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ABSTRACT

This paper presents a completely worked example applying the
frequency domain estimation strategy proposed by Hansen and
Sargent [1980,1981al. A bivariate, high order continuous time
autoregressive moving average model is estimated subject to the
restrictions implied by the rational expectations model of the
term structure of interest rates., The estimation strategy takes
into account the fact that one of the data series are point-in-
time observations, while the other are time averaged. Alternative
strategies are considered for taking into account nonstationarity
in the data. Computing times reported in the paper demonsirate
that estimation using the techniques of Hansen and Sargent is
inexpensive,
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1. Introduction

The purpose of this paper is to provide a completely
worked example applying the frequency domain, continuous time
estimation strategy advocated in Hansen and Sargent
[1980,1981al. The model we consider i8 a bivariate model of the
term structure of interest rates. In this model, the short rate
is the overnight federal funds rate and the long rate is the one
year treasury bill rate. Since the federal funds rate is approxi-
mately a call rate, the rational expectations term structure
hypothesis implies that the long rate is the integral of expected
federal funds rates over one year. (A discussion of the rational
expectations term strueture hypothesis appears in Sargent
[1979a,b] and Hansen and Sargent [1981b].)

Since the restrictions of the term structure hypothesis
are very similar to those found in many other rational expecta-
tions models, the methodological lessons learned from the present
study can be expected to apply generally. 1 For example, in the
estimation results reported below, we are forced to take into
account the fact that the data on the short rate are temporally
averaged, while those on the long rate are beginning of period,
point-in-time observations. This mixzture of averaged and point-
in-time data is characteristic of settings in which some of the
data are stocks {(usually available point-in-time) and others are
flows (usvally temporally averaged). In addition, as in most
empirical settings, we are forced to confront evident nonstation-

arity in the data. We report results from linearly detrending the



data and from taking first differences. In both cases, we are
careful to reconcile the detrending procedure with the underlying
continuous time economic model.

What we find is that the data reject the term structure
hypothesis according to the likelihood ratio eriterion. A compar-
ison of restricted and unrestricted moving average representations
sugpgest that the reason for the rejection is principally because
the restricted model fails to adequately describe the response of
the averaged short rate to an innovation. Our negative findings
are congistent with those of Hansen and Sargent [1981b], who test
the term structure hypothesis using a different data set also
drawn from the post war period.

The plan of the paper is as feollows. Section 2 de-
seribes the term strueture hypothesis and derives a eclass of
restricted continuous time representations for the bivariate short
rate/long rate process. Section 3 discussses the problem of
parameter identification. Section 4 describes the estimation
criterion used and summarizes the relevant asymptotic distribution
theory. Section 5§ describes calculations capable of produeing a
discrete time representation corresponding to each element of a
class of continuous time representations. Section 6 presents and

analyzes the empirical results. Conclusions appear in Section 7.

2. The Cross Equation Restrietions in Continuous Time

Let R(t) denote the call rate and Rn(t) the n-period

long rate. Thus, according to the term structure hypothesis,
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{R(t-z),Rn(b—l); £ 20}, Let y(t) = (R(t)',R (t)')'. We assume
that {y(t)} can be represented as a continuous time stochastic

differential equation with moving average errors:

(2) a(D)y(t) = C(D)e(t),
where D = %E’ and {e(t)} is a continuous time, Gaussian white
noise with

(3) Ee(t)e(t-1)T = §(1)I.
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where m > 1, 8 is a complex variable and o; *

we adopt

implies that the real part of s is nonpositive.

tion (4) are assumed to have negative real part.
that the [y(t)} process is covariance stationary.
also consider the case where ;> 0 for some 1i,)

places restrictions on the elements of (U).

“3
. 1.2 2
the normalizations bo, ¢1 z 0, vo

are shown Lo be

for 1 = jJ.

Also,

0 and det(C(s)) = O
The p's in equa-
This guarantees
(Later, we will

Equation (1)

In appendix A, these
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! k=1 Kk j=1 J
Jzk
i=1, 2. Here,
v, {p )
i_ ik
(5b) Pk" R
1 (p,-p,)
J:1 k J
J=k
Dkn
(5¢) o= (e -1)/(npk),
k=1, ..., m, and i = 1, 2. Evidently, P; are the weights in the
following partial fraction expansion:
b, (s) m pl
(6) = ) ——,
k=1 “x
i=1, 2. It is easily verified from (5a}) that, 3/
(7) det (C(p)) = 0 k=1, ..., m.
An alternative way of writing (5) is as follows, Let H
- - (j-1) (j=1)
= [hij]’ F = [fij]’ where hij =0 , f’.lj = uipj , i, 3 =1,

cee,y .

Also, wWrite
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where § = (61 62) and ¢, = (v1 vz) k = 1 m Using this
k= ‘“kTk K k'k"? T rEr

notation, (5) is equivalent with

(8) Hé = Fu.

3. Parameter Identification

Results on consistency and asymptotic distribution
require that the parameters of the econometric model be identi-
fied. In particular, they require that the mapping from the true
structural parameters to the discrete time spectral density of the
observed data possess a unigque inverse in the space of admissible
parameters. ({(See Kohn [1979] and Dunsmuir and Hannan [1976]1.) It
is conceptually convenient to decompose the problem of parameter
identification into two parts: (i) the uniqueness of the inverse
mapping from the discrete spectral density to the continuous time
spectrum, and (ii) the uniqueness of the inverse map from the
continuous time spectrum to the space of admissible parameter
values. The former problem is called the aliasing identification
problem, while the latter ecan be called the "classical identifica-
tion problem" because it arises in basically the same form in the
context of discrete time estimation.

