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The CAPM il alive and well 

Abst rac t 

In empir ical studies of the C A P M , it is commonly assumed that, (a) 
the return to the value-weighted portfolio of all stocks is a reasonable 
proxy for the return on the market portfolio of all assets in the econ­
omy, and (b) betas of assets remain constant over t ime. Under these 
assumptions, Fama and French (1992) find that the relation between 
average return and beta is flat. We argue that these two auxi l iary 
assumptions are not reasonable. We demonstrate that when these as­
sumptions are relaxed, the empirical support for the C A P M is very 
strong. When human capital is also included in measuring wealth, the 
C A P M is able to explain 28% of the cross sectional variation in average 
returns in the 100 portfolio studied by Fama and French. When , in 
addi t ion, betas are allowed to vary over the business cycle, the C A P M 
is able to explain 57%. More important, relative size does not explain 
what is left unexplained after taking sampling errors into account. 



The CAPM Is Alive and Well 3 

1 I n t r o d u c t i o n 

A substantial part of the research effort in finance is directed toward im­

proving our understanding of how investors value risky cash flows. It is 

generally agreed that investors demand a higher expected return for invest­

ing in riskier projects, or securities. However, we stil l do not fully understand 

how investors assess the risk of a project's cash flow and how they determine 

what risk premium to demand. 

Several capital asset pricing models have been suggested in the literature 

that describe how investors assess risk and value risky cash flows. Among 

them, the Sharpe-Lintner-Mossin-Black model ( C A P M ) 1 is the one that fi­

nancial managers most often use for assessing the risk of the cash flow from 

a project and arriving at the appropriate discount rate to use in valuing the 

project. According to the C A P M , (a) the risk of a project is measured by 

the beta of the cash flows with respect to the return on the market portfolio 

of all assets in the economy, and (b) the relation between required expected 

return and beta is linear. 

Over the past two decades a number of studies have empirically examined 

the validity of the C A P M . The results reported in these studies support the 

view that it is possible to construct a set of portfolio such that the C A P M 2 

has l i t t le abil i ty to explain the cross sectional variation in average returns 

among them. In particular, portfolio containing stocks with relatively small 

capitalization appear to earn positive excess returns on average than those 

predicted by the C A P M 3 . In spite of the lack of empirical support, the C A P M 

is sti l l the preferred model for classroom use in M B A and other managerial 

'See: Sharpe (1964). Lintner (1965), Mossin (1966) and Black (1972). 
2See Banz (1981), Basu (1983), Reinganum (1981), Chan, Chen and Hsieh (1985), 

Bhandari (1988), Gibbons (1982) and Shanken (1985). 
3Hansen and Jagannathan (1991) find that this is true even after controlling for sys­

tematic risk using a variety of other measures. 
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finance courses. In a way it reminds us of cartoon characters like Wi ley 

Cayote who have the ability to come back to original shape after being blown 

to pieces or hammered out of shape. Maybe, the C A P M survives because: 

(a) empirical support for other asset pricing models is no better 1 , (b) the 

theory behind the C A P M has an intuitive appeal that is hard to beat using 

the other models, and (c) the economic importance of the empirical evidence 

against the C A P M reported in empirical studies is ambiguous. 

In their widely cited study, Fama and French (1992) present evidence sug­

gesting that the statistical rejections of the C A P M that have been reported 

in the literature may also be economically important. They examined the 

C A P M using return data on a large collection of assets and found that the 

''relation between market 3 and average return is flat"5. The C A P M is widely 

viewed as one of the two or three major contributions of academic finance to 

practicing managers during the postwar era. As Fama and French point out, 

the robustness of the size effect and the absence of a relation between 8 and 

average return is so contrary to the C A P M , that it shakes the foundation on 

which M B A and other managerial course material in finance is built. 

Whi le the evidence presented by Fama and French (1992) against the 

C A P M is impressive, it is sti l l not sufficient to conclude that the C A P M does 

not provide a useful framework for explaining the cross section of expected 

returns, for the following reasons. 

First, in order to implement the C A P M , for practical purposes, it is com­

monly assumed that the return on the value-weighted portfolio of all stocks 

listed in the New York and A M E X stock exchanges (as well as those traded 

on N A S D Q ) is a reasonable proxy for the return on the market portfolio of 

all assets. Hence one possible interpretation of the evidence is that the par-

4See Hansen ami Singleton (1982). Lehmann and Modest (1988). Connor and Korajczyk 
(1988a and 1988b) and Hansen and Jagannathan (1991). 

"Also see Jegadeesh (1992) who obtains results similar to Fama and French. 
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ticular proxy Fama and French use for the return on the market portfolio of 

all assets is a major cause for the unsatisfactory performance of the C A P M . 

Second, the C A P M is a static (two period) model, whereas the time-

series data is from the real world which is inherently dynamic. It is therefore 

necessary to make some auxiliary assumptions in assessing the empirical 

support for the C A P M . Fama and French (1992) assume that the betas of 

the portfolio they study remain constant over time. This may not be a 

reasonable assumption since betas of firms may vary over the business cycle. 

For example, during recession financial leverage of firms in relatively poor 

shape may increase sharply relative to other firms, causing their stock betas 

to rise. Also, to the extent business cycles are induced by technology or taste 

shocks, relative share of different sectors in the economy will fluctuate and 

this wil l induce fluctuations in the betas of firms in these sectors. 

We find that when human capital is also included in measuring wealth, 

the C A P M is able to explain 28% of the cross sectional variation in average 

returns on the portfolio used in the Fama-French study. This is a substantial 

improvement when compared to the 1.35% explained when a traditional mar­

ket portfolio of N Y S E - A M E X stocks alone is used as a proxy for aggregate 

wealth. When betas are allowed to vary over the business cycle, the C A P M is 

able to explain 57 % of the cross sectional variation in average returns. Size 

has l itt le abil i ty to explain what is left unexplained. These findings suggest 

that it is rather premature to discard the C A P M . 

The rest of the paper is organized as follows. In Section 2 we replicate 

the results reported by by Fama and French (1992) using our set of data. 

In Section 3 we develop and examine an empirical specification of C A P M 

that incorporates human capital and allows for time variations in betas. In 

Section 4 we provide some additional diagnostics. We conclude in Section 5. 
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2 R o b u s t n e s s of the F a m a - F r e n c h F i n d i n g s 

2.1 Data 

Fama and French (1992) find that while the relation between beta and av­

erage return is flat, the relation between average return and size is negative 

and statistically significant. While the data set we use is similar to the one 

used by Fama and French, there are some significant differences. Hence in 

order to show meaningful connection between our analysis and that of Fama 

and French, it is necessary to replicate their work using our data set. 

Whi le Fama and French use returns to common stocks of non-financial 

corporations listed in N Y S E , A M E X (1962-90) and N A S D A Q (1973-90) that 

are covered by C R S P as well as C O M P U S T A T in their study, we study return 

to stocks of non-financial firms listed in N Y S E and A M E X (1962-90) covered 

by C R S P alone. 

N A S D A Q stocks are not included because we do not have monthly data 

for N A S D A Q stocks available to us at the University of Minnesota. This 

should not be an issue since Fama and French report that their results do 

not depend on the inclusion of N A S D A Q stocks. 

It is well known that firms in C O M P U S T A T may have some forward look­

ing b ias 6 , since stocks move in and out of the C O M P U S T A T list depending 

on their past performance. Kothar i , Shanken and Sloan (1992) provide in­

direct evidence for the existence of such a bias — they point out that the 

annual returns are about 10 percentage points more for small firms in C O M ­

P U S T A T when compared to small firms that are only in C R S P . Fama and 

French themselves are aware of this problem, since in their follow-up paper 

(Fama and French (1993)), they omit the first two years of data as, accord­

ing to them, C O M P U S T A T claims that they rarely add more than 2 years 

6See Chari . Jagannathan and Ofer (1986). 
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of data when they add a firm to their list. However, it is not clear whether 

this completely eliminates the bias in C O M P U S T A T tape. In view of this, 

we do not examine the relation between book to market equity and the cross 

section of returns 7 . Hence, we are not constrained to l imit our attentions to 

stocks that are in C R S P as well as C O M P U S T A T . 

We form 100 portfolio of N Y S E and A M E X stocks in the same way as 

Fama and French (1992) did. For every calendar year, starting from 1963, 

we first sort firms into 10 size deciles based on their market value at the end 

of June. For each size category, we then estimate the beta of each firm using 

24 to 60 months of past return data and the C R S P value-weighted index as 

the market index proxy. Firms that have less than 24 continuous monthly 

return observations are omitted. Following Fama and French, we denote this 

beta as "pre-ranking" 3 estimates or "pre-beta" estimates for short. We 

then sort firms within each size decile into 10 pre-beta deciles. This gives us 

100 portfolio and we compute the return on each of these portfolio for the 

next 12 calendar months, where portfolio returns are calculated by equally 

weighting the returns on stocks in the portfolio. We repeat this procedure for 

each calendar year. This gives a time series of monthly returns (July 1963 

- December 1990, i.e., 330 observations) for each of the 100 size-prebeta 

portfolio. 

The Fama and French sorting procedure produces an impressive disper­

sion in the characteristics of interest. T ime series averages of portfolio returns 

are given in Table 1. The rates of return range from a low of 0.61% to a high 

of 1.72% per month. We calculate the beta of a portfolio by regressing the 

portfolio return on the C R S P value-weighted index. Betas of the portfolio 

are presented in Table 2. They range from a low of 0.57 to a high of 1.70. 

'Jagannathan. Krueger and McGrattan (1993) study the selection bias in the C O M P U ­
STAT tape by comparing the ability of book to market ratio to explain the cross section 
of stock returns when attention is limited to the list of firms that appeared in the 1975 
C O M P U S T A T tape. However, their analysis is incomplete. 
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We calculate the size of a portfolio as the equally weighted average of the 

logarithm of market value of stocks (in million dollars). T ime series averages 

of portfolio size are presented in Table 3. They range from a low of 2.34 to 

a high of 7.81. Properties of these three characteristics of the portfolio are 

very similar to that of the portfolio formed by Fama and French. 

2.2 F a m a - M a c B e t h R e g r e s s i o n 

The C A P M relation between expected return and beta is given by 

E[Rit] = 70 + T i A (1) 

where ft,-< is the month t return on portfolio i and 

3, = Cov(R,t,Rmt)/VM[Rmt} 

where Rmt is the return on the proxy for the market index portfolio at month 

t. Let R,mt be the value-weighted portfolio of all stocks traded on N Y S E and 

A M E X . Under the assumptions that R„t is a good proxy and betas are 

constant over time, the empirical specification of C A P M becomes 

E{Rit] = 7o + 7 i / T (2) 

where 

dr = Cov(Rit,R„t)/Vzr[R.wt). 

