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ABSTRACT

This paper provides a general and efficient method for computing density ratio class bounds on posterior
moments, given the output of a posterior simulator. It shows how density ratio class bounds for posterior
odds ratios may be formed in many situations, also on the basis of posterior simulator output. The
computational method is used to provide density ratio class bounds in two econometric models. Tt is found
that the exact bounds are approximated poorly by their asympiotic approximation, when the posterior
distribution of the function of inierest is skewed. It is also found that posterior odds ratios display substantial
variation within the density ratio class, in ways that cannot be anticipated by the asymptotic approximation.
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1. Introduction

Good Bayesian investigators seek to report results in a way that will be most useful to
their clients, that is, to those who read their work and go on to modify their opinions on the
basis of the reported results, or who incorporate them in public or private decision making.
Generally the investigator does not know what his clients’ priors will be, or the posterior
moments that interest them. Indeed, the investigator often does not know exactly who his
clients will be.

There are a number of approaches to this Bayesian communication problem. An
important one is to provide an indication of the sensitivity of posterior moments to changes
in the prior distribution. This may be accomplished by reporting posterior moments
corresponding to alternative priors, but such an enumeration likely becomes tiresome long
before reasonable possibilities for prior distributions are exhausted. A more efficient
approach is to report a range for each posterior moment, corresponding to all possible prior
distributions within a specified class of distributions. Several interesting classes of prior
distributions have been proposed; a concise and informative review is provided by
Wasserman (1992). A thorough, recent overview of robust Bayesian analysis is given by
Berger (1994).

In this paper we consider the density ratic class of prior distributions. This class
consists of all prior distributions over the parameter vector @ with probability density
kernel p(8), satisfying the inequalities a(@) < p(8) <b(8). The class has at least three
attractions. First, it may be motivated with regard to prior elicitation. Suppose that an
elicitation process seeks to establish P(A)/P(B) for all subsets A and B of the parameter
space ©. Clearly there are limits on the degree of accuracy with which this can be
accomplished. If one represents these limits by

1(6)d6 /[ 1(0)d0 <P(A)/P(B)<k| t(6)d8 /[ r(8)do

for all r~measurable A and B and specified k>1, then the corresponding density ratio class
is given by a(6) =r(0) and b{0) =k1(6).

A second advantage of the density ratio class is that it applies to prior density kernels,
and therefore to improper priors. Given one of the conventional diffuse priors, e.g. a
Jeffreys prior or a flat prior, one may examine the sensitivity of posterior moments to
density ratio classes about this prior by taking a(@} and b(8) proportional to the diffuse
prior kernel density.

A third attraction of the density ratio class is its practicality. This fact is widely
recognized, e.g. Wasserman (1992). In fact the density ratio class is very useful because
bounds for posterior moments over density ratio classes may be computed on the basis of




output from posterior simulators, e.g. importance sampling (Geweke, 1989) and Gibbs
sampling (Gelfand and Smith, 1990). The objectives of this paper are to show how these
computations may be accomplished routinely and efficiently, and then illustrate their
application to some substantial econometric models. In meeting the first objective we build
on the work of Lavine (1991a, 1991b) and especially Wasserman and Kadane (1992).
Meeting the second objective answers the call of Wasserman (1992} for applications of
density ratio robustness analysis in high-dimensional problems where robustness concerns
are likely to be greatest.

The paper is written to be as self-contained as possible. In doing this we recapitulate
some results due to others, providing proofs that use a common notation and are new in
some cases. We also introduce a new algorithm for the key computation. The paper is
organized as follows. The next section defines the problem and characterizes the solution.
The main result here has been reported previously DeRobertis and Hartigan (1981) and
Lavine (1991a). In Section 3 we extend the methods of Wasserman and Kadane (1992) for
computing bounds on posterior moments from posterior simulators: we allow density ratio
classes that need not include the prior used in the analysis, do not require the simulator to
produce i.i.d. draws, and cope with weighting functions of the kind employed in
importance sampling. Section 4 motivates the basic asymptotic relationship between the
bounds on posterior moments over the density ratio class, and the posterior mean and
standard deviation, first derived by DeRobertis and Hartigan (1981). Section 5 shows that
the asymptotic approximation is excellent in a leading situation, linear functions of
coefficients in the normal linear regression model. Section 6 takes up a dynamic time series
model that is nonlinear in parameters and features non-Gaussian disturbances. We carry
out the exact computations and find that the asymptotic approximations do not work well.
An analysis of the relation between posterior densities and the density ratio class bounds
appears to explain why this is so. The paper’s final section offers some conclusions and

conjectures.
2. Bounds on posterior moments

Foradataset Y, = {y,}:r=1 a model specifies the probability density function of Y, up
to a vector of unknown parameters, f{¥[6)= II;f (y,]Y,..,8). For brevity, denote the
likelihood function L(8) = f(Y,|6). Given the function of interest g(8), the posterior
expectation of g(8) corresponding to the prior density kernel p(8) is