It is beyond the scope of the paper to provide an exten-
sive discussion of the aliasing and classical identification

problems, A discussion of the nature of the aliasing identifica-



tion problem appears in Hansen and Sargent [1981¢,1983] and in
Phillips [1973], while the classical identification problem is
studied in Hamman [1969]. Christiano [1982] proves rigorously
that both the classical and aliasing identification problems are
resolved in the model of this paper when m = 2 and observations on
the variables are point-in-time. In fact, one of the variables of
this model--the federal funds rate--is temporally averaged, s0
that the results of Christiano [1982] do not apply directly.
However, results in Christiano [1985, forthcoming] show that
averaging alds identifieation,

We limit the remaining remarks to verifying that there
is no classical identification problem in the model of equation

(2). The continuous time spectral density of {y(t)} is

g (s) = CQS)C(-S)T
Yy

6(s)o(-s) !

where s = iw, & ¢ (-w,+=). Consider a nonsingular matrix A, such

that AAT. Then, celearly

s - T
_ C(s)C(-3)
8,(8) = S8 ()

where 6(3) = C{s)A. A necessary condition for classical identifi-
cation is that the only admissible A is A = I. Sinece equation (8)
continues to hold after postmultiplication by any matrix A what-
ever, it follows that the cross-equation restrictions provide no
help in restricting A to be the identity matrix. It is easily
verified that the restrictions which do accomplish this are wg =

1,2
0, tof '4"1 2 0-



Another potential source of underidentification in the
classical sense arises from the ability of choosing an A matrix
that is a nontrivial polynomial in s, with the property that A(s)
A(-3)T = I = A(0) and C(s)A(s) is of order m - 1, The effect of
postmultiplying C(s) by A(s) is to change the sign of one or
several zeroes of detC{s), If we restrict (2) to be an invertible
representation; i.e., in which detC(s) has zeroes that are non-
positive in real part, then the only admissible A(s) is A(s) =
I. When m = 2, then the cross-equation restrictions foree all the
zeroes of detC(s) to be nonpositive in real part by (7). When m >
2 parameter values must be restricted so that the roots of detC(s)

that are not zeroes of 68{(s) are also nonpositive in real part.

4, The Likelihood Function

The available data are {j{t); t =1, ..., T}, where,

1

f R{t+t)dr
(9) TOERE
R (t)

That is, we use beginning of the month point-in-time observations
on Rn(t) and monthly averages on R{t). Below, we derive the
frequency  domain approximation to the  likelihood for
{§e); £ =1, ..., T}. The empirical results in section 6 suggest
that the representation of {i(t); =0, +1, ...} has a unit
autoregressive root, This corresponds to a value of zero for one
of the p's in (4), In anticipation of this we also derive the

frequency domain likelihood for {§{t+1)-§(t); ¢t =1, 2, ..., T-1}



when one of the p's in (4) is zero. In formulating the frequency
domain approximation to the likelihood, we follow the suggestion

of Hansen and Sargent [1980,1981a].

Ya, Likelihood for {#{t); t =1, ..., T}

The frequency domain approximation to the 1likelihood
function requires the spectral density of {§(t); t = O,
+1, +2, veits This in turn requires R (1) = Ei(t)i(t-r)T,

y
v =0, +1, +2, ... . Hansen and Sargent [1980] show that

m
R (1) = IR T >0
y J§1 b
m
(10) R(O) = ) W
7 j=1
R_('r) = R_(-t)T for v £ 0,
y Yy
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J=1, .., m. In addition,
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The spectral density of {y(t); t = 0, +1, +2, ...} is
defined as

. = .
(122) S (e = § R (0™
y T=-= y

-1 iw,T
M(e M) + M(e™)" - K,

where

. m )
(12b) M) = ] ——L—

L _ -iw
J=11 uje
m ~T
(12¢) K= } (wj+wj) - R_(0).
J=1 y

The frequency domain approximation to the log likelihood
is, neglecting an additive constant,

T —iw
(130 £FE), . (D) = -3 ] logdet s_(e 9)
J=1 y
T ~im
- % z trace [S_(e ]

)—1I(NJ)]1
J=1 y

where
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1 T _ -imj’c T _ imJt
(14) M =gl ) §we ][] §eye T,
£=1 b=
. 2x) i
wj_T’ J=1, ..., T.

In (13), EF is a function of the free parameters, ¢, via S_. The

y
periodogram matrix, I(-)}, is a function of the data and not of

¢. Here,
_ 11 1 2 2 2
(15) $p = (90’-0-1em_11$13$2y---)wm_11¢0,$1,---:wm_1)
The dependence of R¢1S“’Hj’ﬁj’ﬁj’”j’ j=1, ..., mon ¢
y

is not made explicit in order to keep from cluttering the nota-
tion. Results from Kohn [1979] or Dunsmuir and Hannan [1976] may

be invoked to show that ¢, the maximizer of (13), converges

T?
almost surely to its true value, which we denote 4. In addition,
fT(;T-¢O) is asymptotically normally distributed, with variance
covariance matriz that is consistently estimated by

2,.F

(6 [z L]
dea¢d ¢=¢T

4h, Likelihood for the First Differenced Data

In this section, we set 0y = Py = 0 and oy = 1 in (%)

and (5¢), and derive the frequency domain approximation to the
likelihood of y(t+1) - y(t), t = 1, ..., T - 1,
Let

m-1
(17a) 8(D) = [e(D)/D] = 1 (D-p,).
=t

Then, (2) may be written
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(176)  py(e) = [SRe(e).
§(D)

Since C(D) and &(D) are both polynomials of order m - 1, {Dy(t),
te(-=,+=)} is a generalized stochastic process.
1
Notice that f Dy(t+t)dt = y(t+1) - y(t}, Also, the
0
operator notation for unit averaging is [(eD-1)/D]. Therefore,
unit averaging (17) yields
D1 C(D)
(18) y(t+1) - y{t) = (_,ﬁ__](N Jelt).
a(D)
It is easy to verify that {y(t+1)-y(t),te(-=,+=)} forms an ordi-

nary, covariance stationary, stochastic process,

Define
(19) Ryy(1) = EAy(t)ay(t-1)T, te(-m,+m)

where Ay(t) = y{t+1) - y{t). Appendix B shows how RAy can be
recovered from the spectral density of Ay(t) implied by (18).

