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ABSTRACT

This paper derives a variance bounds test for a broad class of
linear rational expectations models. According to this test if
observed data accords with the model, then a weighted sum of
autocovariances of the covariance-stationary components of the
endogenous state variables should be nonnegative. The new test
reinterprets its forefather--West's [1986] variance bounds test--
and extends its applicability by not requiring exogenous state
variables in order to be tested. The possibility of the test's
application to nonlinear models is also discussed,
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1. Introduction

In a recent issue of this journal West [1986] tested a
linear rational expectations (LRE) version of the production
smoothing-buffer stock model of inventories. He hypothesized that
the covariance-stationary components of production, sales, and
inventories are consistent with the optimal policy of the under-
lying dynamic maximization problem, Then, he showed that the
uncenditional expectation of the difference between the value of
the objective function under the optimal policy and the value of
the objective function under a policy where inventories are iden-
tically zero, is equal to a weighted sum of variances and covari-
ances of production, sales, and inventories. Thus, he proceeded
to test whether the nonnegativity of this sum was satisfied by the
. covariance-stationary components of the observed data.

The purpose of this paper is to reinterpret and general-
ize West's condition for a broad class of LRE models. It is shown
that the unconditional expectation of the difference between the
value of the objective function of the underlying dynamic problem
under an optimal pclicy and the value of this function under any
feasible policy, such that the difference between the correspond-
ing state paths is a covariance-stationary process, is a weighted
sum of autocovariances of that process. Thus, this sum must be
nonnegative for any covariance-stationary difference between an
optimal state path and a feasible state path. There are two
standout 1mplications of this result, First, if observed data
accord with the optimal policy (i.e., the thecry) then their

covariance-stationary components should satisfy the above condi-




tion. For, as shown below, the nonstationary components of the
endogenous state variables qualify as the state path associated
with a feasible policy. This is the reinterpretation result,.
Second, unlike West's condition, the one derived here does not
require exogenous state variables in order to be tested. This is
the generalization result and is a consequence of the fact that
the condition derived here exploits some of the other necessary
conditions while West's does not.

Section 2 sets up a general LRE model and reviews the
standard necessary conditions for its solution. Section 3 proves
the necessity of the new condition and discusses its extension to
nonlinear rational expectations models. Section 4 presents two
examples. The second example involves West's inventory model and

Juxtaposes the new condition to his,

2. A General LRE Model
Let {g(t):teN}, N = {0,%1,...}, be a stochastic process

on a probability space (0,,P), where &(t) is an n, x 1 dimen-

g

sional vector of exogenous state variables at the beginning of
period t. Also, let 1, be the o-algebra generated by the sequence
of random variables (...,5(t-1),£(t)], t e N. ay represents the
information available to the system at the beginning of period
t. Clearly, Q. < @, 4 ¢ 2, ¥ £ ¢ N. E(+) denotes the uncondi-
tional egpectations operator with respect to P. That is, for any
integrable function (+) with respect to P, E{(s) = | (-)dP =
IO(-)P(dm). Et(') denotes the conditional expectaticnsggperator

with respect to P, given Q. That is, for any integrable function

() with respect to P such that E(¢) < =, [ (+)P(dw) =



IAEt(o)P(dw), ¥ A e o {e(t):telr,t+1,...},1eN} takes values
in ﬁf. That is, the spaces of sequences £ = (E(t},g(1+1),...),

£ = (E(t),E(t+1),...), ete., such that
v L t-T .
Y 8- TTEE(E)'E(L) < =,
t=1

where 8 ¢ (0,1) is the discount factor in all periods. Also, let
x(t) be an Ny x 1 dimensional vector of endogenous state variables
at the beginning of period t. Then, a variety of LRE models can

be stated as a problem of the form: '

T
(1) max lim E_ Z Bt-rf[g(t),x(t),u(t)]
fup)}y. T

subject to:

