
The Demand for Money During
Hyperinflations Under Rational Expectations

Thomas J. Sargent

Revised February 1976

Working Paper #: 43

Rsch. File #: 299.1

NOT FOR DISTRIBUTION



The Demand for Money During Hyperinflations

Under Rational Expectations: I

by

Thomas J. Sargent

University of Minnesota

Revised, February 1976

Note: Research on this paper was supported by the Federal Reserve Bank

of Minneapolis, which doesn't necessarily endorse the conclusions. Help-

ful comments on an earlier draft were received from Christopher Sims,

Thomas Turner, John Geweke, Milton Friedman, Jacob Frankel, Robert E.

Lucas, Jr., and Rusdu Saracoglu. Rusdu Saracoglu performed the calcula-

tions using a computer program that he wrote for estimating bivariate

mixed moving average, autoregressive models.



The Demand for Money During Hyperinflations

Under Rational Expectations: I

1. Introduction

This paper proposes methods for estimating the demand schedule

for money that Phillip Cagan used in his famous study of hyperinflation

[3]. Wallace and I [8] pointed out that under assumptions that make

Cagan's adaptive expectations scheme equivalent with assuming rational

expectations, Cagan's estimator of a, which is the slope of the log of

the demand for real balances with respect to expected inflation, is not

statistically consistent. This is interesting in light of a paradox

that emerged when Cagan used his estimates of a to calculate the sustained

rates of inflation associated with the maximum flow of real resources

that the creators of money could command by printing money. This "optimal"

rate of inflation turns out to be -l/a. For each of the seven hyperin-

flations, the reciprocal of Cagan's estimate of -a turned out to be

less, and often very much less, than the actual average rate of inflation.

The data are shown in Table 1, which reproduces a table of Cagan's.

Cagan's estimates imply that the creators of money expanded the money

supply at rates that far exceeded the sustained rates which maximized

the real revenues they could obtain. A natural first thing to consider

in explaining this apparently irrational behavior by the creators of

money is the possibility that it is a statistical artifact, namely, a

consequence of using bad estimates of c.

This paper aims to complete a task begun by Wallace and me

[8], namely, the analysis of Cagan's model of hyperinflation under

circumstances in which Cagan's "adaptive" scheme for forming expecta-

tions of inflation is equivalent with expectations that are "rational"
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Table 1

(1) (2) (3)

Austria .117 12 47

Germany .183 20 322

Greece .244 28 365

Hungary I .115 12 46

Hungary II .236 32 19,800

Poland .435 54 81

Russia .327 39 57

Column (1) = -1/a (continuous compounding), rate per month that

maximizes revenue of money creator

Column (2) = (e - 1) . 100 (neglects compounding)

Column (3) = average actual rate of inflation per month

Source: Cagan's Figure 9, page 81.
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in Muth's sense [6]. The model is a very simple simultaneous-equations

model of the inflation-money creation process, one equation of which

turns out to be identical with Cagan's simple portfolio equilibrium

equation. As Wallace and I have argued, Cagan's use of single equations

methods exposed him to the possibility of severe simultaneous-equations

bias. The present paper uses the full information maximum likelihood

estimator to obtain a consistent estimator of Cagan's model. It also

obtains an expression for the statistical inconsistency of Cagan's

estimator for his model under the circumstances in which adaptive expec-

tations coincide with rational expectations.

One way of justifying imposing rational expectations on Cagan's

model is that it enables one to specify a complete model of the inflation-

money creation process in a very economical way. This is a virtue,

since the time series from the hyperinflations are too short to permit

estimating complicated parameterizations. But a more important reason

for using the hypothesis of rational expectations to complete Cagan's

model is that doing so delivers an econometric model that is seemingly

consistent with the exogeneity (or "causal") structure exhibited by the

money creation-inflation process during the seven hyperinflations studied

by Cagan. Empirical tests by Wallace and me typically indicated sub-

stantial evidence of feedback from inflation to money creation, with

markedly less feedback from money creation to inflation. Cagan's model

under rational expectations predicts a particular extreme version of

such a pattern: it predicts that inflation "causes" (in Granger's

sense) money creation with no reverse feedback (or "causality") from

money creation to inflation. Cagan's model with rational expectations

thus seems to provide one way of explaining the Granger-causal structure

exhibited in the data.
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Cagan's paper is rightly regarded as one of the best pieces of

empirical work ever done in economics. His model and his estimation

method have been applied with apparent success to a number of additional

countries experiencing high inflation rates, but rates falling short of

1/
those characterizing hyperinflations.- The key substantive conclusion

that has been drawn from Cagan's study, and those subsequent studies as

well, is that even in the apparently chaotic conditions of rampant

inflation it is possible to isolate a stable demand schedule for money

having real balances varying inversely with the expected rate of infla-

tion. In the light of the results of this paper, that conclusion must

be severely modified. First, it is shown below that under conditions

that make Cagan's model equivalent with assuming "rational" expectations,

the slope parameter a is not econometrically identifiable. To identify

a requires imposing a restriction on the covariance of the disturbances

to the demand for money and to the supply of money. Neither economic

theorizing nor intuition seems to provide a ready restriction on that

covariance. Proceeding on the "neutral" assumption that that covariance

is zero, one can extract estimates of a. But even then, the estimates

of a are characterized by large standard errors.
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From a technical point of view, this paper is an exercise in

applying vector time series models. The key references are Granger [4],

Sims [9], Wilson [10], Porter [7], and Zellner and Palm [11]. The model

studied here is an interesting one from the point of view of the vector

time series model, since it is one in which inflation "causes" money

creation in Granger's sense, although these two series are supposed to

be perfectly in phase, so that neither one "leads" the other. The model

thus provides an example that illustrates the difference between Granger's

causality and simple notions of the lead of one series over another.

