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ABSTRACT
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The purpose of the present paper is to outline some procedures that
are useful for solving and estimating certain types of rational expectations
models. The models described below are rational expectations models in the
sense that all agents' expectations of future variables are taken to be the
conditional expectations of these variables on the agents' current information
sets. These models are also hierarchical in the sense that the information
that agents may use in making decisions is not the same for all agents.
Instead, the information of one agent is restricted to be "smaller" than that
of the others. To be more precise, one agent (perhaps a central monetary
authority or a dominant firm) is assumed to be a Stackelberg leader. The
other agents are assumed to know from the outset the strategies (sometimes
called decision rules) of the leader for all time periods. The leader, how-
ever, does not take the strategies of the other agents as given, but exploits
his knowledge of the other agents' reaction functions in maximizing his own
objective.

The principal application of the techniques outlined below is in
solving and estimating discrete time Stackelberg dynamic games of the linear-

quadratic Gaussian (LQG) variety. These techniques are nonrecursive "

open
loop" and are intended to complement recursive "closed loop" or "feedback"
procedures such as those described in Kydland and Prescott (1980) or Chow
(1981).

The paper is presented in the following order: Section 1 lays out a
two-player LQG Stackelberg game; Section 2 gives some examples of oligopoly
models that fit into the framework of Section 1; Section 3 presents the solu-

tion procedure; extensions and some estimation strategies are discussed in

Section L.



1. Dynamic Game Models

An important class of hierarchical rational expectations models are
models describing Stackelberg equilibria of dynamic games. In the present
paper, I analyze a game with two infinitely lived players, each having a time-
invariant, time-additive discounted quadratic objective functional. A1l
stochastic variables enter into the players' objective functional in a linear
fashion, and are assumed to be normally distributed. The two-player assump-
tion can be relaxed, subject to computational constraints, but the other
assumptions cannot. The purpose of the other assumptions is to facilitate
econometric application by allowing linear least squares projections to be

used in place of conditional means. In terms of notation, let

be a column vector of decision variables of player 1 (the

1% Stackelberg leader) at time t;
u,,  be analogously defined for player 2 (the follower);
f be a column vector of uncontrollable forcing variables influ-
1t . \ ;
encing player 1l's payoff at time t;
f2t be analogously defined for player 2;
b be the discount factor common to both players, where 0 < b <

1.

Player one's objective is given by:
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where A(L) and B(L) are matrix polynomials in the lag operator L, of finite
order and degree; Ml' MQ, M3, Nl, N, and N3 are matrices of the appropriate
dimension, M;, Mo, N;, and N, are symmetric, E; is the expectations operator,

conditional on information available at time +t = 1. Player two's objective

is given by
J, = E E b*1 g1 u, ~[C(L)u,, 1'% P, [C(L)u 1)
2 1 5 2t 2t” 1t 2 1
- [D(L)u ]' —P [D(L)u,, ]
- [D(L)uy, ]' PolC(L)uy, ]

1
Wy 2 Qup-ugy §'Q2“2t‘“étq3“1t}

where C(L) and D(L) are finite order, finite degree matrix polynomials in the
lag operator L, P, P, P3, Q1s Qo, Q3 are matrices of the appropriate dimen-

sion, P1= Pé, Ql, Q2= are symmetric, and the definiteness condition

p(pl/2em1) 1/2 iw

PbD(b

) + Q2 >0

is satisfied for w € [-w,m]. An example of a similar definiteness condition
for the first player is given in the Appendix.
The uncontrollable forcing vector ft = [fitfét]' is assumed to be

Gaussian and to have time-invariant fundamental moving average representation
f, = F(L)vt + K

where V¢ is vector white noise, and K is constant.
Fach player i seeks to maximize his objective by choosing a sequence

of strategies {g Each strategy maps the player's information (Ij)

-]
1ehe=1t
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into a decision taken at time t, i.e., u,, =g (I..)e &/  Because of the

asymmetric nature of Stackelberg equilibria I 5 for any time t. For

T 2

player one (the leader)

(11) L, = {vt’vt—l""} U {initial conditions for all state variables}

while for player two (the follower)

(1.2) Ty = T e b

An equilibrium [{g{t}’{ggt}] occurs when {gft} maximizes J; and {ggt} maxi-
mizes J,, where {glt} = {g§t} in equation (1.2). The strategies {glt} are
restricted to be affine functions of the shocks {vt}, and to be of mean expo-
nential order less than b_l/2. Note that player two's information does not
include knowledge of player one's future decisions, but instead knowledge of
player one's future strategies. Note also that the equilibrium strategies
must be optimal for almost every sequence of realizations of {vt}.