{2) u(t) Qt-measurable
(3) x(t+1) = gle(e),x(t),ult)] (P)
(4) x(t) = x (given)
@ X
(5) {X(t)}t=T € ET
where u{t) is an n, x 1 dimensional vector of control varlables in
period t,
N b 'lE(t) E(ty] ! %ee ey bru £(t)
(6) £|” = ¢, x(£)p + & [x(t) e Pxx ®xu x(t)] ,
¢ u(t) u(t) e Pux ®uu u(t)

bi and ¢ij are appropriately dimensioned vectors and matrices,

respectively, such that




(6a) .. = ¢ji

(7 gl% = v B(E) « v x(e) + v ule),

Y4 are appropriately dimensioned matrices, such that there exists

an n, x N, dimensional matrix N with the property

u X

(73) GUXYXU = I;

and ﬁf is the space of sequences x = (x{1),x(t+1),...}, ¥ =

(%(t),%x(t+1),...), ete., such that

uf B TEX(£) 'R(+) < a.

t=1

It follows from the preceding formulation that x(t+1) is
Qt-measurable for all t ¢ {r,t+1,...}. Thus, decisions at time t
depend only on the past history of the {g(t);teN} process and X.

It should be noted that no a priori curvature restric-
tions have been imposed on f|t. Also, no explicit law of motion
for the {g(t):teN} process has been postulated. On the other
hand, {x(t)}::T € £f can be relaxed. For our purposes it suffices
that B(T_T)|ETX(T)'X(T)| +0as T+ =, ¥Xxe R, Moreover, (7a)
can be altogether eliminated, Its implication is, of course, that
there are n, controls at the most in the system. Effectively,
this excludes all these models whose solution cannot be character-

ized by Euler conditions. Now, it will be convenient to transform

P as follows.



Fact 1: Given (6a) and (7a), (P} is equivalent to:

T
(1) max lim €_} 8% Tn[£(t), x(t),v(t)]
fx(ten)}y_ Tre tor

subject to:

(2") x{t+1) nt-measurable
(3") vit) = x(t+1) - x(t) (P*)
(4) (1) = X
' b X
(5") {X(t)}t=T £ fr
where:
£ k| " [e(t) g(t)] '[N O P g{t)
(64) hi” = |2 ()] + } [x(%) 0'Q R x{t)
m vit) v{t) P'R S v(t)
(6a') N' =N, Q' =Q, and 3' = §

- _ ' '
= ¢x + (I Yxx) 5ux ¢u

- 1

m = 6ux *y
- - ' ' _ _ t 1 _

0= ¢Ex Txg 6ux * d’b;x(sux(I Yxx) Txg 5ux d’t11151.1x(I Yxx)
- _ '

D= QEuGux Yxs 6ux¢uu6ux

0
1

t 1
b+ (T-v, )8, T, + 6 8 (I-y )

+ (Toy, )08, 0 8 (T-y




- _ ' '
R = d’xuesux + (I Yxx) 6ux ¢uuﬁux

S=8 "o & .
ux uul ux

Then the following is well known.

Fact 2: If {x{t+1)}. _ is an optimal policy for P then the fol-
_— t=1

lowing conditions must hold:
(Euler Condition)

(8) (S-R)E x(t+2) - [Q-(R+R')+(1+B'1)S]Etx(t+1) . 3'1(S—R)'Etx(t)

1

= %+ (871-Dm + (0-P)'E_g(t+1) + 87'P'E E(E),
¥te {t,7+1,...}
(Legendre Condition})
(9) Q - (R+R") + (1+8-1)S negative semidefinite

3. The New Condition
Now the stage has been set to state and prove the neces-

3ity of the new condition.

Lemma 1: If &(t) = x*(t) - x~(t), where {x+(t+1)}:=T is an opti-
mal poliey for P and {x_(tﬂ)}::T is any feasible policy for P
(i.e., satisfies (2')-(5'}, then the following condition must
hold:

T
(10) Lim Etzfst_T[26(t+l)'(R-S)G(t+2)

+6(t+1) " (Q-R-R'+(1+8”)S)s(t+1}] < 0.