What we require'is

(20) R (r) = EAJ(£)Aj(t-1)", © = 0, +1, +2, ...
57

where Ay(t) = y(t+1) - y(t), and y(t) is defined in (8). The fact
that Ay(t) and Ay(t) are related by an averaging operator implies

that R _ can be derived by suitably averaging Rﬁy. Consider, for
Ay
example, the 1,1 element of R _ and RA , denoted by R11 and R11,
Ay g Ay Ay
respectively:
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1 i
(21) R'(2) = E[[ (R(t+1+k)-R(t+k) )dk][[ (R(e+1e2-1)~R(L+2-1) " )ds]
Ay 0 0
11 T
= f f {E[R(t+1+k)-R(t+k)][R(t+1+£-T)—R(t+2—T)1 }dkdl
00
H- "
= R, (k-g2+t)dkds.
oo &
Upon carrying out the required integration on Rﬂy’ We
find,
( mf q
22) : =0
=1
m-1 6
T =1
j=1
R _(T) =
By m=1 -
T
321 WJ uj t 21
R (—T)T, 150
Ay
L
where Wj, %j, and ﬁj, =1, ..., m ~ i are given in Appendix B,
Define
m—1‘ ﬁ
M (e 1m) = z —-———*L——r-
ﬁ§ j:1 1 -1 e_lm
J
m-1 -
(23) D=R A(1) Z N.u
Ay j=1 JJ
m-1 = :T
G= ) (W) -R (0).
=1 3 g
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Then, the spectral density of {y(t+1)-y(t); t = 0, +1, +2, ...} is

(242) S (M) =z § R (v)elT
Ay Ez-o Ay

1]

M (e"im) + M *(eiw)T + De'i“ + DTeibj -G

Ay Ay

Fipally, the frequency domain approximation to the likelihood is,

ignoring an additive constant,

. ) ) ) 1 T-1 —iwj
(24b) £ (F(D)-F(T-1),...,5(2)-F(1); ¢') = - 3 21 log det 5 (e )
i y
1 T-1 'iwj e P
- 3 ) trace [S_(e ) Hw,)],
j=1 y )
where
) (T2 ~iw b T-1 o lw.t
(25) I(a,) = gl 21 Fee)-Fe)e I 21 (Fleen-F(e)e ]
£= t=

2 ‘
mjd',f‘_ilT,J=1,oo.,T-1c

The parameter vector in the present case is

(26) @'z (0.8 ele),w!

2 .2 2
v0!w1""!l{“m_'1)’

is not present in g!

which coincides with ¢ in (15) except that 8y

since it is set to zero.

Let ;% denote the admissibie maximizer of (24), Then
assuming {Ay(t); t = 0, =1, 2, ...} is covariance stationary,
;+ a.8:, ¢6, where ¢6 denotes the true value of ¢'. In addi-

tion, ¥T (¢+-¢6) is asymptotically normal with mean zero and

variance-covariance matrix consistently estimated by
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oLk |-,

(27 -[% 7 "
3¢'a(e')" | #'=0q

These results can be justified by referring to Dunsmuir and Hannan

[1976].

A factor that distinguishes the estimation problem posed
in this section from that in section Ha is that detSA§(1) = 0.
This is an implication of the facts detC(0) = 0 (recall (7) and py
= 0 and that A3(t) is obtained by temporally averaging y(t). &/ A
consequence of detsaf (1) = 0 is that the determinant of the
moving average representation of sampled Ay(t) has a root at
unity. 5,6/

The unit root in detSAi(z) means that £F is not well
defined. We get around this by ignoring frequency =zero in
(24b). This has to be done in any case when mean adjusted data
are used, since in this case the pericdogram matrix at frequency

zero is exactly zero so that the likelihood funetion is unbounded

above. Therefore, frequency zero was ignored in (13) also.

5. Obtaining the Time Series Representation of the Sampled Data

In sections 6 and 7, use is made of the estimated time
series representation of {y(t), t = 0, +1, +2, ...} when the
latter 1is assumed to be ocovariance stationary, and of
{F(e+1)-g(t), t = 0, +1, +2, ...} when {y(t}} is assumed to have a
unit autoregressive root. In this section we indicate the calcu-

lations required to obtain these representations.
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Sa. The Time Series Representation of {y(t); t =0, +1, +2, ...}

For simplicity in notation, let z = e v, Then, the

spectral density of {y(%), t = 0, +1, +2, ...} is, from (12),

(28) S (2) = M(z) + Mz HT - K
y
Write
. m
(29) 9 (z) = I (1-ujZ).
j:']
Multiply (28) by e+(z)9+(z_1), to get
. . m _om .
(30) 0'(2)S_(z)e'(z) = } W, m (1-wz)e’(z )
y 1 ke
k]
m m
v "‘? I (1-qu'1)e+{z)
321 J k=1
k+j

- e"(z) K otz

= r{z),

say, where

. m T -1 T _-m
(31) r{z) = Po # TyZ + o s Tz + Tyz + o+ Tz,

Using the algorithms in Whigtle [1983, Chapter ¢, sec-
tion 3] or Rozanov [1967, Chapter I, section 10], (31) can be

factored to give

(32a)  I(z) = ¢*(z)ctz T,
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where
dec C*(z) = 0 implies [z]| z 1
(32b)
C+(z) = CS + C;z + 10 & C;zm, CS lower triangular.

(Whittle's alporithm assumes detr(z) # 0 for |z] = 1.} The time
g

series representation of {j(t), t = 0, +1, +2, ...} is then

1l

e (L)F(t) = cT(L)u(t+1),

where {u(t), t = 0, +1, +2, ...} is white with variance equal to
the identity matriz. (The dating on u(t) is chosen to reflect the
fact that the first element in y(t)--the federal funds rate--is an
average from ¢ to © + 1.)

It may be verified that C; + 0 in (32b) because of the

effects of averaging y(t). In particular, the analogue of C; in

the time series representation of {y(t), t = 0, +1, ...} is zero.

5b. The Time Series Representation of {¥(t+1)-§(t); t = 0O, +1, +2, ...

~We use the' same approach described in the previous

|
~iw

case. ESet'z =e . Then thef spectral ‘density of {ay(t),

t =0, +1, +2, ...} is

(33) S (z) =M (2) +M (2 )T +Dz + D2 -G,
Ay Ay Ay

by (24a). Define

me-1
(34) §°(z) = n (1-n2).
J=1

Multiply (33) by 5+(z)5+(z'1) to get
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> m-
(35) 87(z)8 (z) "+{z Z WJ H (1
Ay k=1

k=3

~u,2)8° (2"

m-1 "T m-1 RN
+ Z ﬁ n (1-ukz Yo (z)
J=1 k
k#]j

+ Dé+(z)5+(z'1)z * DT5+(Z)5+(2"1)Z'1
-G ot (z2)et(z" 1)
= ?(Z),

say, where

L 13

(36) T(z) =T + 1.2+ =++ + 2P . sz-I + oo+ fiz'm.