_J&O)L(e)p(6)d8
|, L(6)p(6)d6
The prior robustness question in general is the sensitivity of E to choice of p{(6). A

=E(g,L.p). (1)

densiry ratio class of prior distributions is all prior distributions with kernel densities that
satisfy inequalities of the form a{@) < p(8) <b(8); for brevity, a<p<b. The formal
problem is to determine the range of values of posterior moments over this class of prior
distributions, i.e., to minimize and maximize EF in (1) subject to these inequalities; i.e., to
find

E(g.L;a,by=inf___ . E(g.L,p) and E(g,L;a,b)=sup,, . E(g,L.D).

Since the technical issues involved in minimization and maximization of £ are the
same, we shall confine treatment to the maximization problem. The following result is
shown by DeRobertis and Hartigan (1981). We provide a proof here because it parallels
the similar result based on posterior simulators presented in Section 3.

Proposition 1. The conditions
(M p(6)=b(8)if g(6)> f; p(6)=a(6) if g(8) < f; a(6) < p(6) <b() if &(6) = f;
i) E=f

uniquely determine E(g,L; a,b).

Proof. We first show that if any prior density kernel p'(8) violates the stated conditions it
will yield a smaller value of E. Given any p(6) satisfying the conditions (i), construct
p(0)=2{6)V B:g(0)< f and p’(6)<b(6) on a subset of {6:g(0)> f} with positive
Lebesgue measure. Then

[ &(6)L(8)p’(6)d0 = | &(6)L(6)p(6)d0 + [, 5(6)L(6)[p"(6) - p(6)]d®

< | &(OL(O)p(6)d6+ f - [ L) (6) - p(6)]4E
= [ 2(0)L(8)p(6)d6 + E- [ L(8)[p(6) - p(6)]d0 = E| L(6)p'(6)d6.

Hence

[ eOLO) (0)d6/[ L(O)D'(0)d6 < E= | g(6)L(6)p(6)d0/[ L(6)p(6)de.
A similar argument applies to p"(8) = b(0) ¥ 8:2(6) > f and p'(6) > a(8) on a subset of
{6:5(8) < f} with positive Lebesgue measure,

We finally show that any function p(@) meeting the stated conditions yields posterior
moment E. Denote © ={6:g(6)=E}, A= I@' g(6)YL(0)p(8)d6, B = Jé,L(B)p(G)dG,




s§= j@.L(B)p(G)dB. Then the posterior moment is E(s)={A + f5)/(B+s), which is

invariant with respect to the choice of s. e

Figure 1 provides a graphical interpretation of the result that links it to what follows.
Let the function E’(f) denote the posterior moment corresponding to the function p(6)

defined in condition (i) of Proposition 1. Figure 1 shows two such functions, E;(f) and
E,(f). These functions will have the orientation shown: exactly one intersection with the
45° line, at the maximum of E(f). The function E;{f) corresponds to a continuous
function g(8), and the function E;(f)} corresponds to a function g(#) with two discrete

values.
Since E(g,L; a,b) =—E(-g,L; a,b), the solution of the problem of minimization of E

over the same class of prior densities is essentially the same. In general, f:E(f)=f will

not be the same for the minimization problem as for the maximization problem.

3. Systematic numerical approximations

Suppose that a simulator for the posterior distribution with kernel density L(6)5(0)
defines the stochastic process {Gm,w(Gm)}:zl, where 8, is the m’th realization of the
parameter vector and W(G’m) is an associated weight such that

§m=2M g(@m)w(em)/zﬂ:ﬁw(em) is an M-consistent approximation of

m=l
g= je g(@L(0)p(8)d6 / L L(8)p(0)d6. Examples of such simulators include importance
sampling (Geweke, 1989) and Markov chain Monte Carlo methods (Gelfand and Smith,

1990; Tierney, 1994). Without loss of generality suppose the simulator output is ordered
so that g, =g(8,) is monotone nondecreasing. We wish to determine the robustness of g

with respect to a prior density with kernel p(8), where a(6)<p(8)<b(8). Consider
approximating the solution of (1) by maximizing

Q) =gv/1T= Y0 fulw] T T
subject to usr<v, where u, =w(6,)a(6,)/p(6,) and v,=w(6,)b(6,)/B(E,)
(m=1,...M ). We first develop an efficient method for solution of this problem, and then
show that the solution provides an M -consistent approximation of E(g,L; a,b).

3.1 Solution of the discrete problem
The solution of the discrete problem has properties quite similar to the solution of the
exact problem given in Proposition 1.