Proof: Since h|t is quadratiec, it follows by Taylor's Theorem

that:

T
E z Bt_T(h+|t-h-|t)
T
t=1

[
i

z t t t
=E_ Y e v nt | [xT ) -xT ()] + wonT| PV (e) v (D) ]
Tt:T X v

—%[x+(t)-x-(t)]'Vxxh|t[x+(t)'x-(t)]
[ e, n] v E)-vT(v)]
v e n S (e (e)-x7(t)]
v ] n | Hvte) v,

where Vxhlt stands for the gradient of h with respect to x evalu-
ated at h[g(t),x(t),v(t)], Vxxh|t stands for the Hessian of h with
respect to x evaluated at h[g(t),x(t),v(t)], ete,

Since v(t) = x{t+1) - x(t) and §{t) = x*(t) - x7(t), we

have:

T
T _ t-1 +,t + £ + &
A = Eftzrs {[v,n"] -v " ]6(t)+vvh [“s(t+1)

t t t t
—%G(t)'[vxxh| -vah| -vvxh| +vvvh| Ja(t)
t t
-3s(e)'[v_h|"-v h|"]s(t+1)
1 : tg nit
36(t+1) [vah| vvvhl Je(t+1)

-3a(eeD) | S8t}




Since both {x+(t+1)}:_T and {x‘(t+1)}:_T are assumed to be feasi-
ble, (4') implies &§(t) = 0. Then it follows by a change of time

indexes that:

T3 t+1

T
At = Er[

1
telat
. CAR|

v | 5 s (e
v
t=t

v h|
X

t+1 t+1_v h|t+1

| -;a(t+1)'[vxxh[ x

-v_ h|
v
t+1 . £+ t+1
+v_hl JaCten)-s(t+1) [v B|*" -9 h| Js(t+2)}
: t-t +t t
+ 2 8" {w,h"| s {ta )38+ 1) 'R | s(t+1)})
T-1

t- -1 +t t+1 +,8+1
g (87 v AT Fer 0| w1 s ()

+Bt-1{vvh+|T5(T+1)-%6(T+1)'hVV|T5(T+1)}

T-1
1 t-t ' t+1 £+
-38 7 8- {28(e1) v BT v h[TT s (6e2)
t=1
cotan) ' [v. n]¥ g ¥y n o
XX v VX
-1 t+1
+(1+8” )V h] Js(e+1)1).
Using the P' notation:
T o7 ¢ + +
(*) 8_=E (8 ] 87 [(S-R)x"(£+2)-(Q-R-R'+5+8-1+5)x (t+1)
t=1

+8”1(S=R) "2 (£)-2-(8-1)m=(0-P) "£(t+1)

—3'1P'E(t)]'6(t+1)




8 T [SxT(T+1)4(R-8) "X (T)+m+P ' £(T) | ' 6(T+1)
~38(T+1)'S6(T+1}}

T-1
=38 § 8T {28(t+1) ' (S-R) 6 (t+2)
t=1

+5(t+1)'(Q-R-R')+S+3"S)a(t+1)}].

Now, since , < Q. 4, ¥ t € N, it follows that E _(+) = ET[Et(-)],

¥Vt e {t,T+1,...} (see, e.g., Billingsley [1986, Theorem 34.4]),

@

t=1
surable, it follows by (3') that s(t+1) is @ -measurable. There-

and since {x+(t+1)}:_T and {x (t+1)} are assumed to be g -mea-

fore, E 8{t+1) = &(t+1) and Et[(-)a(c+1)] : [Et(-)]é(t+1). (See,
e.g., Billingsley [1986, Theorem 34.3].) These facts imply that:
E_[(S-R)x*(£+2)~(Q-R-R'+5+87'S)x" (£+1) 87 ' (S-R) "% (£) -1
{8~ - m-(0-P) '} (£+1)-8" TP E(E) ] T8+ T)
= £ {[(s-R)E £ (£42)=(Q-R-R'+S+8™ 1S)E. x (t+1)
T t t
+8'1(S-R)'Etx(t)-l+(8'1—1 Jm-{0-P} 'Etg(t+1)
~a7'PE E(E) ] Ts(te 1))

Therefore, since {x+(t+1)}:_T is assumed to be an optimal policy

for P it follows by (8) that the first term in the right hand side

of (%) is zero. Furthermore, since [{g(t)}:_T,{x+(t)}z_T),
@ - @ £ X :

({g(t)}tzt,{x (t)} . ) e £7 « £7, it follows that each and every

one of the bilinear and quadratic forms of the second term in the

right hand side of (*) goes to zero as T + =. Therefore,
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T T ¢
lim &_ = -38 lim E_ ) 8~ "[26(t+1)'(S-R)8(t+1)
Taa T T+ Tt:‘(

+5(t+1) " (Q-R-R'+5+8” 1S)s(t+1)].