The model is also interesting because it illustrates the very important

difference between Granger causality and a separate notion of causality

often used by economists, namely, that of invariance with respect to an

intervention. The present model predicts that money "causes" inflation

in the sense that a given change in the stochastic process or "feedback

rule" governing the money supply will produce a determinate change in

the stochastic process for inflation. The stochastic process for infla-

tion is an invariant function of the stochastic process governing money

creation. In Cagan's model with rational expectations imposed, infla-

tion Granger-causes money creation with no reverse Granger causality

from money to inflation because the system is operating under a particular

money supply rule that in effect prevents the money supply from being of

any use in predicting subsequent rates of inflation. If there is a

change in monetary regime, that is, a switch in the money supply rule,

the economic model predicts that the Granger-causality structure of the

money-inflation process will change.

2. The Model

Cagan's model of hyperinflation builds on a demand schedule

for real balances of the form
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(1) mt-Pt = at + ut

where m is the log of the money supply (which is always equal to the log

of the money demand); p is the log of the price level; t is the expected

rate of inflation, i.e., the public's psychological expectation of

t+l - t; and u t is a random variable with mean zero. I have omitted
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a constant term from (1), though one would be included in empirical

work. Cagan assumed that Tt was formed via the adaptive expectations
scheme

1- X7r_ - (p - p )
t- 1 - L t t-i1

or

1-
(2) "t 1 - XL xt

where x t  Pt Pt-l' the rate of inflation, and where L is the lag

operator defined by Lnxt = xt- n

Under rational expectations we require that

(3) t = Et t+l '

where E t xt+l is the mathematical expectation of xt+l conditional on

2/
information available as of time t. Using (3) and recursions on (1),

it is straightforward to show that under rational expectations we must

3/
have-

1 C _a j-1

(4) 7 t Et Xt+l 1 - a -a Et t+j
j=1

01 '_ j-1
1 -a

- ( (E u - u )
1-a 1- a tt E ut+j-1

j=1

where t = m - mt, the percentage rate of increase of the money

supply. Equation (4) characterizes the (systematic part of the) stochas-

tic process for inflation as a function of the (systematic part of the)

stochastic process for money creation. The model asserts that (4) is

invariant with respect to interventions in the form of changes in the

stochastic process governing money creation. In this sense, since

changes in the stochastic process for money creation are supposed to
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produce predictable changes in the stochastic process for inflation,

money "causes" inflation.

For Cagan's adaptive expectation scheme (2) to be equivalent

to rational expectations we require:

00j-1

1 aj

5) l x ) (Et ut+j - E ut +j-)

j=1

The necessary and sufficient condition for (5) to hold for all a and

all t is

1-X
E t  - Et(ut j-u ) - x

t t+j t t+jt+j-1 1- XL

For an arbitrary 1 process, there exists a disturbance process ut

satisfying the above restriction, one in which Et(ut+-ut+j_-1) is a

complicated function of lagged x's and lagged p's. From my point of

view, however, the most fruitful conditions to impose are the following

two that are sufficient (though clearly not necessary) to satisfy (5).

The first condition is

(6) ut = ut-1 + Tt

where nt is a serially uncorrelated random term with mean zero and

2
variance o ; I assume that E[tlIpt- 1' t-2' ... , Xt- 1 , xt-2, ... ] = 0.

According to (6), u takes a random walk. Equation (6) implies that

Et ut+j = ut' J 0

which implies that

E u -t+ E u = 0 forall j > 1.
t t+j t t+j-l

The second of my pair of sufficient conditions for (5) is
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(7) Et t+j = Et t+l for j > 1,

so that a constant rate of money creation is expected to occur over the

entire future. Assuming (6) and (7) then implies that the appropriate

version of (5) is-

j-1

1 - hL t t t+1 1 - a j 1l

or

1- x
(8) 1 - AL xt Et t+l

A process that satisfies (8) is

=9(- )x + t (= E x 1 + )(9) '\t =  1 - AL xt t E Xt+l +Et

where et is a serially uncorrelated random term with mean zero and

2
variance a , and that satisfies

E
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E(Etlxt_, xt-2, ... ' t t--2 ... ) 
) = O.

According to (9), the rate of money creation equals the expected rate of

inflation plus a random term. Equation (9), which has been arrived at

in a purely mechanical fashion by pursuing the implications of the

assumption that Cagan's adaptive expectations scheme is rational, is

nevertheless of interest as an hypothesis about the government's behavior.

For example, if the government is creating money to finance a large part

of a roughly fixed rate of real government purchases, then there is a

presumption that inflation and expected inflation will feed back into

money creation,an implication with which (9) is consistent. Thus, when

Tt increases, causing mt-pt to fall and thereby causing pt to rise with

a fixed mt, money depreciates in value, prompting the creators of money

to increase the rate of printing money in order to maintain their command

over the flow of real resources (see Sargent and Wallace [ 8 ]). Alter-

natively, equation (9) is compatible with a "real bills" regime in which

the monetary authority sets out to supply whatever money the public

demands at some fixed nominal interest rate or some fixed real money

supply. Equation (9) looks like a rule in which the monetary authority

is attempting to peg the (rate of growth of the) real money supply.

During the German hyperinflation, German monetary officials in effect

repeatedly acknowledged that they were operating under a real-bills

regime, acknowledgments made in efforts to argue that their actions were

not causing the inflation but were merely responses to it.

The foregoing establishes that if equations (6) and (9) obtain,

Cagan's adaptive expectations scheme is compatible with rational expecta-

tions and with the portfolio balance condition that he assumed. Under

these assumptions, inflation and money creation form a bivariate stochastic

process given by



- 7a -

(10) - x = (1 - L) (x - t ) +

(9) t +1- xt t

Equation (10) was obtained by first differencing (1) and then substituting
for "t from (2) and for u -ft - Ut 1 from (6). The process (10) - (9) can
be rewritten as

(11) (I - L) x t = (A + a(1 - ))-1 (1 - AL)(Et - t )
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(12) -1(12) (1 - L) u = [(A + a(1 - a)) -]( - X)(E - ft) - E + E .t t t t-1 t

Equations (11) and (12) can be derived directly from (10) and (9);

alternatively, see Sargent and Wallace for a somewhat different but

equivalent way of deriving (11) and (12).

