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Abstract

The consequences of a straightforward monetary targeting scheme
are examined for a simple dynamic macro model. The notion of "target-
ing" used below is the strategic one introduced by Rogoff (1985).
Numerical simulations are used to demonstrate that for the model under
consideration, monetary targeting is likely to lead to a deterioration of
policy performance. These examples cast doubt upon the general effica-
cy of simple targeting schemes in dynamic rational expectations models.
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1. Introduction

A topic of considerable policy interest is whether monetary targeting
improves upon or detracts from the overall performance of monetary
policy. The theoretical debate on this subject has been quite intense,
particularly after the Fed’s 1979-82 targeting "experiment.” While
this debate continues to rage on many fronts, it has lately come to cen-
ter on strategic issues.1 That is, can monetary targeting improve upon

the performance of monetary policy by improving the Fed’s credibility?

A recent paper by Rogoff (1985) strongly suggests an affirmative
answer to this question. In the context of a static macro model, Rogoff
demonstrates that various intermediate targeting schernes may in fact be
useful in overcoming the credibility problem inherent in a discretionary

policy environment.

The present paper could be viewed as a first attempt to examine the
generality of Rogoff’s results. In the analysis that follows, the conse-
querces of a simple monetary targeting scheme are traced through for a
dynamic macro model. Although analytical results are difficult to ob-
tain, numerical simulations suggest that for the model under considera-
tion, targeting is likely to lead to significant deterioration of policy
performance. Nor does targeting lead to improved credibility of mone-
tary policy. Instead, imposition of targeting often leads to erratic

short term fluctuations in both the money stock and the price level.



The analysis below should not be construed as a general condemna-
tion of all monetary targeting schemes. Indeed, recent work by White-
man {1985) suggests that policy performance can always be improved by
implementation of some targeting ymechanism. However, the examples
considered below suggest that simple, intuitively appealing targeting
mechanisms can easily have the opposite of the desired effect.

2. The Model

The model considered can be derived from Cagan’s (1956) demand

function for real balances, i.e.
(1) logM/P}, =am + &y, +y+U , al0,8> 0

where M is the demand for nominal balances, P the price level, L the
expected rate of inflation, Y the log of real income, ¥ a constant term,
and U, a stochastic error term. Following standard practice, the values
of all variables will be interpreted as deviations about perfectly fore-
castible trends. In addition, the analysis below will abstract from all
real effects by taking &y, + ¢ to be identically zero. The process { A }
will be assumed to follow the stationary first order autoregressive law

(20 U =yU_ +ae, 0<y<!

t-1

where €, is Gaussian white roise. Both private agents arnd policymakers

are assumed to know the values of current and past realizations of U, .
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By imnposing the rational expectations hypothesis and some relatively
innocuous side conditions, the money demand eguation (1) can be solved

3
out as

co .
(3) py = o3 By (Myyy ¥ Uy

i=0
where Et denotes expectation conditional on current and past U,’s, p, is
the log of the price level, m, = log(Mt)/a, u = Ut/a, and p = (a-1)/a.
Equation (3) reveals the dependence of the price level on current and all
expected future values of nominal money demand. The problem of set-

ting monetary policy in this model is thus an inherently dynamic ore.

Throughout this paper it will be assumed that the Fed can completely
control the nominal money stock, which will always be equal to
nominal money demand in equilibrium. The objective of the Fed will be
taken as to minimize a weighted average of the discounted sum of cur-
rent and future fluctuations in the logarithms of the money supply and

the price level, i.e. at time t the objective of the Fed will be given by

o =i 2 2
JtzEtEBJ[i/ZpHJ+}\/2mt+j} L IDB>0,A00
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The objective of the Fed is thus taken as to stabilize the fluctuations of
the money supply and price level about their long term trends, taking

equation (3) as given.
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3. Policy Rules Under Precommitment and Discretion

As in virtually all rational expectations models, deriving "optimal"
policy rules for the model described above requires a specification of
the degree of precommitment of the policy authority. To begin, consider
the case where the Fed can credibly commit itself to an infinite se-
quence of policies. In this case monetary policy is determined once and
for all at time t=0, conditional on a given sequence of shocks { € .
This sort of policy environment is sometimes referred to as a precom-

mitment or “open loop" policy environment.