0 1 m 1

Here again, we may find a polynomial matrix {(z), with the follow-

ing properties:
0*(z) = & « C7 TR E;zm

det €'(2) = 0 implies |z| 2 1
(37)
ﬁg lower triangular,

ez MY = Fa).

Since det r(1) = 0 in the present case, Whittle's factorization
algorithm is inapplicable. For this reason, Rozanov's algorithm
was used to solve (37).

The time  series  representation  for  {aj(t),

=0, +1, +2, ...} is given by
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(38) 8 (L)AF(t) = CT(L)u(t+2),

where {u(t), t = 0, +1, +2, ...} is a discrete time white noise
with variance matrix equal to the identity matrix. (The dating
on u reflects, first, that ay(t) = y(t+1) - y(t), and second, that
the first element of y(t+1)--the federal funds rate--is an average

fromt + 1 to bt + 2,)

6. Empirical Results

In this section estimation results are presented using
data on the term structure of interest rates, The data are
monthly observations on the federal funds rate and the one year (n
= 12) treasury bill rate, Observations from August 1954 to Novem-
ber 1977 (T = 280) were obtained from Salomon Brothers [1977] and
are in percent terms.

The raw data on the treasury bill rate are middle-of-
the-month observations from August 1954 to December 1958 (53
observations) and first-of-the month observations thereafter. The
entire T-bill series represents point-in-time observations. The
first 53 observations were converted to an approximate first-of-
the month series by iinear interpolation,

In.the firgt part of this section, the results of ana-
lyzing the demeaned, linearly detrended data are presented. The
Time series representation of these data appear to have a unit
root. Consequently, in the second part of this seection, results

are presented of analysis using first differenced data.
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In each case, the likelihood ratio statistie is calcu-
lated by doubling the difference between the maximized values of
the restricted and unrestricted log likelihood functions. The
number of degrees of freedom is computed as the difference between
the number of free parameters under the null hypothesis and the
number of free parameters under the alternative hypothesis.

The alternative hypothesis is that the sampled data have
a stationary representation., The order of this representation is
the same as that of the discrete time representation corresponding
to the model of the null hypothesis. It follows that the likeli-
hood ratio statistic is a test of the following joint hypothe-
sig: (a) that the data obey the term structure restrictions, (1);
(b) that the continuous time representation of the short rate/long
rate process has the rational spectral density implied by the
specification in (2); and (c¢) that the averaging procedure actu-
ally applied to the data corresponds to the way we model it., That
{(b) implies restrictions on the discrete time representation is
well known. Consider, for example, the scalar case in which C(s)
= C and 8(s) = S - p. In this case, y(t) = epy(t-1)+u(t), where
{utt), t = 0, +1, +2, ...} is a white noise with variance
c?[(e2*-1)/(20)]. (See Phillips [1973].) Since 0 < e® < 1, the
given conbtinuous time specification implies a sampled representa-
tion which is AR(1) with autoregressive coefficient constrained to

be positive.
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ba. Analyzing the Demeaned, Detrended Data

The term structure thecory discussed up to now applies to
the raw data (or its first difference) and not to the demeaned and
detrended data. Hence, before presenting the results of the
analysis using the tranaformed data, an interpretation of the

transformation needs to be given. Write

R(t) o o R(t)
(39) = + t o+ . 3
R,(t) o a & (t)

where, as befofe, R(t) represents the call rate (approximated by
the federal funds rate) and R, (t) represent the n-period long
rate. According to the term structure hypothesis,

n

I EtR(t+r)dr.
0

SR

(H) R () =

Substituting the first equation of (39) into (1),

L

n n
(40) R(6) =cvat+d[ adrad g E K(t+c)de

0

n
a 1
e+at +3n+ - g Etﬁ(t+r)dr.

it

Substituting the second equation of (39) into (40),

Etﬁ(t+7)dr.

O

ﬁn(t) = [°'°n+ % n] + (a_an)t + %

The latter equation implies that if,

it
=}
+

t
=

{11) ¢
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then

E R{t+v)dT.

(42) ﬁn(t) = .

STPn

O

Thus, proceeding as though the term structure theory
(eguation (1)) applies to the demeaned and detrended series
(ﬁn(t),ﬁ(t)) is tantamount to imposing (41). Letting t vary from

t = 1 in August 1954 to t = 280 in November 1977, OLS yields

¥
¥

Cip = .16, LPPE .0016

(43)
¢z .11, « = .0019.

Substituting ¢ and o from {43) into (41) to obtain 512 and 3?2 we
get,

Cqp = .12
(B4)

oy, = .0019.

A

Evidently, C4s and Cyo and L

16 percent, respectively, from what is required by (#1). Confi-

and 25 deviate by 33 percent and

dence intervals for bﬁe estimates in (43) were not calculated,
hence it cannot be said whether tﬁe datazreject (41), It seems
clear that, at best, the data provide only weak evidence in favor
of (41). We proceed now to formally test the remainder, (42) of

the term structure restrictions, (1).

[Insert Tables 1 and 2]
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The results of estimating the term structure model with
m = 2 are presented in Tables 1 and 2. Table 1a shows the esti-
mated values of bhe continuous time parameters. Note that one of
the autoregressive roots of the continuous time system is very
close to zero. The corresponding discrete time representation
appears in Table 1b where the zero root of Table 1a shows up as a
root at unity, The results of estimating an unrestricted model
appear in Table 2. The Hessian of the log-likelihood function is
singular at the indiecated parameter valuea. The parameter valﬁes
nevertheless do appear to be near a local maximum since the gra-
dient is small. (The gradient is not reported here,) Because of
the singularity, asymptotic standard errors could not be com-
puted. According to the likelihood ratio statistie, the data
appear to reject the hypothesis, (1), at any reasonable confidence
level. Because the time series representation of the sampled data
appears to have a unit autoregressive root, the function--equation
{12)--that was used in estimation is probably not a good approxi-
mation to the exact likelihood funetion, This casts doubt on the
results obtained using it, For this reason the analysis was

redone using first-differenced data.

6b. Analyzing the First Differenced, Demeaned Data

Here, the results of analyzing the first differenced
data are reported. The estimation criterion used was (24) without

frequency zero and with m = 3,

[Insert Tables 3 and U4}
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Parameter estimates and asymptotic errors of the re-
stricted continuous time parameters appear in Table 3. The repre-
gsentation reported there is that of the continuous time derivative
process (DR(t),DR12(t)). As was explained below equation (17),
this is a generalized stochastie process.