Now, since E(e) = E(Et(-)}, ¥t e N, it follows immediately that
if {x+(t+1)}:_T is an optimal policy for P and {x—(t+1)}:_T is any
feasible policy for P, it must be that (10) holds.

Q.E.D.

Then, we have the following.

Theorem: Suppose that {&(t):teN}, &(t) being defined as in the
preceding lemma, happens to be a covariance stationary process.

Then
(1) E[26(r+1)'(R-S)6(1+25+6(1+T)'[Q-(R+R')+(1+B_1)S)6(r+1)] < 0,
¥teN.

Several comments are in order. First (11) is indeed new. In
particular it is not and neither is it implied by the other second
order condition {(i.e., the Legendre Condition). Second, what
makes this result useful is that if observed data accord with the
optimal policy, then their deviations from their nonstationary
components should satisfy (11); for these nonstationary components
trivially satisfy all the requirements for a feasible solution (as
in the first example below). Or if the maintained hypothesis is
that the covariance stationary components of the endogenous vari-
ables are generated by the optimal solution of the model and a
"zero" feasible solution is meaningful (as in West's inventory

model), then again, (11) should be satisfied by the covariance-
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staticonary compeonent of the endogenous state variables, Thus,
(11) provides for a natural and easily implementable test for the
validity of the hypothesis that observed data accord with the
optimal solution, without having to make strong curvature re-
strictions or specify the law of motion of the exogenous state
variables., Third, it can be easily verified by tracing the steps
of the preceding proof that a similar result obtains when (7a) is
not imposed.

Also, when h is twice differentiable but i1s not neces-
sarily quadratic, and a transversality-like condition holds that
will make the second term in the right hand side of (*) go to zero

at T » =, (10}'s counterpart is:

T-1
. t-t 8, L+ 8 t+!
Lim B § 87 [s(ee1)(v 07" v BT[TT ) s(e2)
Trx t=1
+5(t+1)'(‘i’ h8|t+1_v h8|t+1
XX XV
8, t+1 -1 8,5+
-7, 0 e (1-8T e kT[T st )] < 0
where
R 15T 2 on[e(ee1), 28t 1), w0 (ke 1) ]
8 + -
¥ (E+1) = ax (t+1) + (1-8)x (t+1}
and
8 + -
v o(t+1) = 8v (t+1) + (1-8)v (t+1),
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8 ¢ (0,1). To reduce this condition to something like (11), it

must be that E[v. h®|%* v n®|%*7]  ana  E[v__n®|ttl-
XV vV XX
h9|t+1v h9|t+1+(1-s'1)v he|t+1] are constant matrices. This
VX VvV Vv

v
XV
may be the case after an appropriate transformation (e.g., after
multiplying by a positive random variable) if {xa(t)}z_T is a
stationary or steady state and {x'(t+1)}:_T is obtained as
(1-8)"1x8(£+1) - 8(1-8)"'x*(t+1) for an appropriately chosen 8,
Then, note that &(t+1) = x%(t+1) - x7(t+1) = (1-9)“[x+(t+1)-
xe(t+1)] implies that {11)'s counterpart is effectively indepen-

dent of 8. So in order to evaluate the new condition, one needs

only the covariance-stationary deviation from the steady state.

4, Two Examples

This section presents two examples that illustrate the
usefulness of the new condition. That is, how one can. construct
observable covariance-stationary {s(t):teN} processes and thefeby
check for (11). West's condition will be examined in connection

with the second example.

An "Open Loop" Alternative

Let ¥(t) = £(t) - Eg{t). Suppose that
{12) ¥(t+1) = A¥(Lt) + e(t+1)
where

(12a) {ze¢:det(I-82)=0} n {ze:|z|<1} = @
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(12b) e(t) ~H(,]) ¥vteN
(12¢) Ee(t)'e(t') = 0, ¥t # t'.

It follows that {¥{t):teN} is a covariance-stationary process.