The optimal precormnmitment monetary policy for this problem can be

found using techniques outlined in Hansen, Epple, and Roberds (1985).
5

Setting the Fed’s discount factor 8 equal to one for convenience, the

appropriate Lagrangian for the time t=0 policy problem is

z

< 2 2
Eo‘z{%[Pt '1'>\I'nt ] +
t=0
_1 s
b lpgte B 3l imytuy 1)
j=0
where { Bt } is a sequence of random Lagrange multipliers. First order

conditions for the precommitment problem are

t .
_1 -
(4)  Am, +p EpJGt_J.ZO
=0



(5) p,+6,=0

Equations 4) and (5) hold for t = 0. Solving out for m,, we obtain

(6) my = (Ap) 7 pg

i -1

(7) m, = p_

The time inconsistency of the optimal precornmitment policy is mani-
fested in the fact that the representation for my in equation (6) differs
from the representation for m, for positive t, given in equation (7).
Equation (7) requires that I, "feed back” on m,_y after the initial period
in which policy is set. If optimal policy were to be reset at some time
s » 0, however, equation (6) would require that m__ be ignored in set-
ting mg . Thus, without some mechanism to guarantee that the Fed
would always stick to its original plan, the precommitment policy is not
a credible one. Nonetheless, it is useful to solve out for the precommit-
ment policy as a benchmark to compare other policies against. In Ap-
pendix A, it is shown that the sequence of optimal policies follows the

law
(8) my = cymy +C0Ut’ t 20
where 1 > ¢, > 0 and ¢y < 0, subject to the initial conditien m_, = 0.

We next consider a policy environment of pure discretion. In a dis-

cretionary policy environment, optimal policies are recomputed in every
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period, so that announcements about tirme t policy that are made before
time t are not credible. Given this sort of policy environment, one
could think of policy as being set by a sequence of Fed policymakers.
The policymaker at time t has the authority to set time t policy only.
Although a policymaker may predict what future policymakers will do,
he cannot commit them to any predetermined course of action. Accord-
ingly, the appropriate Lagrangian for the time t policymaker is

e 2 2

I :Etgé[pt+j+,\mt+‘j) +
= |
O o e | G
RRE et LR T s

First order conditions for the time t policymaker are given by

|

(9 Am, + o Gt =0

(10) p,+86,=0

Solving equations (8) and (9) out for m, in turn yields

t

(1) m =00 p,

The time consistency of monetary policy in this environment is mani-
fested in the fact that the representation for optimal policy given in
equation (11) holds for all t. In Appendix A, equation (11) is shown to
imply the following feedback rule for policy:
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(12) m, =Pru,, where ¥ = - [1-Mp(y-p)] ™!

Since f* lies between 0 and -1, optimal monetary policy in a discre-
tionary environment consists of accornmodating some fraction of the

current money demand shock U, .

As is true for most policy problems in a rational expectations set-
ting, the performance of the discretionary policy rule given in equation
(12) will be dominated by the performance of the precommitment policy
rule given in equation (8). That is, the value of the Fed’s loss gunction
Ji will be greater under discretion than under precommitment. How-
ever, as pointed out by Kydland and Prescott {(1977), there is no way to
recoup this difference in a discretionary policy environment. To im-
prove the performance of policy, some sort of mechanism rmust be intro-
duced that will augment the credibility of the policy authority. One

candidate for such a mechanism is described in the next section.

4. A Simple Targeting Scheme

There are two major reasons for considering the targeting scheme
described below. First, this targeting scheme constitutes a reasonable
dynamic generalization of one proposed by Rogoff (19835) in the context
of a static model, for the express purpose of overcoming a "policy cred-
ibility" problem similar to the one described above. Second, the target-
ing schemne considered below is designed to mimic, within the confines

of the idealized model of this paper, several of the important aspects of
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monetary targeting as practiced under the Humnphrey-Hawkins Act.

We should begin by explaining what is meant by "targeting” in a stra-
tegic policy environment. By requiring the Fed to "target” some aggre-
gate variable, we mean to alter the Fed’s objective function J, so that
the Fed is penalized according to deviations of that aggregate from its
preannounced target value. The idea is that by altering the Fed’s incen-
tives, it may somehow be compelled to take policy actions that more
closely approximate the precommitment policies that maximize its true

objective J .