To test this specification of the C A P M . we can consider the following two 

regressions across portfolio for each month / 

Rit = lot + l^tfiT + Cii (3) 

Rit = 7o« + 7. . t /?r + 7....«log(ME, t) + J/,< (4) 

where log(ME,t) denotes the size for portfolio i at month t. Fama and French 

(1992) assign the beta of a portfolio to individual stocks in that portfolio, 
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and estimate 7»w ( and 7,,M< for each month t using the cross section of returns 

on individual stocks. The estimates obtained using this procedure will be 

almost the same as the one obtained by using the cross section of returns 

on the 100 portfolio 8. Let 70, 7»w and denote the t ime series averages 

of the 7's. We can then examine whether the risk premium 7. . in equation 

(2) is positive by testing whether E[7V„] is zero against the alternative that 

it is positive. Following Fama and French we also examine if the empirical 

C A P M specification given in (2) is correct by testing whether E[7,u.] = 0. 

The assumption is that if one can reject the hypothesis that E f^ , , ] = 0, then 

(2) is misspecified 9. 

Table 4 gives the results reported by Fama and French (1992). 7 . . is 0.15 

with an associated ^-statistic of 0.46. When log(ME, t ) is also included in the 

regression, 7. . = -0 .37 (t = —1.21) and 7,,,. = -0 .17 (t = —3.41). Fama and 

French interpret this as evidence that the relation between beta and average 

return is flat. Further, the univariate relation between market value and the 

cross section of average returns is statistically significant - which is taken as 

further evidence against the C A P M . 

Fama and French interpret the "flat" relation between beta and average 

return as strong evidence against the C A P M . When models are viewed as 

approximations to reality, a natural question that arises is: "how bad is the 

model's performance?". A flat relation between beta and average return, 

should be viewed as extremely poor performance indeed, subject to certain 

caveats to be made clear shortly. 

The C A P M implies that the market portfolio is mean variance efficient. 

One implication is that individuals need only invest in the market portfolio 

"The C A P M is a pricing model for both portfolio and stocks. Since we use portfolio 
betas, it is more natural to run regression across portfolio instead of stocks. If the numbers 
of stocks in portfolio are the same, it can be shown that estimates obtained using portfolio 
will be identical to those obtained using stocks. 

; 'Berk (199*2) provides theoretical justification for this test. 
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and the riskless asset in suitable combinations. From the perspective of such 

an individual who considers investing in a market proxy portfolio and the 

riskless asset, the measure of how bad the market proxy is, "how inefficient 

is the market proxy in the mean variance space?" Rol l and Ross (1992) 

correctly point out that even when the proxy used for the market portfolio is 

very close to the mean-variance efficient frontier, the relation between beta 

computed using the proxy and the expected return on the assets can be 

"flat". Hence, an individual investing in the market proxy portfolio may 

not be significantly worse off when compared to investing in the true market 

portfolio, even when such a proxy has no ability to explain the cross section 

of expected returns. Hence, some one who is interested in explaining the 

cross section of expected returns may well end up picking a very poor proxy 

if he/she uses closeness of the return on the proxy to the mean variance 

frontier as the only criterion in selecting from among various candidates. 

This is because closeness in the mean-variance space need not necessarily 

imply that expected returns assigned by model using the proxy wil l be close 

to the true expected returns, as Green (1986) pointed out. 

In view of this, the observation by Roll and Ross that a proxy that is 

close to the mean variance frontier may perform poorly in explaining the 

cross section of expected returns cannot be interpreted as a cr i t ic ism of the 

conclusions reached by Fama and French that the C A P M performs very 

poorly when the value weighted index of stocks is used as the market proxy. 

Figure 1 gives a plot of the 100 portfolio in our sample in the standard 

deviation-mean plane. The figure also gives the ex post efficient frontier of 

returns with and without positivity constraints on portfolio weights. (The 

frontier with positivity constraints is represented by the dotted line and that, 

without positivity constraints is represented by the solid line in Figure 1.) As 

can be seen from the figure, the value weighted index portfolio is well within 

the frontier even when portfolio weights are constrained to be positive. 
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Table 4 also gives the corresponding results for our data set ( N Y S E & 

A M E X ) . Although our data set is different from the one used by Fama and 

French, the coefficient for beta is not statistically different from zero no 

matter whether or not size is included in the regression, and the coefficient 

for size remains very significant (although the /-ratio is smaller than that 

reported by Fama and French). 

We need an r-square like goodness of fit measure for comparing the per­

formance of different empirical specifications of the C A P M in explaining 

the cross sectional variation in average returns across portfolio. The Fama-

MacBeth regressions are cross sectional, and there is one such regression for 

each month. Hence, in order to compute an r-square like statistic, we follow 

the following procedure. Notice that the fitted residuals for each month in 

equation (3) have an average of zero for each month. Let R\ and e, denote the 

time series average of the returns and residuals for portfolio i. Let Var„[//,] 

and Var c[e,] denote the cross sectional variance of R{ and e, . We define r'f 

as (Var c[/?,] - Var c[e,]) / V a r c [£,-]. Note that 

Vare(7?,) = Var c(7o + •%.#-) + Var c(e.) 

Hence rj2 does indeed measure the ability of the model to explain the cross 

sectional variation in average returns. Since log(ME, t ) varies over time and 

thus the above decomposition of the variance will not hold generally, this rf 

measure is not defined when size is included in the regression. In Table 4. rf 

for 3"" alone is 1.35%. This confirms and supplements the results reported 

by Fama and French (1992) that 3" does not explain the cross-sectional 

variation of average stock returns 1 0 . 

It is necessary to use caution in using r-square to compare the perfor­

mance of different specifications of an asset pricing model. To see why, 

'"However, Fama and French do not report this type of a goodness of fit measure in 
their study. 
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consider a hypothetical economy where the econometrician has observations 

on four assets. The betas with respect to a proxy market portfolio for the 

four assets are 0.5, 0.5, 2 and 2. The corresponding expected rates returns 

are 12%, 8%, 24% and 20%. There are no measurement errors involved here. 

It can be verified that in this case, the expected rate of return Aft is given 

by 

E[Rt] = 6 + 8ft + ti i- 1,2,3,4 

and that the r-square of the cross sectional regression is 95%. 

Now consider forming four other portfolio (by an invertible linear trans­

formation) of the four given assets as follows. Let z = R3 — R4 denote the 

payoff on the zero investment portfolio constructed by going long one dollar 

on the third asset and going short one dollar on the fourth asset. The beta 

of the payoff, 2 , is 0 by construction. Define the return on the four new 

portfolio by: R\ = R{ + 3c; R'z = R2 + 3c; R'3 = R3; and R'4 = R4. Notice 

that the original set of four assets can be constructed as portfolio of these 

four portfolio. The betas of the four portfolio defined this way are, 0.5, 0.5, 

2, and 2 respectively. The expected returns on these portfolio are. 24%, 20%, 

24% and 20% respectively. Clearly, when these four portfolio are used, the 

relation between expected return and beta is flat (i.e., the r-square is 0%) . 

This shortcoming is not an issue for the way we use r-square to compare 

the performance of different competing specifications of the C A P M , since we 

use the same set of portfolio across all the specifications, and use O L S to 

estimate model parameters in every case. 

As noted by Fama and French (1992), although beta has very l itt le abil i ty 

to explain the cross section of average returns on the 100 portfolio, it does 

explain the cross sectional variability of returns in any given month. To 

see this more clearly, it is useful to consider the average r-square of the 

" T h i s example is motivated by the results in Kandel and Stambatigh (1993). 
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cross sectional regressions, rft, defined below. For each month t. we calculate 

the conventional sum of squared total variance SST* and sum of squared 

residual SSR, . Let SST = £ i S S T , and SSR = £ , SSR, . Define rf, as (SST -

S S R ) / S S T . As can be seen from Table 4, r* for , j v " alone is 26.92%, which 

is substantially higher than rf( = 1.35%). Clearly, ,6" explains a substantial 

part of the cross sectional variability in returns in any given month. However, 

it does not explain the cross sectional variability in average returns. This is 

consistent with Chan and Lakonishok (1992). Including log(ME) increases rft 

to 43.69%. i.e., size does measure systematic risk not captured by flj* alone. 

The market value of equity in portfolio ranges from a low of $ O.7 bil l ion 

to a high of $155 bill ion (Table 5). Firms in the 40 largest size portfolio 

account for more than 90% of the average market capitalization. However, 

those 40 portfolio contain only about 30% of the firms (see Table 6). Nearly 

30% of the firms are in the 10 small-size portfolio. This would cast some 

doubt about the economic significance of the lack of support for the C A P M 

reported by Fama and French if the conclusions crit ically depend on the 

return characteristics of 70% of securities that constitute only 10% of the 

total market capitalization of stocks included in the sample. We therefore 

omit the firms traded on A M E X - but the results do not materially change 

(see Table 4), confirming the conclusions reached by Fama and French. 

2.3 D i s c u s s i o n 

Like Fama and French, with the empirical specification (2), we find zero risk 

premium for beta and a strong size effect. One possible conclusion is that the 

C A P M does not provide a useful framework for explaining the cross section 

of expected returns. However, other explanations are possible. 

We (as well as Fama and French) use a time series of 330 monthly obser­

vations on returns in our study. This corresponds to only 28 years of data 
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and there are only about 5 business cycles during this per iod 1 2 . There may 

be too few significant observations to measure expected returns accurately 

using realized average returns. Use of monthly returns over a relatively short 

calendar period may lead to inappropriate specification of statistical tests. 

One way to examine the robustness to this type of specification error would 

be to use annual data over a fairly long time period instead of using a large 

number of observations sampled more frequently over a relatively short time 

period. But we wil l not examine this issue since it has received attention 

in other studies. (See Jagannathan and Wang (1992), Amihud , Christensen 

and Mendelson (1992) and Kothar i , Shanken and Sloan (1992).) 

The empir ical specification (2) is obtained from the C A P M with the aux­

il iary assumptions that R^t is a good proxy and betas are constant over 

time. Thus the above test is actually a joint test of the C A P M and the 

two auxil iary assumptions. As we have pointed out in Section 1, use of the 

value-weighted portfolio of all stocks listed in N Y S E and A M E X (as well as 

those traded on N A S D A Q ) as a proxy for the market portfolio may be one 

of the reason for the unsatisfactory performance of the C A P M . The rather 

unrealistic assumption that betas of the portfolio remain constant over time 

may be another reason. To investigate this issue, we wil l relax these two as­

sumptions in a reasonable way and examine whether the results wil l change 

significantly. 

l 2 " T h e Recession in Historical Context". Economic Report of the President, January 
1993. 
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3 E c o n o m e t r i c Spec i f i ca t ions 

3.1 H u m a n C a p i t a l a n d A g g r e g a t e W e a l t h 

To appreciate the need for examining other proxies for systematic risk before 

giving up on the C A P M , note that the C A P M cannot be tested because the 

market portfolio is not observable. In fact this observation by Rol l (1977) is 

what lead to the wide attention paid to the alternative model proposed by 

Ross (1976) - the Arbitrage Pricing Theory ( A P T ) 1 3 . The monthly per capita 

income in the U.S. from dividends during the period 1959:1 - 1992:12 was less 

than 3% of the monthly personal income from all sources, whereas income 

from salaries and wages was about 63% during the same period. Whi le 

these income flows ignore capital gains, these proportions have remained 

relatively steady over time during this per iod 1 4 . This suggests that common 

stocks of corporations constitute about a thirtieth of national income, and 

probably, national wealth as well. Another way to see this is as follows. 

