. m' o g_f_)quw/wju e

Federal Reserve Bank of Minneapolis
Research Department

CCMMUNICATION COSTS, THE BANKING
SYSTEM, AND AGGREGATE ACTIVITY

Stephen D. Williamson*
Working Paper U05
September 1988

NOT FOR DISTRIBUTION
WITHOUT AUTHOR APPROVAL

a BRARY
cCONOMICS RESEARCH U
SOONERIEITOR SIS

ZESITY ©F

*Federal Reserve Bank of Minneapolis. Prepared for a conference on "Models of
Money and Intermediation," University of Western Ontario, October 1988. A
preliminary version was presented at the NBER Summer Institute, July 1988.

The views expressed herein are those of the author and not necessarily those
of_the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
This paper is preliminary and is circulated to stimulate discussion. It is

not to be quoted without the author's permission.



Abstract

A model i3 constructed where banks provide access to a communication
technology which facilitates trade. Bank 1liabilities may coexist with
alternative means of payment in equilibrium, and there exist regions of the
parameter space where banking dominates the payments system and where physical
exchange media dominate. The model is consistent with some observations
concerning the role of the banking systen; in economic development, and with
characteristics of banking crises. In particular, in early stages of economic
development: 1) rapld output growth is accompanied by an increasing share of
banking in transactions activity and 2) there are recurrent banking "panics"
where reductions in measured aggregate ocutput coincide with increases in the
use of alternative means of payment relative to bank lilabllities. In later
stages of development, growth slackens off, the share of banking in the

payments system stabilizes and the economy is less likely to be subject to

banking panics,
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I. Introduction

One of the Iimportant distinguishing features of banks is that they
supply transactions services. That is, they provide access to a communica-
tions technology which facilitates trade. In most economies, the transactions
services supplied by banks compete with alternative transactions media, such
as fiat currency or commodity monies. Authors who have studied the role of
banking in development (e.g., Cameron 1967) or who have studied financial
panics and banking crises (e.g., Friedman and Schwartz 1963 and Cagan 1965)
focus considerable attention on substitution between bank liabilities and
other means of payment. |

The best-known traditional account of the demand for a medium of
exchange is the inventory money demand model of Baumol (1952) and Tobin (1956)
and its general equilibrium versions {(e.g., Jovanovic 1982 and Romer 1987).
These are essentially cash-in-advance models with a single means of payment
and a technology for converting interest-bearing assets into "money." An
inventory money demand model does not explain why interest-bearing assets
cannot be used in exchange, and it does not model the demands for alternative
means of payment.

In more recent approaches to modeling banking and financial inter-
mediation, intermediaries serve to economize on monitoring or evaluation costs
(Boyd and Prescott 1986, Diamond 1984, Williamson 1986}, to insure against
states that regquire liquid assets (Diamond and Dybvig 1983, Bhattacharya and
Gabe 1987), or to provide a set of contracts rich enough to induce the revela-
tion of private information (Williamson 1988). However, none of these envi-
ronments includefan explicit transactions technology.

To model the provision of transactions services it seems necessary

to explicitly specify an environment where there are barriers to communication
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and trade. Two such approaches are Prescott (1987) in a representative agent
framework, and Kiyotaki and Wright (1987), in a search environment. The model
constructed here is much different from either Kiyotaki and Wright's or Pre-
scott's, but it has some features which resemble Diamond and Dybvig's (1983)
banking model. In particular, there are three pericds, with agents being
uncertain in the first period about their future preferences over consumption
streams. However, in contrast to Diamond and Dybvig's model, the spatial
separation of agents precludes the possibility of insurance against preference
shocks, The provision of this insurance is the raison d'etre for banking in
the Diamond-Dybvig model. Here, banks are essentially record-keepers whao keep
track of the ownership of assets. We abstract from other important features
of banking such as diversification and asset transformation.

In the model, agents recelve endowments in the first and second
periods and they may produce assets in the first period and trade them in the
second. Assets yield returns in the final period. Assets are of two types:
the first can be transported costlessly between locations and traded without
cost; the second cannot be transported and, if traded, costly communication
- with a bank is required. Asset 1 yields a lower two-period return than does
asset 2. The first asset can be Interpreted as cash, as a commodity money, or
as private bearer notes, while the second has features assoclated with the
depoalt liabilities of banks.

With the preference uncertainity In the model, agents do not know in
the first period whether they will be asset buyers or asset sellers in the
second period. Given the nature of the communications technology, there are
effectively two segmented asset markets in the second period, one of which

requires a fixed entry cost (i.e., the cost of communication).



Though consumers in the model maximize identical objective funec-
tions, thelir equillbrium asset holdings may differ, That is, the model may
generate endogenous heterogenity among agents because of the fixed costs of
communication. Given equilibrium prices, agents may be indifferent among
several different lifetime contingent asset-holding strategies. Agents choose
among such strategies by submitting to lotteries. In equilibrium there may be
!, 2, or 3 types of agents, who differ according to their contingent asset-
holding strategies.

A unique equilibrium exists in which either asset 1 is produced and
traded, asset 2 is produced and traded, or both, depending on parameter val-
ues. Thus, the model predicts that there are circumstances where bank llabil-
ities coexist with alternative means of payment, where banking dominates, and
where alternatives dominate. In examples, the ranges of parameter values over
which both assets are held represents a large subset of the parameter space.
The fraction of transactions carried out through the banking system tends to
Increase as the costs of commnication decrease, and as the returns on assets
held by banks increase. |

The response of equilibrium prieces and quantities to changes in
technological parameters differs quite markedly over the region of the para-
meter space where both assets are traded. Near the boundary with the region
where only one asset is traded, small parameter changes lead to large changes
in quantities and prices. However, over most of the region where both assets
are traded, price and quantity responses are relatively small. The model thus
has properties that are consistent with what is observed over stages of eco-
nomic development, and with features of bgnking panics., That is, as the
technology evolves stochastically over time, In such a way that there is trend

growth in output, there will be an early stage of rapid growth where the



banking system also grows rapidly (see Cameron 1967), followed by a stage over
which growth slackens off and the share of banking in transactions activity
stabilizes. Over the early stage, there can be recurrent perlods where large
drops in output coincide with large decreases in the share of transactions
carried out through the banking'system, and with increases in the prices of
transactions media (deflations}. These "panic" periods subside as the banking
system reaches a higher state of development.

The model thus provides an alternative expianation for the differ-
ence between pre-Depression and Depression-era U.S., macroeconomic behavior, on
the one hand, and post-Depression observations, on the other. During and
previous to the Great Depression, there were large recurrent drops in output
accompanled by gimilarly large reductions in the demand for bank depﬁsit
liabilities relative to other means of payment (see Cagan 1965, and Friedman
and Schwartz 1963). However, recurrent "banking panics" were absent in the
post-Depression era. Usually, this observation 1s attributed to the govern-
ment provision of deposit insurance and more appropriate behavior by the
Federal Reserve System in the post-Depression era. However, in this model
these observations are consistent with a natural evolution of the banking
system as the technology changes over time.