The targeting scheme we consider proceeds as follows. For conven-
ience the duration of the time period in the model is taken as six
months. At the beginning of each year, i.e. in every even numbered
period, the Fed is required to submit a target value of the nominal
money stock six months hence, i.e. in the subsequent odd-numbered
period. In even numbered periods the Fed is free to set the nominal
money stock at its discretion, and its one-period loss function is the

sarne as the one given above:

- 2 2

Le(Pt’ mt) = 4 (p,L +)\mt )

During odd periods, the [Fed feels some pressure to meet its prean-

nounced money supply target, so that its one-period loss function be-
- comes

*oir 2.y 2 *, 2
Lo(pt’ m,, m ):ﬁ[pt +Amg +T(m -m,) ],t>0



where m: represents the logarithm of the preannounced monetary target,
divided by the parameter a. The objective(s) of the Fed are taken as to

minimize

o .
- J
Ky 2B 2 8 Lt+j
j=0

where Lt+j: LD(') for t+j odd, and Lt+j: Le(') for t+j even, taking into
account the private sector’s reaction function given by equation (3). In
even periods, the Fed maximizes Kt by choice of two policy instruments:
the current value of the logged money stock s and the choice of a tar-

get for the next period, m During odd periods, the Fed can only set

t+1°
one instrument, the current value of the money stock.

Several features of this targeting model deserve discussion. First,
it should be emphasized that under the targeting model, the Fed is still
operating in a policy environment of pure discretion, although its objec-
tive function is changed. The monetary targets mt* cannot be inter-
preted as either binding promises or optimal predictions. Except in the
limiting case where v = w there is no constraint that targets be met

exactly. Nor is there an explicit requirement that m, ,

t+1 7~ g
pressure to target accurately does exist, however, because the Fed

represent an
optimal time t prediction of m,_ , , i.e. that E, m ’ Some
, N * 2 .
wishes to diminish the penalty term t/2 { M ™ My ) associated
with deviations from the targeted money stock. The exact nature of this
penalty is left to the reader’s imagination, while the parameter 1 is
assurned to be exogenously determined by the institutional setting under

which monetary policy is set.

10



Another important feature of the targeting model is that deviations
from target are only subject to penalty at midyear, i.e. in the odd
numbered periods. As will be seen in the next section, this feature is
important methodologically, since it allows the model to be solved using
a simple recursive algorithm. More importantly, this feature is meant
to reflect the "conical" shape of the target bands that are actually an-
nounced for monetary aggregates. The intuition is that deviations from
target at midyear are penalized more heavily than deviations at yearend.
This notion is captured in an abstract setting by imposing positive costs
to such deviations at midyear, while assigning zero costs to yearend
deviations. In the terminology of Broaddus and Goodfriend {1984),
yearend "rebasing" of the money stock carries no explicit penalty.

[}

5. Equilibrium with Targeting

A computationally convenient way of deriving equilibrium policies in
a discretionary policy environment is to use the notion of "feedback” or
recursive equilibrium of dominant player dynamic games, as defined in
Kydland (1977). Before using this equilibrium concept to solve out for
equilibrium policies under targeting, it is perhaps instructive to recon-
sider the problem of setting discretionary policy without targeting, i.e.

when T = 0,

We begin by noting that for the model without targeting, there is only
We wish
= flu) .

one dynamic state variable, i.e. the money demand shock u, .

to consider feedback policies for the Fed, of the form m,

11



Given the linear-quadratic-Gaussian setup of the medel, we can restrict
our attention to linear feeddack rules of the form m, = fu, . Let £y be
our initial guess as to the value of the optimal feedback pararneter f*.
If, at time period t, private agents believe that policy in all future pe-
riods will be set according to the rule m, = fout , then equation (3) may
be evaluated as

(13) p, = [ +p g / (y=p) Juy - p 'y

Now define the Fed’s value function V(ut) as the value of the Fed’s
objective J, when the optimal feedback parameter f* is used in the cur-
rent and all future periods. I[n equilibrium, the optimal feedback param-
eter f* must satisfy, for any value of u,, the requirement that m, =

f““‘ut , where m, solves

(14 min[4(p, %+ Am%) + BEVlu, )] st egs. (2) and (12)
Im
t

where in equilibrium, f* = f,. In Appendix B, it is shown that solving
program (14) and imposing the condition that f* = f, yields a feedback
rule f* identical to that shown in equation (12).

