )] + (1-p,)Ule¥ ,(u-8,30_, ,c_, )]

¥ keF, k # d.

Thus, type 2 agents are attracted by firm d only if they are made
better off, and type 1 agents are attracted if they are better off
at firm d than they would have been if firm d announced c*, or if
they are better off at firm d after the defection of some type 2
agents from other firms to firm d. Finally, since any admissible
allocation rule must be 6-Pareto optimal # 6 e X An, clearly if

keF
(23) and either (24) or (25) hold with equality, then

d’ d’c
(23) or (25) mist hold with strict inequality.

nd(a ) = 0 would hold. Hence for (18) to hold, either

There are now four possible cases to consider.

Case 1. (Bld’e2d) = (eld,o), 6,4 > 0. Then firm d attracts only
type 1 agents, and not type 2 agents. Therefore, (24) holds with

strict inequality. But clearly

(26)  pyUleyy (8] + (1-p))Ule, ,(8,)] < T,
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where ﬁi is defined by (12) (with an obvious abbreviation of
notation in (26)). (26) contradicts either (2L4) or (25) (with

strict inequality in either), so that this case is impossible.

Case 2. (6,,,0,.) = (eld’”2)’ 814 < My+ Then given the form of

14?24
c;, k # d,
* _A - * ._A =_'
(27) plU{ckll(u Bd)] + (1 PI)U[ckIQ(“ Gd)] U3 keF.
Therefore
(28) peU[chI(Bd)] + (1-p2)U{cd22(8d)] < Uy

vhere U, maximizes pyU(cpq) + (1-py)U(cpp) subject to
(29) p,Uleyq) + (1-p )Ule,,) = U]

(30) Polcpp=eq) + (1-pp) (cpp=ep) < 0.

Clearly, then

)] > T

(31) sz[c;QI(B;B A

)]+ (1-p2)U[c;;22(e;e

-a°C - -a°%-q

¥ 0 e X ﬁn, ¥c g€ X G,
keF keF

as the maximization problem defining ﬁ2 is more tightly con-

strained than (8)-(11). But (28) and (31) contradict (23).

Hence, this case is impossible.

-~ -~

Case 3. (eld,sgd) = (ul,ug), so that firm d attracts all agents.

Now clearly

~

pyUle 1y (8] + (1-p)Ule 1, (8,)] <

pUleks, (W] + (1-p,)ule,,(u)]
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for this value of Ed, by the definition of cﬁis' Therefore, (23)
mist hold with equality. Hence there are at least two allocations
giving the level of type 2 utility which emerges as the solution
to (8)-(11) when 6 = u. Also, since (23) holds with equality,
(24) mst hold with strict inequality. But then ¥, 1is not the
allocation rule among the two or more solutions to (8)-(11) which

gives type 1 agents the highest level of expected utility. This

contradicts the definition of c;is’ so this case is also impossi-

ble.

Case b. u* > B4 > 05 8,5 € [O,u1 ]. Now, since (u2 Bd2) 040 >
0,

(32) sz[cd21(Bd)] + (1 pE)U[chQ(ed)] sz[ckel(ek)l +

(1-p,)ulef, (8, )] > pUlek,, (W)l + (1-p,)Ulef, ,(w)];

where the second inequality follows from (23). Also, if the

inequality in (32) is not strict, then (24) holds (and 6.4 > 0).

d
Then consider a consumption lottery which allocates type i agents
in state s édis(éd) with probability adi/ui*, and c;is(u—ad) with
probability 1 - (gdi/ui*). (This lottery is feasible, since each
allocation is individually. Obviously, it also assigns type 1
agents an expected utility at least as great as ﬁi.) Then, from
(32), type 2 agents are at least as well off under this lottery as
they are receiving css(u) with certainty in state s, and if they
are not strictly better off then (from (24)) type 1 agents are.
However, this implies that there exist wvalues Qjxs € (0,1) that
solve the problem discussed in the lemma. The existence of such a

solution contradicts the lemma, so this case is impossible. Thus,

we have proved Proposition 1 for the case of n = 2.
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Proof of Proposition 1: n » 2 Types