The statistical model (11) - (12) was constructed in a fashion

to guarantee the condition

I-A
E x - x

t t+l 1-XL t

a condition that implies that p does not Granger cause x. For the above

equation states that once lagged x's are taken into account, lagged p's

don't help predict current x, which is Granger's definition of p's not

causing x. It bears mentioning that the statistical model inherits its

Granger-causal structure in large part from the particular conditions

(6) and (7). The statistical model (11) - (12) is not invariant with

respect to an intervention in the form of a change in the money supply

rule. Rather, it is equation (4) that is supposed to be invariant with

respect to interventions in the form of changes in monetary regime.

According to (4), changes in the pt process--which show up in changes in

the (functions) E t Pt+j--result in changes in the systematic part of the

inflation process, Et xt+1. Thus, one cannot expect the Granger-causal

structure of the present model to survive interruptions in monetary

regimes.

3. The Bias in Cagan's Estimator

A convenient way to evaluate the (asymptotic) bias in Cagan's

5/estimator is first to obtain a bivariate Wold representation- for

(Ax t , ,t). Write (11) and (12) as

(1 - L) x t = q(1 - AL)(Et - rt )(13)
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(14) (1 - L) pt = 0(1 - )(t -t) + (1 - L) Et

-1
where = (a + a(l - X))-1. Next decompose Et according to

Et = E[ctlEt - rt] + vt

or

(15) Et = P(Et - nt) + Vt

where E[vtlEt - n t ] = 0 and p is the regression coefficient of Et on

(E t -t ) . Substituting (15) into (14) gives

(16) (1 - L) lt = [0(1 - X) + p(l - L)](st - n t ) + (1 - L) vt

Since v t is orthogonal to (Et - nt) and is serially uncorrelated by

construction (recall that v t - Et - (Et - t), where Et and nt are

serially uncorrelated), it follows that (13) and (16) form a (triangular)

bivariate Wold representation for (Ax t , Apt ) with fundamental noises

F
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(et - t) and vt. The existence of a triangular bivariate Wold representation

verifies that Ax is econometrically exogenous with respect to Ap and

that AP does not cause Ax in Granger's sense (see Sims [ 9 ]). It also

makes it very easy to determine the population projection of Ap on

current and past Ax's, from which the asymptotic bias in Cagan's estimator

is calculable.

From (13) notice that

-1 (1 - L)
(17) Et = T = 1 - AL xt

To obtain the projection of Apt against current and past (and future)

Ax's, substitute (17) into (16) to get

(1 - L) pt = ((1 - ) + (1 - L)p) - x + ( - L) v
t 1 - XL t t

Dividing through by (1 - L) gives

1 - l (1 - L) -

pt- 1- AL 1- aL xt t

(1 - X + p(a + a(1 - ))(1 - L) ) x +
(18) Ut 1 - aL t t

Recall from (13) that the vt process is orthogonal to the x process.

Therefore, equation (18) gives the projection of pt on x. Subtracting

xt from both sides gives the projection of pt - xt against xt "

( 1 - x + p() + a(1 - )))(1 - L) - (1 - XL)) t +

t xt = 1 - AL L

or

x [- A + p(A + a(1 - X))](l - L) +v
(19)t t (1 - XL) t t

-1
Operating on (19) with the "summation" operator (1 - L) gives

[- + p( + (1 - ))] x +
(20) t - Pt 1 - L t t
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where t = t-l + Vt. Equation (20) is the projection that Cagan

estimated by (nonlinear) least squares regression. Notice that the

residuals in (20) follow a random walk. It is noteworthy in this

regard that the residuals in Cagan's and Barro's estimates of (20) were

highly serially correlated, Barro reporting very low values for Durbin-

Watson statistics.

Now Cagan regarded the projection (20) as giving estimates of

the equation

(21) m - p l X + u .(21)t t 1 - L t t

Least squares regression consistently estimates the parameters

of the population projection (20)--only those parameters are not in

general the same ones Cagan took them to be. Comparison of (20) with

(21) shows that Cagan's estimator of a is consistent but that his esti-

mator of a is not in general consistent, and will obey

plim a(1 - X) = [-X + p(X + al(l - X))]

which implies that

(22) plim a = pa + (1 - p)( ) .

Notice that if p = 0, which will be true if e t = 0 for all t, (22)

implies

^ -I
plimc = l-X

which is an expression that Wallace and I derived and used. On the

other hand, if = 0 for all t, so that there is no noise in the

portfolio balance schedule, from (15) p = 1, which with (22) implies

plim a = a,
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so that in this special case Cagan's estimator of a is consistent (and

furthermore unbiased as it turns out, since vt = 0 for all t).

On the special assumption oET = 0, we have

2
E(Et (s - tn)) a

t t t
2 2 2

E(Et - t ) 2  + 0

Alternatively, multiplying (15) by nt, taking expectations, and rearranging

gives

a
vn

p -Q2 'P a2'

so that p is the regression coefficient of the residual v in the regression

of (p - x) against current and past (1 - L)x on the disturbance in the

demand for money. If v = n, then p = 1.