As Diaz-Gimenez, Prescott, Fitzgerald and Alvarez (1992) point out, almost 

two-thirds of non-government tangible assets are owned by the household 

sector, and only one-third is owned by the corporate sector (p. 536, op. 

cit.). Approximately a third of the corporate assets are financed by equity 

(see Table 2, op. cit.) Hence, it does appear that the return to stocks 

alone is unlikely to measure the return to the wealth portfolio sufficiently 

accurately 1 5 . 

Even when stocks constitute only a small fraction of total wealth, the 

l 3 l n our view, the main contribution of the A P T is in the observation that, to a first 
order approximation it may be reasonable to assume that the return on the aggregate 
wealth portfolio is only affected by a few factors. This assumption makes the C A P M 
implementable. 

'Tedera l Reserve Bulletin, Table 2.17. 
l D T h i s was pointed out by Ravi Jagannathan during his lecture at The Berkeley Program 

in Finance: Are Betas Irrelevant? Evidence and Implications for Asset Management. 
September 13-15, 1992 at Santa Barbara, California. 
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stock index portfolio return could well be an excellent proxy for the return 

on the wealth portfolio if the two returns are perfectly correlated 1 6 In what 

follows, we therefore present some evidence that supports the view that the 

return on the value-weighted stock index portfolio is unlikely to be highly 

correlated with the return on the unobserved wealth portfolio return. 

Suppose the return to the wealth portfolio is affected by two pervasive 

forces, which we will call factors, following Connor (1984). Suppose further 

that one of these factors has a relatively small effect on the return to stocks, 

whereas the second factor has a relatively larger effect on stock returns. If this 

were indeed the case, then stock index return need not be highly correlated 

with the return on the wealth portfolio. If we observe these shocks separately, 

we can then reconstruct the return to the wealth portfolio and measure the 

betas correctly, using methods analogous to Chen, Rol l and Ross (1986). 

Even if we do not observe these shocks directly, we can test for their presence 

by examining if stock returns respond in a different way to small and large 

unanticipated returns to the value-weighted index of s tocks 1 7 . 

To this end, consider the relation given in equation (5) below: 

Rit = bn + bl2R.mt + 6,31 R„t\R..t + t.f (5) 

The estimated values of 6,3 and the associated /-values are given in Table 7 
and Table 8. f i rs t notice that for portfolio in a given size decile, 6,3 decreases 

with beta (i.e., as we move along horizontally across different columns in a 

row). Hence, for any given size decile, larger beta stocks have smaller sen­

sit ivity to the second factor and larger sensitivity to the first factor. The 

associated /-statistics exhibit a similar but stronger pattern. This supports 

1 6See Shanken (1987) and Kandel and Stainhaugh (1993) who show how the correlation 
between the market index proxy return and the unobserved wealth return is related to the 
mean variance efficiency of the market index proxy portfolio. 

' 'Bansal and Viswanathan (1993) use a related non-linear factor model to empirically 
study asset prices. 



The CAPM Is Alive and Well 17 

our view that it is necessary to consider other proxies lor the return to ag­

gregate wealth. 

Apparently, the observation that stocks only form a small part of the to­

tal wealth is what motivated Stambaugh (1982) to examine the sensitivity of 

tests of the C A P M to different proxies for the market portfolio. In his sem­

inal comparative study of the various market proxies, he found that ''even 

when stocks represent only 10% of the portfolio's value, inferences about the 

C A P M are virtual ly identical to those obtained with a stocks-only portfo­

l io". However, he did not consider return to human capital in his otherwise 

extensive study. 

The commonly held view appears to be that human capital is not trad­

able and hence should be treated differently than other capital (see Mayers 

(1973) 1 8). This view is not completely justified. Note that mortgage loans 

constitute about a third of all outstanding loans. At the end of 1986 the total 

market value of equities held by households category was 0.80 G N P , whereas 

the outstanding stock of mortgages (0.60 G N P ) , consumer credit (0.16 G N P ) 

and bank loans to the household sector (0.04 G N P ) also summed up to 0.80 

G N P (Table 4, Diaz-Gimenez et al . (1992)). Since mortgage loans, con­

sumer credit and bank loans to the household sector (although they may be 

(ollaterized) can be viewed as borrowings against future income, it does not 

appear inappropriate to view human capital just like any other form of phys­

ical capital , cash flows from which are traded through issuance of financial 

assets. 

There is however an important difference between physical assets and 

financial assets. Friction in the market for physical assets can indeed be 

substantial, whereas friction in the financial market (for paper claims to these 

physical assets) is typically negligible in comparison. Hence it is no surprise 

'"Mayers was the first to point out the importance of including return to human capital 
in measuring the return to the aggregate wealth portfolio. 
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that financial markets are very l iquid, unlike markets for physical assets, 

cash flows from which back the financial assets. The real difficulty in valuing 

human capital lies in the fact that the entire cash flow to human capital is not 

promised away through financial claims. Unlike stocks which are the residual 

claimants in firms, cash flow from labor income promised to mortgages comes 

from the top. Hence factors that affect return to human capital cannot be 

identified by examining returns ! o financial assets like mortgages, sufficientIy 

precisely. We therefore follow a different strategy in measuring the return 

to human capital , and assume that the return on the wealth portfolio is an 

exact linear function of the return to the stock index portfolio and the growth 

in per capita income. 

Whi le the use of the growth rate in per capita income is rather ad hoc, 

we can provide some rationale for using it. For example, suppose, to a first 

order approximation, the expected return to human capital is a constant r, 

and that per capita labor income follows an autoregressive process of the 

form Lt = (1 + g)Lt-\ + tt. In such a case, the realized capital gains part 

of the return to human capital (not correcting for additional investment in 

investment in human capital made during this period) will be the realized 

growth rate in per capita labor income. To see this, note that, under these 

assumptions, wealth due to human capital is \Vt = Lt/(r — g) where Lt is 

date / labor income, r is the discount rate, and g is the growth rate in labor 

income. The change in this wealth from date t — 1 to t is then given by 

Aub.it = Lt/Lt-i — 1, i.e., the growth rate in per capita labor income from 

date t — 1 to t. Fama and Schwert (1977) and Campbel l (1993b) arrived at 

similar measures based on different lines of reasoning. When the growth in 

labor income follows a logarithmic autoregressive process, and the discount 

rate applied to labor income to value the endowment of human capital is 

a constant through time, it can be shown that the growth rate in human 

capital can be approximated by a linear function of current and past growth 

http://Aub.it
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rates in labor income. 

Motivated by these observations we make the ad hoc assumption that 

the return on the aggregate wealth portfolio is a linear function of the return 

to stocks and the growth rate in per capita labor income. Since there are 

other components to wealth, viz., investment in durable goods and housing, 

which we do not measure, we do not impose the restriction that the return 

to wealth is a weighted average of the return to stocks and return to human 

capital. 

Labor income from salaries and wages is taken from the monthly season­

ally adjusted personal income numbers reported in Table 2.17 of the Federal 

Reserve Bul let in. The monthly income numbers for a given month are typ­

ically announced during the last week of the following month. Further, la­

bor income is measured with substantial error, unlike financial market data. 

Hence, (a) we use a 2-month moving average of labor income in order to min­

imize the role of measurement errors, and (b) we use the growth rate of the 

moving average of reported per capita labor income that becomes known at 

the end of month t as a measure of return to human capital for that month. 

This is because labor income does not fluctuate much at the individual level 

from month to month. A substantial part of the fluctuation in total wages 

paid during a month comes from variations in the number of persons em­

ployed. Our view is that when a person finds out that F i rm X reduced its 

work force, he/she wil l revise his/her expected future income from wages 

and salaries downward and this will lead to a lower realized return on human 

capital for that month. 

Formally, we assume that the return to the wealth portfolio Rmt is given 

by 

Rmt = °o + d>..R„t + <t>,^,R,^.f (6) 
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Hence 

(7) 

where 

= C o v ( / ? , , / U / V a r ( / ? m ) 

= Cov( f l , - , /? > w ) /Var( /? > w ) 

= Cov(7?„A 1 . b o . ) /Var( /? U b o I ) 

= ^ v . V a r ( « v . ) / V a r ( / ? m ) IK. 

h = 0 U b „ , V a r ( / ? , b J / V a r ( / ? m ) . 

Substituting equation (7) into (1). we get 

E[R,} = a 0 + a„3;" + a,.bo,# (8) 

for some constants a 0 , fl»« and a , . b o l . It is tempting to conclude that equation 

(8) resembles the linear factor models studied in the finance literature, when 

stock index return and the growth rate in per capita labor income are used as 

factors. Note however that Fama and Schwert (1977) used this specification 

of the C A P M even before linear factor models received attention in the em­

pirical finance literature. The betas we use, /-?,•" and 8\tb°' for each portfolio 

i, are obtained from separate univariate regressions. We prefer this to using 

betas obtained from multiple regressions, since the two right side variables in 

equation (6) will in general be correlated. To estimate the betas from mult i­

ple regression, we therefore need to estimate the covariance between the two 

right side variables. Our approach of working with univariate betas, may be 

preferable in finite samples. 

3.2 B e t a V a r i a t i o n s O v e r t he B u s i n e s s C y c l e 

The need to take time variations in betas into account is demonstrated by the 

commercial success of firms like B A R R A which provide beta estimates for 
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risk management and valuation purposes using elaborate t ime series models. 

Further, several empirical studies of beta pricing models reported in the 

literature find that estimated betas exhibit statistically significant variability 

over t ime (see: Harvey (1989), Ferson and Harvey (1991, 1993) and Ferson 

and Korajczyk (1993)). 