In examples, parameter changes which lead to increases in measured
output and in the size of the banking system in equilibrium can also lead to
decreases in expected utility, This occurs because of the increased quantity
of resources absorbed as the banking system expands. That is, in the early
stages of development, the banking system can expand too quickly, so that
welfare decreases.

The paper is organized as follows. In the second section the model

is constructed. Section 3 contains a definition of competitive equilibrium,



and existence and uniqueness of equilibrium is established. In Section y,
some examples are used to illustrate properties of the model. The final

section is a summary and conclusion.

II. The Model

There are three perlods, 0, 1, and 2, and a continuum of consumers
of measure i. In period 0, consumers are distributed uniformly on the circum-
ference of a unit circle. There is no communication or exchange of goods
poasible between locations in period 0. A consumer may be one of two types; a
type 1 agent consumes in period { and has preferences given by u(eq) if type 1
and v(cz) if type 2. Here, ey is consumption in period j. The measure of
type 1 consumers is =, where 0 < v < 1, and = is public knowledge in period
0. It is assumed that u(c) and v{e) are concave, increasing, finite for 0 < ¢
< =, that lim u(ec) = lim v(¢c) = ==, lim u{e) = lim v(e} = =, and cu"(c)/u'(e)

c+0 c+0 Crm Cro
z 1. The last condition is sufficient for uniqueness of equilibrium.

Consumers do not know their types in period 0. 1In period 1, each
consumer learns his type and then all consumers move to the center of the
circle, where communication and trade among consumers is possible. Each
consumer recelves an indivisible endowment of Xy units of an investment good
in perlod 0, and type 2 consumers each receive Xy units of a perishable con-
sumption good in period 1.

Each consumer has a technology for producing two types of assets
from the investment good In peried 0. Since the period 0 endowment is indi-
visible, a particular consumer cannot diversify between the two assets. '
Asset | ylelds a return of 8y units of conﬁumption in period 2 for each unit
invested in period 0, where 8; > 0, 1t =1, 2. The first asset can be trans-
ported between locations following period 0, and its quality can be verified

at zero cost. However, asset 2 cannot be moved from its investment location,



and it 1s necessary for agents to incur communication costs if asset 2 is
bought or sold in period 1. €Each consumer is paired with a record-keeper who
stays at the {nitfal location in pericd 0-2. Record-keepers operate account-
ing systems which keep track of which agents have claims to the type 2 asset
at their location. Should an agent wish to transfer a claim to a type 2 asset
to another agent In period-1, the asset seller must incur a cost a, (in terms
of the period 1| consumption good) and the buyer a cost ay. Here o, represents
the cost to the seller of Identifying herself and communicating with the
record-keeper, and as is the communication cost for the buyer,

At the period 1 trading location, agents meet and agree to asset
trades, following which agents communicate with record-keepers. Communication
costs are independent of the quantity of information transmitted or the number
of locatlons to which commnication i3 made. Therefore, each seller of asset
2 ipcurs a cost of ay, and each buyer of asset 2 incurs a cost of a,, NO
matter how many agents they engage in trade. Assume that x; > a5, S0 that the
endowment of an asset seller 1s always large enough to absorb the fixed cost.

In period 2, each consumer moves clockwise around the clrcle, start-
ing at her period 0 position and consuming any returns to which she has a
claim in transit. All consumers move at the same speed, 30 that no two ever
meet in the final period. Thiﬁ precludes any arrangements which might allow
for the sharing of communication costs in period 1, since with any such ar-
rangement there iy an incentive to cheat on the part of some agent.

‘The record-keepers in the model can be interpreted as banks. Here,
we abstract from some important functions of banking, such as diversification
and asset transformation, and focus solely on the role of the banking system
in operating an accounting system to facllitate wealth transfers. The commu-

2
nication costs associated with the transfer of claims to asgset f are similar



to the costs associated with the transfer of deposit claims by check. Asset |
can be interpreted as currency, a commodity money, or as private bearer notes
(to the extent that these are recognizable'to all, and have a certain redemp-
tion value). This framework could have been embedded in an overlapping gener-
ations model, with asset 1 being an intrinsically worthless asset whlich could
have value in equilibrium. However, it seemed better not to introduce the
complication of determining an equilibrium with valued fiat money. .

This ii::;’is similar to Diamond and Dybvig's (1983) model of de-
posit contracts and bank runs, in that consumers have uncertain preferences,
and therefore uncertain demands for liquid assets. However, our framework
differs in that we have precluded any insurance role for banking of the type
that exists in the Diamond-Dybvig model. 4lso, all trading will take place
here in a decentrallized fashion in pericd 1, while the Diamond-Dybvig model

involves a centralized risk-sharing arrangement which is set up in the initial

period.

The Cansumer's Cholice Problem

A representative consumer's optimization problem is solved in two

stages.

Stage 1

Let q, denote the price of asset i in terms of the period 1 consump-
tion good. In period 0, each consumer choose ay, the quantity of asset |
acquired in periogd 0, 1 = 1, 2, by, the quantity of asset I held at the end of

perfod | if type 2, 1 = 1, 2, and z, the quantity of asset 2 sold in period 1

if type 1, to solve:

() max[nu(c1)+(1-t)v(c2)]



sub ject to:

(2) e, € qa, + qyz - 8,a,
(3) c, < 8,b, + 85b,

(4) q1a1 + qza2 + 62a1 + 63u2 < q,Ia1 + qza2 + x1
(5) z<a,

(6) a, +a, <X,

(7) a, € (0,x,}

(8) a, € {0,x}

(9) §,=01if 2z =0

(10) 8, =11fz2>0

(11) 62 = 0 if b2 2 a,

(12) 52 = 11if b2 < a5

(13) 63 =0 1if b2 < a,

(14) 63 = 11if b2) a,.
Stage 2

Since the problem in Stage 1 is not concave, the solution need not
be unique. However, there are at most 2u solutions, since for any
(51,62,63,31), the problem is concave and has a unique solution, and

810 85 834 and a, can each take on 2 values. Let (a{,ag,zj,b{,bg), J=1,

1!
..., n, denote the n solutions to stage 1. In stage 2, the consumer first



chooses probabilities pJ, =1, ..., n, where I pJ = 1. The consumer then

submits to a lottery, the outcome of which determines which solution is cho-

sen. That is, solution jJ is chosen with probability pJ.