An estimate of p could be obtained in the following way, again

on the special assumption oen = 0. Multiplying (15) by et taking

expectations and rearranging gives

2
The magnitude oa/ao is the regression coefficient of v on e. The

residual v can be estimated by the residual in (the first difference of)

Cagan's equation. The variable Et can be extracted using the methods

described below in Section 5. Then an estimate of p could be prepared

using the above equation. It would be possible to use that estimate of

p to correct Cagan's estimate of u by applying the formula

plim a = pa + (1 - p)( ).1 -
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The calculations in this section provide a useful exercise in

interpreting systems in which one variable (x) is econometrically

exogenous with respect to (is not Granger-caused by) another variable

(u). In such a system, as Sims's theorem 2 assures us and as the pre-

ceding calculations verify, the regression of p on past, present, and

future x's is one-sided on the present and past. Thus, there exists

representations (models) of the (ji, x) process in which p and u-x are

each one-sided linear functions of past and present x's with distur-

bances that are orthogonal to past, present, and future x's--so that in

these relations x is strictly exogenous with respect to u and u-x,

respectively. But the representation in which x is econometrically

exogenous with respect to (p-x)--which is the relation that can be

consistently estimated by least squares or generalized least squares--is

not the demand function for money, which is the structural relation we

are interested in estimating. The reason is that in the structural

relation (21), u t is not in general orthogonal to the x process. The

upshot is that finding that x is exogenous with respect to p-x does not

guarantee that the one-sided p-x on x distributed lag regression which

is estimable by single equation methods corresponds to the structural

relation that we're interested in.

r
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4. A Consistent Estimator

Equations (11) and (12) form a bivariate first-order moving

average process in (1 - L)1t and (1 - L)x t . Assuming that the white noises

St and n t are jointly normally distributed, the likelihood function of a

sample of length T observations, t=l1, ... , T, generated by (11) - (12)

can be written down. To apply the method of maximum likelihood, it is

most convenient to write the model in its vector autoregressive form.

First note that from (9) we can write

(23)
Et Ut 1 - L t

Next from (11) we have

(24) Et - t

(X + a(1 - X))(1 - L)
1 - XL

x
t

Substituting (24) into (23) and rearranging gives

(25) (1 - a + (X + a(1 - X))(1 - L)
t = t 1- XL t

In vector notatio

Et

n t

Multiplying both

identity matrix,

inequations (23) and (25) can be written

1 - XL
1

-[1 - x + ( + A l- ))(1 - L)] 1
1- XL

sides of the equation by (1 - XL)*I where I is

gives

- (1 -

- (1- x + (X + acl - X))(l- L))]

X t

pti

the 2x2

(1 - L)E

(1 - L)t

i- XL x

i- XL
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or

t- 1-

-I =

t- 1

(1 - X)

(1 + a(l - X))

+ a(1 - k)

-t- - xt-
t-1

-aux_

- (1- )

GO L
- (1 + a(i - a))

Premultiplying the preceding equation by

- 1

1+ a(l - a)

-1

-(l-x) /(a + a(1 - x))

gives

-1 :
G

n t

_1 t-1
t-1-4%I :':

+ G0 K
a + Cl( - x)

2 L:t-1

t-1

S]
t

nt_

Z- Xt
t

1 x-i- t -

0

X

Let

1

1 .

tx -

L t

or
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(26) alt xalt-i xt 0 - t-

-1-IaI + G i0

Lat ]at- La j I t i + a(1 - A) - t-

where

alt Fe
- GO-1

a2t n t

Computing

1 0 -1

-1 ac(l- A) -

explicitly and rearranging the above equation gives

(27) x t  1 0 xt- alt alt-1

= + -XI

(t (1 - ) (t-1 a2t a2t-1

Equation (27) is a vector first order autoregression, first-order moving

average process. The random variables alt, a 2 t are the innovations in

the x and p processes, respectively. They are the one period-ahead

forecasting errors for xt and ut, respectively. The a's are related to

the E's and n's appearing in the structural equations of the model by

alt t

-1

a2t It

a
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(28) at + a(1 - ) t -t)

1- A

a2t I + a (1 - ) (Et -t) + t

Notice that the first equation of (27) can be written as

(1 - L)x t = (1 - XL)alt.

It is straightforward to write this in the autoregressive form

(29) x t 
=  1- L ) 1 .

Since Et-1 alt = 0, we have

t-1 =t 1 - XL t-1

The second equation of (27) can be written as

(1 - XL)t = (1 - )xt_-1 + (1- XL)a2t

But from (29) we have (1 - )xt- 1 
= (1 - XL)x t - (1 - XL)alt, which when

substituted into the above equation gives

(1 - L)ut = (1- XL)x t -(1 - L)alt + (1 - L)a2t

or

(30) t = xt + a2t - alt"

From (30), it follows that

(31) Et-i t = Eti xt.
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The triangular character of representation (27) demonstrates

that u does not "cause" in Granger's sense (i.e., help predict, once

lagged own values are taken into account) the variable x. That is, x is

6/
econometrically exogenous with respect to p.- On the other hand, x

does cause the variable pt. Even stronger, the model implies that

Et-t = = ( - ) t- so that lagged U's don't help predict
t-1 t t-1 t (1 - XL) t-1

7/
u once lagged x's are taken into account.- That x causes u in Granger's

sense is not to be confused with x's "leading" U in any National Bureau

sense. On the contrary, according to (30), x t and pt are "in phase"

with one another, neither one leading the other. (The phase of their

cross-spectrum equals zero at all frequencies.) Evidence that x leads

u would not be consistent with the model being studied here.

The vector autoregressive, moving average process (27) is in a

form that can be estimated by the maximum likelihood estimator described

by Wilson [10]. It is essential that the matrices multiplying current

It t
t and current both be identity matrices in order to apply the

a2t ut

method, so that each a. process can be interpreted as the residual from

a vector autoregression either for pt or x t . This is by way of getting

things in a form in which the likelihood function of t equals the
a t

likelihood function of alt]

Let

Falt
a =L :

and let D be the covariance matrix of a,
a t

D = = Eaa '.
a tt
012 022
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The likelihood function of the sample t=l1, ... , T can now be written as

-T -T/2 1-1
(32) L(A, 0l, 12, 22t, x t ) = ( 2 T ) D expT/ (- 2 at'D a)a 'Da11 12 22 t t a 2 t a t a t

t=l

Given initial values for (a 1 0 , a 2 0 ) or equivalently for (EO' n0), and

given a value of X, equation (26) or (27) can be used to solve for a t ,

t=l, ... , T. (I will take a10 = a20 = 0.)