To understand the intuition as to why ignoring such t ime variations in 

betas can lead to an incorrect inference regarding the empirical support for 

the C A P M . consider the following hypothetical world in which the condi­

tional version of the C A P M holds. Suppose that the econometrician con­

siders only two stocks and that there are only two possible types of dates 

in the world wealthy and poor. The betas of the low beta stock in the 

two date-types are, respectively, 0.5 and 1.25 (corresponding to an average 

beta of 0.875). The corresponding betas of the high beta stock are 1.5 and 

0.75 (corresponding to an average beta of 1.125). Suppose the expected risk 

premium on the market is 10% in the wealthy date and 20% in the poor 

date. Then the expected risk premium on the first stock wil l be 5% in the 

wealthy date and 25% in the poor date. The expected risk premium on the 

second stock will be 15% in both dates. Hence an econometrician who ig­

nores the fact that betas and risk premiums vary over time will mistakenly 

conclude that the C A P M does not hold since both stocks earn an average 

risk premium of 15% but their betas differ. While the numbers we use in this 

example are rather extreme and unrealistic, they do illustrates the pitfalls 

involved in any empirical study of the C A P M that ignores t ime variation in 

betas. 

Following Ferson (1985) and Ferson and Harvey (1991, 1993) we put the 

C A P M model into a multi-period scenario, giving the following conditional 

version of the C A P M 
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where 

7o(-i = I'-I-I[^OI] 

7u_i = E ( _ , [ / ? m , - Rot] 

= Cov,_,(ft,,, / ? n l f ) / V a r t _ , ( « m t ) 

and /?0( is the return such that Cov ,_i(/? 0 f , Rml) = 0 (i.e., the return on the 

orthogonal portfolio). We use E , _ i , Cov ,_i and Var<_i to denote the mean, 

covariance, and variance conditional on the information available at t — 1. 

However, notice that 3u-\ is not observable. Fama and French (1992) 

rely on the assumptions made by Chan and (.'hen (1988) that lead to the 

unconditional model given in (1). As we have argued, this assumption is 

not realistic since conditional betas are likely to vary over the business cycle 

along with risk premium. For example, Keim and Stambaugh (1986) showed 

that the risk premium 7K_I varies over the business cycle, and Harvey (1989) 

and Ferson and Harvey (1991) showed that 3tt-\ also varies over the business 

cycle. In order to examine (9), take the unconditional expectation of both 

sides to get 

E[Rit) = 7o + 7i A + Cov (7 U _ , ,# ,_ , ) 

where 70 = E[7o,_i], 71 = E[7K_I ] , and # = E[/3, (_i]. Notice that the last 

term depends only on that part of flu-i that is in the linear span of 71,-1. 

Hence project 3u-\ on a constant and "f\t-\ to get 

3it-\ = 3, + dihu-t - E[lu-i\) + V.t-i-

The first term is the mean of fiu-\. The second term is that part of 3it-\ that 

is correlated with 7u_i and the last term is asset specific, zero on average, 

and uncorrelated with 7u_i. We assume that this term is not affected by 

what happens to the economy as a whole, i.e., i]u-\ is orthogonal to all other 

variables in the economy. 
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We stil l do not have an operational specification since 71 _i is unobserv-

able. Since K e i m and Stambaugh (1986) showed that the risk premium 7u_ i 

varies over the business cycle, we assume that 7u_i is a linear function of the 

variable that best predicts business cycles. Stock and Watson (1989) found 

that (i) the spread between six-month commercial paper and six-month Trea­

sury bi l l rates and (ii) the spread between ten-year and one-year Treasury 

bond rate, outperformed nearly every other variable as forecasters of the 

business cycle. Bernanke (1990) ran a horse race between a number of inter­

est rate variables suggested in the literature. He found that the best single 

variable is the spread between the commercial paper rate and Treasury bil l 

rate first used by Stock and Watson. We choose the spread between B A A 

rated and A A A rated bonds as the variable that is by assumption perfectly 

correlated with "fu-i- It is similar to the spread between commercial paper 

rate and the Treasury bil l rate, but has been extensively used in earlier stud­

ies of asset pricing models. Let Premt-\ equal the date t — 1 yield on low 

grade bonds minus the date t — 1 yield on high grade bonds (measured as 

deviation from its time series mean) and assume that it is proportional to 

7 K _ I . We thus have 

0a_i = ft + OiPremt-i + 7*-,. (10) 

Using (9) and (10). we can write the the return generating process as 

Rit = "fot-i + 7 u - i f t + ~fu-iPremt-i$i + 7K-I '?.<-I + e;t- (11) 

Taking unconditional expectation of both sides, we obtain 

E[Rit] = £ [ 7 o* - i ] + E[ftt-i]& + E[7 i ,_,Premt- i l f t 

= «o + ( « i « 2 ) ( ^ ) (12) 

for some constants a 0 , «i and o 2- Hence the unconditional expected return 

on any asset i is a linear function of ft and 0,. To relate 3\ and to the 
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betas estimated by univariate regressions on the true market index return 

and Prem. note that from (11) we have 

Var( f t m «)# = Cov(Rit,Rmt) 

= Cov(7o,_i, Rmi) + 3,Cov{-/U-U Rmt) 

+0,-Cov(7u_iPremt_t, Rmt) 

Var( Prem,_ , ) $ n m = Cov (R i t , Prem ( _,) 

= Cov(7o,_i, Premt-i) + &iCov("fU-i,Prentt-i) 

+^ iCov(7 W _ iPrem,_ i , P rem t _ i ) . 

Thus, we can write the above equations as 

A ^ _ ^ ^iu\ , ( An ^12 \ / ft 

for some constants A t J (i = 1,2 and j = 0,1,2). Solving for J , and 0,-, we get 

a") {(A) 
/ \-\21 A 2 2 / / \A-20 

(13) 

Substitut ing (13) into (12). we obtain 

+<- *>(£ £ f (£) ( 1 4 ) 

which can be written as 

E[/fo] = Ad + 6,ft + M r * - (15) 

Equation (15) gives an unconditional specification of the C A P M when betas 

vary over time. Hence expected returns are linear in .'i, and 

file:///-/21
file:///A-20
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3.3 S t a t i s t i c a l T e s t o f C A P M S p e c i f i c a t i o n s 

Combining (7) and (15), we have the following linear specification of C A P M 

E[R,t] = c0 + Clfi" + dp?" + c30r~ (!6) 

for some constants Co, C\, C2 and c 3 . When Ci = C3 = 0, We get the conven­

tional specification of the C A P M studied in the literature. We wil l empiri­

cally examine how the specification in (16) performs. 

Whi le Fama-MacMeth regression used by Fama and French (1992) is a 

useful diagnostic tool, it does not impose the restriction that the true relation 

between expected return and betas is linear in the cross section. Whi le 

several procedures have been suggested in the literature for testing linear 

beta pricing models, they are not directly applicable to our representation of 

the conditional C A P M given in (16). This is because the betas in (16) do not 

correspond to betas estimable by multiple regression as is assumed in these 

tests. We wil l therefore use the Generalized Method of Moments of Hansen 

(1982) to test whether (16) describes cross sectional variations in expected 

returns. For this purpose, we will rewrite (16) as: 

E[rf«r,e] = l (17) 

where 

dt =60 + 6„r„t + <5Ubo,r,.b„, + ^ P r e m , - ! (18) 

and r „ = 1 + Rit, r„t = I + Rxwt, and r U b o r = 1 + /?,.„„,* are gross rates of 

returns. (See Appendix A . l for detailed derivations.) Following Hansen and 

Jagannathan (1991), we will refer to dt as the stochastic discount factor. In 

our empirical work we will compare the relative performance of the following 

three versions of (18), i.e., we will consider the following three candidate 

stochastic discount factors: 

(A) <It = fio + 6.,>\„, 
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(B) dt = 6o + 6„r„t + Su^,rUh.,t (19) 

(C) dt = 60 + 6ywi\,t + 6ub„rUh„t + 6r,tmPremt-i. 

Let Wit = dtrit — 1 for each portfolio i, or simply w, = </(r( — 1 where wt, 

r and 1 represent iV( = l()0) dimensional vectors. Then we can write (17) as 

E[w,(6)] = 0 where 6 is the vector of parameters in discount factor dt in (19). 

Consider the time series average of the N dimensional vector w ( (6 ) given by 

w = Y.] Wt(f>)/T. Since E[w,] is the vector of pricing errors associated with 

a given candidate stochastic discount factor dt, we wil l refer to w as the 

sample pricing error — which differs from 0 due to sampling error as well as 

model specification error. If dt is a valid stochastic discount factor, i.e., if 

the particular specification of the C A P M is right, then E[w] = 0. 

A natural way to test whether E[w] = 0 when the parameter vector 6 is 

known is to examine the VVald test of statistic given by the quadratic form 

lVa /d= T w ' S ^ w (20) 

where 

5 * = E[ww']. 

When E[w] = 0, Wald is asymptotically distributed as a \ 2 with N degrees 

of freedom. This is true even when S w is replaced by any consistent estimate 

Swr- When the parameter vector 6 is not known and has to be estimated, 

Hansen (1982) suggests choosing 6 to minimize the quadratic form Wald. 

Since 5 * is not known and must be estimated, first choose any positive 

definite matr ix S in place of S w . Under suitable regularity conditions, Hansen 

(1982) shows that the resulting estimator 6l of 6 will be consistent. Use this 

estimator of 6 to construct w ( ( 6 ' ) , and arrive at a consistent estimator S w j 

of S w - In the second stage choose that 6T as the estimator of 6 where 6T 

minimizes 
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The minimized value in the second stage is asymptotically distributed as a 

\ 2 with iV — A' degrees of freedom, where K is the dimension of 61'3. 

While the G M M method is intuitively appealing, there are drawbacks. 

First, the consistent estimate SW7- of the weighting matrix Sw wil l depend 

on estimated values of the unknown model parameters. Whi le the use of 

consistent estimator S * r for the weighting matrix Sw can be justified using 

large sample theory, use of a weighting matrix that does not depend on esti­

mated model parameters is likely to have better properties in small samples. 

Second, keep in mind that our objective is to compare the empirical perfor­

mance of the three candidates for the stochastic discount factor given in (19). 

The minimized value of the G M M criterion is a quadratic form involving the 

average of pricing error (i.e., the length of pricing error is measured as the 

square root of the quadratic form) and should not be different from zero after 

allowing for sampling error if our model holds. Note however that the weight­

ing matrix used in measuring "length" depends on the particular stochastic 

discount factor used (i.e.. the version of the model examined). Hence it is not 

appropriate to compare the minimized value of the criterion function across 

the three specif ications 2 0. In view of this, Hansen and Jagannathan (1992) 

suggest using the weighting matrix S r = E[rr'], which does not depend on 

the asset pricing model under consideration and consistent estimates of which 

can be obtained without first estimating model parameters. 

Hansen and Jagannthan motivate the use of S r = E[rr'] as follows. If 

there is only one asset, then it is relatively straight-forward to compare the 

performance of different candidates for the stochastic discount factor. A l l we 

1 9See Hansen (1982) for a set of sufficient conditions that the stochastic process w, has 
to satisfy for this result to hold. MacKinlay and Richardson (1991) for a comparison of 
the G M M and classical methods. 