The distinction between decisions and strategies is an important
one: the leader is a "dominant player" in this game because he is the first
to announce a sequence of strategies. Decisions, on the other hand, are taken
simultaneously by both players in every period.

It is also important to note that the restriction to affine strate-
gies is a nontrivial one. With this assumption, certainty equivalence can be
exploited in the solution of the model considered above, even though the
leader's problem is not a classical LQG problem.gj To see why this restric-
tion is important, suppose the leader were allowed to play nonaffine strate-
gies; then the follower's conditional distribution on the future decisions of

the leader would no longer be Gaussian, resulting in nonaffine conditional

expectations of the leader's future decisions. Since the leader must take the
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follower's (again, possibly nonaffine) strategies into account when formulat-
ing his own optimal strategy, certainty equivalence would no longer hold for
the leader's problem. That affine strategies can be suboptimal for nonclass-
ical LQG problems, and that certainty equivalence can fail to hold in such
problems, has been demonstrated by Witsenhausen (1968) in the context of a
two-period model. Hence, one would ideally allow for nonaffine strategies in
the equilibrium considered above. However, since an extension to nonaffine
strategies could complicate the analysis to the point of intractabilityfif
only affine strategies will be considered.

Because the information sets I;4 contain no state variables other
than uncontrollable shocks, this sort of game is described by dynamic game
theorists as '"open 100p"rEj Games in which controllable state variables
appear in players' information sets fall into the "closed loop" and '"feedback"
categories. As emphasized by Kydland (1977) and others, the equilibria of
open loop dynamic dominant player games will in general be different from the
feedback or closed loop equilibria. The open-loop approach taken in this
paper is Jjustified largely by computational considerations. Particularly for
econometric applications, the nonrecursive procedures discussed below my
offer considerable gains in computational convenience over the recursive

procedures used to obtain closed loop and feedback equilibria.

2. Examples

This section contains three examples of dynamic game models that
fall into the class of models discussed above. Each of these models can,

therefore, be solved using the techniques outlined in the next section.

Example 1. Exhaustible Resource Depletion.



i

Hansen, Epple, and Roberds (1984) consider the case of an extractive
industry consisting of two producers, where the first producer is a Stackel-
berg leader. Resource extraction cost at time t for producer i is given by
el

) Ar.. ¥ 7w AE.

+
(— it s Eole E |

+
ByhTyy ¥ Sy b,

where rit denotes the cumulated amount of the resource extracted by firm i as

1

of time t, ¢i’ Tss and Bi are positive constants, and Sj+ 1s a random shock
to the costs of firm i at time t. The exhaustive nature of the resource is

represented by the presence of the terms ﬁiAr The inverse demand

it it-1°
function for the resource is given by

= - +
P, d GIArlt Ar

t 2t

where Py is the real price of the resource at time t, dt is a random shock to
demand, and § is a positive constant. Fach producer i is assumed to maximize
o 0, +m,

t-1 L s 12
E, t£1 b {ptﬁrit-¢iArit-sitar (—=5=)8r, ~w by, 1}

5

The Hansen, Epple, and Roberds model can be fit into the current setup via the

substitutions
Usy = Tips i =l 2
P.oo= QLA - ¢, = 8,), i=1, 8
it t 1 & T &

A(L) = B(L) = c(L) = p(L) = (1-L)

M, =0, + 26



M3 = P3 =6
N, = nl(l;b)
Q2 = wz(l—b)

Example 2. Adjustment Cost Model

Kydland (1979) uses the following oligopoly model to illustrate the
feedback solution in dynamic dominant player games. Suppose an industry
consists of two firms, each with output Yit at time t. Investment by firm i

over period t, Xji» is taken as

Xjg, = Vg ga1 - (1-80ygy

where § = the depreciation rate. The cost of investment to firm i at time t

is given by

2
+ -
ax, o c(xit &Yit)

where g is the unit cost of capital and the term c(xi-&yit)e, ¢ > 0, repre-

sents the adjustment cost associated with changing the firm's capital stock.