For more complex models, it is often difficult to solve out for equi-
librium feedback rules directly. However, the recursive character of
feedback equilibrium suggests a natural algorithm for numerical compu-
tation of feedback rules. That is, given an initial guess f, for f*, find
the feedback rule f, that solves program (14), take f, as the next guess

12



for f*, and so on. The recursive nature of feedback equilibrium also
guarantees that equilibrium policies will be time consistent: in solving
the program (14) at time t, note that the Fed is constrained to take all

future policies as given.

We now consider the problem of setting discretionary policy under
the targeting scheme described in the previous section. Under targeting,
it will be important to distinguish between yearend (even) and midyear
{odd) periods. In even pericds, as in the model without targeting, there
is only one state variable that influences the Fed’s one-period loss func-

tion, i.e. the shock u In odd periods, however, the previously an-

t -’ *
nounced logged money stock target m, must be added to the list of state

variables. Two decision variables, the current logged money stock m,
* -
and the midyear target m,,, , must be set in even periods, while only
the current money stock is set at midyear. Consequently we consider

policies of the form

(15) m, = fO u,

w*
(16) m,

for even t
g =fpyy
(17) m, =gqu, +gm,  foroddt

In Appendix C, it is shown that when equations (15}, (16), and (17) hold,

equation (3) may be evaluated as
_ *
(18) S dOut + dimt + dZmHi’ for t even
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(19) Py —bou +b1m for t odd

where the b’s and d’s are complicated functions of fO’ fi‘ 80» 81> As Py
and y. Under targeting, equilibrium feedback rules are determined by a

four-tuple ( fO- 3 1*, go*, g 1*) such that when t is even,

5 —f* * e *
e, = fo Rprendllin = 4 4

and when t is odd

* Al 1
(ed)-m, =gg o0 + gy M

where the m,’s in turn solve the program

*
(22) min Le( Py » mt) +8 Et [min Lo(pt+1’mt+1’mt+1) w

My T Wi
*

i

- ﬁz Et W(UH_Z) , teven

subject to constraints (2), (18), and (19), where W(u) represents the
value of K, for t even when optimal policies are 1n effect and the b’s

and d’s in (18) and (19) are evaluated at (fO g f1 ; go*, gi*). The
equilibrium feedback parameters can be numerically determined, given
values for p, y, and A , by the iterative procedure outlined in Appendix
C. The idea of this procedure is to take an initial guess (fo, f 1 80> gi)

14



for the feedback parameters, use these values to obtain equations (18)
and (19), and then a solution to program (22). The feedback rules im-
plied by this solutions are in turn used to generate updated versions of
equations (18) and (19), and so on, until an approximate fix point is
reached.

6. Numerical Simulations

Because of the somewhat complicated nature of the program (22),
analytical the targeting equilibrium are somewhat difficult to obtain,
For this reason, numerical simulations were performed to obtain some
idea of the performance of policy under targeting, The results of three
representative sets of simulations are reported in Table 1 below.

In each of the simulations, a random number generator was used to
create artificial time series of length T = 1000 for the money demand
shock process { u(t) }. Arbitrary values were assumed for vy, p, and v,
and the model was simulated under precommitment, discretionary, and
various targeting environments. The discount factor B was taken as
equal to one, and the policy objective was r'einter‘pr‘eted as an average

J

cost objective. As an approximation to 2T the statistic S was

t %
computed for every simulation, where

S = svar(p) + Asvar(m)