2 0 T h i s difficulty is similar to the one that arises when using /-statistics to compare 
different models. The /-statistic could he small either because the numerator is close to 
zero or because the denominator is very large. 



The CAPM Is Alive and W.ll 28 

have to do is to compare the pricing error - i.e., the difference between the 

market price of an asset and the hypothetical price assigned to it by the given 

stochastic discount factor. When there are many assets (100 in our study) it 

is rather difficult to compare the pricing errors across the different candidate 

stochastic discount factors for the C A P M . In view of this, Hansen and Ja-

gannathan suggest examining the pricing error on the portfolio that is most 

mispriced by a given model. There is a practical problem in implementing 

this simple idea. 

Suppose there are at least two assets which do not have the same pricing 

error for a given candidate stochastic discount factor. Let r 1 ( and r2t denote 

the corresponding gross returns. The date / - 1 prices of these payoffs are 

both 1. i.e.. by investing one dollar at date t — 1 in portfolio i, the investor gets 

the payoff r l f at date t. A given asset pricing model may not assign a price 

of 1 at date t — 1 to the payoff r,<. Suppose the pricing error is 0j , i.e., the 

model assigns a price of 1 + \p{. Consider forming a zero investment portfolio 

by going long one dollar in security 1 and short one dollar in security 2. The 

pricing error on this zero investment portfolio is 4>\ — 4'2- So long as this is not 

zero, the pricing error on any portfolio of the two assets with a price of one 

dollar can be made arbitrarily large by adding a scale multiple of this zero 

investment portfolio which is mispriced. The same problem arises if instead of 

examining the pricing error we examine the difference between the expected 

return on a portfolio and the expected return assigned by a particular asset 

pricing model to that portfolio. To overcome this problem, it is necessary to 

examine the pricing error on portfolio that have the same "size"'. Hansen and 

Jagannathan suggest using the second moment of the payoff as a measure 

of "s ize" , i.e., examine the portfolio which has the maximum pricing error 

among all portfolio payoffs which have unit second moment. 

Following Ross (1976), Hansen and Richard (1983) and Hansen and Ja­

gannathan (1992), in our empirical work we will work with the representation 
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of the capital asset pricing model given in equation (17), i.e., E[f/ (r 1 (] = 1. As 

Ross (1976) shows, so long as financial markets satisfy the law of one price, 

there wil l be at least one dt that satisfies (17). We will denote the set of 

all valid stochastic discount factors that satisfy (17) by M. As Hansen and 

Richard (1983) pointed out, an asset pricing model specifies a candidate for 

the stochastic discount factor. If the model is correctly specified, then the 

candidate given by a model will satisfy (17), i.e., it wil l be in the set M and 

E[w] = 0. 

Consider a portfolio of the N primitive assets defined by the portfolio 

weights x . The date t payoff on this portfolio is given by x ' r , . It has a 

price of x ' l at the beginning of each date. The pricing error on this portfolio 

is x 'E [w ( ] , and its sample analog is x 'w . Notice that the pricing error as 

well as its sample analog depend on the A' dimensional vector of parameters 

6. The second moment of this portfolio payolf is E [x ' r ( ] 2 , i.e.. the norm of 

this portfolio is y/Efx ' r , ] 2 . For a given vector of parameters 6, Hansen and 

.Jagannathan (1992) show that the maximum pricing error per unit norm on 

any portfolio of this N assets is given by: 

Dist = x /E fw . l 'S r 'E tw , ] . (21) 

Dist is also the least squares distance between the given candidate stochastic 

discount factor and the nearest point to it in the set ,Vf. 

Since the parameters 6 describing a particular asset pricing model are 

unknown, a natural way is to choose that value for 6 that minimizes Dist 

given in (21). We can then assess the specification error of a given stochastic 

discount factor by examining the maximum pricing error Dist associated with 

it, as suggested by Hansen and Jagannathan (1992). 

We will therefore estimate 6 by minimizing the sample analog of (21). 

i.e., 

6T = Arg M in w ' S ~ / w 
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where STj is the sample analog of S r . Let Distj = y m i n j W ' S ^ w . To 

empir ical ly examine a particular candidate stochastic discount factor, we 

will assume that it is a valid one and hence the maximum pricing error Dist 

is zero, and then test whether Distf is different from zero after allowing for 

sampling error. For this purpose, we derive the asymptotic distr ibution of the 

minimized value of the general quadratic form T min$ w ' G j ' w under the null 

hypothesis that F[w ( ] = 0, where G r is a consistent estimate of a positive 

definite weighting matrix G . (For details, see Appendix A.2.) The sampling 

distr ibution of the squared maximum pricing error Distj follows directly by 

setting G = Srj. Note that Hansen's result is obtained by setting G j = S w r , 

and is a special case of the result given in Appendix A .2 . We wil l compare 

the performance of the different candidates for the stochastic discount factor 

by comparing the corresponding p-values of D is t j . 

Table 9 gives the estimate and p-values of the parameters for various 

stochastic discount factors. When r v w is the only variable used to construct 

the discount factor, the data strongly reject the model. The p-value for 

TDist2 is only 0.34% and that for £.„ is 27.59%. This is consistent with the 

fact that ft" explains very little of the cross section of average returns in 

the Fama-MacBeth regressions. The point estimate of <5V„ is positive and not 

statistically different from zero. This is consistent with the negative but not 

significant slope coefficient for /3V" in Fama-MacBeth regressions. When r U b 0 I 

is also used to construct the discount factor. 8Uk„, is significant with a p-value 

of 2.46%. The p-value of <5V_ increases from 27.59% to 49.18%. This supports 

our argument that labor income is a major part of aggregate wealth. But 

the data sti l l reject the model and the p-value of TDist^ is 2.25%. However, 

when Prem is also used in constructing the discount factor, the data no 

longer reject the model as the p-value of TDistj jumps to 42.72%. Both 8Ubo, 

and 8,,^ are very significant — p-value of £,.„„, is 0.1% and p-value of 8r„m 

is 0.05%. Hence when we take human capital into account in measuring the 
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return to the aggregate wealth portfolio and allow betas to vary over the 

business cycles, there is l itt le evidence against the C A P M . 

3.4 A s s e s s i n g t he S p e c i f i c a t i o n s by R e g r e s s i o n 

It is possible that our inability to reject the C A P M using the Hansen-

Jagannathan test statistic as described in Section 3.3 may be due to lack 

of power. We wil l therefore follow Berk's (1992) suggestion and exam­

ine whether size has significant explanatory power in Fama-MacBeth cross-

sectional regressions. For this purpose, first consider the following three 

cross-sectional regressions 

Rit = cot + c-tfi" + e« 

Ru = cot + c„tpim + c , . b „ . ^ r ° ' + tit 

Rit = cot + c^,3j" + ct^u3';b°'+ cv<tmt3rm + ^t-

Estimated values for ff*- and 3""° are given in Table 10 and Table 11. 

Since 3"~, 3Ub°' and 3"'m are correlated with each other in the cross section, 

we report betas orthogonalized in the following way. We regress 3ut" on a 

constant and 0"" and report the residual as the "orthogonalized /? - * b o ' " . We 

then regress 8""° on a constant, 8" and tf1*1"" and report the residual as the 

"orthogonalized Prem Beta" . Notice that orthogonalized /?-*b°' decreases as 

we move from left to right in any given size decile, while stock beta increases. 

The increase in stock beta alone suggests that the expected return on stocks 

should increase when we move from left to right in any given size decile. 

However, the decrease in 3''*°' suggests that this conclusion need not hold, 

so long as the risk premium on human capital is also positive. There is no 

particular pattern to orthogonalized f3*"m. This suggests that, to the extent 

the specification we suggest improves the ability of the C A P M to explain the 

cross section of average returns, the poor performance of the specification 
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employed by Fama and French (1992) cannot be entirely due to inaccurate 

measurement of the return to the aggregate wealth portfolio. 

The regression results are reported in Table 12. When /?*" is the only 

variable, the C A P M specification explains only 1.35% of the cross sectional 

variation of the average portfolio returns, as reported earlier. When 0"*"" is 

added to the C A P M specification, r 2 goes up to 28% and c l 4 b 0 f is statistically 

significant at conventional level (p-value = 4.33%). When /?"""" is also added. 

r 2 goes up to 57%, while c,. b o, remains significant (with p-value unchanged), 

c p , . m is very significant with an associated p-value of 0.11%. A l l these results 

are consistent with the results reported in Table 9, confirming our earlier 

conclusions in Section (3). 

Final ly, we add the variable log(ME 1 ( ) to the regression, i.e., consider 

Rii = cot + c „ , # " + c U b o . ^ ; * b o ' + cf„mt3rm + c.^ l og (ME r t ) + e,-« 

The result is shown in the last line of Table 12. First, there is no substantial 

increase in rf. Second, c,,,, fails to be significant at the conventional 5% 

level (p-value = 9.28%). This suggests that, instead of viewing the size effect 

as evidence against the C A P M , we should view it as evidence against the 

use of stocks as proxy for aggregate wealth and the assumption that betas 

remain constant over time. Once these two additional ad hoc assumptions 

are relaxed, the size effect is greatly reduced. 

In order to visually compare the performance of the different specifica­

tions, we plotted the fitted expected return computed using the estimated 

parameter values against the realized average return, for each of the four 

specifications. These are given in Figures 2, 3, 4 and 5. If the fitted expected 

returns and the realized average returns are the same, then all the points 

should lie on the 45 degree line through the origin. When stock beta alone is 

used the fitted expected returns are all about the same whereas the realized 

average returns vary substantially across the 100 portfolio. The performance 



The CAPM I, Alive and Well 33 

substantially improves when 3''h" is also used. It is even better when 8-'"° 

is used in addit ion. The distribution of the points around the 45 degree line 

suggests that the improved performance of the C A P M using the specifica­

tion we suggest in this paper is not due to a few outliers. The distribution of 

the points around the 45 degree line does not significantly change when we 

add log(ME) as an additional explanatory variable - confirming our earlier 

findings. 

4 S o m e A d d i t i o n a l Invest iga t ions 

4.1 T i m e V a r i a t i o n s i n B e t a s 

Whi le the results reported in the previous sections are encouraging, it is stil l 

possible that 3*"" could be capturing something other than t ime variations 

in 3. This is because 3r'"° measures the co-movement of the expected re­

turn with Prem and hence the predictability of the portfolio return. The 

only model-free conclusion that is possible is that stocks that have relatively 

large predictable components in expected returns are the ones that cause 

mispricing from the perspective of the static C A P M which assumes that be­

tas are constant. Since we did not provide any direct evidence that the cross 

sectional variations in the predictable component in returns is due to time 

varying betas, it is conceivable that we are documenting an entirely differ­

ent phenomenon. While it is possible that perceived financial risk could be 

varying over t ime in a systematic manner and some firms could be more 

susceptible to this risk than others, it is also possible that certain types of 

securities could be temporarily mispriced and this mispricing may be caused 

by incorrect assessment of risk. Even though we cannot rule out such possi­

bilities entirely, we wil l provide some evidence that Prem does capture t ime 

variations in beta. 