Each firm i seeks to maximize

t-1 2
. L. {ptyt“qxit'C(xit"ayit) }

)

e~

t
where p; is the real price of the firm's output at time t, net of any constant
unit production cost. As in the first example, p, is determined by a linear

inverse demand function

py =2, - aly;wyy, ]
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where ay is a random shock to demand and a is a positive constant. To map

Kydland's model into the present setup, set

2ba

=
I
'\ff)
I

Example 3. A Model of Learning by Doing
Dennis Epple has suggested a linear-quadratic model of learning by

doing, in which each of the two producers in an industry seeks to maximize
s 2
Ty = L 277 (pyayynyae 0y Kk, )

where Py is the real price of the industry's product, d;+ 1s the current
output of firm i, and k;; represents the "experience" of firm i in producing
the product. The parameters My and w, are assumed to be positive. Real

price is given by the demand equation

py = d - 8lag +ay, ]
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where dt is a random shock to demand and § is a positive constant. Experi-

ence, k;., evolves according to the law of motion

kg = 1K

it-1 T Yt
where Y is a constant greater than zero, and the condition (ui+6) (l-yb—llg) >
m; 1s satisfied.

In this model, the cost-reducing effects of learning are represented
by the term “iqitkit’ i.e., one-period marginal costs are linearly decreasing
in experience. Experience must grow at a rate less than b—tle, however, in
order that one-period costs cannot be driven to negative infinity by the
learning effect.

The learning model is mapped into the present setup by the substitu-

tions

W
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3. The Solution Procedure

By "solving" the class of models described in Section 1, I mean to
derive a method of mapping the parameters of the two players' objective func-
tionals into the parameters of the equilibrium law of motion in the variables
Uy and upee Explicit formlas for {g‘l*t} and {g*ét} are not derived. The
solution procedure makes heavy use of techniques developed by Hansen and
Sargent in (1981). Especially useful are the following differentiation rules:

let {xt} and {yt} be vector sequences such that

93]
|

L 2" la(Lly, ]" Ble(L)x,]

and

8

S po L [a(L)y

1

I
I~

Y.
5 = d tJ E-F[d(L)yt]

are bounded, where 0 < b < 1, a(L), c(L), and d(L) are finite order matrix
polynomials in the lag operator, and B and F are appropriately dimensioned

matrices. Then

bt-l

(p1) 38, /3y, a(bL‘l)' B c(L)xt

(D2) 38,/%y, bt a(er ) 7 a(L)y,

The certainty equivalence properties of LQG optimization are also exploited,
in that the model is first solved for conditional means. Terms involving
expectations are then evaluated using the standard Wiener-Kolmogorov predic-
tion formulas.

To initiate the solution procedure suppose that player two knows the
sequence of equilibrium strategies [gi‘t} of player one. Since player two
knows [g{t}, and at every time t, I?t o} Ilt’ player one's decision

u’it = g‘it (Ilt) will be known to player two as of time t. The necessary
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first-order conditions for player two will thus be the following expectational

Euler equa‘tions:-s_/
-1 ' 2y
(3:1) [D(pL™) P2D(L) + Q2] E uf =

-] _
- IQ3+D(bL ) PBC(L)] Euk +f, t=1,2, ..

where again E, represents the conditional expectations operator. The opera-

tors L and L"l are defined as follows for the sequence of conditional means

Etult: LEtult = Et—lult-—l’ and L-lEtult = Etult-!-l’ i.e., negative powers of L
6/

do not operate on agents information sets.~ Now, the characteristic poly-

nomial of equation (3.1) has factorizationl/

Blbar ) P,D(z) + Q, = G(bz™")" G(z)

where G(z) has only nonnegative powers of z, the roots of det G(z) exceed

-1/2 . . y
b / in modulus, and the moduli of the roots of det G(bz 1) are less than

b_lfe. The homogeneous solution to equation (3.1) may thus be written

h

Yoy

=¥ (h.r %%, (b7 ) ?)
i X kL 1 1

where the r; are the roots of det G(z), and the vectors {hi} and {ki} are of

the same dimension as u.,. Since the [u;E

ot are restricted to be "stable",

-1/2

"

i.e., of mean exponential order 1less than b ,» the coefficients of the
unstable portion of the homogeneous solution, the ki's, mist be equal to

zero. FEuler equations (3.1) may thus be solved forward to yield

(3.2)  G(L)ug, = 6™ {~[ag(er™)" Pe(n) B ut 41y, ]