Results of estimating the unrestricted discrete-time
model corresponding to the one in Table 3 are presented Table 4.
Onee again, note in Table 4 that The unit pole that appeared in
Table 2 has been eliminated by first-differencing. Applying
gtandard asymptotic theory, the likelihood ratio statistis indi-
cates sgpectacular rejection of the null hypothesis. Because of
the unit root, however, standard asymptotic theory does not apply
in the present context. (See, for example, Sargan and Bhargava
[1983].) Our conelusion, therefore, requires that the correct
critical region not be drastically smaller that the oritical
region under normal theory.

The Chi-square statistics reported in Tables 2 and 4 are
the same order of magnitude as those reported in Hansen and
Sargent [1981b]. Working in discrete time they test the term
gtructure hypothesis in wpich the short rate is a three-month
treasury bill rate and phe;long rate is a five year:treasury bond
rate. They repdrt a Chi-square statistic of 20 with 4 degrees of
freedom under the null hypothesis. The area under the Chi-square
density function with 4 or 10 degrees of freedom between 20 and

100 is on the order of .0005.
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Hansen and Sargent [1981b] adopt an estimation strategy
which avoids the unit root problem encountered in this paper.
Conseguently, they can appeal to the results of Kohn [1979] ac-
cording to which the likelihood ratio statistic has an asymptotie
Chi-square distribution, Their procedure is to model the bivari-
ate process formed by the first difference of the short rate and
the difference between the short and long rates. It is easy to
show that, in the context of this paper, this process is covari-
ance stationary. MWoreover, the determinant of the moving average
part of the resﬁlting sampled representation need not have a root

at unity. 7/

6c. Computing Time and Costs

All calculations were performed on the University Minne-
gota Cyber 172 computer. The nonlinear optimization routines used
were taken from a package of routines called GQOPT. The package
was obtained from S. M. Goldfeld 6f Princeton University.

Table 5 reports costs and computing times assoclated
with the calculations reported in Tables 1 through 4. The infor-
mation that seems especially relevant is that reported in the
first column. There the amount of time needed to evaluate the
likelihood function once is given. This quantity is independent
of the optimization routine used or of starting values. The
figures in this column indicate that the cost per function evalua-
tion of estimating the parameters of the continuous time system
are well within the feasible range. 1t is particularly interest-

ing to note how very little computer time it takes to carry out
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the caleculations that are unique to continuous time estimation.
These are the ecalculations required to obtain the discrete time
spectral density, given the structural parametera. The time
required can be ipnferred by subtracting row two from row one, or
row four from row three in column one of Table 5. Doing so, we
deduce that the time required is between one and five one hun-
dredth of a second, which is a small fraction of the total time
required for one function evaluation,

It should he noted that in writing the computer program
to execute the calculations, I was guided by the sole objective of
making the code easy to read for debugging purposes. Presumably,
a serious attempt to write efficient code would have resulted in a
gignificant drop in computer time from the figures indicated in

Table 5.

6d. Impulse Response Functions

A useful diagnostic device is to compare the model's
restricted and unrestricted moving average representations.
Taylor [1980] used this procedure as a complement to the standard
likelihood ratio statistic to evaluate the goodness-of-fit of his
staggered wage contract model. Sims [1980] has emphasized the
usefulness of a model's moving average representation as a way of
summarizing the dynamic properties of a time series model. In
this section we follow the lead of Taylor and Sims and examine
moving average representations in order te understand the reason
for the high likelihood ratio statistic reported in Table U,

Let
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~

(45a)  BY(L) = e*(L)"Te*(L)

u

(45b) B(L) = e*(L)”'c*(L)

I

-

where (6+,C+) are obtained from Table 4 and (e+,C+) are obtained

from Table 3b, Expanding (45) in nonnegative powers of L,

(46a) BM(L) = E BUL”
=0 °©

(46b) B(L) = E B L',
1=0 °

Then, [¥(t+1)-§{t)] = BY(L)u(t+2) according to the unrestricted
estimation results, and [§(t+1}-y(t)] = B(L)u(t+2) according to
the restricted estimation results. Here, {u(t)} is a discrete
time white noise with variance normalized to be the identity
Y and B, are lower triangular.)

0 0
Figures 1-4 display BI; and B‘r for + = 0, 1, ..., 30.

matrix. (The matrices B

Define u(t) = (u1(t),u2(t))T. Following is a discussion of the
dynamic effeots of’u{(t) and 'uz(t).

Figure 1 depicts the dynamic effect of a one standard
deviation jumﬁ in u1(t+1) on ?1(‘5) --?1(t-1). (The ﬁormlization
that I have adopted guarantees that u;l(t+1) ig pr-dlportional to the
innovation in §1(t) -§1(t-1).) Qualitatively, the response
patterns to u1(t) in the restricted and unrestricted models are
similar. There iz a substantial quantitative difference, how-
ever. According to the unrestricted model, the initial effect of

a jump in u1(t+1) is pogitive, followed by about two years of very

strong negative effects. Figure 3 indicates that the dynamic
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effects of u1(t+1) on §2(t) - ig(t—i) between restricted and
unrestricted models are similar.

Figures 2 and 4 describe the dynamic effects of uy(t).
(Under my normalization, u,(t+1) is not the innovation in
iz{t) - iz(t-1). The innovation is instead a linear combination
of u1(t+1) and u2(t+1).) According to Figure 2, the qualitative
nature of the dynamic effects of a unit Jump in us{t+1) on
§2(t) - §2(t-1) is very different between the restricted and
unrestricted models. The unrestricted response pattern is ini-
tially positive, followed by a negative and then a positive again,
whereupon it tapers off to zero, The restricted response pattern
is exactly the opposite. The restricted and unrestricted response
pattern in §1(t) - §1(t-1) to ug(t+1} are similar.