The CAPM Is Alive and Well 34 

The return generating process can always be written as 

Rit = ? U - \ + flit-lRmt + tit (22) 

where E[eit} = 0 and Cov( /? m ( , e „ ) = 0. Substituting (10) for we get 

Rit = ipu-i + 3iRmt + OiPrcmt-iRmt + nu-iRmt + (it- (23) 

Let ipi = E[ipu-i] and y,-j_j = <pu-\ — Substituting (6) for Rmt we get 

Rit = fi + Hi<l>o + &i<t>,.R,.t + ,3i<i>ltl>0,Ruko,t + Oi^oPremt-i 

+9i4>.mPremt-lR„t + 0i<t>,^.Premt-XRUbo,t 

+ VU-1 + 'Ut-lRmt + (it 

which can be written as 

R,t = Hoi + i*uR..t + /'2i^..bo,t + p&Prenit-t 

+H4iPremt-iR,.t + fi5iPremt-iR^to,t + ut*. 

The error term u,-( is on average zero. If it is orthogonal to the right side 

variables, we can then obtain consistent estimates of the parameters from the 

O L S regression. However, it is difficult to verify whether these orthogonality 

conditions hold. In particular, it is possible that Frem(_i is not orthogonal 

to vu-i- Hence we examine whether is zero by testing the null hypothesis 

that /i.u and fin equal to zero. 

Table 13 gives the F-test to the hypothesis, ftAi = p 5 , = 0. Portfolio 

corresponding to F-values in the crit ical rejection region at 5% are marked 

with a * in the table. We can reject the null hypothesis for 33 of the 100 

portfolio at the 5% level and for 51 portfolio at the 10 percent level. Notice 

that the largest F-value in the table is 7.07. If we suppose the null hypothesis 

is true for every portfolio, the probability that at least one of the F,-values 
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is greater than or equal to k is 

1=1 
.V 

i=i 

When k = 7.07, the largest F-value in Table 13, we have p = 100 x 0.000989 

= 0.0989. Hence, using the Bonferoni test described above, which is rather 

conservative, we can reject the null hypothesis that all the 0,'s are zero at 

10% level. It suggests that the abil ity of 3"'"° to explain the cross section 

of average returns is likely to be at least in part due to temporal covariance 

between betas and Prem. 

4.2 28 Y e a r s M a y B e T o o S h o r t a T i m e P e r i o d 

Whi le the results presented in Section 3 lend empirical support for the condi­

tional C A P M . it should not be viewed as though this support is total. What 

we have documented is that the conditional version of the C A P M with some 

auxil iary assumptions explains a substantial part of the cross sectional vari­

ation in average returns in the particular sample analyzed. Any conclusions 

regarding the validity of the conditional C A P M should be tempered by the 

fact that the assumptions that are necessary to justify the applicabil i ty of 

the statistical methods we use may not be satisfied. 

It is well recognized by macro economists (see Slutzky (1937)) that small 

but recurrent shocks can cause business cycle like behavior in macro eco­

nomic models, i.e., cycles that exhibit a periodicity of approximately 4 to 

5 years. However, this does not imply that business cycles in the US econ­

omy is induced by small and recurrent technology or taste shocks alone. For 

example. Hamilton (1983) finds that almost every post war recession is pre­

ceded by unanticipated shock to oil prices. Our view is that there are only 

p=P f){Fi<k) 
. \i=\ 

= P 
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about as many major information events as there are business cycles in a 

given period. Consider the major shock that affected the relative price of 

oi l during the early 1970s. Suppose it takes 10 years for everyone to figure 

out its impact on the economy - and hence its effect on the operations of 

firms. It is conceivable that some large firms will become small at the end of 

the 10 years and some small firms will become big during the same period. 

In this case the naive econometrician who used the sample standard devia­

tion of monthly returns on stocks of these firms to assess the sampling error 

associated with the average monthly return (as a measure of the monthly 

expected return), will seriously understate the sampling error. This effect is 

analogous to the well known statistically significant upward (or downward 

trend) prior to announcement dates found in event studies. In view of this, as 

Fischer Black points ou t 2 1 , it is sometimes useful to use a bit of introspection 

instead of entirely relying on conventional data analysis. Expected returns 

cannot be measured precisely using data over a short time period. Using 28 

years of data (as in the Fama-French study) probably involves only 5 major 

informational events. 

It is also necessary to keep in mind that the C A P M assumes that eco­

nomic agents live in an ideal world with no friction where everyone possesses 

the same information. While such simplifying assumptions provide impor­

tant insights about the nature of the relation between asset prices and real 

economic activity, it is not at all clear that models based on such assump­

tions will be able to explain the observed empirical patterns in asset prices 

at small time intervals. 

One particular difficulty is due to the presence of deterministic calendar 

month seasonalities in the data. For example, Keim (1983) pointed out that 

J 1 In his lecture at The Berkeley Program in Finance: Are Betas Irrelevant? Evi­
dence and Implications for Asset Management, September 13-15, 1992 at Santa Barbara. 
California 
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most of the abnormal return to stocks occur during January. Ar iel (1087) 

documents beginning and end of the month seasonal patterns in stock return 

data. Glosten, Jagannathan and Runkle (1993) document a October seasonal 

in the volati l i ty of stock returns. If deterministic monthly seasonal patterns 

are present in the return data, then it would be one more reason to examine 

the cross section of annual holding period returns when empirical ly examining 

the C A P M . 

To demonstrate that deterministic monthly seasonal patterns are present 

in our data set as well, we treat each calendar month as being different 

from other calendar months and examine the cross sectional relation between 

returns and other variables using the Fama-MacBeth regression approach. 

Table 14 gives the results when beta alone is used as the explanatory 

variable. The relation between beta and average return is positive and statis­

tically significant only in the month of January. It is negative and significant 

in June and October. The average r-square of the cross sectional regressions. 

r 2 , varies from a low of 16% in December to a high of 38% in October. 

The abil i ty of beta to explain the cross section of average returns as 

measured by r 2 also exhibits substantial variation across months — from 

a low of 2% in November and Apr i l to a high of 66% in October. The 

average value of r 2 during months when the estimated relation between beta 

and average return is positive is 9% whereas it is 35% when the relation is 

negative. Hence, in this data set, the relation between average return and 

beta is stronger during down markets than in up markets. 

The relation between beta and return during December is especially weak. 

This is consistent with the hypothesis that a large part of the trading during 

December may be motivated by tax considerations, as pointed out by Rol l 

(1981) and Constant inides (1984). 

Table 15 gives the results when beta and size are both used as explanatory 
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variables. The coefficient for size is negative in January and positive in 

October and statistically significant in both months. However, the coefficient 

for beta loses significance only in January. It appears as though in January 

the return to small stocks stochastically dominates the return to large stocks, 

in this sample, whereas it is the other way around in October. Whi le the 

size coefficient is statistically significant for 7 of the 12 months, it is positive 

for 2 of these 7 months, suggesting that the sampling theory based on which 

the i-statistics are computed may not be valid. 

These results confirm the presence of deterministic seasonal patterns in 

our sample, suggesting the need to examine annual holding period returns 

using data over several years. 

5 C o n c l u s i o n 

There are two major difficulties in examining the empirical support for the 

C A P M . First , the return to the aggregate wealth portfolio is not observable. 

Second, the C A P M is a static model while the real world is inherently dy­

namic. Hence it is necessary to make some auxiliary assumptions. In order 

to overcome these difficulties, it is generally assumed that (a) the return to 

stocks measures the return to the aggregate wealth portfolio and (b) betas 

of assets remain constant over time. Under these assumptions, Fama and 

French (1992) find that the relation between average return and beta is flat 

and that there is a strong size effect. We find that the C A P M , with these 

assumptions, is able to explain only about 1 percent of the cross sectional 

variation in average returns of the 100 size/beta portfolio constructed using 

the Fama-French sorting procedure. 

We argue that assumptions (a) and (b) are not reasonable and demon­

strate that the empirical support for the C A P M is surprisingly strong when 

these assumptions are relaxed. When human capital is also included in mea-
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suring wealth, the C A P M is able to explain 28% of the cross section of 

average returns. When, in addition, betas are allowed to vary over the busi­

ness cycles, C A P M is able to explain 57%. More important, size does not 

explain the residual variation in average return after taking sampling errors 

into account. 

Whi le relaxing these restrictive assumptions considerably improves the 

empirical performance of the C A P M , we stil l advocate caution in interpreting 

this as strong support for the C A P M for the following reasons. 

First, our modeling of the time variations in betas is rather ad hoc in 

nature. If one were to take the crit icism that the real world is inherently 

dynamic seriously, then it may be necessary to explicit ly model what is miss­

ing in a static model. In particular, in a dynamic world investors may care 

about hedging against a variety of risks that do not arise in a static economy. 

One possibility is to extend Merton's inter-temporal C A P M along the lines 

suggested by Campbel l (1993a) for empirical analysis using time series data 

on returns and economic aggregates. 

Second, we believe that relying on monthly return data for only 28 years 

to examine cross sectional variations in expected returns to some extent 

borders on naivete. Our view is that there are only about as many major 

information events as there are business cycles in the given period. Using 

28 years of data (as in the Fama-French study) probably involves only 5 

major informational events. Also, a number of events occur at deterministic 

monthly and yearly frequencies and it may be reasonable to expect that such 

events may influence the behavior of asset prices at monthly frequencies. 

Since such events are outside the scope of asset pricing models we study, one 

natural strategy would be to examine the empirical performance of models 

using annual data over a sufficiently long period of time. Such an approach 

has its own set of shortcomings, most important of which is that the economy 

may not really be stationary. 
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A A p p e n d i x 

A . l D i s c o u n t F a c t o r s I m p l i e d by the C A P M 

Denote the variables r v. f, r U b „ j and PreiTlt-i simply by Fu-, F31 and F4t and 

4 = * ^ » * = 2 , 3 , 4 Var[Ffc] 

then the model in (16) can be written as 

K 
E[r 1 (] = 7J + 7*ft* 

fc=2 

where A' = 4. Substituting (24) into (25), we can have 

£ 7* 7fcE[fttl _ ^ 
= 1 

which can be written as 

V fc=a ; 
= 1. 