Proposition 2. Let

N ! it +2M 8V
Q’!:——!- _gglgm m =4O m (e:o,___,M), (2)
f3

and let
m' =max{£:g,<0,< g,
Then
Qm' = max{r,.,}[ :=1gmrm/2:=l rrr:] S.1. U, < Do < Vi (m = ls-"’M)'

Proof. Since the sign of
M M
C;Q _(2j=1rf)gm_ j:]gjr}' _gm—Q(rl,...,rM)
- M Z - M
al’m (2}:1 rj) Zj:l r;
does not involve r,,, a necessary condition for solution of the problem is r, =1, if

g.<Q(r}and r, =v, if g, > Q(r). Hence all solutions are characterized by (2) and

8 S, S g (3)
Since {gm} is monotone nondecreasing, the largest value of £ such that (3) is true will

provide the largest possible value of Q,. FHE

Direct implementation of Proposition 2 would require that all Q, be computed.

However, if we can rule out the possibility depicted in Figure 2, then a much more efficient
procedure is available: find one £ such that (3) is satisfied, and then search £+1,£+2,...
until an m is found such that ¢, < g,. This is indeed the case.

Proposition 3. If Q, < g,, then Q,,, <g,,,.

=

N H,,,—V H,,, —V,
Proof. 0,<g,=>Q,<g,., :BL{_( 141 t+[)gz+: <gm+( ¢4l g-;_])gt-l_-_l
f D, D,

N+ (“m - Vm)gm
Dy+uy = v,

N, + (“m - Ve+1)gr+t < gm(De iy, - Vc+:) = <8t = Qrat < &pui-

##

Since the situation in Figure 2 cannot occur, our search for the highest £ need not go
beyond the point at which g, > Q,. Proposition 3 forms the basis of a computationally

efficient solution of the discrete problem, as follows.




Corollary. The index m" of Proposition 2 may be determined as follows.
(1) Sort {g(Bm)} sothat g, = g(Gm) is monotone nondecreasing in n1.
(2) Using successive bisection find an index £ such that g, <0, < g,,,-
(3) Increment the index £ of step (2) until g, > @, and then set mo=f—1.

To minimize Q, over the same class of prior densities, apply the algorithm to —g(6,) and

reverse the sign of the solution.

3.2 Consistency of the sequence of discrete problem solutions

For many problems E of Proposition 1 cannot be obtained analytically, but for many
prior density kernels p{6) E can be approximated consistently (in 34) by a posterior

simulator. If this is true for all kernel densities p(#): a(@) < p(@) < b(8) then the solutions

we obtain to the sequence of discrete problems defined by the output of the posterior
simulator will converge almost surely, as M — oo, to the maximum value of E defined in
Proposition 1.

Proposition 4. Suppose that {6,,,,\7«(67,,,)};l is a posterior simulator for the posterior
density kernel L(8)P(6) with the property that for any kernel density
p(6):a(6) < p(8) < b(8),

But = 2o 800 2 Tm 22 | 2(6)L(6)D(0)d0/ [ L(O)p(6)dO =5 (%)

if r,, = w(8,,)p(6,)/D(6,). Define Q . asin Proposition 2. Then
0, —EESUP, . 0pc, [ E(OVL(O)P(6)d0/ [ L(6)p(6)d0.

Proof. Define E( f)=jeg(B)L(Q)p(B)dB/jBL(G)p(B)dG, with p(6)=a(8) if g(6) < f
and p(8)=b(0) if g(6)2 f. Let {8,} be the output of the posterior simulator ordered so
that g(6,) is monotone nondecreasing. Take f°=sup{f:E(f)=f} and
m° =Sup{m:g(6m) < fo}

Since Qm ZQmu~L>E(f°),, Qm. 2E(f°)—£ is an almost sure event for any

£>0. _

Take f'> f°; f' — f° may be arbitrarily close to 0. Define ' =sup{m:g(9m) Sfl}.
Proposition 1, E(f]) < E(f“), and Q —&)E(f’) imply that Q , <g . is an

almost sure event. From Propositions 2 and 3, so is m" <m'. Hence

Q.<g. <g,sf

n




is an almost sure event. (The first weak inequality follows directly from Proposition 2 and
the third follows from the definition of f'.) Since f' can be taken arbitrarily close to
o= E(fo), Q.< E(f°)+ ¢ is an almost sure event for any £ > 0. #4

Condition (4) is weak. For example, the bound b{(8)/p(6) < ¥ 8 € ® is sufficient for
(4); see Geweke(1993).