Equation (3.2) is a "closed loop" representation of the sequence of optimal
decisions {u%t}, i.e., the current optimal decision for player two, ugt, is

expressed as a function of lagged values of itself, and current and lagged
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values of u?t and f2t (after making the appropriate substitution for terms

involving expectations of future variables). Using this representation, one

could go one step further and derive the sequence of optimal open-loop strate-

gies {ggt} by operating on (3.2) with g{L)_l. However, for the present pur-

pose of deriving the equilibrium law of motion for u,, and u this extra

1t 2t
8/

step is not necessary .~
The next step in solving the model is to formulate the Ileader's

problem as a constrained maximization problem:

(e, M en} 2

lo it u, = glt(Ilt)’ Uy, = g?t(I2t) and equation (3.2).

To solve the leader's problem, form the Lagrangian expression

A R R WL

N =

1918”7 My [A(LDuy ]

- [B(L)a.. ] [B( Yt ]

2t 2 Yot

- (AL, 1" M (B(L)uy,

2t

- 1
ule 3 MU g 5 Nous -ug Nou,, |

Lyl e 6@

+E § vt {ap [e(oL B

t=1
-1y,-1

2t

G(bL

[Q3+D(bL' )P C(L)]Etult]}

where At is a vector of Lagrange multipliers. Necessary first-order condi-

tions for the leader's maximization problem are



wi I8

-] i
(3.3) [A(BL™) MlA(L)+N1]EtuTt
-1,
+ [A(bL™T) M3B(L)+N3]Etu§t
+ [Qr+c(n 1) 'Pin(L)] 6(n)tE A% = £
3 3 o 1t
1 -1 1 -1 Tt
(3.4) [N3+B(bL ) MéA(L)]Etugt + [B(bL™) MQB(L)+N2]Etu§t

-ll * =
+ G(pL™) EAF =0

hy-le

(3:5) G(bL'l)"1!Q3+D(bL'1)'P c(L)]E, u* + G(L)E,u* = G(bL™ ot

3 v 1% t72¢

t=1, 2, 3, e

Now substitute AS = G(L)_lk:, operate on (3.5) with G(bL“l)', and stack the

above equations to obtain the system

(3.6) H(L)E u* = z

T %
where
u¥ = [u*' u*! lor]v
T B T S
v, + AGBL™Y) Mo A(L) N, + A(bL™Y)'M_B(L) QL + C(bL-l)'P'D(L)-
1 i} 3 3 3 3
= 1 "ll ' “'11 "1|
H(L) = Ny + B(bL™™) M3A(L) N, + B(bL™) MQB(L) Q, + D(bL™™) P2D(L)
Q. + D(bL 1) 'Poc(L) + D(pL~ 1) 'p_D(L) 0
L 3 3 Q2 2 4

and

1 ) 1
z, = [£], 0 £5,]

Alternatively, equations (3.6) may be derived by taking the constraint in the

leader's optimization problem to be the follower's FEuler equationsrgj It is

convenient to rewrite H(L) in partitioned form as



H,@  H,() H, 5 (L)
BL) = H12(L)' H22(L) H23(L)
H13(L)' HéB(L) 0

0

Using equation (3.4), the lagrange mltiplier vector E A,

may be eliminated

from the system (3.6), yieldinggﬂ/

- ' -
- Hll(L)-H13(L)H23(L) Hl2(L) HlQ(L)-HlB(L)H23(L) 1H22(L) Etu§t
Hy5(0) H23(L) Ejus,
_ [Tt
for

It is of interest to compare the equations (3.7) with the EFuler
equations that would be obtained in an open loop Nash game. Tor the Nash
game, one obtains by stacking the first-order conditions for the first and

second players

(3.8) ETRCIE T LN I e
Hy4(L) Hyg(L)| [E uf, 54

By comparing (3.8) and (3.7), it is clear that the Fuler equations of the
dominant player and Nash games differ only in the leader's equation; the
follower's equation is the same for both games. Also note that, since the

polynomials Hi (L) are of finite order, the leader's Fuler equation will be of

J
finite order in the Nash game, but in general of infinite order in the
Stackelberg game.