Thus the stochastic discount factor for the model in (16) should be 

(24) 

(25) 

(26) 

dt(6) = Y.hFkt 

k=i 

with Fn = 1 and 8 = ( 6 1 , . . . ,6K). Then (26) becomes 

M = 1. (27) 

A . 2 D i s t r i b u t i o n of H a n s e n - J a g a n n a t h a n D i s t a n c e 

Let wt(8) = (wu(8),..., Wfft(6))' where wn(6) = rudl(8) — 1, and w(6) = 

(wi(8),..., ii\\(6))' where u>, = Y,t

rit2~2khFkt/T. Let 6' be any .V x /V 
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positive definite matrix and Gj be a consistent estimate of G and let 

8r = Arg M in w'Gj w. 
6 

C28) 

The first order condition for minimizing the quadratic form in (28) is 

dw' , dw 
Is T W 

dw' 

which is a linear equation system for cVr\ So we can simply solve the linear 

system to obtain o j . 

Since w(8) is a linear function in 8, we have 

u'(or) = w(80) + -^(ST - 80). 

Pre-mult iplying dw'fdSG^1 to both sides, we have 

dw'_, 0w',_, ,. . dw' _• dw.. . , 
—GT'MSr) = W G r ' » ( « . ) + ^ r ' ^ i h - « . 

Substitut ing the first order condition into the left side, we obtain 

(29) 

8r — 80 = — 
dw' {dw 
l 8 C " r dJ' 

n _ 1 -1 dw' _i 
— 6 r u>(d0). (30) 

Let 5 = E[u-u/] and D = E[rtF't], where F, = [Fu,Fict)'- Sincedw/W — 

D and (27) implies y/Tw{6o) A'(0,.S), we have 

where 

y f (^ r _6 0 ) _i» ;V(o,c) 

C = (Z)'G'~ D) D'G~ SG~ D[D'G D) . 

Substituting (30) into (29), we obtain 

dw' x dw 
~d~8~ 08' 

^•GT

l \ VTw(80) 
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which converges in distribution to 

l im y/fw(ST) = ( / - D [ / ? ' G - ' ! ) ] - , / } ' G " , ) ^ ( 0 , S ) . r—»+oo 

Then we have 

TDistT(6T) - i » . V ( 0 . - G~1 D[D'G~1 D]~l D') 

(rl(I - D[D'G'lD]-1 D'G~1):V(0,S) 

= yV(0 ,5 ) ' (G _ 1 - G~ 1 Z? [D 'G~ 1 Z) ]~ l D' (?~ 1 )N (0 ,5 ) 

= / V ( 0 , J ) ' S * G - * ( / - (G - ^ ) ' Z ) [D ' 6 ' - 1 Z) ] - 1 D , G' - ^ ) 

(G-5) ' (55) ' iV(0,7) 

= ;V (0 , / )T iV (0 , / ) 

where 

r = - (G-5) ,D [Z) 'G- 1 /?]- 1Z?'G-*)(G-i) /(55)' , 

which is symmetric and semi-positive definite. Here G'5 and S% are uper-

triangle matrices from the Cholesky decomposition of G and S, i.e. G = 

{G*)'CA and 5 = ( S * ) ' S * . Since 

I-{G-*)'D[D'G-xD)-lD'G-* 

is symmetric idempotent and its trace is N — K, we know that its rank is 

N — K and thus the rank of Y is also N — K. Then there is an orthogonal 

matrix H and a diagonal matrix A = d i a g { A i , . . . . A / V - A , 0 , . . . . 0 } , where A,s 

are the N — K positive eigen values of I\ such that T = H'AH. Then the 

l imit ing distr ibution of TDistT(Sr). denoted by x. is 

l im TDistT(6T) = x = /V (0 ,1 ) 'H ' \HN(0 ,1 ) 

= iV (0 , / ) 'A ,V(0 . / ) 
V - A 

= E M 
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where {tfiJ^T^ a r e N — K independent random variables, each of which has 

distribution of \ 2 ( 1 ) . The sum of these eigen values is the mean of .r, i.e., 

N-K 

E[x ]= £ Ai. 
1=1 

The random variable .r does not have a simple distribution function. How­

ever, using the above expression, we can stil l conveniently compute the p-

value to test the null hypothesis that the discount factors are specified cor­

rectly. Random sampling 

{vij}i=l T-; j=i N-K 

independently from \ 2 (1 ) (on computer), we can obtain a set of independent 

samples, {x, }£.",, by letting 

Xi = Yl V u • 
.;=i 

Then, by Law of Large Numbers, we have, as T' — • oc, 

i T * rTDistT{sT) 

TJT: H [(xi ^ TDistT(6T)) -U / dip(x) = Prob{ x < TDistT{8r) } 
' * i=i v ' 0 

where 4'{x) is the probability distribution of x and p is the asymptotic p-

value of TdriSj)- Notice that, if the eigen values are all equal to 1. then .r 

has \ 2 distribution with degree of freedom of N — A', which is the case of 

G = S. 
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B Tab les a n d F i g u r e s 

B . l T a b l e s 

Table 1. T ime Series Averages of Portfolio Returns (%) 
3-i 3-2 J-3 3-4 0-5 J - 6 3-7 ^-8 3-9 0-10 

M E - 1 1.44 1.53 1.56 1.71 1.36 1.44 1.37 1.33 1.46 1.34 

M E - 2 1.13 1.22 1.09 1.19 1.38 1.37 1.37 1.30 1.15 0.95 

M E - a 1.26 1.27 1.22 1.26 1.16 1.29 1.34 1.19 1.12 0.89 

M E - 4 1.37 1.47 1.40 1.28 1.01 1.39 1.11 1.33 1.07 0.95 

M E - 5 0.97 1.53 1.10 1.28 1.18 1.04 1.35 1.07 1.23 0.82 

M E - e 1.07 1.36 1.34 1.12 1.25 1.27 0.84 0.94 0.92 0.77 

M E - 7 0.99 1.18 1.13 1.19 0.96 0.99 1.11 0.91 0.90 0.83 

ME- 8 0.95 1.19 1.02 1.39 1.18 1.24 0.94 1.02 0.88 1.08 

M E - 9 0.94 0.92 1.05 1.17 1.15 1.03 1.02 0.84 0.80 0.51 

ME- io 1.06 0.97 1.02 0.94 0.83 0.93 0.82 0.83 0.61 0.72 

Table 2. Beta to C R S P Value-Weighted Index 
3.i 3-2 3-3 0-A 0-r> 0.6 0-7 J-8 0-9 0-10 

M E - i 0.90 0.99 1.01 1.13 1.17 1.21 1.20 1.31 1.44 1.54 

M E - 2 0.83 1.00 1.09 1.12 1.18 1.29 1.33 1.39 1.48 1.63 

M E - 3 0.78 0.93 1.09 1.11 1.18 1.27 1.29 1.40 1.42 1.70 

M E - 4 0.75 0.91 1.05 1.13 1.19 1.32 1.25 1.32 1.56 1.61 

M E - s 0.57 0.78 1.10 1.10 1.12 1.20 1.25 1.43 1.45 1.54 

M E - e 0.62 0.77 0.88 1.01 1.08 1.25 1.22 1.34 1.32 1.59 

M E - 7 0.64 0.84 1.01 1.07 1.16 1.21 1.26 1.26 1.31 1.54 

M E - s 0.64 0.73 0.91 1.04 1.07 1.17 1.22 1.19 1.23 1.50 

M E - 9 0.62 0.78 0.88 0.96 1.04 1.05 1.13 1.17 1.22 1.34 

ME-io 0.68 0.76 0.80 1.00 0.97 1.00 1.04 1.09 1.10 1.28 
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Table 3. T ime Series Average of Portfolio Size (log of S mill ion) 

0-2 0-3 3-4 . i s 0-6 3.7 .u 3-9 0-10 
M E - 1 2.18 2.50 2.49 2.48 2.48 2.50 2.46 2.46 2.46 2.34 

M E - 2 3.71 3.72 3.73 3.73 3.71 3.71 3.72 3.72 3.72 3.72 

M E - 3 1.21 4.21 4.21 4.21 1.21 4.23 4.21 4.22 4.21 4.20 

M E - 4 4.67 4.65 4.64 4.65 4.65 4.65 4.65 4.64 4.64 4.64 

M E - 5 5.07 5.09 5.07 5.08 5.08 5.07 5.07 5.07 5.07 5.05 

M E - e 5.47 5.48 5.47 5.48 5.48 5.18 5.18 5.18 5.47 5.18 

M E - 7 5.91 5.92 5.93 5.92 5.92 5.89 5.91 5.90 5.92 5.90 

M E - s 6.44 6.42 6.43 6.39 6.43 6.41 6.43 6.42 6.40 6.40 

M E - 9 6.98 6.98 7.00 6.98 6.96 6.97 6.95 6.96 6.95 6.97 

ME-io 8.11 8.26 8.22 8.19 8.16 8.18 8.06 8.03 7.92 7.81 

Table 4. Fama-MacBeth Regressions 

7 - I'l 7 - | ' | rj2 rl 
Fama and French (1992) 0.15 (0.46) 

-0.37 (1.21) 

-0.15 (2.58) 

-0.17 (3.41) 

NYSE and A M E X -0.10 (0.28) 

-0.32 (0.95) 

-0.10 (1.91) 

-0.12 (2.17) 

1.35 26.92 

23.01 

43.69 

NYSE only -0.03 (0.08) 

-0.23 (0.67) 

-0.11 (1.89) 

-0.12 (2.41) 

0.12 24.02 

19.23 

37.70 
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Table 5. T ime Series Average of Portfolio Market Value (S Bi l l ion) 
0-1 8-2 3-3 J-4 J.5 3-6 3-7 3-8 3-9 ,?-10 

M E - i 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 1.1 

M E - 2 0.8 (i B 0.8 0.8 0.8 0.8 0.8 0.9 0.9 1.1 

M E - 3 l.U 1.0 1.0 1.0 1.1 1.1 1.1 1 .2 1.1 1.4 

M E - i 1.5 1.6 1.6 1.7 1.7 1.6 1.7 1.6 1.7 2.1 

M E - 5 2.2 2.4 2.3 2.4 2.6 2.3 2.5 2 1 2.4 2.6 

M E - e 3.2 3.5 3.5 3.6 3.6 3.6 3.7 3.7 3.6 4.0 

M E - 7 5.0 5.7 5.6 5.3 5.5 5.1 5.4 5.5 5.8 6.0 

M E - s 8.3 8.6 8.7 8.6 8.8 8.4 9.2 9.2 8.8 9.5 

M E - 9 15.0 15.2 15.3 15.3 15.1 15.5 14.9 15.2 14.9 16.2 

ME-io 87.7 155.3 86.1 75.6 72.7 73.8 69.1 59.5 49.0 41.5 

Table 6. T ime Series Average of Number of Firms 
8-i 3-2 3-3 8-4 3--, 3-6 3-7 0-8 3-9 3-10 