Assume that:
(6b) det (S-R) # 0O
and let J1(J2) be a Jordan matrix with the eigenvalues of:
e(z) = 12° - (S-R)™(Q-R-R'+S+87'S)z + 8~ (S-R)™(S-R)"

with modulus less (greater) than B'%. Also, let H,(H,) be the
matrix with the eigenvectors and the generalized eigenvectors of
e(z) corresponding to Jy(J5). Then, under the additional regular-

ity restrictions:
(6c) {zef:dete(z)=0} n {2e¢:|z|=s'%} = 9

(6d) rank (Hi) =n,i=1,2

x,
the policy for (8) subject to (4} and (5) is given by:z’3

(13) T (t+1) = K1x+(t) + M¥(t) + N(t), x' (1) = ¥

where

K, (s-R)Tle e o JZTK2-J[(S-R)-1(O—P)'+K2-1(S-R)_

1

]
=
"

s 'p |a



T

-1,-1

-N(t} = (I-K2 )
+ i K -j[(S-R)—1(O-P)'+K “Ns-r)”
L 72 2
j=1
Consider, now, the deterministic problem that

substituting Eg(t) in (1) and (3) for &(t).

KZ_T(S—R)“1[1+(6_1-1)m] + K2“1(S-R)'13'1P'Eg(t)

18-1P']Ei(t+j).

results from P by

Under the regularity

conditions mentiocned earlier, any optimal policy for this problem

should satisfy:

(14) X (t+1) = K1x-(t) + N{t); x (1) = x .

Obviously, {x'(t+1)}:_T is a feasible policy for P. This policy,

sometimes referred to as the "open-loop" poliey,

and {14) imply:

£-T .
(131 x(een) = KT e KMy (e-n)N(e-1) |
i=0 )
£-T .
(14") x {t+1) = K?'T+]§ ) K#N(t-i).
i=0
Hence,
t-T .
s(t) = x7(+) - x7(+) = ] KyM¥(t-i).
i=

0

Thus, since &(%t)

stationary processes 1s itself covariance-stationary.

can be obtained as the finite sum of covariance-

It should

be observed that this example can be easily extended to account

for moving average components

{w(t):teN} process.

in the law of motion of the
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The "Zero" Alternative

One way of looking at West's inventory model is to
consider a firm that takes its sales of a single homogeneous good
as given and seeks a production schedule that will minimize its

expected discounted future stream of real costs:

Eotéoﬂt{ao[Q(t)-Q(t-‘l ) 124200802, [H(E)-a (6 ) |},

subject to
Q(t} = S(t) + H(t)} - H(t-1)

where Q{t) is production in period t, H(t} is inventories at the
end of peried t, and S{t+1) is the covariance-stationary component
of sales in period t. The term aO[Q(t)-Q(t-T)]2 represents ad-
Justment costs brought about by changing production levels. The
term a1Q(t)2 represents production costs and the term
a2[H(t)-a3S(t+1)]2 represents inventory holding costs and backlog
costs. It is hypothesized that the observed covariance-stationary
component of production is an optimal policy for this problem. It
also follows that {Q(t),S(t),H(t):teN} form a covariance-
stationary process,

To map this model in the P' format, let:

g(t) = (S(t+1)S(t),8(t-1)])", x(t) = (H(t-1),H(t-2)}"

, -
a2a3 0 0 -a2a3 0

N/2 = 0 a0+a1 —ao 0/2 = -aO aO
0 0 aOJ a0 -a
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—a2a3 0 a0+a'2 -2,
P/2 = a0+a1 0 Q/2 =
-a a
_ 0 0 0
(a2 _+a a +a,+a. 0
R/D = 020 S/2 = 01 "2
a 0 0 0
| 0

It can be easily verified that the Euler condition is:

-1 -1 -1
. [2a0+a1 d] i x,(£+2) ) (4+87Dag+(1-87 Ja 8" 'a, -2a, ~ [
-a 0 t o
0 x2(t+2) -2a0 ao

-2a +a -3 X (tf 0 -(2a.+a) 2a F"I(t’”
L - N 0 OlE, [g,(t+1
t 0 ao -a t 2

+ B gz(t) =0, ¥t ¢ N

€3(t)

b

B e, (t)
-1 -a2a3 a0+a1 -ao] o 1
t

and the Legendre condition is:

(H+s'1)a0+(1—s'1)a1+5'1Q2 -2a

-230

positive semidefinite.