Solution to Stage 1

Given q, and gy, there are five candidate solutions to Stage 1. Let

Uj(q1,q2) denote expected utility if the consumer follows candidate solution

3

Candidate 1

+

a1 = xo' a2 =2 = 0' b1 = xo + x1/q1, b2 = 0' U1(q1'q2) = I’u(Q1x0)

(1-:)v(e1x1+a1x1/qt).

Candidate 2

+

31 = 0' 32 =2 = xo, b1 = ‘1/(11, b2 = xo, Uz(q1.q2} = IU(szo—a-l}

(1-'}\'(32X1+B1‘1/q«').

Candidate 3
31 = 0, 32 = 2 = xO’ b.l = {10-014-)(1)/([1, bz = 0, U3(Q1gQ2) =

tu(qzxo-a1) + (l-t)v(s1(q2x0+x1-a1)/q1].

Candidate 4

31 = xo, 32 = 2 = O, b] = 0, b2 = (Q1x0+x1-02)/q2, UQ(Q1,Q2)
wu(qqxy) + (I-u)v(sz(q1xo+x1-a2)/q2].
Candidate 5

a; = 0, a, = 2 = X5, by = 0, by = X + {x1-a2) /5, U5(q1,q2) =

nu(Qyxg-aq) + (1-x)v(Byxp+85(x,-a,) /qp).
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II1. Competitive Equilibrium

Let J = 1, ..., 5 index the five candidate strategles in the pre-
vious section. Given the solution to the second stage of the consumer's
problem, Py i{s the fraction eof consumers who choose solution |, as well as the

probability of choosing § for an individual.

Definftion. A competitive equilibrium is given by Qs pj, 1=1,2,1=1, 2,
«eey 9, such that with 9, = q;, pJ z pJ, i=1,2,31=1,2, ...,5, (15)-(20)

are satisfied.

(15} q1 !(P1+Pu)!0 = (1—:)(91*‘92*93)31
(16) 9, 1(p2+p3+p5)x0 = (1-1)(pu+p5)(x1-a2)
{(17) zp = 1
j J
(18) Q20,p20,4=1,2 5=1,2 ..., 5.
(19) 1t Py > 0 and py > 0, then Uj(q1,q2) = Uk(qi'QZ)
{20) If Py > 0, then UJ(q1,q2) z U {(qy,qp) for all k.

Equations (15) and (16} are period 1 market-clearing conditions for assets 1
and 2, respectively. Condition (19) states that if two strategies are chosen
with positive probability, then consumers are indifferent between the two. In
condition {20}, if a particular strategy is chosen with positive probability,
then it must be weakly preferable to all other strategies.

let S = {J:pj>0}. fs a first step toward characterizing an equilib-

rium, we will determine what 3 camot be in equilibrium,
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Proposition 1., In equilibrium Qi ? 0, 1=1, 2.

Proof: Suppose not. Then either q =0,1=1,2, q, >0 and 9 = 0, or
qq = 0 and Q5 > 0. In the first case, (15) and (16) imply that pJ = 0 for all
Js which impliies that (17} does not hold, a contradiction. In case two, (16)
implies py = Pg = 0. Therefore, given (15) and (17), Py > 0. But if q4 > 0
and q; = 0 then U,(q4,q,) < Uu(q1,q2). “Therefore, (20) does not hold, a
contradiction. In the third case, (15) implies that p, = p, = py = 0. Then
(16) and (17) imply that pg > 0. But if q; > 0 and qq = 0, then Uy(qy,q;) »

US(ql'QZ) and {20) does not hold, a contradiction. ¢

Proposition 2. 3 ¢ S.

Proof: Suppose that 3 ¢ S, 1l.e. Py > 0. Given (20), this implies that
Uz(q1,q2) £ U3(q1,q2). Therefore, B,/qq > B,/q5. But then (20) implies that

Py = Pg = 0, which in turn implies that (16) does not hold, a contradiction.¢

Proposition 3. S # {2}, S # (4}, S £ (1,2}, S £ {1,4}, S £ {2,5}, S £ {2,5)

5 £ (4,5},

Proof: If S = {2}, S = {4}, s = {1,2}, s = {1,4} s = {2,5}, or S = {4,5},
then proposition 1 implies that either (15} does not hold, or (16) does not

hold, a contradiction. ¢

Proposition 4. S # {1,5}, S # (1,4,5}, S £ {1,2,5]).

Proof: Suppose that S = {1,5}. Then, (20) implies that
(21) (82/q2-a1/q1)x1 2 B,,/4,

and
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(22) (82/q2-8‘/q1)(q1x0+x1) < Bzuzlqz.

But (21) implies that szlq2 - 849, 0. Therefore, (82/q2'31/q1)'
(qyxg+xq) > 8,0,/Q,, a contradiction. Now, suppose that S = {1,4,5}. Given

(19) and (20), inequality (21) and the following equality must hold.
(23) (szlqz—a?/qt)(%xoq-x]) P 52¢2/q2,

But (21) 1implies that (52,q2-51/q1)(q‘xo+x1) > Bzuzlqz, a contradiction.
Last, suppose that S = {1,2,5}. Then (22) must hold, in addition to:

(24) (32/q2-1!1/q1)x1 = B,0,/q,.
But (24) implies that (62/q2-51/q1)(q‘xo+x1) > Bzuzlqz, a contradiction. ¢

We are now left with the following possibilities in equilibrium

Case 1. S = (1}

Case 2. S = {5}
Case 3. S = (2,4}
Case 4. S = {1,2,4}
Case 5. S = (2,4,5}.

We will deal with each of these cases in turn.

Case 1 Equilibrium.

Here, p; = 1 and pJ =0, = 2; ...y, 5. Therefore from (15), we get

(25) 9, = (1-w)x1lrxo.
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From condition (20), U,(q4,95) 2 Us(qq,q5) or, substitut;ng using (25):

(26) :u((1-:)x1/t] + (1-:)?(61x0/(1-:)] 2 wu(g,x,-a,)
+(1=x)v(x [ (1-7)8+n8, ]/ (1-m) ).

Also, for j = 1, and k = 4 in condition (20), and substituting using (25);

(27) 8,%y/(1-%) 2 (8,/q,)(x,/%-a,).