Again the proof proceeds by assuming that (18) holds,
and deriving a contradiction. We begin by noting that the lemma
of the previous section holds for arbitrary n, and by stating the

analogs of (23)-(25): 5dn >0 iff

* )] >

0 dn2 d‘e -3°%24

(33) P, ule )] + (1-p_ )ule

an1 8438 goc%4

* ; T % .
p Ule¥ ; Cusupe )] + (1-p UleX ~(ususe_ )]s # i:g

and Bdi >0; i <n, iff

(3L) piUlcdil(ﬁd;B_d,0§d)] - (l—pi)U[cdiz(Bd;ﬁ_d.cﬁd)] >

p UleX,  (usupe_ )] + (1-p )Uled, ,(ususe )]s # keF,

k#d,
or
(35) P Ule (8,30 s.c®,)] + (l-pi)U[cdlg( d,B_d,c #1002
5 -~ -A g
piU[ckil(ﬁk,B_k,c )] + (1 pi)U[ck (o k,ﬁ %k )] ¥ keF,

k#d.
Thus to attract type n agents, firm d mst make them (weakly)
better off than they were initially. Also, to attract type i
agents, i < n, it mst either make them weakly better off than
they were initially, or better off than they would be after the
defection of type j agents, j > i. Also, as before, for (18) to
hold, it is necessary that either (33) hold with strict inequal-
ity, or that (34) hold with strict inequality for some i.
Now suppose there exists a firm d, an allocation rule

-~ -~ -~

c.,. , and a vector (6.,6 ) (such that z 6 = p*) such that (18)
dis d keF k

holds. There are then several cases to consider.
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Case 1. Suppose edi >0 v i satisfying j < 1 € &, and edi =0
otherwise.
(a) Suppose £ = n. Then clearly a contradiction results if

J=1. (Hence ) > 1. Now since 8 ,, >0, and if (3.e) holds,

~

= *
edi pi . Therefore
* .

Ps_ JUle 3 108,30 s )] +

(l—pj_ )U[c K, i-s, 2(6;B_k,c_k)] > Uj-s(u) ¥ S = lyeeey) -
since edj-s = 0 by assumption, and since types with indices less
than j receive the allocation specified by c;is' Moreover, since
(35) holds,

* T 3 -
Py U[c 4il d,B d’c—d)] > Ui(u) ¥ i such that j € i < n.

Hence the allocation giving agents with indices J € i € n the con-

-~ P ~ ~ -~ ~

5 3 . * *
sumption pairs [cdil(e ) ),c di2(ad’e —a°¢

d) -d,c"d )] 3 and agents

-d

with indices i < j the pairs [c* -8 ) (u-B )] satisfies the

constraints (10), and clearly is feasible. Also, by (33) and

Ll

(3h), either type n agents strictly prefer (cdnl’can) to
(cgl,cne), or else they are indifferent and type n - 1 agents
prefer (cd,n-l,l’cd,n-l,Q) to (cn 1 l’cn 1 ?), etc. In particu-

lar, one type i; j € i € n, is made strictly better off, with no
type i + s3 s = 1,...n - i, made worse off. But this contradicts
the definition of CES, and is impossible.

(b) Then & < n. Since no agents of type i > £ defect to firm d,

ael'’a
2.1(“)’ "

better off.

type % agents mst weakly prefer [c (8 ) cd£2(e )] to
[c* c*2(p)], and some agent type i; j € 1 € £ is made strictly
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In particular,

Eal X *
> pUl0 g1 (8350 gs0%g)] + (10 JUle (8,438 gueky)] >
= * .
p,UleX (W] + (1-p JUleX (u)]; keF, k#d.
Also, by assumption (3e), edi =p; ¥ i3 J €1 € 2 We now make

use of the following lemma.