15



and "svar' means sample variance. For each simulation, the perfor-
mance index P = 100(5/5 d) was calculated, where S g represents the
value of S for the same parameter values, given a discretionary policy
environment without targeting, i.e. where T = 0 . P thus gives the
sample performance of policy in a given environment, as a percentage
of the performance of the best consistent policy without targeting . A

value of P under 100 indicates improvernent,

Before describing the results of the simulations, it may be useful to
describe the effects of variations on the parameters A, p, and y on the
potential gains in policy performance due to precommitment. First,
setting A = O allows the Fed to costlessly offset money demand sur-
prises (if targeting is not in effect) , so that the global minimum of J,
= 0 can be attained in a discretionary policy environment without target-
ing. Accordingly, one would expect the gains from precommitment to be
small when A is close to zero. A similar conclusion holds when vy is
close to zero. This is because in the limiting case that y = 0, the
dynamic policy game inherent in the model reduces to a sequence of
repeated static games, which by definition are immune to dynamic con-
sistency problems. Finally, equation (3) reveals that when p becomes
large, py is driven to zero. In the limiting case that p = @, the problem
of stabilizing p, becomes trivial. Hence the effects of precommitment

are likely to be reduced when p is relatively large.

For the first set of simulations, the parameter values A = 1.0, p =
1.5, and y = .95 were assumed. The performance index P for the ideal

precommitment environment indicates that the potential gains to pre-

14



commitment for this example are significant: perfect credibility entails
about a 23% decrease in the policy loss function. However, attempts to
increase policy credibility via targeting were not successful. For the
positive values of t that were tried, the implementation of targeting
resulted in a deterioration of policy performance, i.e. values of P over
100 percent. This deterioration is apparently increasing in the "strict-
ness" T of the targeting mechanism.

In the second set of simulations, the parameter values A = 10.0, p =
1.1, and y = .95 were assumed. As might be inferred from the discus-
sion above, increasing the value of A and decreasing the value of p, rela-
tive to the first set of parameter values, results in an even greater
potential gain in policy performance from precommitment. The value of
the performance index P under precommitment is 37.87 for this
example, implying a 62% decrease in the policy loss function under full
credibility. Again, attempts to recoup this gain under targeting only
resulted in deterioration of policy performance, with the degree of de-
terioration increasing in t.

For some of the numerical examples considered, implementation of
targeting did lead to gains in policy performance. Typical of these
examples is the third set of simulations given in Table 1, for which the
parameter values A = .1, p = 2.0, and y = .5 were assumed. As seen
from the performance index column for the table, taking v = .05 in this
example results in a decrease of about .5% in the policy objective func-
tion. Larger values of t again lead to deterioration of policy perfor-

mance. However the value of P for the precommitment case (94.08)
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Parameter Values

Table 1

Policy Environment

Performance Index

A p Y P (%)

1.0 1.5 .95 Precommitment 76.57
Discretion with: |
t=0 100.00
t=.4 100.03
r=1.0 102.91
r=10.0 114.51

10.0 1.1 .95 Precommitment 37.87
Discretion with: ;
r=0 {00.00
r=1.0. .- 102.44 .
t=10.0 116,22

t 2.0 5} Precommitment 94.08
Discretion with: -
t=0 100.00
r=.05 99.46
T=.1 102.48
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reveals that this example is one for which the magnitude of the dynamic
consistency problem is not large. Even in an environment of perfect

credibility, only about a 6% gain in policy performance can be attained.

In summary, the numerical simulations reveal that the effect of tar-
geting on policy performarice is sornewhat ambiguous. For some param-
eter values, targeting resulted in gains in policy performance, while
losses occurred for other values. The magnitude of the gains (under 2%
in all the examples tried) tended to be quite small relative to the magni-
tude of the potential losses (sometimes over 50%). Moreover, the gains
were always present in examples for which the dynamic consistency
problem was relatively unimportant, i.e. examples for which the values
of A, p, or y were "close" to regions where the dynamic consistency
problemn does not exist. The larger losses were present in examples

where potential gains due to increases in credibility were quite large.

Some intuition concerning the failure of the targeting scheme con-
sidered in this paper is offered by Figures | and 2. These figures de-
pict the responses of m(t) and p(t) to a -.1 standard deviation shock e{t),
corresponding to a 1 standard deviation shock to money demand, where
the parameter values A = 10, p = 1.1, and y = .95 are assumed.
Responses are plotted for the precommitment case, and for the discre-

tionary case where t = 0 (no targeting) and v = 10 (targeting).