Wilson notes that maximizing (32) is equivalent with minimizing

with respect to X the determinant of the estimated covariance matrix of

the at's,

T ~ ,
(33) DI I T- 1 TI aa 'I

a t t
t=l

where the at's are determined by solving (27) recursively and so depend

on A. The covariance matrix of the a 's is estimated as
t

T-1
D = T a t a

a t tt-l

evaluated at the value of A that minimizes (33). The resulting estimates

are known to be statistically consistent (see Wilson [10]).

Notice that a does not appear explicitly in the likelihood

function, but only indirectly by way of the elements of Da, namely, all'

012, and 022. That this must be so can be seen by inspecting representa-

tion (27), in which X appears explicitly but a does not. On the basis

of the four parameters X, all' 012, and 022 that are identified by (27),

i.e., that characterize the likelihood function (32), we can think of

2 2
attempting to estimate the five parameters of the model a, A, a , a ,

and a . Not surprisingly, some of the parameters are underidentified.

2 2
In particular, while A and 0 are identified, a, a , and o are not

separately identified. To see that a and a are not identified consider
cn
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the following argument. From equation (28), we know that the identifiable

parameters all, 012, and 022 are related to the structural parameters

2 2
0 , 0 , 0 , a, and A by

s ) ET

S2 2
(34) a=( (02 + o - 2o )+ )11 = + a(1- 1) E n

(1 - X) 2 2  1 2
(36) 22 (( l ) ) (02 + o - 20 ) +

22)

1( + o - 2 ) + +21 - ) 2 2++2
(36) a2 2  - (a + a ( - )) E n a

( 1i- A 6 2
2 A + a(l - ) ( 6 - oE .

These equations imply

1 2
12 + a - )

2 2 2(1 - ) 2

(38) 22 = (1 - ) a + 02 + 2 - (0 ).
i E + al( - ) E E

Do there exist offsetting changes in a and a that leave both of these

equations satisfied with all' 022, and 612 unchanged? That is, holding

x and a2 constant, can we change a and a in offsetting ways that leave

all' 12, and 022 constant? The answer is yes, as can be seen by

2
differentiating (37) and (38) and setting dol 2 = doll = do 2 2 = dX = do = 0:

(39) 0 = (1 - g)( + a(l - x))-2( - a )d

-1+ (, + c~(l - x)) d0  = 0
SQ

I
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(40) 0 = 2(1 - ) (a + (1 - ())-2(2 - )da

+ 2(1 - X)(A + a(l - X))do = 0

Dividing the second equation by 2(1 - X) gives the first equation, which

proves that if da and do obey equation (39), both equations (37) and

(38) will remain satisfied. Thus, there exist offsetting changes in

a and on that leave the identifiable parameters X, 1 1 , a 1 2 , and 022

unaltered. It follows that o and a are not separately identifiable.
En

2
It is evident from (27) or (32) that X is identified. To see that a

E

is identifiable, simply recall that et obeys the feedback rule

(t 1 - AL Et t

2
so that given , and samples of t and x t , c is identifiable as the

variance of the residual in the above equation.

To proceed to extract estimates of a it is necessary to impose

a value of a . I propose to impose the condition a = 0, so that
El El

shocks to the money supply rule and shocks to portfolio balance are

uncorrelated. It is straightforward to calculate

2L ET = E [t t t ] = GODaGO

2

o or n n t

(1-)2011+ 2(1-2)ol2+ 022, (11)(1+(-h))oll - (2-h+a(1-h))12 + 022

L (1-A)(1+a(A1-))a - (2-+a((l1-))ll + a 2 2 , (1+a(l-)) 2 o l l - 2 (1+a(l-a))ol 2 + 022

I
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Imposing a
E

= 0, we have

0 = E = (1 - x)(1 + a(l - ))o11

which implies that a is to be estimated by

(41)

- (2 - X + a(l - ))a 1 2 + 0 2 2 '

_ 1 (2 - )o12

S= (1 - X)a1 1 - a12 (1 - a)((l - X) a1 1 - 1 2 )

a22
(1 - X)((1 - X)o 1 1 - a12)

Let this estimator of ca be

a = g(X, a1 1 , a 1 2 , 02 2 ) = g(e)

where 0 = (,, a 1 1 , a 1 2 , a 2 2 ). Let X, be the estimated asymptotic

covariance matrix of 6. Then the asymptotic variance of a will be

estimated as

var a = (z
BO -

8

where ag/ e) is the (1x4) vector of partial derivatives of g with

respect to 8 evaluated at the maximum likelihood estimates e. The

asymptotic covariance matrix of (X, a 1 1 ' a 1 2 ' , 2 2 ) is given by

=1
L T

2
T 2

x
0 0

2
G12

2 a 1 1 0 1 2 a 1 1 2 2 + 1 2

2
where Ta is estimated by

a

22Oll
c11

22o12 2012022 2022
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2 2og ]L
F 2Ta = 2 1

and where log L is the natural logarithm of the likelihood function

(32). Notice that the maximum likelihood estimate of X is asymptotically

orthogonal to the estimates all' 1 2 ' a 2 2 . The preceding formula for

Ze can be derived by applying results of Wilson [10] and T. W. Anderson

[1, pp. 159-61]. In the computations summarized below, the components

all' 6 1 2 , and a2 2 were estimated by

S (a1 1  12 -1
D = = T aa ,

a ^ t=1  ta 1 2  >22 t=

the maximum likelihood estimator. The term

S21og L
s 2  

^

was estimated numerically in the course of minimizing (33) to obtain the

maximum likelihood estimates.

It bears emphasizing that a is identifiable at all only on the

basis of a restriction on a , and that the estimator of a obtained by

imposing a = 0 depends sensitively on the covariance matrix of the

errors in forecasting x t and pt from the past. The estimates of a thereby

obtained ought to be regarded as very delicate.