10 )

Lemma 2. Suppose some firm k has 6y, = O. Then c:is(ﬁk,

k*%-k

sets Uyy < Uy _y (if b1 > 0).

Proof: it is easy to show that the incentive constraint (9) for i
= q - 1 binds only on the choices cgs in the problem (8)-(11). TIf

qu = 0, then cqs is taken as parametric by firm k. Therefore,

setting Uﬁ—l > Uq 1 does not relax any constraints in the problem

(8)-(11), and uses resources. Hence Uq-l < Uq-l (4 qu_l > 0).

As is well known (Spence (1978)), this implies

g-1
(37) izl eki{pi[cil(ek)_ell + (l—pi)[cia(ﬁk)—egl < 0.
Thus, since edi > 0 (and hence, by (3e), since ekﬂ = 0 ¥ keF,

k#d), (37) holds # k#d for q - 1 = £ - 1. Therefore, the follow-

ing two statements are true:

1 ~ ~ ~
(38) 121 8, 4Ipsey, (8, )+(1-p,)e ,(0,)]
L
izl u; [pge¥y (u)+(1-p, Jed, ()],
(from (37) with q = £ and from ékz = 0), and (36) holds. Hence
(39) p Ule¥ (8,36 ,c )] + (1-p Jule} (6,56 4 ,c )] >

p Ulc*, (W] + (1-p )Ule*, ()],
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and if (39) holds with equality, some type i, £ < i < n, is made
strictly better off (with no type greater than i made worse off at
firm k, k#d). This is true since (by (36)) an incentive con-
straint is relaxed in the problem (8)-(11), and (by (38)) no
greater amount of resources are consumed by agents with i < 2
after the change in announcement by firm d. Also, as bhefore, no
type i agent receives expected utility less than ﬁi(u). But then
(39) (with strict inequality, or (39) at equality along with the
fact that some other type is made better off) contradicts that
c¥_ solves (8)-(11). Hence, this case is also impossible.

Case 2. Therefore, there must be indices i, j, and £ satisfying Jj

>0and 6., = 0. Repeating the previous

< i < 2, such that edjsdﬁ, i

argument, if & is the largest index such that 8. > 0, we derive

ds
the same contradiction as before. Hence, this case is also impos-

sible, and Proposition 1 is proved.

A Cooperative Equilibrium Concept

We now consider the imposition of a fairly standard
cooperative equilibrium concept on the same Rothschild-Stiglitz
insurance environment described above. In particular, a coalition
k is a set of indices k C {l,...,n} and an associated vector of
measures (8yq,+40,8, ). Let K denote the set of possible coali-

tions. Again, our focus is on allocation rules as above, for

reasons we discuss momentarily. Recall that an allocation rule

cs.(u) specifies an allocation to be received by type i agents in

is
state s, if u describes the population for the economy. Then we

say that an allocation rule cis(u) is blocked if there exists a

coalition k € K, and an allocation rule ckis(sk;e_k,c_k) specify-
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ing the allocation to be received by a type i member of coalition
k (where Bk is the vector of measures of agent types belonging to
coalition k, B—k is the vector of members belonging to other
coalitions, and c_, is the vector of allocation rules announced by

other coalitions) with the following properties:

(40) L 6 ipylesq (830 ey )-eq] +
(1-p;) leio(0y 30 _ysc_y)-e5]} < O

(k1) PiUlcy 51(0;38 yscy )] + (1-py)Uley40(8,30 yocy )] >
PiUleni (8n38 msc )] + (1-p3)Ulenin(0y38 pnyc_p)]
¥ 1 such that 6,4 >0, ¥ me K, m# k.

(L2) PiUley i1 (030 ycy )] + (1-p5)Uley0(0y 30 4 ,c )] <
piUIcmil(em;e—m’c-m)] + (l“Pi)U[cmi2(em;e—m’c—m)]
¥ i such that 8 ; < u;, for some me K, m # k.