Figure 1 shows the response of mfit) (here equal to -.1 times the
response of the logged roney stock) under the three environments, The

optimal precommitment response is seen to require an initial rapid
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series of increases in mft), followed by a series of gradual decreases.
The discretionary response without targeting consists of an initial rapid
increase, followed by a series of gradual decreases of m(t). The effect
of the targeting scheme considered is to introduce oscillations into the
response of mit). During the midyear {odd numbered) periods when
targeting is in effect, m(t) is biased towards zero, while during even
periods m(t) is very close to its values under discretion without tar-
geting. Figure Z shows that similar, if somewhat less extreme oscilla-

tions are introduced into the pl(t) process under targeting.

In the context of the model considered in this paper, Whiteman
(1986) has shown that discretionary policy (without targeting) will
dominate a passive policy of always setting m(t) = 0. Hence it is not
surprising that targeting, which seerns to bias policy responses towards
this passive policy, results in a worsening of policy performance. This
bias towards zero is a direct result of the targeting mechanism, which
assigns positive costs to active policy responses. Of course, these costs
are assigned with the idea that they will be more than offset by a resul-
tant increase in credibility. However, the parameter values in this
example cause money demand shocks to have very persistent effects, so
that the marginal benefit of a one-period-ahead commitment on the part
of the Fed is quite small.

7. Summary and Conclusion

The consequences of a simple monetary targeting mechanism have

20



been considered for a dynamic model of price stabilization under ra-
tional expectations. Through the use of numerical examples, the effect
of this targeting mechanism on policy performance in this model has
been shown to be in general ambiguous, and to be negative for examples
in which policy credibility is an important problem.

These highly stylized examples cannot provide a general answer con-
cerning the usefulness of targeting mechanisms in setting governmental
policies. However, given that many rational expectations policy prob-
lems closely resemble vectorizations of the one considered above, it
seems unlikely that arbitrarily applied targeting schemes will always
yield improvements in policy performance. Instead, the examples above
strongly suggest that more research is needed on the strategic effects
of monetary targeting mechanisms.
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Appendix A

Derivation of the Optimal Policy Rule (8)

Substituting the portfolio balance schedule (3) into the Fed’s first

order condition (7) yields

1 —1(

(Al) -A{L - p) m, = (L. " -p) Etmt+Etut)

where the operator L is defined as L(Etmt) =My o and Lni as
LYEm) = Em '
A A A S S

outlined in Sargent (1979). Operating on (A1) with (L_i-p), we obtain

Equation (Al) can be solved using the method

the second order expectational difference equation

-1

(A2) [ -AL “-p)(L-p)-1]E m =u

t

Applying Sargent’s technique then yields the solution for my

(A3) m, =cqm,_, *ley /(te,y) Iy

{

wher‘e—)\(z_i—p) {(z-p}-1 can be factored as 03[1“012)(1*(322“ Y, Cq <0

and Cy » Cy € (0,1). Equation {8} of the text follows if we substitute Ch
for [c3*1/ (i—czy)] and note that the first order condition for the initial
period (6) may be written as (7}, subject to the initial condition m_1:O.

Derivation of the Consistent Policy Rule (11)

Using the portfolio balance schedule (3) to eliminate p{t) from the
first order condition {11) yields "
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(A9 DLt - 0P +1) 1Em = u,
Defining dO = —(1+)\p2) and di z Ap/(1+)\p2) , equation (A4) can be
solved using Sargent’s (1979) technique to yield

(A5) m, =dy "y, /(1Y)

The feedback parameter f* may be found by evaluating dohi/ (1-d;y) and
simplifying.

Appendix B

Alternative Derivation of f* Under Feedback Equilibrium

Begin by writing constraint (13} in abbreviated form as

(B} Py = ag4 +a,m,

Since the Fed’s value function V{u does not depend on m,, solving

1/
program (14) is equivalent to solving the simpler program

B2) min$[Am?+p, “]
o

The first order condition for program (B2) is given by

subject to (B1)

2

B3) (vag ) my + (agay)y =0

Substituting for the a’s in (B3) and solving for m, yields
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Imposing the conditions m, = f"'uL B i~ fo, and dividing (B4) by u,

t
yields

(B5)5 P% = -1~ Nply=p) ] *

Appendix C
Calculation of Feedback Equilibrium Under Targeting

We begin by evaluating the public’s portfolio balance schedule (3)
when policies are set using the linear decision rules (15), (16), and
(17). Using prediction formulas from Hansen and Sargent (1980), it
can be shown that equation (3) may be evaluated for even t as