Conditions (26) and (27) put upper and lower bounds, respectively, on Q. If

(26) and (27) hold then, using (25), we have
Us(qy,a,) < w((1-x)x, /%) + (1-x)v(8,x,/(1-7))
- (1-1)?[:0[(1—1)32+131]/(1-:)]
+ (1-t)v(82x1+t(x1-a2)31x0/(1-1)(:2-1u2)] < U,(qq,95),
and
U5(q,,0,) < mulqyxp-a,) + (1-:)v[31x0/(1-w)] < U,(a4,0,)-

Therefore, if (25) and (26) hold for some qy > 0, then (19) and (20) are
satisfied. In addition, since Py = 0, for j = 2, 3, 4, 5, therefore (16)

holds. Thus, using (27) to substitute in (26), a case 1 equilibrium exists if

and only if

(28) 82(11/1-02)(1-!)/81-31 <0
or

(29) 82(11/1-32)(1-1)/81-a1 > 0

and
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(31) :u((1-t)x /%) + (1-:)v(a x /(1-:)] 2 tu(82(11/t-n2)(1-:)/81-01]
+ (1-')\'[8 +B X t/(1-t))

If the case 1 equilibrium exists, it is essentially unique. That
is, expected utility and the price of the traded asset are uniquely deter-
mined. However, the equilibrium price of asset 2, g,, is In general not
unique, though asset 2 i3 not traded. There remains the possibility that, if
a case 1 equilibrium exists, it may not be unique if we allow for cases 2-5.

However, we will prove uniqueness in what follows.

Case 2 Eguilibrium,

In a Case 2 equilibrium, pg = | and Py = 0 for 3 =1, 2, 3, 4. From

(16), the equilibrium price of asset 2 is then
(32) q, = (1-1)(xl-¢2)/tx0.

From (20), with ] = 5, and k = 2, and substituting using {(32), the following

must hold in equilibrium:
{33) B,7X,y /{(1-%) 2 8,x 1/qt.
Similarly, with § = 5 and k = 4 in (20), and substituting using (32),
(34) 1u[(1-w)(x1-02)/t-a1] . (1-w)v(82x01(1-w)] 2 wu(q,x,)
. (T-t)v(ﬂzrxo(q X _+X a1)/(1-w)(x1-a2J].

Conditions (33) and (34) put lower and upper bounds, respectively, on qq. If
(33) holds then, given (32}, U3(q4,qp) < Uglay,qp).  In addition, (33) implies

that

U,(a,,0,) $ wula,xg) + (1-%)v(8,x 1+32«x0/(1-n)]
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and (33) and (34) imply that
Us(q1,q2) 2 ru(qx,) + (1-:)V(B1x1xo/(x1-02)+82tx0/(1-1)].

Therefore, (33) and (34) {mply that Us(q1,q2) 2 U;(q,,95)}. Therefore, if (33)

and (34) hold for some qq > 0, then a case 2 equilibrium exists. That s,

substituting using (33) in (34), a case 2 equilibrium exists if and only if

(35) (1-l)(l1—02)/l-01 > 0
and
(36) 'u((i-')(xl_QZ)/'-QIJ + (1-1)?(5230/(1-t)] 2 IH(B1X1(1-I)/32!]

+ (I-u)v(81x110/(x1-a2)+821x0/(1-1}).

If the Case 2 equilibrium exists, it is essentially unique, though q, i3

generally not uniquely determined,

Case 3 Equilibrium.

Here, p; > 0, py > 0, and py = p3 = pg = 0. From (15) and (16), we

get:
(37) qq = (1-w)p2x1/tpux0
(38) qy = (l-n)pu(xi-uz)/tpzxd.

Condition (19), with J = 2 and k = 4, gives
(39) uu(qzxo-a1) + (1-:)v(32x0+81x1/q1) = nu(q1x0)

+ (1-w)v(82(q1x0+x1-u2)/q2].

\/\_/\./\M-/_\—/\
From (20), with 3} = 2 and k = 5,
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(40) /q1 z 8, (x -a )/qz,

1 1

and with J = 4 and k = 1,
(41) 82(q1xo+x1-u2)/q2 2 ByXy + BX /q1

Condition (40) then implies that (20) holds for j = 2 and k = 3. From (37)

and (38), we get

(1-1)2(x1-a2)x1
qy = .

(42)

Since (39) ylelds an upward-sloping schedule in the upper right-hand quadrant
of the (q1,q2) plane, and (42) a downward-sloping schedule, and given the
nature of these schedules, (39) and (42) yield a unique solution for q, and
. 4y. Gliven that p, = 1 - py, we can then use (37) or (38) to solve for p, and
Dy. This solution is an equilibrium if and anly If the values of q and q,
that solve (39) and (42) satisfy (40) and (41). Using (40) and (42) to sub-

stitute in (39), we get
(43) wu[(52/31)*(1-!)(x1-02)/:—n1] + (1-t)v[szxo+(a132)itxo/(1-:)]
< tu[(81/32)}(1-')‘1/'] + (1-:)v(B1x0x1/(x1-02)+(8182)i:xo/(1-:)].

The solution to (39) and (42) satisfies (40) if and only if (43) holds. If

(41) is satisfled with equality, then
(4) dz = B (q1 0*%q-o )q /8 (q1x X, ).
Using (44) to substitute in (42), we get

(45) 8 (q1 XX - )q /8 (q1x +*X ) = {1-n) (x -02)31/12(x0)2q1.



T
The solution to (39) and (42) satisfies (41) if and only if the unique solu-
tion for q and g, to (44) and (45) satisfies
(46) !u(q2 0-%1 ) + (1- l)V(ﬂz 081X /q1) < !U(q130)
+ (1-m)v(B,(q % +x,-a,)/q, ).

Therefore the Case 3 equilibrium exists if and only if (43) is satisfied and

the solution to (44) and (45) satisfies (U46). If the Case 3 equilibrium ex-

ists, it is unique.

Case 4 Equilibrium.

Here, py > 0, p, > 0, py > 0, and p3 = pg = 0. From (15) and (16),

we get

(47) q, = (1-x)(p,+p,)x, /x(p +p))x,
and

(48) q, = (1-:)pu(x1-a2)/tp2x0.

Condition (20) implies that U,(qy,q5) = Uy(qy,q5) and U,y(q,q5) = Up(qy,q5),

that is

(49) 82(q1x +X,-a )/q2 =8 %0 * B,x /q1

‘and

(50) xu(q1x0) + (1= n)v(ﬁ Xy+B X /q ) = wu(qax0 a,)

+ (1-u)v(82x +8,%,/q, )
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Using (49) to substitute for q, in (50), we get
(51) :u(q1x0) - :u(Bz(q1x0+xl~az)q1x0/B1(q1xo+x1)-a1)
z —(l-t)v(ﬂ Xg*ByX /q ) + (1-!)V(B Xy+8,x /qTJ

Equation (49) implies that U,(qq,qp) > U3(qy,qp) and Uy(qy,qp) > Ug(qy,4p).
Therefore, if (49) and (50) hold, then (20) is satisfied. Given that py = 1 -
P> - Py, equations (47) and (48) yield unique solutions, given q, and g, for

P and Py, as follows:

(1-1)(x1-u2)[nx0/(1—w)x1-1/q1]

(52) p
2
1q2x0[(11-c2)/q2x1-1/q1]