(43) piUICZil(GE;B—L’c—z)] + (l“Pi)U[°212(3259—£’°-£)] >
piU[cmjl(Bm;e-m'c—m)] * (1_pi)U[°m32(em;e—m*c—m)]
¥ A, meK, ¥i, J=1, ess, N

(L) PpUlen1 (8,30 yhe )] + (1-p)Ule 5(8,30 3 ,c )] >
PUleq ()] + (1-p )Ule n(u)],

if e, >0,

(II-S) pn_lU[cn_l,l(ﬁk;e_k,C‘._k)] +
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(1-pp_1)0len_1,2(By30 e ) ] 2
Pn—lU[cn—l,l(U)] + (I“Pn_l)U[Cn_l,gflJJ]

if 6, = 0, 6,1 > 0, or if 6, > O and (44) holds with equality,
etec.

A word about conditions (40)-(45) is in order. Equation
(40) requires the allocation rule for coalition k to be resource
feasible. Equations (41) and (42) require that coalition member-
ship be individually rationale, and also that exclusion of in-
dividuals from a coalition be voluntary, i.e., in (42) individuals
are not members of k iff they do not wish to be. This is natural
for our private information setting, since otherwise it is not
clear on what basis individuals are to be excluded from a coali-
tion. Equation (43) requires that all announced allocation rules
be incentive feasible both within and across coalitions. In par-
ticular, type j agents in the complementary coalition to k cannot
wish to either join coalition k and truthfully reveal their type,
or join it and claim to be of some other type. Again, this seems
a natural requirement in this private information setting. Fi-
nally, (44), (45), ete., require that some agent types in coali-
tion k strictly prefer the allocation received in that coalition
to the allocation they would receive under the allocation rule
cisln)e

As a final definition, a core allocation rule is a

feasible, incentive compatible allocation rule which is not
blocked. It remains, then, to explain our focus on allocation

rules in this setting. It will be recalled that we require that
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blocking coalitions announce incentive compatible allocations.
Hence, the set of allocations available to any coalition depends
on the actions of the complementary coalition. This is a feature
familiar from the literature on the cores of economies with exter-
nalities/public goods (e.g., Foley ( ), Richter ( ),
Starrett ( )). Hence, all coalitions mst announce allocation
rules, so that they specify what they will do contingent on the
actions of other coalitions. Again, we focus here only on what we
call admissible allocation rules (defined essentially as above),
so that all allocation rules must satisfy (40)-(43) » (8,,0_ ) ¢
X a“, and mst also satisfy the following condition. Given
keK

(84,8_)), and given the allocations of other coalitions, there

mist not exist an alternate feasible allocation rule Eis such that

(46) Py ule .0

xi1 (O30 goC )1

)]+ (19 JULG, (8,50 0,

D, Ule, .. (8 30 )]

L )]+ (1*1’1)”[%12(9

Pt k30 eoC

¥ i such that eki > 0, with strict inequality for some such i.
This condition is imposed to prevent coalitions from threatening
to take actions in certain contingencies which their memberships
would unanimously reject if the contingency actually arose.
Consider now the allocation rule C;S(B), which solves
(8)-(11) ir 8; # 0 for any i, and the associated allocation rule

(8 ) which solves (8)-(11) subject to the assumptions

* .
i %%

discussed above if 0y = 0 for some i. Our first result regarding

cooperative equilibria is

Proposition 2. The allocation rule c?s(ﬁ) is a core allocation

rule.
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For the proof we make use of assumption (3e), i.e., if a blocking
coalition exists for some allocation rule, with d denoting the
blocking coalition, adi = ui* or edi =0%1i=1, vaes, Ne

Proof: Again we assume there exists a coalition 4 which announces

~

an allocation rule c., (8

) and has an associated measure
dis d

a3®-q2°-

of vectors 8, which blocks c§5(e). We then show that this assump-

tion leads to a contradiction. As before there are several cases

to consider.