(C1) pt:a*ut
where
-p fr=v8n-pg,f Y+
C2) a* = P O;gong“ ) Sl
P ==

When t is odd, equation (3) can be evaluated as

C3) p = bo U+ bimt

1 71

where by = p “(a¥y-1), and by = -p
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Now consider the Fed’s optimization problem at some odd time t,
i.e. the inner minimization problem of program (22). Because the next
(even) period’s value function W(u,L +1) does not depend on the choice of
m, , this minimization problem is equivalent to the simpler program

©4) min 4 [p,% +Am % +r(m-m %] st (C3), m," given
oy

Selving program (C4) yields a solution for m,

Y = e X 2

(C5) m, = ('f:mt —bibout)/( +r~|-b1 )

Solution (C5) in turn implies the following values for g and g

2

€7 g, =t/OFrb %)

Now consider the Fed’s optimization problem at some even time t,
i.e. the outer minimization problem of program (22). Since the public
knows that in the next period policy will be set according to a rule of the
form (17), the Fed should take into account the impact of its targst

announcement on the public’s expectation of m Substituting (17)

_ ik N
into equation (3) and taking expectations then yields

*
(C8) Py = djg Ut+d1mt+d2mt+1

where dg = -p_i{iwtp_1 [[1+g0-—ya*) vl}, d; = —p_i, and d2 = —p_zgi.
Also, the Fed should take into account the impact of its target an-
nouncement on its time t+1 loss function, via the decision rule (17).

Substituting (17) and (C3) into the time t+1 policy loss function yields

=
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* x
£9). LylPragalip oty Jph= Gl g i)

where

* 3 2 53
Cliny, o Uy gdem 200y Vg reomy 1+ Zeguy  ymy 4y )
and

2 2

cy = A glz + (bigi) +r(g1—i)

c3 = Ago81 H g t0180) bygy) + teg (g4~ 1)

Since policy decisions made at time t (even) do not affect the Fed’s
value function W(u‘L +2) at time t+2, the outer minimization problem of
program (22) reduces to the following problem:

*

2
t+d 2 Y1)

(C10) min % (}\m,L
*

m, ,m

+p,%) +E,C(m s.t. (C9)

t+1

Necessary first order conditions for program (C10) are given by

2

t e "

C11) 5 %
Cdpdy  leptdyT) | mp g ] mlegytdydg)

*

which we abbreviate as Dm = du,. Substituting for m, and m, , using

t
equations (15) and (16) and dividing (C11) by u, then implies the follow-

ing values for fo and fi:
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A feedback equilibrium can be calculated by taking some initial guess
for the parameters of the equilibrium feedback laws {20} and (21), then
iterating on equations {C6), (C7), and (C12), until convergence is
reached. In practice convergence was quite rapid from essentially ar-
bitrary starting values, for each of the examples reported above. The
convergence criterion was that maximal differences between successive
approximations be no greater than 1077 in absolute value. For some
unreported simulations, convergence was not obtained for large values
of 1. Similar convergerce problems are reported by Kydland and
Prescott (1977) for simulations of a policy game in a discretionary
environment, suggesting that such problems are not uncommon to this

type of model.
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Notes

1. - See McCallum (19835) for a survey of the literature on monetary
targeting.

2. A similar result is shown in Canzoneri (1985).

3. See Whiteman (1983) and Watson (1985) for a discussion of the
solution of equation (1).

4. The policy problems considered in this Section were first proposed
and analyzed by Whiteman (1986), using techniques different from the
ones employed here.

S. Setting the Fed’s discount factor equal to one does not affect the
qualitative properties of the models studied below. The government’s
objective is still well defined if we reinterpret J, as an "average cost”
objective, as in Bertsekas (1976). Average cost objectives are con-
venient for the numerical simulations reported in Section 6, since they
allow estimation of the Fed’s objective using sample moments.

6. See Corollary 3.2 of Whiteman (1986).

7. This transformation (division of the logged monetary target by a) is
done purely for notational convenience.

8. Any potential credibility problems arising in a static context are

31



assumed away in the models of this paper, so as to concentrate on dy-
namic credibility issues. This assumption seems warranted, given that
dynamic credibility issues were the main focus of Kydland and
Prescott’s (1977) original critique.
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