110/(1-1)11 - 1/q1
(x1_a2)fqzx1 - 1/q,

(53) Pu =

An equilibrium must satisfy p; > 0, py > 0, and p; + py < 1. That

is, from (49), (52), and (53), we get

(54) < (1-:)!1/t

q, 0

(1-:) (q1 0% }x 8, (x —az)

(55)  (a)%>
T (q1*o*‘1‘°2)‘”0) 82
An equilibrium exists if and only if there is a q, satisfying (51), (54), and
(55). Inequality (54) puts an upper bound on q,, while (55) establishes a
lower bound.
Differentiating the left-hand side of (51) with respect to gq,, we

get
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3
(56) EE; [wu(q1x0)-ru(82(q1x0+x1-a2)q1x0/81(q1x0+x1)-a1)]

8 &, X
= 1x0 u'(q1x0)_ .._2_ 1- _..._....2_1....__
By (q Xg*X, )

x u'(B (q1x >, )q o/81(9 X %) -0 ]

Similarly, differentiating with respect to q; on the right-hand side of (51)

gives
5 x
(57) I, [v(&1x0+3 /9,)-v(8,x +81x1/q1)] . )2 [v (8,x3+8.%,/q,)
1
-v'(82x0+31x1/q1)] > 0,
If an equilibrium exists then, from (51},
(58) 8 (q XX ,-a )q1x0/8 (q Xg+X, } - a, < q,%g-

Then if, on the one hand, (a /8 )[1 a2x1/(q Xg*X, ) ] > 1 in equilibrium, and
glven (58) and the concavity of u(-), the right-hand side of (56) is negative
in equilibrium. On the other hand, If B,[1-a,x,/(q xy+x,) ]/e < 1 in equi-

librium, then

(8 /B Y{q,x o*¥y-e 1q.x
2y '8 1 2791%g
(8,/8 )[1 a2x1/(q Xy*X,) lu @, 0+x1) _;:>

, B,(q,%y+%,-a,) " B,{q, x5+, -0,)q, %, o
8y(ayxg+x,) B (q1“0*x ) 1

8,(q,Xg*%,-0,) R B,{QyX+X,-0,)q, X i) )

>

8 (q x +X )

Here, the last inequality follows from the fact that -cu"{c)/u'(c) 2= 1.
Therefore, the right-hand side of (56) is negative in equilibrium, which

implies, given (57), that the Case U equilibria {3 unique if it exists.



- 20 -
Using (51), (54), and (55), a Case 4 equilibrium exists if and only
if
(59) :u((l-t)x1/1] + (1-:)v[31x0/(1-t)] < tu(Bz(1-:)(x1-waz)/s‘t-u1]
. (1-t)v(s X8, X :/(1-:)],
and the value of g, which solves

(1—:)2(q1x +X }x1B1(x -a )
(q1x >, )(x ) 82

60)  (qp =

also satisfies

B5(QXg*x1-95)94%, .
B,(q,xy+x, ) 1

(61) tu(q ) + (1—:)\'(31 Xy*8,% /q1) > wu

& (1—1)v(s X +s X /q1}

Case 5 Equilibrium.

In a Case 5 equilibrium, p, > 0, py > 0, pg > 0, and py = p3 = 0.

From (15) and (16),

(62) q, (1-:)p2x1/wpuxo

(63) 9,

(1-:)(pu+p5)(xl-az)ft(pz+pslxo-

Condition (20) implies that Uz(q1,q2} = U5(q|,q2), and that Uz(q1,q2) =

UH(Q1,Q2). That is,
(64) q = 8,(x,-0,)q,/8,%,,

and
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(65) ‘“(qzxo‘°1) + (I—w)v(32x04e1x1/q1) = nu(q1x0)

+ (1-:)v(32(q1x0+x1-az)/q2).
Equations (64) and (65) imply that U3(q1,q2) < Uy{(qy,q5) and Uy{qy,q5)
< Uu(ql,qz). Therefore (20) holds, Substituting in (65) using (&4), we get
(66) tU(Bz(xl-az)x0q1/B1x1-u1) - au{q,x,)

z (1-:)v[e1x1x0/(x1-02)+a1x1/q1] - (1-7)v(8,x,+8,x%,/q,).

From (66), the following is a necessary conditlon for a Case 5 equilibrium to

exist:
(67) By > 8%, /(x,-a,).
If {67) holds, we them have, differentiating the left-hand and right-hand

sides of (66), respectively,

3
(68) Ea: [lu[sz(x1-az)x0q1/31x1—c1]-uu(q1x0)]

o By(x,-a,)  [By(x4-a,)x41,
- 0& ByX, 84X,

-a, -u'(q1x0) > 0,

in equilibrium, and

(69) 5%— [(1-=)v(81x1x0/(x1—u2)+81x1/q1)-(1-n)v(82x0+81x1/q1)|
1
{1-x)8 B,X.X
A | , Lyt 17170
= 5 {v (B,%,+8,X,/Q, )~V —a, +B1K1IQ1] > 0.

()
From (17), (62), (63), and (64}, we gzet

rx032q1/(1~t)x181 -1
/B1 -1

(70) P, =
2 8
2
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and

32/81 - (1-t)x1/nx0q1

For p, > 0, py > 0, and p, + py < 1, the solution to (66) must satisfy
Yoq i
(72) 8,(1-%)x,/8,7xy < q, < 8, (1-w)x, /8, 7wx,.

Note that, given (64), (68), (69}, (70), and (71), a Case 5 equilibrium is
unique if {t exists. From (66) and (72), given (68) and (69), necessary and

sufficient conditions for the existence of a Case 4§ equilibrium are that

(13) ru((1-2)(x,-a,)/x-a,) + (1-;)\'[92:0/(1-1)) ¢ wu(8,(1-v)x, /8,7)
+ (1-:)v[s1x1x0/(x1-a2)+32-x0/(1-:)]

and

(T4) xu[szi(1-!)(x1~a2)/81;‘1-c1] . (1_u)v(32x0+a1*52*,x0/(1-1)]

> ﬂu[815(1-1)x11152}] + (1-1)V[B1x1x0/(x1-02)+a1*ﬂziwxol(T~l)].

Existence and Uniqueness of Equilibrium

So far, we have established necessary and sufficient conditions for
particular equilibria to exist {(i.e., Cases ) through 5) and have shown that
at most one equilibrium of a particular type can exist. It remains to be
established that the equilibrium Is unique, and that an equilibrium exists at

each point in the parameter space.

Proposition 4. If an equilibrium exists, then it is unique.