For reasons of brevity, general sufficiency conditions for the
leader's problem are not given here. Rather, an example of how sufficiency

conditions can be obtained is given in the Appendix, for the third example of

Section 2.
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The last step in the solution procedure is to use equations (3.6) to
obtain a vector ARMA or MA representation for u:. To obtain an MA representa-

tion for zy, first factor H(L) astl/
-1
H(L) = K(bL™")K(L)

where K(L) involves only positive powers of L, and the roots of det K(s) are
outside the circle ]s! = b-l/e. One algorithm for obtaining this factoriza-
tion numerically is suggested by Whittle (1983). An alternative methodlg/ for
obtaining the necessary factorization would be to interpret equations (3.6) as
the first-order conditions for an unconstrained LQG problem, then to solve the
matrix algebraic Riccati equation for that problem.

Assuming the roots of det K(s) to be distinet, write K(bL-l)-l

matrix partial fractions form as

N
k(b 1)t = 7
J

L-—sJ

where the NJ are matrices of the appropriate dimension, and the sy are the
roots of det K(bs_l). Requiring the homogeneous solution of (3.6) to be equal
to zero, one obtains by a slight modification of a result by Whiteman

(l983)£§/ the unique equilibrium moving average representation for u::

(3.9) u = ] C vi_y = C(L)vy

where

% = : : : ' 1
v¥ is the innovation in [flt 0 £

N
c(n) = k()% ) 'ﬁ:g— [L“F(L)—sg F(sj)]
J J

where n is the highest order of the polynomials A(L), B(L), c(L), and D(L).

Again the summation is over the roots of det K(bs'l)
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A difficulty with the above solution is that while the sequence
{tr[bJCJCE}}jZO is guaranteed to be summable, the sequence {tr [CjCj]} is
HEE,: Eeiley u: may not be stationary. In the case that det K(s) has no roots
for Isl < 1,however, the latter sequence will be summable and the solution
u; will be stationary. This will in fact be the case for the examples of

Section 2.
An ARMA representation for u: can be obtained by operating on both

sides of (3.8) with KalK(L) to obtain

L—SJ J

(3.10) KBIK(L) uf = Kal ¥ 53 [L’“F(L)-s’”‘F(sJ)]xq_"r

J
where K, is the constant term of K(L). A researcher might prefer to work with
the ARMA representation in a models such as Example 1 and where it is impor-
tant to allow for nonzero stable homogeneous solutions to the first order
conditions (3.6).

The ABMA representation (3.10) is also interesting in that it re-
veals the time inconsistent nature of the open-loop equilibrium. To see this,
first note that the correct initial conditions for the vector of Lagrange
miltipliers AS are AE =0 for t < 0. As the game evolves according to equa-
tion (3.10), however, Ag, Ag, +ssy Will in general be nonzero. Now consider a
dynamic subgame starting in period Tt > 1. For such a subgame, the correct
0 0

A

initial conditions for lg are AS =0 for t < 1, implying that Al, cees A 4

mist be zero. Hence, the equilibrium for the subgame will be different from
the original equilibrium, and the optimal strategy for the leader will not be

time consistent.lﬁj
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L4, Extensions and Empirical Applications

There are two immediate extensions to the model presented in Sec-
tions 2 and 3.

First, the model can be extended to a setup where there is more than
one follower. Computational considerations will be a limiting factor for this
extension, as each additional follower will cause the dimension of the H(L)
matrix to be augmented by 2k, where k is the dimension of the follower's
vector of control variables. An alternative technique for introducing more
players into the model would be to treat the follower as a representative
player whose objective function represents the aggregation of the objectives
of a number of competitive agents.