5. An Alternative Estimator

If it is assumed that a = 0, so that shocks to the demand

for money and to the supply of money are uncorrelated, an instrumental

variable estimator is available. From equations (30) and (29) we have

that

i - A
E x = E p xt,
t-1 t t-1 t 1 - XL xt-
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and that

1
(42) xt - Et xt = alt = + - ) (Et - nt)

l-
(43) t t-1t a2t a + all( - a) t t t

Notice that

(44) a2t - (1 - )alt Et

This suggests the following procedure. Estimate by maximum

likelihood the univariate first-order moving average process for Ax t ,

i.e.,

(1 - L) xt = (1 - L) alt

where alt = (x + ac(l - ))-1 (ct - nt) is "white." This will yield

consistent estimates of X and permit estimating the forecast errors.

The forecasts E xt can be estimated from the above equation as
t-l t

Et-l1 t =t- 1 - alt-1l

Use of (44) shows that estimates of Et can be extracted according to

(45) Et = (pt - Et-i xt) - (1 - X)(xt - Et- 1 xt).

On the assumption that et is uncorrelated with rt' t is a

valid instrument for estimating equation (1): it is correlated with the

regressors but orthogonal to the disturbance. Letting et be the estimates

of Et obtained by applying (45), I propose fitting the first-stage

regression
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n

x w Et
xt i t-i

i=0

where the hatted values denote least squares estimates. Then Cagan's

equation (1) would be estimated by applying (nonlinear) least squares to

the second-stage regression

(46) m - - X + u a(l (x - x
t t = 1- L t t 1- XL (t- t)

This procedure yields consistent estimates of a and X on the assumption

that

T
plim T t n t = 0 ,
T--ot t=1

a condition that the orthogonality of Et and rt goes a long way toward

delivering.

6. Testing the Model

Representation (27) shows that the model is a special case of

the general vector first-order moving average, first order autoregressive

process

(27') xt i11 c 1 2  xt-1 /alt bl1  b 1 2  alt-1

ut 21 c 2 2  ut-l/ a 2 t b 2 1 b 2 2  a 2 t-1

where in (27) seven linear restrictions have been placed on the eight

parameters (C1 1, c 1 2 , c 2 1 , c 2 2 , b11' bl2, b2 1 , b 2 2 ) of (27') so that the

systematic part of (27) only involves the single parameter X. The model

(27) can be tested by relaxing some subset of the seven restrictions

that were imposed on (27') to get (27), maximizing the likelihood function

under the less restrictive parameterization, and calculating the pertinent

L
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2
X statistic. Let L(x t , Pt; 80) be the maximum of the likelihood

function under parameterization (27), which is Cagan's model under

rational expectations. Let L(x t , ut; 6, q) be the maximum of the

likelihood function under (27') with q of the seven restrictions in (27)

being relaxed. Then

L(xt' Pt; 60)
-2 log (L)

L(xt ' , ; 6, q)

is asymptotically distributed as X2 (q). High values of the test statistic

lead to rejection of representation (27). Below this test is implemented

under several alternative relaxations of the restrictions on (27).

7. Empirical Results

For Cagan's and Barro's data, respectively, Tables 2 and 3

report the estimates obtained using the maximum likelihood estimator and

the assumption that oE = 0. Asymptotic standard errors are in paren-
EL)

theses beneath each estimator. Cagan's and Barro's estimates are reported

in Tables 4 and 5 for convenience. For Cagan's data, the maximum likeli-

hood estimator recovers estimates of a that are in most cases character-

ized by large standard errors. In particular, for the important German

case, a case in which Cagan had apparently estimated a with a tight

confidence band, my estimate of a has a big standard error, one nearly

as big as the point estimate itself. Evidently, the estimate of a is

not statistically significantly different from zero even at modest

confidence levels, at least if we are willing to use the asymptotic

8/
(normal) distribution of the estimates.- For the Austrian and Russian

cases, my estimate of a is smaller than its standard error. Only in the

case of Hungary I, and to a lesser extent in the case of Poland, is the

standard error of a small relative to the point estimate of a. Interestingly



enough, for Hungary I my estimate of a of -1.84 is much smaller in

absolute value than Cagan's estimate of -8.70. The reciprocal of +1.84

is .54, while the average monthly rate of inflation in the Hungary I

case was .46. In the case of Hungary I, my estimate of a suggests that

the paradox with which I began this paper, the apparent tendency of

creators of money to print money "too fast," was not present. For what

it is worth, then, my estimate of a for Hungary I tends to explain away

the paradox. For the other countries, the point estimates do not explain

away the paradox. However, in each case, values of a that would cause

the paradox to disappear do exist within confidence intervals of two

standard errors on each side of the point estimate of a. This suggests

that perhaps the paradox ought not to be taken as having been seriously

confirmed since the estimates of a on which it is based seem so shaky.

Notice that my estimates of A are always lower than Cagan's.

That is an unexpected result, since according to the model, Cagan's

estimate of X and my maximum likelihood estimator are each consistent.

The systematic difference in estimates as between the two estimators may

reflect the inadequacy of the model.

For Barro's data, the maximum likelihood estimates are reported

in Table 3. For Austria and Germany, the estimated asymptotic standard

errors of a are fairly large relative to the point estimates, while for

Hungary I and Poland they are much smaller. As with Cagan's data, my

estimate of a is much smaller than is Barro's for Hungary I. My estimate

is somewhat smaller than Barro's for Poland. As with Cagan's data, my

estimate of A is always smaller than Cagan's.

The main conclusion that I draw from these estimates is that

even under the restriction a = 0, the slope parameter a is usually
En

0 4
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poorly estimated. When to this is added the observations that a is not

even identifiable unless a is restricted and that economics does not

seem to restrict aE, the uncertainty about a only increases. It seems

correct to conclude that, with the possible exception of Hungary I, I

have not been able to estimate very well the slope of the portfolio

balance schedule.