In order to obtain a more accurate impression of the
difference between Bf and BT, it would be useful to include confi-
dence interﬁals in Figures 1-4, 1 have not carried out the re-
quired‘cdmputations.in the interest of limiting the scope of this

paper, Q/

To summarize, the principle reason for the high likeli-~
hood ratio statistiec reported in Table U4 appears to be that the
constrained model does a poor job of capturing the dynamic re-
sponse of the monthly averaged federal funds rate to an innova-
tion. The constrained model also does a poor job of tracking the
response in the three month treasury bill rate to a uy(t) distur-
bance, These statements must be regarded as suggestive, rather
than definitive, sinece they are not accompanied by standard error

statistics.
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7. Conclusion and Supggestions for Further Research

The principle objective of this paper, to illustrate the
application of an estimation procedure proposed by Hansen and
Sargent [1980,1981a], has been accomplished. It was shown that
the required calculations are not time consuming by ordinary
standards. Some of the computations are complicated from a pro-
gramming perspective. These are the caleulations required to
obtain the sampled representation of a continuous time process and
to obtain the discrete time spectrum of (possibly) averaged data
given a continuous time spectral density. However, thege ecalcula-
tions are common across applications and so need to be programmed
only once. The eomputations that are problem specific are no more
difficult to program than what is now required to estimate dis-
crete time rational expectations models. These are the calcula-
tions needed to obtain the continuous time spectral dengity given
the structural parameters of the continuous time model.

Given the above remarks, it would be useful and practi-
cal to apply frequency domain estimation techniques to the estima-
tion of other rational expectations models, In such an applica-
tion it would he of great interest to also estimate the discrete
time version of the model and compare results. This would provide
empirical evidence on the extent to which the choice of timing
interval in an economefric model "matters" in the sense of affect-
ing the analyst's views about which economic theory best suits the
data, or which economic policy is most likely to yield a desirable

outcome.
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Footnotes

1/ observations on the federal funds rate are available
on a daily basis, Therefore, it would, in prineciple, be feasible
to test the term structure hypothesis by estimating a restricted,
daily, time series model, I used the time aggregated data instead
in order to 1illustrate the use of continuous time estimation
tools.

2/ stochastic process whose covaritance function con-
taing a delta function is said to be a generalized stochastic
process. For a discussion of this, see Hannan [1970].

3 4n implication of this is that when m = 2, (2) reduces
to a first order, bivariate stochastic differential equation. To
see this, note first that (7) implies det C(s) = v8(s) when m =
2. Premultiply (2) by c(m-! - C3(D)/(y8(D)), where the super-

seript 'a' denotes t?e adjoint operator. The result is
c3(D)y(t) = ys(t),

or
Dy(t) = Ay(t) + u{t),

where A = -(c?)"1cg, u(t) = y(C?)"1e(t). For m > 2, (2) fails to
be a finite ordered differential equation, except in singular
cases.

ﬁfThis fact can be shown by a simple application of the
folding formula, which 1links continuous and discrete spectral

densities. Let
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C (s) = [e ~1)(e —T\G(SIC(S)C(-S) G( S)
ﬂy 9(8)9(—8)

where

G(s) = .
0 1

3% (iw) is the spectral density of {A§(t), te{-=,+=)} at frequency
Ay
w, we(-w,+=), Let

§ (s) = G(S)C(S)C( 8) G(ﬂs) ’

8y 8(2)8(~s)

and note that det S (0) = 0, since det C(0) = 0. In this nota-

Ay
tion,

Scﬁ(im) = gilzggﬁﬂl é (iw), w e (-=,+=),
Ay w Ay

Now, according to the folding formula (see Fishman (1968, p.50])

s (e~iwy . 5 ooal- COS(“+2“k2] § _(ilw+2sk]),
Ay Krwm { w+25K ] Ay

w ¢ (-w,w). Note:

2{ 1-cos(0+27k) ] - 0 k#0
[O+27k]2

The result for k = 0 can be derived as follows. First, note that

2[{1-cos(2nk)] _ e3-1yre7%-1
eoslgn] . ety )
k)

[1+ ls+ 1—32+ 1—3 .00 101+ —(-s)+ —~ -S} o)y

3!

for 8 = 2wki, Then, set s = 0. Conclude that
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S (1) 55_(0),
8y ay

so that det S (1) = det § _(0) = O,
by Ay

5/ unit root in the determinant of the moving average
representation is execluded in the results of Kohn [1979].
Punsmuir and Hannan [1976], however, do not exclude a root at
unity.  Pham-Dinh [1978] also consider this case, although he
limits his attention to the scalar case, and assumes there is a
single unit root in the moving average. 3argan and Bhargava
[1983] show--using a scalar first order moving average MA(1)
model--that if estimation is carried out without imposing the unit
root, then the MA(1) parameter is not asymptotically normally
distributed. In the estimation proposed in. section 4, the unit
root is imposed,

/1t should be noted that the fact that we encounter a
unit root has nothing to do with the fact that we are estimating
in continucus time, It would occur for exactly the same reason if
a discrete time rational expectations model were being estimated
instead. To see this, suppose that we posited the following time

series representation for y(t):
a(L)y(t) = C(L)e(t),

with 6 and € being scalar matrix polynomials, respectively.
Suppose the rational expectations restrictions were of the follow-

ing form:

o0 < By Bly, (£+])
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or
PXJ
y,(t) = E y (t+1),
2 t 320 1

where y(t)T = (y1(t),y5(t)). Under these restrictions, det C(L)
inherits all the zeroes of 6(L). In particular, if one of the
zZeroes of 6{L) were unity--as would be the case if the data re-
quired first differencing to induce stationarity--then det C(1) =
0. A way to avoid the unit root implication in this context is to
model (y(v)~y(t-1),y,(t)-y{(t)) instead of (1-L)y(t). The
former does not necessarily have a unit root in the determinant of
its moving average.

l/we elahorate on these points in this footnote. Hansen
and Sargent [1981b]'s strategy, adapted to the continuous time
setup of this paper, is to model the bivariate process z(t)T =
(R(e+1)-R(E),R (6)-R(E)), tnstead  of X AF(E)T = (R(t+1)-R(t),
Rﬁ(b+1)-Rn(t)); as we QO. Here, R(t) = (gﬁ:l}R(t). It is easy to
verify that, when 8(D) = Da(b), the continuous time fepresentation
of =z({t) is =z(t) = QLQL C(D)e(t), where (D) and C(D) are defined

o(D)
in (4) and (5a) and

- N
D
&=h? 0
H(D) =
P 1
2 b

It may be verified that [H(S)C(s)/é(s)] is analytic far all s with
real part nonnegative, so that {z(t), te(-=,+=)} is an ordinary,

covariance stationary stochastic process. Moreover, the argument
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in footnote 4 does not apply in the present case, s0 that there is
no reason to believe that a unit root necessarily appears in the
determinant of the moving average part of sampled z(t).