The second extension results from the fact it is not really neces-
sary to specify the follower's objective function in order to solve for the MA
or ARMA representation of u:. If the researcher is not interested in the
parameters of the follower's objective function, then he need only posit a set
of Euler equations such as (3.1) to obtain the solution to the model.-]-‘—s-/ This
might be the case in a macroeconomic application, where the researcher was
primarily interested in estimating the parameters of the objective function of
a governmental agency.

In the case that the solution for u: is stationary, two quasi-
maximum likelihood estimation procedures may be used to estimate the model.
These procedures are discussed in some detail in Hansen and Sargent (1980); a
brief outline of their application to the present model is given below.

To apply these procedures, first partition ft into observable and

unobservable components, i.e., ft = [f‘gf‘:]'. The MA representation for fy

mist have form



0 0 0
£ _ F (L) 0 Ve
n n n
o 0 F (L) Vg
where VS and vi are uncorrelated at all leads and lags. Denoting by wvg the
linear least squares projection of vy on VS’ the model to be estimated is
u
ult = UC(L)(vg—nvg)
2t
+ UC(L)m?
t
0 _ 0 0
ty =E (B

together with any auxiliary equations (e.g., demand equations) of the model,

0
i = . inig = * - = R !
where the matrix U [1:0]. Defining a4 vi LA za F(atat}, and

Ev = E(vivi'), the theoretical spectral density matrix of the process

[uit uét fg‘]' is given by S(w) =
ve(e™) ucle™ )|, o ||ce™ ur B0l
0 FO(e™1®) || o Illmee™) o

The first estimation procedure is to maximize a spectral approxima-
tion of the 1log 1likelihood function. Let I(mj) be the periodogram of
[u! u! fo'

L = 213 /T for j O, eeey, T - 1 and T is the sample

]', where w

J

size. The spectral approximation of the log likelihood of the sample is given

by
X y Hgd
HT = constant - 3 JEO log [det S(mJ)]
T-1
1 -1
-5 jzo tr [S(mj) I(wJ)I-

The above procedure may appear more complicated than it actually
iss To calculate the value of L% for a given set of model parameter values,

one first needs the periodgram of the observable series U1+, Upt, and fS. One
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would then obtain the moving average polynomial C(L) by application of a
spectral factorization algorithm to H(L). Having obtained C(L), one can then
construct S(wJ) at the harmonic frequencies wy. Having obtained S(mb), L% can
then be obtained by straightforward matrix manipulations. An interesting
aspect of this estimation procedure is that one need not construct the unob-

servable Lagrange multiplier series lo

% for purposes of estimation.

The second estimation procedure is to maximize a time domain approx-
imation to the log likelihood function, i.e., the log likelihood conditioned
on some initial observations. This procedure makes use of the ARMA represen-

tation for ut:

N
KK (L)u¥ = Kal § el [LnF(L)-—S?F(S v

0 (3 L-s

5 18y J

16/

which can be rewritten in invertible form as

-1 0w
KO K(L)ut = M(L)wt

where w, is white noise and M(L) is invertible. It is also assumed that fg

has invertible ARMA representation

where x, is white noise and P(L) is invertible. Let ¢x, be the projection of

Wy on Xy The time domain approximation of the log likelihood function is

given by
2 T T
LT = constant - E—log [det Vll - E-log [det V2]
1 T -~ -~
where V, == ) x x!
1 T £=1 t b
~ O -~
= - P
x, = [N(L) £ - L(P(L)/L), x,]
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] U(wt-¢xt)(wt-¢xt)'U'

Il ~—13

v=%
£

(K5 K (L )ut-L(M(L) /1) ]

-~
+¢

5 >
I

and the notation ( )+ means to ignore negative powers of L. The time domain

approximation assumes that sufficient initial conditions exist for f‘g, Uqts

-~

and Upy SO that X1 and Lel and are well-defined. Presample values for

-~ -~

Xy and v, are taken to be zero. Initial values for the Lagrange mltiplier
Ai will also be equal to zero.

Again, the time domain approximation procedure may appear rather
complicated at first glance. A verbal description of the precedure is as
follows. Given a set of model parameters, factor H(L) to obtain an ARMA

representation for u¥. Also obtain an ARMA representation for fo Sequen-

% t*
tially construct the estimated innovations in fg, i.e., the xt's. One would

then sequentially construct the estimated innovations in u i.e., the wt's.