M E - i 51 41 42 44 43 11 16 50 53 80 

M E - 2 17 16 15 17 16 17 17 18 19 23 

M E - 3 13 l.l 13 13 i 1 1 1 14 15 15 18 

M E - 4 12 12 13 13 13 1 1 13 13 13 16 

M E - s 11 12 12 12 13 12 13 13 13 14 

M E - e 11 12 12 12 12 12 12 12 12 13 

M E - 7 11 12 12 12 12 1 1 12 12 12 13 

M E - 8 11 11 1 1 12 12 1 1 12 12 12 12 

M E - 9 11 11 11 11 12 1 1 1 1 11 1 1 12 

ME-io 11 11 11 12 12 1 1 1 1 11 11 12 
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Table 7. Estimates of coefficient of | /? v „ | /? > w 

3-\ 3-2 3-3 3-4 3-5 0-6 3-7 3-8 3-9 3-10 

M E - i 2.50 1.52 1.08 0.23 1.29 0.72 0.83 -0.50 0.29 -0.15 

M E - 2 1.62 2.59 1.62 1.22 0.57 -0.38 0.66 -0.21 -0.19 -0.33 

M E - 3 2.68 0.24 0.95 -0.10 0.71 0.05 -0.43 0.22 -0.50 -0.55 

M E - 4 0.99 -0.04 0.97 1.08 1.41 0.01 -0.94 -2.33 -0.83 -2.00 

M E - 5 0.03 -0.22 0.92 0.25 0.46 -0.20 0.86 0.15 -0.68 -0.78 

M E - e 0.60 -0.63 0.09 -0.04 0.12 0.94 -1.14 -0.11 -0.40 -2.01 

M E - 7 -0.10 0.30 0.70 1.11 0.43 0.54 1.06 -1.21 -0.40 0.36 

M E - 8 -0.76 0.14 0.17 0.59 0.01 0.23 0.51 0.02 -1.00 -2.10 

M E - 9 -0.17 0.62 0.76 0.02 -0.54 -0.33 1.69 -0.72 • 1.29 -1.60 

ME-10 0.12 0.79 -0.79 0.38 1.04 0.78 1.15 0.36 -1.07 -1.72 

Table 8. t-value of coefficient of \RWW\RW 

0-1 3-2 3-3 3-4 3-5 3-6 3-7 J-8 3-9 3-\o 
M E - i 2.40 1.45 0.94 0.19 1.03 0.58 0.63 -0.37 0.20 -0.09 

M E - 2 1.98 2.74 1.82 1.33 0.53 -0.36 0.64 -0.20 -0.16 -0.25 

M E - 3 3.42 0.29 1.03 -0.11 0.73 0.05 -0.43 0.22 -0.50 -0.47 

M E - i 1.42 -0.06 1.26 1.36 1.71 0.01 -1.01 -2.57 -0.71 -1.74 

M E - 5 0.04 -0.34 1.50 0.36 0.59 -0.23 1.08 0.17 -0.69 -0.73 

M E - e 0.85 -1.05 0.16 -0.06 0.18 1.22 -1.43 -0.14 -0.40 -1.90 

M E - 7 -0.14 0.44 1.19 1.90 0.66 0.85 1.61 -1.79 -0.53 0.38 

M E - s -1.00 0.22 0.31 1.03 0.02 0.41 0.85 0.03 -1.32 -2.28 

M E - 9 -0.24 1.10 1.50 0.04 -0.94 -0.61 2.83 -1.24 -2.22 -2.16 

ME- io 0.18 1.43 -1.46 0.78 2.33 1.55 2.41 0.76 -2.00 -2.70 

Table 9. Hansen-.Jagannathan Test of the C A P M 
TDistl

T p r \ . /> <$,.„„, /» 6p„m p 
111.51 (0 .34) 

137,15 ( 2.25) 

133.08 (42.73) 

1.55 (27.59) 

1.02 (49.18) 

1.54 (31.38) 

-77.53 (2.46) 

-138.09 (0.10) -0.83 (0.05) 
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Table 10. Orthogonalized #* b o ' 
3-i 3-2 0-3 3-S 3-S 3-6 0-7 3-8 3-9 3-10 

M E - 1 1.27 1.39 1.07 1.09 1.37 1.09 2.12 1.33 0.76 0.99 

M E - 2 0.90 0.76 -0.13 0.11 0.93 1.11 -0.08 -0.46 0.44 -0.69 

M E - 3 0.33 0.23 -0.41 0.51 0.07 0.14 1.59 0.71 -0.40 0.59 

M E - 4 0.04 0.64 0.34 0.17 -0.14 0.15 -0.74 -0.05 0.27 1.02 

M E - s 0.21 0.57 0.05 -0.10 -0.03 -0.51 -0.77 -0.56 0.59 0.97 

M E - e 0.02 0.04 0.21 0.04 -0.02 -1.25 0.03 -0.69 -0.21 -0.62 

M E - 7 -0.42 -0.53 -0.21 -0.47 -0.21 -0.63 -0.99 -0.28 -0.59 -0.96 

M E - s 0.27 -0.28 -0.19 -0.45 -1.14 -0.31 -0.93 -0.88 0.53 -0.79 

M E - 9 -0.18 -0.16 -0.69 -0.76 -0.04 -0.49 -0.76 -0.81 -0.64 -0.82 

ME-io 0.53 -0.10 -0.32 -0.87 -0.44 -0.31 -0.41 -0.68 0.39 -1.16 

Table 11. Orthogonalized 3''"° 
3 , 3-2 3-3 3-4 3-s 3-6 3-7 3-8 i - 9 0-10 

M E - 1 -0.02 0.30 0.21 0.09 0.44 0.25 0.18 0.26 0.47 0.24 

M E - 2 -0.16 0.41 0.47 -0.23 0.02 0.33 0.40 0.66 0.34 -0.04 

M E - 3 -0.04 0.10 0.41 0.28 -0.01 0.06 -0.49 -0.04 0.18 -0.38 

M E - 4 -0.04 0.38 -0.07 -0.28 0.24 0.13 0.71 -0.28 -0.26 -0.18 

M E - 5 -0.06 -0.12 0.18 0.08 0.06 0.16 0.11 0.14 -0.19 -0.78 

M E - 6 0.21 0.38 0.38 -0.01 0.12 0.61 -0.30 0.01 -0.45 -0.49 

M E - 7 -0.07 0.44 0.44 0.26 0.19 0.15 -0.08 0.06 0.31 0.05 

M E - s -0.44 -0.33 -0.02 0.16 0.40 0.11 0.04 -0.34 -0.69 -0.38 

M E - 9 -0.26 -0.34 0.13 0.08 -0.14 -0.14 0.14 -0.54 -0.04 -0.40 

ME-io -0.45 -0.07 -0.02 -0.26 -0.09 -0.64 -0.54 -0.34 -0.89 -0.26 

Table 12. Results of Fama- Mac Beth regressions 
rf r'f, c > w p cut,„ p c„.„ p c„„ p 
1.35 26.92 

28.28 37.35 

56.92 41.66 

-0.10 (78.00) 

-0.20 (56.02) 

-0.41 (22.76) 

0.17 ( 4.33) 

0.17 ( 4.21) 0.07 (0.11) 

45.93 -0.40 (24.51) 0.07 (14.73) 0.21 (0.41) -0.08 (9.28) 
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Table 13. F-values of portfolio 
J - i 3-2 3-3 J-4 3-5 3-6 •i-7 3-S 0.9 J-10 

M E - 1 1.92 4.24* 4.35" 4.96" 3.14" 3.85* 2.92 4.68* 3.63" 2.7.1 

M E - 2 1.12 2.95 0.98 3.41" 7.34* 2.71 3.49* 2.51 3.48" 2.51 

M E - a 5.20" 4.66* 0.78 2.17 2.77 2.00 2.48 5.15* 1.06 4.67* 

M E - 4 1.75 0.32 1.16 2.43 1.96 1.31 3.03* 4.87* 4.50* 0.81 

M E - 5 3.09* 3.43" 1.09 2.33 4.22* 0.53 1.02 1.22 2.52 3.13" 

M E - e 1.73 0.66 0.64 4.34" 2.50 4.30* 3.53" 2.38 1.48 1.42 

M E - 7 1.71 1.15 1.76 3.13" 0.25 0.30 1.18 0.00 1.01 1.92 

M E - s 3.36* 0.14 2.85 0.46 3.02 0.14 1.12 0.30 0.89 2.28 

M E - 9 3.19" 2.72 0.43 2.31 0.72 0.89 3.96* 0.81 0.11 0.79 

ME-io 7.07* 3.75" 0.85 2.48 0.18 4.58* 6.74* 0.17 2.54 0.79 

Table 14. Fama-MacBeth regressions in separate months 
Monlh r? r,i 7 . - (0 
Jan 14.39 25.92 3.82 ( 2.36) 

Feb 7.32 20.62 0.78 ( 0.75) 

Mar 23.09 26.26 1.33 ( 117) 

Apr 2.29 24.39 0.29 < 0.27) 

May 24.10 21.39 -0.88 (-0.87) 

.1 ii n 52.09 24.34 -2.12 (-2.12) 

Jul 21.57 36.74 -0.93 (-0.64) 

Aug 13.16 30.19 0.91 ( 0.75) 

Sep 10.37 29.80 -0.71 (-0.60) 

Oct 66.21 37.92 -4.34 (-2.89) 

Nov 1.54 22.68 0.34 ( 0.30) 

Dec 2.92 16.19 0.41 ( 0.46) 
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Table 15. Fama-MacBeth regressions in separate months 
Month (0 7.i«« (1) 

Jan 61.95 1.02 ( 0.70) -1.47 (-6.67) 

Feb 38.66 0.13 (0.13) -0.33 (-2.13) 

Mar 36.19 0.89 ( 0.85) -0.22 (•1.91) 

Apr 31.18 0.21 ( 0.20) -0.04 (-0.42) 

May 40.13 -0.88 ( 1.00) -0.02 (-0.11) 

Jun 32.98 -2.27 (-2.39) -0.08 (-0.75) 

Jul 16.03 -1.17 (-0.81) -0.13 (-107) 

Aug 44.50 1.40 ( 1.20) 0.26 ( 2.89) 

Sep 38.03 -1.14 (-1.01) -0.23 (-2.26) 

Oct 53.40 -3.50 (-2.59) 0.41 ( 2.46) 

Nov 35.41 0.77 ( 0.69) 0.21 ( 1-51) 

Dec 35.13 0.75 ( 0.94) 0.15 ( 0.92) 
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2 F i g u r e s 

Figure 1. Portfolios and the frontier 

Standard Deviation (%) 
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