This is not to say, however, that the model is necessarily

defective. It is certainly conceivable that the model approximated

reality quite well even though a cannot be estimated well or isn't even

identifiable. As pointed out in Section 6, the proper way to test the

model is to "overfit" the vector moving average, autoregressive repre-

sentation (27), and to test whether the restrictions imposed by (27) are

violated. For overfitting, I have estimated each of the six parameteri-

zations reported in Table 6. For each parameterization, the chi-square

statistic described in Section 6 was computed, and is reported in

Table 7 for Cagan's data and in Table 8 for Barro's data. High values

of the X2 statistic lead to rejection of the null hypothesis that model

9/(27) is adequate.-

For Cagan's data, at the .95 confidence level, the model is

rejected relative to parameterization 5 for Russia, relative to parame-

terizations 1, 2, 4, and 5 for Hungary I, and relative to parameterizations

2, 5, and 6 for Austria. For Germany, Greece, and Poland, the model is

not rejected relative to any of the six parameterizations at the .95

confidence level. For three of the hyperinflations, then, overfitting

representation (27) does turn up evidence that would prompt rejection of

the model. However, it surprised me just how adequately the model does

seem to perform relative to the six parameterizations in Table 6.
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Representation (27) is a very stark, highly restricted parameterization;

indeed, the systematic part of the vector autoregression has only one

parameter. I had expected the model to be rather decisively rejected by

these overfitting tests. It is remarkable that the model seems to

survive those tests for even three of the hyperinflations.

For Barro's data, at the .95 confidence level the chi-square

statistics call for rejecting representation (27) relative to parameter-

izations (1), (2), (4), and (5) for Hungary I. The statistics do not

call for rejection of (27) for Germany, Poland, or Austria.

Notice that for both Cagan's and Barro's data, the overfitting

tests reject representation (27) for the case of Hungary I, a case for

which my estimator of a obtained the tightest confidence band.

8. Conclusions

This paper has applied maximum likelihood techniques to derive

a consistent estimator of a bivariate, rational expectations version of

Cagan's model of hyperinflation. The estimator, in principle, eliminates

the simultaneous-equations, asymptotic bias that characterizes Cagan's

estimator. Application of the maximum likelihood estimator typically

yields "loose" estimates of the slope parameter of the demand schedule

for money. The estimates are so loose that confidence bands of two

standard errors on each side of them include values that would imply

that the creaters of money were inflating at rates that 
maximized their

command over real resources, thus maybe resolving the "paradox" with

which I began this paper. While perhaps this resolves the paradox, it

does so in a destructive way, by suggesting that the demand for money in

hyperinflation has not been isolated as well as might have been thought.

This is not a very satisfactory state of affairs in which to leave the
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subject. In a subsequent paper, I intend to describe further efforts to

isolate the demand schedule for money, using a technique which for

special reasons cannot be applied to Cagan's model. Use of that tech-

nique will be shown to require abandoning the assumption of adaptive

(geometric lag, unit-sum) expectations. The technique will be shown to

break down under the singular circumstance that the model in the present

paper is the correct one. However, the results of my "overfitting"

tests, to the extent that they do not always emphatically reject the

model in the present paper, suggest that the prospects for success are

not great for using such a technique. It could just be true that the

model in this paper is the "correct" one, so that even though the port-

folio balance schedule was exactly the one Cagan assumed, the nature of

the money supply regimes in effect during the hyperinflations makes

difficult or impossible estimating the slope of that portfolio balance

schedule.



Footnotes

1/Among such studies are some of those in Meiselman [5].

2/I assume that the information available consists (at least)

of observations of current and past U's and current and past x's. Thus

Etxt+l -E[Xt+l/t' *t, ... , xt' Xt-l' ... ]. Similarly, where z t is

any arbitrary random variable, I will write Etzt+1 for E[zt+ll t ,

Pt-l' ". xt' Xt-l' "]

3/Substituting (3) into (1), first differencing, and shifting

the time subscripts forward one period gives

t+l - Xt+l = tEt+lXt+2 - axt+l + (ut+1 - u t).

Taking expectations conditional on information available at time t gives

Ex -1 E E x -(E u - E ut).
Etxt+l 1-a t t+l 1-a t t+2 t t+l t t

Recursion on the above difference equation shows that equation (4) is

indeed a solution to that equation.

4/To see that process (9) satisfies (8), write (9) as

(1-X)=(l-)x + E(l)
t+l= (1-a)xt+l 1-AL xt t+l

Taking expectations conditional on information available at t, we have

(1-X)A
EtUt+l = (1-A)Et x t+l 1-L xt

1-1
But Ex x , so that we have

1-A
Et t = (( I - A)+A) ( ) x
t t+l 1-AL t

1-A
Et4t+l 1-AL xt '

as required.

5/The most readily accessible reference in economics on the

multivariate Wold representation is Sims [9], especially the appendix.

6/Sims [9] proved the equivalence of Granger causality with

econometric exogeneity.



7/Wallace and I were mistaken when we asserted that "the

system is one in which expectations of money creation could equally well

be formed as a distributed lag of past rates of money creation," [8,

p. 337]. It is true that

1 - T

E[t t-' "" = 1- TL t-l'

where T is a parameter that depends on the ratio of the variance of E
to the variance of nt .  However, in the model E[t j t -l '  " ]  t

E[t Ujt- 1 , ... , Xtl, ... ]. Instead, E[utItpt 1 , ... , x1t-1' .] =

E[ t ixt_1, ... ], which, of course, has a smaller prediction error variance

than E[t t_-1, ... ]. The erroneous statements on page 337 of Sargent

and Wallace [8] amount to an assertion that the Wold representation of

the xt- t process contains only one noise, so that lagged values of

either x or u exhaust all information in the past values of x and u use-

ful for predicting either x or u. That is wrong, as the triangular Wold

representation derived in Section 3 of this paper verifies. The upshot

of all this is that it was not necessary for Sargent and Wallace to

posit measurement errors in the money supply to rationalize the empirical

observation that x causes p. That is already an implication of the

system free of measurement errors.