X,
This last step necessarily involves construction of an estimated series of
Lagrange mltipliers. This can be done because at any time t > O, AS is an
affine function of current and past observables, whose values are known, and
their innovations, which can be approximated by setting presample innovations
to zero.

An inconvenient feature of the time domain approximation is that a
new Lagrange multiplier series mst be constructed for each function evalua-
tion. Because this added step will not be necessary in evaluating the spec-

tral approximation of the log likelihood function, the frequency domain pro-

cedure may offer computational advantages over the time domain procedure.
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5. Conclusion

By using a Lagrangian to solve the leader's maximization problem,
the methods of Hansen and Sargent (1981) and Whiteman (1983) for solving
linear rational expectations models can be extended to a class of hierarchical
models. Although it will not generally be possible to obtain analytic solu-
tions for these models, numerical solutions can be obtained using the algo-
rithm suggested above. There will be some extra computational burden for
hierarchical models because Lagrange multipliers must be added to the vector
of decision variables, but the same computational techniques may be used as

with nonhierarchical models.



- 20
Footnotes

-J‘-/The term "information" is used here in the game theoretic sense,
i.e., a player's information as of time t is the domain of his strategy func-
tion as of time t.

-2-/'I'he applicability of the certainty equivalence principle in such
cases follows from the result IV.c., p. 1561 of Witsenhausen (1971).

g-/'l‘he skeptical reader is referred to Witsenhausen (1968).

ilThe term "open loop" is usually applied to games under certainty,
i.e., the case for which vy = 0 for all t in the game described above. The
definition of open-loop equilibrium for the stochastic case corresponds to
that of Kydland (1977), except for the restriction that strategies be
affine. The reader is referred to Kydland's article for a comparison of open
loop, feedback, and closed loop dominant player dynamic games.

é-l’l'he term "expectational EFEuler equation" was coined by Whiteman
(1983).

6/Readers of Sargent's textbook (1980), should note that Sargent's
operator "B" is identical to "L" as defined above.

l,This follows from well-known results for spectral density ma-
trices. See Hansen and Sargent (1981) for a discussion of such factoriza-
tions.

Q/This follows from the fact that adding current and lagged state
variables to the follower's information set will not change the leader's

optimal strategy. In the words of Basar and Olsder (1982) (Remark 1, page
309):
"If the follower has, instead [of open-loop information],

access to closed loop perfect state information, his

optimal response will be any closed loop representation
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of the open-loop policy [{ggt}]; however, since the
constraints [placed on the leader, in maximizing his
objective] are basically open-loop relations, these
different representations do not lead to different opti-

mization problems for the leader."

EfThe reader is invited to verify this statement by taking equations
(3.1) as the leader's constraint, then applying differentation rules D1 and
D2.

égjsince the first-order conditions for the leader's problem only
hold for positive t, some care mst be exercised in interpreting the term
H23(L)_1, which involves positive powers of L. In order for these inverses to
be well-defined, I adopt the convention that both players' objective functions
have been normalized so that all variables take on a value of zero for nonpos-
itive time.

.llngain see Hansen and Sargent (1981) for a discussion of such
factorizations.

inganny Quah suggested this method.

lgfl.e., the corollary to Theorem 1, Chapter 4 of Whiteman (1983).
The necessary modification is to restrict the region of existence for K(s)—l
to be {sl |s]<b1/2} instead of the open unit disk. The result of this
modification is that the [Cj} are not necessarily square summable unless they
are '"deflated" by {bj}, as explained above. The reader is cautioned that
Theorem 1, which determines whether a unique solution to a given model exists,
is false. However, the corollary, which gives the form of the unique solution
when it does exist, remains true.

}EjThis point has been noted by a number of authors, perhaps most
forcefully by Kydland and Prescott (1977). The reader should note that the

term "optimal" in the sentence "optimal strategies are time inconsistent" only
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means "optimal for the dynamic game under consideration" and not (in general)
"globally optimal for the leader."