The estimation strategy described in seetion 4 and
appendix B can be modified to permit estimating the parameters of
¢ and o given observations on {z(t), t = 0, *1, *2, ,,.}. The
heart of the strategy is to get the covariances of {z{t)} by

finding the inverse Laplace transform of its spectrum, which is

H(s)C(s)c(-5)"H(-9)"
o(s)a(-3)

'
for 8 = liw, we(*m,m)ﬁ.

Q/These caleulations are apparently nontrivial. One
procedure for getting confidence bounds on the B's would start by
obtaining a 95 percent confidence ellipsoid for the structural
parameters, ¢', defined in (26). Every point in a suitably fine
grid in this ellipsoid could then be mapped into a set of B's,
Graphing each of these sets of B's in Figures 1-4 would produce a
shaded area which constitutes the 95 percent confidence bounds, A
similar procedure could be used to get confidence bounds for the
BY's., The results in Runkle [1985] suggest the possibility that
the confidence bounds could be quite large.

Q/Following iz a sketch of the procedure I used to solve
(50}. First, I obtained the following partial fractions expan-
gion:

cw 5N,

= C ,
o(s) =1 supj m-1
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50
nt- 1 @ an
Dy(t) = C_ ,e(t) + X a f e 4 e(t-1)dr,
m-1 5.1
J=1 0
I then integrated both sides of the above equation from ¢ to t +
1, giving an expression for y(t+1) - y(t). The last step was to
integrate the first element in the latter vector from t to t + 1,
lg/For the same reasons as those given in section 6.d,
Figures 5-8 would be more informative if confidence intervals were
also reported. These could be computed along the lines described

in footnote 8.
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Table 1a
Restricted Continuous Time Model i
6(D) = .000027 + .176D + D
(.0012)2/ (.0035)
.008 0 -, 000062 .053
- (.000l) (.0043) (.0023) D
C(D) = +
008 ~.000005 027 .022
zeroes of e(D): -.176, -.00016 L. = 1618.7”33/
zeroes of det C(d): -.176, -.00016 5 free parameters
Table ib
Discrete Time Model Corresponding to Model in Table l1a 1
e*(L) = 1 - 1.838L + .838L°
035 0.00 -.026 -.017 -.01 .0097
cH(L) = + L+ 12
013 -.032 -.015 025 0.0 0.0

zeroes of 6 (L): 1.193, 1.000

zeroes of det C'(L): -7.217, 1.193, 1.000.
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Table 2
Unrestricted Discrete Time Model i

6" (L) = 1 -1.572L + .572L2

038 0.00 ~-.013 -.002 004 -.002
¢ (L) = + L + L2

013 ~,019 006 .025 -.003  -.002

.\+ 3/
zeroes of C (L): 1,749, 1.000 Lu= 1699.965=
zeroes of det C{L): 6.304, 1,173 + 2.8791, .746 13 free parameters

Likelihood ratio statistic = 162.44 with 8 degrees of freedom.

Notes To Tables 1 and 2:

' 1he estimated AR and MA parameters correspond to the time series
model of the demeaned, detrended data. Table 1a is a representation for
point-in-time data. Tables 1b and 2 provide representations for the case
where the first variable (the call rate) is averaged over the sampling inter-
val and the second is point-in-time. The numbers in Table 1b solve (29) and
(32), withm = 2, |

E/Estimabes of standard errors appear in parentheses. They are
calculated by taking the square root of 280 (=T) times the appropriate element
of the diagonal of (15). Naturally, standard error estimates do not appear
beneath parameters that are not free,

§/Lr and L, denote (up to an additive constant) the restricted and
unrestricted values, respectively, of the log likelihood function evaluated at
the optimum.
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Table 3a
Restriocted Continuous Time Model i
- 2
o(D) = .087 + 267D + D
.ot (.o15)

.035 0.0 -.025 .236 .006 534
- (.007) (.037) (.059) (.065)  (.030)
C(D} = + D +

.035 0.0 107 .019 .251 272
zeroes of 8(D): -, 134 + L2631 Lr = 256.#033/
zeroes of det C(D): -.662, -.134 + .263i,0. 7 free parameters

Table 3b
Discrete Time Representation of Averages
From the Model in Table 3a 5/

BYL) = 1 - 1.600L + .766L>

51 0 -.614 024 .086 -.087
C+(L) = ‘ + L * L

L1310 -.318 -.095 .566 - 170 -.335

B
079  .033
+ L3
137 .056

zeroes of & (L): 1.104%,297i

zeroes of det C(L): 1.0, 1.104 £ ,297i, 1.970, -12.869, -.2x107
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Table U4

Unrestricted Discrete Time Model &/

-~

6 (L) = 1.0 - 1.665L + .69uL°
(.130) (.122)

B T1r 7 i [
220 0,0 -3.18 311 132 -.4s6 1 -.034 b |
(.824) (.696) (.599) (.254) (.477) (.177) (.134)
(L) = N L+ L2, 13
201 .025 -.351 ~.,097 .095 .235 053 -.157
D.oeg) (.276) E.511) (.133) (.254) (.682) (.173) (.504)
zeroes of 8+(L): 1.199 + .OHSi Ly = 343.802 3/
zeroes of det E(L): -13.454, 3,028, 1.072, 1,0, .685 17 free parameters

Likelihood ratio statistic = 174.798 with 10 degrees of freedom.

Notes to Tables 3 and k:

1/mhe estimated AR and MA representations constitute the parameters
of the continuous time representation of (DR(t),DR12(t)).

g/See Footnote 2 in "Notes to Tables 1 and 2."

Q/Lr and L, denote the restricted and unrestricted (up to an addi-
tive constant) values, respectively, of the log likelihood function evaluated
at the optimum. The raw data is composed of 280 observations. One observa-
tion was lost in the first differencing process, Another observation was
dropped sa that the number of observations would be an even number--a matter

of convenience in frequency domain estimation,

&/The estimated AR and MA parameters constitute a time series model
of the demeaned, first differenced data.