Proof: We have shown that at most one equilibrium of a particular type can

2xist, and will proceed to prove that, working pairwise, no two types of
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equilibria can co-exist. There are 5!/3!12! = 10 pairs to consider. Let
(i,3), where i, J = 1, ..., 5, denote the case i/case j pair. First, it is
clear from (31), (36), (43)-(46), (59)-(61), (73), and (74), that (1,4),
(2,5), (3,4), and (3,5) can be ruled out. To eliminate the other cases re-
quires some manipulation of the inequalities that are necessary and sufficient

conditions for each type of equilibrium. First,

(75) IU[(‘—I)I1/I] - (1-1)v[81xol(1—t)]

tu[(82/81)[(1-:):1/1-(1-t)a2]-al] - (1—s)v(82x0+81x01/(1—1)]

~

1U(B1§(1-I)X1/82il] + (1-%) v(s1x0+a1i82;1x0/(1-:)]

(1-1)v[82x0+s1}82§x01/(1-:)] < ru((81i/82i)(1-w)x1/t]

'u((ezi/s1i)(1-1)(x1-a2)/:-a1] - (1-a)v(52x0+s1i32*:/(1-n)].

In (75), the first inequality follows from -cu"(c)/u'(e) 2 1 and v" < O.
Given u' > 0 and v' > 0, we get the last inequality. From (31) and (74), this

rules out (1,5). Next

l] + (1-1)v[81x X /(x1-a2)+ali82i1x0/(1-u)]

(76) tu[s1}(1-u)x1/wﬂ 01

2
- wu(s s(1-:)(1 -a,)/%8 *-a ) - (1-w)v(B,x +8 ia ox /(1-x))
2 172 1 1 270 71 "2 0
< nu(81(1-w)x1/132] - (1-l)v[81x0x1/(x1-n2)+823x0/(1-!)]

- wu((1-1)(x1-u2)/w-n131}/82§] - (T-I)V(BZXO/(1-1)]

< Iu[ﬂ1(1-l)x1/182] - (1-!)V(B1xox1/(xi-a2)+52|x0/(1—10}

- xu((l—t)(x1—u2)/:-a1] - (1-1)?(8230/(1-w)].
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We use the fact that -cu"(c)/u'(c) 2 1 and v" > O to get the first inequality
in (76), .and the second inequality follows from u' > 0. Given (31), (36),
(43), and (74), conditions (75) and (76) imply that we can rule out (1,2) and
(2,3).

Let q, be defined by

5 (1--)2(a1x0+x1)x131(x1-02)
(77) (qT) 5 > .
©(qyx5ex -0,) (x,)"8,

Note that (1-t)x1lxx0 > q- If
(718) wu((i-t)xT/w] + (l-n)v(s1x0/(1-t)]
B au((82/81)[(1-n)x1/1-(1-1)02]Ta1)

- (1-3)V[82 +31101/(1-l)] >0,

Yo
therefore (82/81)[(1-:)1111-{1-:)u2] - a, < (-m)x, /7. Condition (78) then

implies that

(79) xu((T-n)x1/t] - (1-I)V(B‘IO/(1—t)]
- wu((8,/8)[(1-m)x,/x-(1-m)ay]-a,) = (1-x)v(B X +8,x w/(1-x))
= ,u(gz(&1xo+x1-32)&1x0/31(a1x0+x1)-a1} - (1-t)v(82x0+81x1/51),

which follows from 51 < (1-:)x1/rx , =—cu"(e)/u'(e) 2 1 and v" < 0. We showed

0
"
in the previous section that there exists a unique solution q, to

F(qg) = mu(qix,) + (T-R)V(81x0+81x1/q?)

- nu(B,(at+x,-0,)qx0/8, (afxgexy)-a, ) - (1-m)v(Byxy+8,x,/a]) = 0.
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If
(80) :u(q1xo) + (1—:)v(31x0+31x0/q1)
- mu(8y(a,xy+x,-a,)q,%,/8,(q,x5+x,)-a, )

- (1-:)?(8210+5111/q1) <0,

then q* < q, < (1-:):1/-x0. Therefore,
1 .

(81) tu((1-:)x1/1] - (1-1)?[&1!0/(1-1)
- tu((azfat)[(1-l)x1/n—(1-u}u2]-a1]
- (1-:)v[32x0+a1x0t/(1-t)] < 10

Therefore, since (78) implies (79) and (80) implies (81), we can rule out
(1,3). Next, let &1 = (1-:):131*(xl-uz)Y/txoazix1T. From (77), y is the
unique solution to

)1-2Yx ZY

(82) [(1-:)0x1+t(x1-a2)]/[(1-1)e+t] s (x1-02 1

where
. 0 ¢ Y
8 = (8,7/8,7)[(x,-a,)/x,|".
Note that 0 < y ¢ 1/2. Now,

(83)  wuayxg) + (1-m)V(B,x,+8,x,/d,)

1u[82(q1x0+81-u2)q1xols1(q1x0+x1)-u1) - (1-:)V(32x0+a1x1/q1)

ru([(1-0x, /2] (8, 78,1 (x,-a,) /%, )

-~ -

(1-:)v[81x0+31iszixotx17/(1-1)(xl-a2)7]

+
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au[[azisti(1—:)/:][(x1—a2)/x117[3(1-1)x1+1x1-102]/[;(1-w)+u]-u1)

(1-0)v(8,x+8 28, Fx mx, Y7 (1-0) (% -a) ) ¢ w((1-)x,8, /38,1

- -~

(1-:)v[81x0+31i32ix03x17/(1-1)(x1-a2)*)

+

tu([agi(1*1)(x1-32)7181§:x17][;(1-u)x1+:x1-:u2]/[;(1-:)+t]-c1]

iy i

4

(1-:)v(szx +8 xO:/(1-t)] < 1u[(1-1)x181i1182i]

01

(1—t)v[81x0x1/(x]-a2)+81§82i1x0/(1-!}]

+

1u[82§(1-1)(x1-32)/161i-a1]- (1-t)v(82x0+a1§32ix01/(1-!].

The first inequality follows from (x1—a2)7/x1T < 1,u" >0, and v' > 0. Since

(82) implies that

9(1-w)x +aX -7
o, (x,-a,) ' 7'x,T,

8(1-1) + %
and

8(1:)x1+1r(x1-c|2)1+7/x1Y

= > X, = a,,
g(1-x) + « 1 2

we get the second inequality, given u' > 0 and v' > 0.