-]:-S—/In this type of analysis there would technically be no need for
the LHS of Euler equations (3.1) to be symmetric in z and vz~ L. Proving
sufficiency for the dominant player's problem and existence of the necessary
factorizations would be more difficult than under the symmetry assumption.

-iélHansen and Sargent (1980) describe procedures for obtaining such
representations. As long as the MA component of the representation for u%" has

no roots on the unit cirecle, such representations can be obtained in a

straightforward fashion.
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Appendix

Sufficiency Conditions for the Learning by Doing Example

In this Appendix, I investigate sufficiency conditions for a cer-
tainty version of Example 3 of Section 2. First, it is convenient to rewrite

producer i's objective as

- |
.= tzl b {la, -8(1-vL) (p, +k,, )] (1=YL)K,

2
- uy (A=) 154wk, [(1-yL)k, 1],

Using the differentation rules given above, it can easily be shown that for

this example, the leader's (producer 1l's) first-order conditions are

2a(L) + Bl(L) a(L) a(L) 1t
a(L) 0 2a(L) + 62(L) Koy
a(L) 2a(L) + BQ(L) 0 \0
t
= (1-ybL‘1)dt
0
(l-YbL_l)dt
where
a(L) = §(1-yL) (1-ybL ™)

e

8;(1) = 2u, (1-vL) (1-vdL™) - m (2-yL-ybL™

The leader's first-order conditions correspond to equations (3.6) above.
The discussion of sufficiency conditions below will follow that

given in Telser and Graves (1971), pp. 58-81. 1In their notation, we have



A2

(81219 4 pr(s1/2e18)
0 (bl/2eie)

B a(bI/EEiG) 2a(b1/2eia)+81(b1/28ie) !
A(b1/2eie)
B, +B! =

0 6(1+bY2)
) §(1+bye) 2(6+u1)(1+bY2)—n1(2-(1+b72)
Ay =
- [6(1+b72) 2(6+u2)(1+b72)-172(2—(1+b1f)].

Telser and Graves have derived second-order conditions sufficient

for a constrained maximum. These are, for the case under consideration:

(1)

The determinant of the matrix HO =

0 AO

1 1
AO BO+BO

must be positive. (See Theorem 6.1, page T79);
1/2g)

(a) B(81/25) + B' (5
unit circle;

mist be nonsingular for all complex S on the

(b) A(élles) rust have rank one on the unit circle;



A3

(¢) The determinant of the bordered Hermitian matrix H(s) =

0 A(s1/%5)

At (s /%5)  m(sY/2s)+mr (51/%8)

is positive on the unit circle. (See Theorem 5.3 on page T6; note
that Telser and Graves mistakenly give sufficient conditions for a

constrained minimum. )
After some algebra, condition (1) reduces to

2(6+u1)/n > (1—bY2)/(1+bY2)

1
which must always be satisfied if
§ + My > n1/2.

Turning to condition (2a), note that det (B(61/2e10) 4 pr(§l/2.-10)) =
(a(b1/2eie))2. It is relatively easy to show that u(blfzS) is real and pos-
itive on the unit circle, hence (2a) is satisfied. Similarly, A{Glfgs) can
never vanish for S on the unit circle, hence (2b) is satisfied.

To investigate condition (2c), first note that
det H(S) = [a(6?/%5)|? (2a(6 /%5) + 8, (6/%5))

which implies that

sgn (detH(s)) = sgn (2a(bl/2s) 5 Bl(b]'/?)].
Now, for S = e, 2a(b'/%5) + B, (87/%5) = 2(u +6) (1+0y°-201/y cos 0)
- ﬂ1(1—2bl/27 cos 6),

which has minimum at 6 = 0 or § = 1, assuming Mp + § > ﬁlle. Now,
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2a(b/?5) + Bl(blles)] | gy =

2(u,+6) (161/%1)2 - 2n (151 /2y)
which is positive so long as

(%) (uy#8) (1-02y) > w .

Hence, (2c) will be satisfied when condition (%) is met. Since the previous
condition uy + § > 171/2 is implied by (*), sufficient conditions for a maximum
will hold as long as (*) is satisfied.

The sufficiency conditions suggested by Telser and Graves could be
applied in a similar fashion to other models. The reader is referred to

Telser and Graves for the details.