2/The numbers in this table solve (34) and (37) withm = 3.
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Table 5
Computation Costs and Times

CPU Seconds Total Number
per Functioq of Function 2/
Evaluations v Evaluations Total Cost =
Table 1a 3/ .18 186 $3.35
Table 2 3/ 7 | 783  $13.31
Table 3 %/ .25 501 $12.53
Table 4 2/ .20 5,598 $111.96

1Total central processing unit (CPU) seconds divided by
the total number of function evaluations required to reach an
optimum, The latter quantity appears in Column 2,

2Total cost is the product of the numbers in the first
two columns and .10. Late night changes on the University Minne-
sota Cyber computer are approximately 10¢ per CPU second.

3pavidon-Fletcher-Powell nonlinear optimization algo-
rithm used. (See Powell [1971].)

uGRADX nonlinear optimization algorithm used. For a
description, see Goldfeld and Quandt [1972], pp. 5-9.

Powell’s [1964] conjugate gradient nonlinear optimiza-

tion algorithm used,
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Appendix A
The Cross Equation Restrictions

Following 1s a demonstration that (1) and (2) imply
1

(5). Let
1
Clop) Ay
A == y k=1, ..., m
k m (pr-0.) 5
‘PP A
i=1
izk
Here, AL is a 1 x 2 row vector, 1 = 1, 2, k = 1, ..., m. Then,

K
(2) is written

o

m pjr

(a1) y(t) = § A, [ e e(t-t)dr.
j=1 40

The first equation of (A1) is

(A2) R(t) = Z A I o (t-t)dr.
=1 J0

Integrating both sides of (A2),

11] m na= pjT
(a3) - g R(t+s)d Z A J [ e e(t-t+s)deds
=1 O 0
g mo,m p.(2+s) @ p (2+8)
R ORI CE S LT 37 T e(t-2)da}ds
= 0

Applying E. to both sides of (43),
£

@ p, (9+8)
1 [[ e J e(t-2)ds ]ds
0

n
(k) o E, [ R(t+s)ds
0

1

©
=

a, [ e e(t-2)de
0

n

[T e T4
f‘\.
T
—
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nnj

vhere a, = {e “-1)/{ne

] Yo 3= 1, ...y m.

J
Now, (1) requires that

1
1 n ) m A, o
- E, g R{t+9)ds = jZi 59331 e(t)

61(D) 52(D)

" B = ey
or
1 .
m A.a 8,(D) s,(D) i
(45) Al 2 ,
& 55~ ey o)
Equation (5a) follows uponunoting.thab A} = (P},P?),'where the P's

are given in (5b), and upon multiplying both sides of (45) by 6(D)

in
= I (D-p ).

=0
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Appendix B
Obtaining Raf

First, we get RAy(r), 1e(~w,+w), RA} is obtained by
averaging the latter. The spectral density of {ay(t),

t € (-=,+=)}, given in (18), is (8=iw, w ¢ (~w,+w)):

, es-1\CLs)C(-s)(e“s-1)

g,.(8) = JEE
by 5 To(s)e(-s) °
csycea)T-c cT o(a)e(-s)sc. ¥ .a(s)a(-s)
_ (e3-1){e"5-1][ 8)C(-8) - e m_1e 3)8(-3)+ e m_1e 5)a(-s
s s 8(s)8(-3) |
T T = -
(63_1)(e-s_1)[c I Cl8)Cl-8)"-C_,C o 8(s)e(-s)
z [—— + — =
s 7t s Sm-1m-1 6(3)8(~3)
8 -3 s -3 m-1 W m-1 W
et =1yre o1 T e®-1yre -1 j j
N (,s ) -3 )Cm-1cm-1 + s ) -3 [j§1 S-p J§1 s-oj]’
= S1(s) + 82(3),
say. Here, HJ, j=1, ..., m - 1 are defined in (11c). Now,
Rﬂy iz the unigue function with the property that
+ -3
8y (8) = f Ry (Pe Tdr,

for 3 = iw, w e {-=,+=), (Uniqueness of RAy may be established
using the Residue Theorem and Jordan's lemma. See Papoulis
[1962].) Define FT(T) and F2(T) to be the unique functions such
that



- hg -
$,(16) = [ Fy (e ™

sy(1w) = [ Fy(x)e ™ ™,

for w ¢ (-=,+=), Then, RAy(r) = F1(r) + Fz(r). 1t may be veri-

fied that

Co1Cpg (-1 <] s 1

F1(r) =
0 ' lef 5 1

r ( I ° Ny ooegT

yle =tler-Dyeld > 1

J=1 -03 J
F2(r) -J

JZ] p§{93(1-1)[wj+wj]+[wj-wj]-[2-e le Wj+e wj}

\

0t 1

F2(T) = FE(—‘L’)T T £ 0,

The function, ﬁﬂy, is obtained by integrating RAy in the

manner described in section 4b in the text. Formulas determining

the matrices ﬁj’ ﬁj, ﬁj, =1, ..., m - 1 appearing in (22) are

given below. First, let

[ 11 12 ] 11 =12
W atod
’ [ = i
J - ' i-
Wl w2l Wl gee
| J b N i
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=11 =21 _ 11 I
= HJ “? = WJ
Wj = HJ =
21 =22 =21 E22
[P | L.Hj W ]
for 3 =1, ..., m - 1. Then,
L S, Py Py
Wy o= oW {3 3 2(2-e )03 [pj(e 1)-1]
2l eI e e AT
+ 3[0 (e “-1)-e Y]} 3(m“1)(c ~1Cpt)
0% ]
j |
r AN O BV L IS PR - DR PO NSLE SN P
W e g ) - 5t W) - =32 (e J-1)n
J J
1 .21..°3 1 = =T 120,12 .21
+ 0—3” Wj (e 1) + m(c _1Cm_1) (Wj -'H? ]
J
=21 _ =12
Wy e N
=22 22201 P5 v 1 1,n T 22
We - w? pj[pj[e -1)-1] « Lle el )
[ -0, 0 . -p p .
J J o J
w}]{(e-o —1)[90 —1]]2 w;Q[e -p-1)(e p-1)2
- J J J J
ij =
-0 4 -D . p
U I J_ J. J_
H§1 e_p 1)2(99 1] H§2(e —~ 1J(e - 1)
- J J J 3




=1
o

n

13}

J p§

v (20 )
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P P
(e d-1)-e J]- L3}

J

2(e J-1) + s—c_ T

m=-1"m-1

+W.5) + ~—21—(H21—W12) - -z

w‘1—‘{[1-(e'”-‘-nte°J-a)e"J][;‘,-j-[e”J-n-ﬂ

I 2L
=17 =11

)21