Conditions (76) and (82), along with (60), (61), (74), and (36),
then imply that we can rule out (2,4%) and (4,5). Having ruled out all pos-
sible pairs, this completes the proof. ¢

The proof of Proposition 4 should make it clear that an equilibrium
exists for any (31,82,a1,u2,x0,x1,s). where 8, > @, 8, > 0, ay 2 0, a5 2 0,
Xy > 0, x4 > 0, 0 < x < 1. Also, note that the subset of the parameler space

where a case i 2quilibrium extsts is nonempty for 1 = 1, 2, ..., 5.
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Consider the following example. Let u(cy) = 1ln ¢y, v(ca) = 1n ey,
Xg = Xy =1, = = 0.5, 8 = 1, and ay = 63 = a. Regions in the (a,8,) plane
where particular types of equilibria exist were computed and plotted in Dia-
gram 1, Note that as a decreases and 84 increases, making asset 2 more at-
tractive, that we move in the diagram from Case 1 to Case § to Case 3 to Case
5 to Case 2 equilibrium, The region over which both assets are traded is of
primary importance for our purposes, since it is here where multiple transac-

tions media are used in equilibrium.

IV. Examples
In the following example, we will let u(eq) = ln ey, v(ey) = 1n ¢y,

Xg = Xq = 1, = = .95, By = 1, and oy = @y = a. In the first example, By =
1.05, and equilibria are computed for different values of a. Next, setting

a = 0.05, B, i3 allowed to vary, and the resulting equilibria are computed in

Example II.

Example I.
Tables I and II show the computed equilibria when 8, = 1.05 and a

varies. Here ¢; is aggregate consumption in period { and w is the expected
utility (in period zero) of the representative consumer (an increasing func-

tion of expected utility is tabulated).

For a 2 0, the equilibrium takes on the follewing characteristices:

0 <a < 0.0285: Case 2

0.0285 < a < 0.0288: Case 5
0.0288 < a < 0.0470: Case 3
G.0470 ¢ a ¢ 0.0U88: Case 4

0.0488: Case 1.

[~}
v



- 28 -

n Tables I and II, note that all equilibrium variables appear to be contin-
uous functions of a. For small a, all consumers follow strategy 5, and asset
2 is the only asset produced and traded. As a increases, increasing fractions
of consumers follow strategles 2 and 4 (i.e., asset 1 begins to be produced
and traded) and the fraction following strategy 5 falls to zero, With in-
¢reasing a, some consumwers then begin taking strategy 1, and the fraction
following strategies 2 and 4 fall to zero, at which peoint asset 2 is not
produced or traded.

The reglon of interest is 0.0285 ¢ a < 0.0488, i.e., Cases 5, 3 and
i, where both assets are produced and traded. In Tables I and II, note that
prices and quantities are much more sensitive to changes in a for a in the
intervals {(0,.0285, 0.0288) (Case 5) and (0.0470, 0.0488) (Case 4), than in the
interval (0.0288, 0.0470) (Case 3). For example, in the interval (0.0470,
0.0488), a small increase in a causes a relatively large decrease in the size
of the banking sector (il.e., 92+p5), a large decrease in period 2 consumption
(because of the substitution of asset 1 for asset 2) and a large increase in
period 1 consumption, as fewer resocurces are absorbed in carrying out transac-
tions.

Of particular interest is the fact that expected utility is not
monotonic in a. For example, if a ¢ (0.0Q470, 0.0488), an increase in a makes
consumers better off (see Table I), though it leads to a reduction in measured
output In period 2 and no change in period 1 ocutput, and causes the banking
sector to shrink. Note that measured output in period 1 consists of consump-
tion of final goods pius the imputed value of transactions services, and is
therefore always equal to the period 1 endowment. The non-monotoniclity in
expected utility {s perhaps not surprising in light of what i{s known about the

welfire effects of arbitrarily adding or dropping markets in an incomplete
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market setting (see Hart, 1975, for example). Here, complete contingent
claims markets are absent, due to spatial separation, and market structure is
determined endogenously. However, due to the departures from a frictionless
Arrow-Debreu setting, we should not necessarily expect agents to be better off

as we push ocut the production possibilities frontier.

Example II.

in this example we retain the same functional forms and parameter
values as in Example I, except that a = 0.05 and equilibria are computed for
different values of 85. Results are displayed in Tables III and IV. Here,
equilibria have the following characteristics:
By 1.0513: Case 1
1.0513 < 8, 1.0533: Case 4
1.0533 < 8, < 1.0914: Case 3

1.0884 < By ¢ 1.0914: Case 5

A

8 1.0914: Case 2.

Tables Il and IV yield some of the same results as Tables I and II. 1In
particular, prices and quantities are much more sensitive to changes in 8o in
a Case 4 or a Case 5 equilibrium than in a Case 3 equilibrium. A small de-
crease in 8, in a Case Y4 equilibrium causes a large decrease in measured
output and the fraction of transactions carried out using the banking sys-
tem. As In the previous example, expected utility is not monotonic in 8.
For example, from Table III, expected utility increases with 85 in a Case 3
equilibrium hut decreases as 85 increases in cases 4 and 5, in spite of the
fact that measured output increases with 8y over both of these intervals.

Case 4 and Case 5 equilibria are characterized by large changes in the size of
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the banking system in response to changes in underlying parameters, Thus, a
parameter change that leads to an increase in second period consumption be-
cause of the higher returns available from Investments made by banks, also
causes a fall in first period consumption due to the higher costs of trans-
acting in bank liabilities. Over the Case U4 and Case S regions, this increase

in transactions costs has a more than offsetting effect on expected utility.

Remarks

Suppose an economy where, every three perlods, the environment
analyzed in the previcus sections is replicated. That is, in each pericd
t=1, 4, 7, ..., a new population of agents is born, who have lifetimes as
specified in Section II and interact in the same manner. Thus, there is no
intergenerational trade. Alao, suppose that in each period t = 1, 4, 7, cens
a new get of parameters i3 drawn from a probability distribution, For sim-
plicity, fix X4y X9, 84, and i, let ay = ay = a {as in the examples)}, and let
(52, a) follow a stochastic process such that there is positive trend growth
in 8, and negative trend growth in a.

From the examples in the previous section, we would observe this
economy golng through an early stage where there is no growth and where asset
1 is the only means of payment. This stage is followed by one where there is
rapld growth 1;,measured ocutput and in the size of the banking sector, fol-
lowed by a period where output growth slows and the relative size of the
banking sector stabilizes. This appears to be typical of the manner in which
development occurred 1in many industrialized economies (see Cameron 1967).
However, 1in spite of large increases in output and banking activity in the

early stages of development, it may not be the case that there 1is an immediate

welfare improvement (see the examples}.
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In the early stages of development of the banking system, the econ-
omy will be relatively sensitive to shocks in underlying parameters. Small
negative shocks can cause large reductions in output which coincide with
increases in the quantity of asset 1 produced and traded relative to asset 2,
and with increases in the prices of transactions media (i.e., deflations, see
Tables I and II). In more advanced stages of development (Case 3 equilibria),
fluctuations in fundamentals cause relatively small fluctuations in output and
have little effect on the relative size of the banking sector.