~

Case 1. Bdi > 0 % i such that j < 1 € & First, suppose £ = n, J

= 1, Then all types are attracted. By (43), type n agents weakly

Ee ~ ~

prefer the allocation received wunder c,. (Bd;B

a1 to that

a*C-q)

received under cfs(u). If they are indifferent between the two,

-~

type n - 1 agents weakly prefer the ¢ (Bd;e_d,c_d) allocation to

dis
that received under c;s(u), etc., with some type being strictly

better off, and no type above that being worse off. But this

contradicts the definition of c;s. Hence this case is impossible.

-~

Suppose, then, that £ = n, j > 1. Since Bdi = Uy ¥ i>

Js all types with q < jJ receive the allocation specified by

-~

cgs(u—ed). Therefore
(A1) py_Uley ) (uB)] + (ep,_Jule, ; H(usb )] =
Ujul(u-ed)s

with ﬁﬁ-l defined by (14)-(16). Then type n agents cannot be made

hetter off under c.. (0.:8

ais 843 ) than they would be if they

-a°%-a

received the allocation which solved

max pU(c q) + (1-p,)U(cp0)
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subject to (40), (43), (10), and (47). But this problem is more

heavily constrained than (8)-(11) with 6 = p. Hence, type n

-~ A Ll

agents cannot be strictly hetter off under ¢ (ad;s ) than

dis -a°%-q

under c;s(u). If they are indifferent between the two allocations
type n - 1 agents cannot be striectly better off, ete. Hence, no
type i, jJ € 1 < n can be strictly better off. Therefore, £ < n.
Then suppose édi >0;1 < j < i< & < n. As we noted
above, the incentive constraints associated with types q < J do
not bind on types r > 2 in the problem (8)-(11) with 8, = 0, and

with type & agents receiving a given allocation specified by

~

cdgs(ed;e_d,c_d). Therefore, (since B_ is the complementary

d
coalition)
ﬂl -~ ~ ~ ~ ~
o) azle'da{Pa[czl(e—d;ed’cd)_el]+(1_Pa)[C§Q(B-d;ed’cd)_e2]}

<0

(see, e.g., Spence (1978)). Also, by (L5),

- -

(49)  pUle (6 438 e )] + (1-p)Ule (6 _36,,0,)] >
pgulc*il(u)l + (1-p,)ulet, (W],
But (48) and (49) imply that

(50) an[c:I(é_d;ad,cd)] + (l—pn)UIc* (6 ;éd’cd)] >

n2' =d

* » *
pUlc* ()] + (1-p )Ulc*, (u)].
If (50) holds with equality the analog of (50) holds for n - 1,

etc., and there is striet inequality for some r > 2. Now it was

initially feasible to give all agents of type i; j € i € &, the
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Ll

allocation ¢ (8 Bd,c ), and all other agents the allocation

dis' -4’ d

c* (6 ) Moreover, this allocation would clearly satisfy

d d
(10).  Therefore, (50) (or its analog for other types if (50)

holds with equality) implies that c?s(u) does not solve (8)-(11)
with 68 = yu. This contradicts the definition of c?s(u), so that
this case is impossible.

Case 2. There exist indices satisfying J < i < £ such that

~ -

ijedz > 0, adi = 0. Also, without loss of generality, let 2 be

the largest index with 6, > 0. First, suppose & = n. Then (Lk4)

holds for type n agents. In addition, since each coalition has a

feasible, incentive compatible allocation,
¥ o * =
(51) p Ule*, (W] + (1-p JUle*,(w)] > p Ulc

where (c ) solves

n1°%n2
max an(cnl} + (l_Pn)U(cn2)

subject to (9), (10), (11), (with & = u), and

-~

pyxU(cing) + (1-pyx)U(cixs) = ﬁg*(u-ad)s

-~

1 : = > 0.
where 1i¥* is the largest index such that edi 0 and edi+1 0

(51) is true since the problem defining (¢ ) involves more

n1°%n2

constraints than that defining (cgl,cge). But clearly
(52) an(cnl) + (l—pn)U(cnz) > an[cdnl(ﬁ_d;ﬁd,cd)I
(1-p, Jule 50 ¢ )],

dn2 d a°%a
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Now (51) and (52) contradict (4L4) with strict inequality. If

-~

6. . =0 % i this is a contradiction. If 8 > 0 and if (kk)
dn-i dn-1

holds with equality, we may repeat the argument for n - 1, etc.