8/Actually, the normality of the asymptotic distribution is

conjectural. See Porter, [7].
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Table 2

Estimates for Cagan's data (standard errors in parentheses)
(x and u are deviations from respective means)

Country A a 0 11 12 022

GERMANY .6774 -5.973 .0625 .0158 .0091

Oct '20-July '23 (.0533) (4.615) (.0147) (.0048) (.0022)

AUSTRIA .7537 -.3113 .0385 .0148 .0085

Feb '21-Aug '22 (.0589) (1.5695) (.0119) (.0051) (.0026)

GREECE .4587 -4.086 .0675 .0245 .0279

Feb '43-Aug '44 (.0884) (2.970) (.0208) (.0109) (.0086)

HUNGARY I .4183 -1.841 .0362 .0089 .0060

Aug '22-Feb '24 (.0668) (.3978) (.0112) (.0038) (.0019)

RUSSIA .6259 -9.745 .0524 .0138 .0205

Feb '22-Jan '24 (.0728) (10.742) (.0145) (.0070) (.0057)

POLAND .5364 -2.529 .0566 .0149 .0089

May '22-Nov '23 (.0722) (.8562) (.0175) (.0059) (.0027)



Table 3

Estimates for Barro's data (standard errors in parentheses)

(x and I are deviations from respective means)

County~ all 012 022

AUSTRIA .6373 -3.979 .0584 .0161 .0081
Apr '21-Dec '22 (.0739) (2.805) (.0172) (.0056) (.0024)

GERMANY .5921 -2.344 .1806 .0653 .0263
Feb '21-Aug '23 (.0510) (1.223) (.0445) (.0165) (.0065)

HUNGARY .4323 -1.705 .0280 .0071 .0038
Nov '21-Feb '24 (.0559) (.2782) (.0072) (.0023) (.0010)

POLAND .4790 -2.043 .0319 .0063 .0040
Feb '22-Jan '24 (.0533) (.3537) (.0089) (.0025) (.0011)

"



Table 4

Cagan's estimates of a, X together

with confidence band for a.

Country X a (, au

Austria .95 -8.55 -(4.43 , 30.0)

Jan '21-Aug '22

Germany .82 -5.46 -(5.05 , 6.13)

Sept '20-July '23

Greece .86 -4.09 -(2.83 , 32.5+)*

Jan '43-Aug '44

Hungary .90 -8.70 -(6.36 , 42.2+)*

July '22-Feb '24

Hungary .86 -3.63 -(2.55 , 4.73)

July '45-Feb '46

Poland .74 -2.30 -(1.74 , 3.94)

Apr '22-Nov '23

Russia .70 -3.06 -(2.66 , 3.76)

Dec '21-Jan '24

(a , a ) = 90 percent confidence band calculated by Cagan using

likelihood ratio method.

*au actually exceeds right-hand figure in parentheses.u

Source: Cagan's Table 3, p. 43.



Table 5

Barro's Estimates of X and a

Country X a*

Austria .829 -4.09

Jan '21-Dec '22 (-3.6 , -4.5)

Germany .824 -3.79

Jan '21-Aug '23 (-3.3 , -4.3)

Hungary .861 -5.53

Oct '21-Feb '24 (-4.6 , -6.9)

Poland .709 -2.56

Jan '22-Jan '24 (-2.1 , -3.3)

*95 percent confidence intervals in parentheses

beneath each estimate.

Source: Barro, Table 3.



Table 6

Parameterizations for Overfitting

xt xt-1 alt alt-1

= C + + B

Pt t-1 a2t a2t-1

c 0 -a 0

C = , B =

(1- ) B 0 -a

1 c -a 0

C = , B =

1-a 1 o -a

1 o0 - b

C = , B =

-0 1 o -a

c1 c1 - 0

C =  , B =

1- oa0 -a

1 c -a b

C =  , B =

(1-a) a o -a

i 0 - 0

C =  , B =

cI c 2 0 -h

1.

2.

3.

4.

5.

6.



It 1%

GERMANY

Oct '20-July '

RUSSIA

Feb '22-Jan '2

GREECE

Feb '43-Aug '"

HUNGARY I
Aug '22-Feb '2

POLAND
May '22-Nov '2

AUSTRIA
Feb '21-Aug '

Significance Lev(

Table 7

Cagan's Data

Results of Overfitting--Chi Square Statistics

Parameterization

Number

1 2 3 4
2 2 2 2

X ( 1 ) X ( 1 ) X (1) X ( 2 ) X

'23 .52 1.12 2.06 .95 3

24 .21 3.05 2.84 3.90 7

4 1.04 1.53 .25 4.14 1

24 4.13 7.57 3.13 7.57 7

23 .19 .04 .22 .31

22 2.77 4.97 .63 4.97 10

els: 2(1).05
S(1).05

x (1)oi

3.84

6.63

5
2(2)

.37

.79

.87

.62

.56

.05

X (2).05 5.99

X ( 2 ).01= 9.21

6

X2(2)

2.14

.97

.40

.24

.53

7.13

1



Country

GERMANY

Feb '21-Aug

HUNGARY I
Nov '21-Feb

POLAND
Feb '22-Jan

AUSTRIA

Apr '21-Dec

Table 8

Barro's Data

Results of Overfitting--Chi Square Statistics

Parameter izat ion
Number

1 2 3 4
2 2 2 2

X (1) X (1) X (1) X ( 2 ) X

Z3 1.272 .382 .3 3.5

24 5.424 7.6 1.232 7.63 8

24 1.58 .528 .184 .528

22 .502 3.11 .006 3.97 3

Significance Levels: X2(1).05

2(1
X (1).025

X2 ().01

3.84

5.02

6.63

2
X2(2).0

5

X2 (2)025
2 .025

x (2).01

i

6

X2 (2)

O0.

.39

8.8

~0

5
2(2)

.33

.49

.66

.13

5.99

7.37

9.21

9-

--

--

L

1'
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