These characteristics of the model are reminiscent of the recurrent
banking crises which occurred prior to and during the Great Depression in the
United States. These periods were characterized by large reductions in bank-
ing activity, decreases in output, and increases in the ratio of currency to
bank deposit liabilities (see Frledman and Schwartz 1963 and Cagan 1965).
However, financial crises have been virtually absent in the post-Great Depres-
sion U.S. economy. This development is conventicnally viewed as being the
resuit of the Introduction of govermment-provided deposit insurance which
acted to prevent bank runs (see Friedman and Schwartz 1963) and/or it is
attributed to more appropriate behavior by the monetary authority. The bank
runs model of Diamond and Dybvig (1983) is consistent with these conventional
views,

Alternatively, in our model, the difference between pre-1930's and
post-1930's U.S. macroeconomic behavior can be seen as consistent with the
natural evalution of the banking system. This does not contradict the views
of Friedman and Schwartz (1963) and Hamilton (1987), for example, who argue

that monetary policy accentuated the downturn in the Great Depression.



Summary and Conclusions

In this paper, a model was constructed where banks provide access to
a communications system which permits the trading of goocds for assets. Trade
can also be carried cut using alternative means of payment. In equilibrium,
there is in general endogenocus heterogeneity of agents, in that different
agents may follow different contingent asset-holding strategies. Depending on
parameter values, there may be no banking activity, all transactions may be
carried out through the banking system, or bank liabllities and alternative
means of payment may coexist.

The model's predictions are consistent with studies of the role of
banking in the stages of economic development (e.g., Cameron 1967). In par-
ticulab, in early stages rapid growth ls accompanied by increases in banking's
share in transactions activity, while in later stages of development, growth
in output levels off, as does the relative quantity of banking activity. In
addition, the model predicts that, when deposit banking is In its infancy,
small technological fluctuations will cause recurring periods with large
reductions in cutput accompanied by increases in the use of alternative means
of payment relative to deposit liabilities, At higher stages of development,
technology shocks on the same order of magnitude cause only small changes in
prices and quantities.

This model can thus reconcile the differences between macroeconomic
behavior in the U.S. prior to the 1930s, on the one hand, and following the
19308, on the other. This reconciliation is brought about without relying on
conventional wisdom concerning the role of government deposit insurance and

central bank behavior in stemming finaneial panics.
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Footnote

1Irl this model, diversification can potentially complicate the
analysis substantially. However, there are a wide range of circumstances

under which agents would not diversify, even if they could.
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Table I

Equilibria for u(eyq) = 1n ¢y, v(ep) = In cp, 8y = 1,

By = 1.05, x4 =%y = 1, ay = ap = a, % =}

eM/0.5
(w = expected

a ¢y ¢ q4 P utility)
0.0285 0.4715 1.0500 0.9527 0.9500 1.9803
0.02865 0.4784 1.0380 0.9634 0.9610 1.9918
0.0288 0.4851 1.0264 0.9743 0.9719 2.0032
0.0300 0.4850 1.0247 0.9751 0.9743 2.0020
0.0350 0.4825 1.0246 0.9720 0.9774 1.9912
0.0400 0.4800 1.0246 0.9688 0.9806 1.9800
0.0450 0.4775 1.0246 0.9656 0.9838 1.9689
0.0474 0.4811 1.0194 0.9714 0.9928 1.9714
0.0480 0.4893 1.0108 0.9838 1.0059 1.9838
0.0483 0.4934 1.0066 0.9900 1.0124 1.9900
0.0488 0.5000 1.0000 1.0000 1.0244 2.0000




Table II

Equilibria for u(cy) = 1n cy, v(cz) =1lncy, B8y = 1,

32:1.0‘5,!1:!2:1,01:02=0,135

Py* Py

a Pq P2 Py Ps Py + Pg
0.0285 0 0 0 1.0000 0
0.02865 0 0.2522 0.2402 0.5076 0.3161
0.0288 0 0.4961 0.4724 0.0315 0.8954
0.0300 0 0.4937 0.5063 0 1.0255
0.0350 0 0.4929 0.5071 0 1.0288
0.0400 ] 2.4921 0.5079 0 1.0321
0.0450 0 0.4912 0.£088 0 1.0358
0.0474 0.2053 0.3886 0.4061 0 1.5733
0.0480 0.5553 0.2160 0.2287 0 3.6296
0.04832 0.7271 0.1321 0.1408 0 6.5700

0.0488 1.0000 0 0 0
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Table III

Equilibria for u(eq) = ln cy, v(cz) =1lncy, B8y =1,

Xq = X%X3=1, ay = ap = 0.05, n = 0.5

85 ¢y ey a a0 e"/0.5
1.0513 0.5 1 1 1.0251 2
1.052 0.4910 1.009 0.9864 1.0116 1.9864
1.0525 0.4849 1.0154 0.9771 1.0023 1.97T1
1.0530 0.4789 1.0218 0.9680 0.9934 1.9680
1.0540 0.4750 1.0265 0.9620 0.9875 1.9632
1.0600 0.4750 1.0294 0.9613 0.9882 1.9707
1.0700 0.4750 1.0343 0.9602 0.9894 1.9836
1.0800 0.4750 1.0392 0.9591 0.9905 1.9964
1.0850 0.4750 1.0416 0.9586 0.9910 2.0031
1.0897 0.4712 1.0506 0.9518 0.9853 2.0019
1.0900 0.4683 1.0367 0.9452 0.9788 1.9949
1.0905 0.4609 1.0701 0.9345 0.9681 1.9837
1.0910 0.4547 1.0747 0.9241 0.9578 1.9727

1.0914 0.45 1.0914 0.9163 0.95 1.9645




w3 w

Table IV

Equilibria for u(e1l) = 10 ¢p, v(ep) = In ¢y, By = 1,

X1=X2=1,ﬂ1=u2=0.05,1l=0.5

: Py * Py

2 Py P2 Py P5 E’;*_ps
1.10513 1 0. 0 0 =
1.0520 0.6418 0.1735 0. 1847 0 4.7637
1.0525 0.3966 0.2936 0.3098 0 2.4060
1.0530 0.1575 0.4118 0.4307 0 1.428Y4
1.0540 0 0.43903 0.5097 0 1.0396
1.0600 9 0.4901 0.5099 0 1.040Y4
1.0700 0 0.14898 0.5102 0 1.0416
1.0850 0 0.4896 0.5104 0 1.0425
1.0850 0 0.4894 0.5106 0 1.0433
1.0897 0 0.4145 0.4354 0.1501 0.7712
1.0900 0 0.3363 0.3558 0.2884 0.5696
1.0905 0 0.2107 0.2255 0.5638 0.2912
1.0910 0 0.0900 0.0974 0.8126 0.1079

1.0914 0 0 0 1 0
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