Hence, this case is impossible.

Therefore, & < n. But now using (45) for £, and using

(by previous arguments) that

£ A ~ A
(53) azls_da{pa[ctl(ﬁ_d;Bd,cd)—el] +
(l"pu)[c;2(a—d;8d’cd)-e2]} <0,

~ -~

clearly type n agents are not worse off under c¥* ) than

ns(a—d;ed’cd
under c:S(u). Similarly, if they are not better off, type n - 1
is not worse off, etc. Hence, there exists a type h > £ which is

strictly better off than under c;s(u), and no type i, h < i < n,

) and

: * : % :
is worse off than under cis(u). But since both cis(e_d,ed,cd

~ -~ -~

8.30 d) are feasible and incentive compatible, this con-

¢y (0430 gsc_
tradicts the definition of c?s(u). Therefore, this case is impos-
sible.

Case 3. There is Just one index, £, with Edﬁ > 0. But then, by
(45) (for type &) and (53), we can reproduce the argument above.

Thus, this case is impossible as well, proving Proposition 2.

Notice that we have relied heavily on (3e), which says a
blocking coalition must attract all or none of each type. For the
case of n = 2 a proof of Proposition 2 can be constructed for any
041 € [O,ui*]; i =1, 2. This proof is analogous to the proof of

Proposition 1 for n = 2, and is omitted here.
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Our second result on cooperative equilibrium allocation
rules is

Proposition 3. Let c?s(e) be the allocation rule solving (8)-

(11). Then cgs(ﬁ) is the unique core allocation rule.

As before, the proof for n = 2 is straightforward, whereas the
proof for n > 2 requires that the complementary coalition either
has all or none of each type of agent. Hence, we first present
the proof for n = 2.

Proof of Proposition 3 (n=2). By Proposition 2, c* (8) is a core

is

allocation rule. Suppose there also exists some other core allo-

cation rule Eis(e)' We now derive a contradiction by constructing

a blocking coalition for Eis(e).

Let d denote the blocking coalition, and 05 its asso-

ciated vector of measures. Suppose 832 = u2*, and suppose d an-

* . s * = % i
nounces the allocation rule cdis(e-d’ed’cd)' Since Bd2 uo¥, if

Bfil < yq clearly

(54) p,Ule,, (u*-0%)] + (1-p,)Ulc ,(u*-0%)] < T,

with Ul defined by (12). Since type 1 agents obtain expected
utility no less than ﬁi with coalition d (by constraint (10a)), we
could arbitrarily assign all type 1 agents to d and meke them no
worse off than they were in the complementary coalition. There
are now two cases to consider.

Case 1. ¢ s(u*) does not solve (8)-(11) for 8 = p*. Then clearly

i
PQU[cgl(u*)] + (l-pe)U[cgz(u*)] >

p, UG, ()] + (1-p,)UIS,, (w¥)].
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Also, by constraint (10a),

(55) plUIcil(u*)] + (l—pllU[cie(u*)] > ﬁi.

Moreover, by construction C;S(B) is feasible. Hence c?s(e) satis-
fies all of the conditions required of a blocking allocation rule,
so this case is impossible.

Case 2. There is more than one solution to (8)-(11). Eis(u*) is
one such solution, but is not the solution which gives type 1
agents the greatest utility. Then clearly the grand coalition
blocks ¢, (8). Thus c?s(e) is the unique core allocation rule, as

1s

claimed.