Before looking at (11) it should be helpful and reassuring to
verify that (8') is indeed West's Euler Condition. To do this,

first note that the second equaticn in (8') is:
aofe[HpyqHel = aglig-Hy ]+ ag [, (-s;] = 0.

Then, shift this one period forward keeping the same expectations
operator and multiply both sides of the result by 8. Finally, add
the new result to the first line of (8')} and multipiy by 8. This

gives West's equation (8).

x1(t+1)
X2(t+1)

)
)

|




Now, the new condition gives:

'51(t+1j’ ' 1-(2ag+a)) 0] [s,(ten)
E{2
_§2(t+1) a, o |ey(t+n)

}1(t+1f [(14+B"1a0+(1-s'1)a1+8"1a2 -2a6} [61(t+11:l

fz(t+1{ -230 a, 62(t+1)

or

(1) E{[(5+B—1)a0+(1+s‘1)a1+3'1

a, |H(t)-2(ka +a, JH(E)H(E-1)
+2aOH(t)H(t+2)} > 0,

But West's corresponding condition (i.e., (6)) is:

(16) B(a,{[s(6)-s(t-1)]2-[aE)-a(t-1)]%}+a, {s(t)2-Q(t)?}
-aEH(t)2+2a2a3H(t)S(t+1)] > 0.

The following clarifies the difference between (11') and (16).

Lemma 2: Given H™(-2), H™(-1), H7(0), ... = 0, (11') holds if and

only if (16) holds.

Proof: Since {Q(t),S(t),H(t):teN} is a covariance stationary

process, and since E[EO(-)] = E(+), we have:

©
1]

(1-8)"'E(ay {[S(E)-s(t-1 ]?-[Qe)-Q(b-1) ]*}+a, [S(E)-a(t)?]

-aZH(t)2+2a2a3H(t)S(t+1)]

o

EE, § et(ao{[s(t)—s(t-1)]2—[Q(t)-Q(t-1)]2}+a1[S(t)z-Q(t)g]
t=0

-aeﬂ(t)2+2a2a3H(t)S(t+1)]



- 18 -

i S{t+1) ' -ézag 0 0 ~ayaq 0 -azag o]l [ S(t+1) ]
S(t) \ a0+a1 -ao —ao ao ao+a1 0 S(t)
- 3{t-1) ag . ag -a, -ag 0 S(t-1)
= Esotzoe H(t-1) agta, -ag -ag*ap, O H(t-1)
- H(t-2) ag ag 0 H(t-2)
H(t)-H(t-1) ag+aj+ay O | H(t)-H(T-1)
H(t-1)-H(t-2) 0] |H{t-1)-H(t-2)}

gt)] ' fo o p] [elt)
- eE, § 8" [x'(0))  fora [ [x"(©)
£=0 1y pr Rt st [viie)

On the other hand, it follows as in the Proof of Lemma 1 that:

X = -38(1-8)"'E{[(5+87Da+(1+87 Da +87 e, JH(1)?
-2(Ha+a, JH(t)H(t-1)+2a H(E)H(E-2) ]
g(t) ¢ [N O P| j&(t) g(t) | IN O P| |&(t)
= el g, D et {[x ] fora Rl k()| - |xT(8)| ot R|[|x7(e)
t=0 1 vtey| [p ot S| vt ey et ros| |vTie)
It follows that if H™(-2) = H™(-1) = H°(t) = ... = 0, ¢ = X.

Hence, since B ¢ (0,1) (11') holds if and only if (16) holds.
Q.E.D.

This result also makes clear the way (16) was derived;
that is, without using the other necessary conditions. Although,
for this model the difference between (11) and (16) is rather
unimportant, it should be obvious that for models where some
exogenous state variables are not observable (i.e., preference and
technology shocks) or when a "zero" alternative feasible solution

. . . . . "
does not exist this difference is crucial.
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Footnotes

1For' examples of LRE models see Hansen and Sargent
[1981] and Sargent [1982, 1985].

’See Kollintzas [1986a, 1986b].

The regularity conditions (6b), (b6be¢), and (6d) are
discussed in Kollintzas [1985, 1986b]. Condition (6c) is somewhat
stronger than necessary. These conditions are not sufficient for
(13) to be a soluticon to P.

*For example, this i1s true for a variety of LRE inven-

tory models. See, e.g., Kollintzas and Husted [1984],
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