For n > 2, we again make use of (3e), so that when a
blocking coalition forms the complementary coalition either has
=qy.% = i =
6_g=uy*orb_g=0xi=1, ..., n.

Proof of Proposition 3 (n>2). As before, we know c§s(s) is a core

allocation rule. Again, we suppose there is some other core
allocation rule Eis(e), and derive a contradiction by constructing
a blocking coalition. We continue to let d denote the blocking

coalition, 6% its associated vector of measures, and we continue

d
to suppose Bgn = un*, and that d announces allocation rule
* . §
cdis(e-d’ed’cd)' There are two cases to consider.
~ *
Case 1. cis(u ) does not solve (8)-(11). Then clearly

an[cr*:l(u*)] + (1-p Julc*, (u*)] >

p Ul ()] + (1-p Jule ,(u*)].
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Also, C?S(B) is feasible by construction. Hence, if we show that

]

we can always select Bgi i*¥;, 1 < i < n, we will have con-

structed a blocking coalition.
if 6% # yu.%. g% = 0.
By (3e), if 0%, # u;*, 6%, = 0. Then suppose we cannot

select Bgi = ui* ¥ i. Let g denote the largest index such that

ng = 0. There are now two possibilities.
* = ¥ : -
a) edq-h LES for some h; 1 < g = h < qo Then as we know,
* .
cd,q-h,s(ed’e-d’c—d) obeys
q-1
* * * e
(56) JE 6%; (o, [c¥; (8%30% ,c_y)-e)] +

(1-p; ) [e¥, (8%50%,,c_s)-e,1} <0,

and
* ¥.0%
(57) PonUler y 1(0F30%5,c_g)] +
- * %.0% U *
(1-p,_y,)Ule} ) o(0%50% 5 )] < U, (6%),
with U__, (0%) defined by (14)-(16). Thus it is not hard to see
that
(58) P, ule ol (6%;0% ,c_,)] +

s i *.0% T (u*
(1-p JUIE L, (0%50% e )] < T_(u¥).

d

(0% )

ol )]+ 1-p, Jule

This is true since qu[c d’ d,c 2( 3’ d’c—d)I
is bounded above by the solution to the problem that defines
ﬁg(u*), but with a set of constraints of the form (57) added

(since 6%

- : SRR s v B
*qy = 0 for at least one i). Now if 0%, = u;* ¥ i, type g

agents obtain at least ﬁh(u*) by (10). Hence, we may assign these
agents to coalition d without violating (42). Thus, d would

satisfy all the requirements for a blocking coalition.
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b) Ggi =0 ¥ 1< i< q. Then clearly (58) holds. Hence the
argument above applies, and we may assign all agents to coalition
d without violating (42). Thus, again a blocking coalition d has
been constructed, so that this case is impossible.

Case 2. (u*) does solve (8)-(11) for 6 = u*, but there are

Eis
multiple such solutions and Eis is not the one which assigns
highest utility to type n - 1 agents, etc. Then obviously the
grand coalition blocks Eis(e). Hence, we can always construct a
blocking coalition for any allocation rule other than c"i‘s(e),
establishing the proposition.
The logic of the proposition is straightforward. Under any allo-
cation rule other than c;s(e) which is Pareto optimal ¥ 8 & AP
(and hence a candidate for a core allocation rule), type n agents
subsidize agents of other types. Hence, type n agents can always
form a blocking coalition by defecting, and offering agents of
other types an allocation weakly preferred by them to any alloca-
tion they could attain on their own. Since this is at least as
good as what these agents can attain in the absence of type n
agents, they are in essence '"forced" to join the blocking coali-
tion. This intuition also suggests why ci"s(e) is an unblocked
allocation rule.

Finally, there is an obvious corollary to Propositions
1-3.
Corollary. The set of core allocation rules is contained in the

set of Nash equilibrium allocation rules.

Thus core allocation rules can be "decentralized" here.