4. Bounds on posterior moments in large samples

Given some standard regularity conditions, in large samples the distribution of
g(0)[Y, is approximately normal with variance proportional to 77, A good summary
discussion of these conditions is provided by Bernardo and Smith (1994, 285 - 297); for

greater detail, see Heyde and Johnstone (1979), Hartigan (1983, Chapter 4), and Chen
(1985). As the posterior variance becomes small, a continuous function of interest g(6)

becomes locally linear and the upper and lower bounds b(8) and a{8) of the density ratio

class robustness problem become locally constant. It is therefore of some interest to

consider robustness of the posterior mean of
u=g,+go, uIYT ~ N(g, 0'2)
over the class of prior density kernels p(@), a =a(6) < p(6) <b(8)=b.

a J‘f u¢[( g)/oldu +bru¢[ u—g)/o]d
_[_”?5[ ]du +b_[ [ "— ) /g]d”

From Result 1,

E(g,L;a,b):sup_; =g+0-sup,B(f.k)

with

iE - ’ = __—9(f) +ke(f)
ﬁ(f, k) = ]i_‘[,m(x)dx + k:‘:xqb(x)dx}/':__[ﬂﬁb(x)dx + f»_)[ ¢(x)dxj] = (I)(f) " k[l — CD(f)]

and
k= b/a,

where ¢(z)=(2r) " exp(-2*/2) and ®(x)= j-qb(z)dz. Standard first-order conditions

show that f"(k) = argmax , B(f,k) is the unigue root of
(k—1)[¢(f) + fB(f)]- kf =0.
Defining y(k) = ﬁ[f'(k),k], we have

Supp:aSpsh Ig(e) p(GIYT)de = §+ W(b/a) '




The same analysis shows
infp:nSpr jg(a) p(elYT)de = E - W(b/a) -
)

Figure 3 shows the function y(k) which is monotone increasing, strictly concave, and
unbounded as k£ — co.

This leading case provides the behavior of the upper and lower bounds on
gr= E[g( B)IYT] as T — oo, under standard regularity conditions. We recapitulate a result
due to DeRobertis and Hartigan (1981). Let o} =var{g(6)|Y,] and let Er(g,L;a,b)
denote E(g,L; a,b) in a sample of size T. The function of interest g(8) is asymptotically
normal under the prior p(8) if for all bounded functions f:R' — R,

B{t[(2(6) - 5:)/ov ¥, }—=2o> [ 1) (e)ce.

Proposition 5. Suppose

) 6y,—==-6";

(ii) The functions a(6) and b(8) are continuous at 8 = §";

(i) g(@) is asymptotically normal under the prior with kernel b(8).
Then except possibly for 8 on a set of b-measure zero,

oy <Er(g,L; a,b)— {gr + a,y[b(a*)/a(e')]}>_.ﬂ;>o
5. Linear regression

Perhaps the most commonly applied model in econometrics is the normal linear

regression model,
= - 2
y=Xp+e, e~N(0, L)

Txk
in which each row corresponds to one of T observations, X is a matrix of fixed or strictly
exogenous regressors, y is a vector of corresponding dependent variables, and € is a
vector of disturbances. Perhaps the most commonly employed prior distribution in
Bayesian approaches to the normal linear regression model is
p(B, 0%} o< 07,
which is of course improper. This prior distribution can be motivated by appeal to
Jeffreys’ invariance principle (e.g. Zellner, 1971, 41-53).
Tt is well known that the posterior distribution for £ in this modei is

B(y.X) ~ t(b, SXX) v).




That is, the posterior distribution of § is multivariate Student-¢ with location parameter
b =(X'X)" X"y, scale matrix s*(X'X)” where s* =(y - Xb)’(y - Xb)/ v,and v=T-k
degrees of freedom. (For derivation, see Zellner, 1971, 66-70.) In many applications,
linear functions of § are of interest. Since the posterior distribution of f§ is multivariate
Student-¢, for any vector ¢ # 0,

c’By.X) ~ t(c’b, s/ (X'X) e v).

That is, the posterior distribution of ¢’S is univariate Student-# with location parameter

¢’b, scale parameter s*¢’(X’X)"'c, and v degrees of freedom.
Consider the density ratio class of prior density kernels,
p(ﬁ, 0'1): ac”' < p(ﬁ, 0‘2) <bo™.
Proceeding as in Section 4, we have from Result | that for g(f)=¢'8,
E(g,L;a,b)=cb+ [szc’(){’}g{)'lc]u2 ¥(k; v)
where k =b/a. The function ¥(k; v} can be derived in the same way as the function y{k)
in Section 4, replacing the standardized normal density and distribution ¢(-) and ®(-)
with t(-; v} and T(; v), respectively. Thus,
[}(f,k; v}= [Jixt(x; v)dx +kj:xt(x; V)dx]/{T(f; V)+ k[l —T{f; V)]},

' (k; v} = argmax ; B(f.k; v) is the unique root of

(k- I)ijxt(x; v)dx + fJ-:xt(x; v)dx] -k =0,
and

Pt v)=B[E (6 v). ks v,

Figure 4 shows ¥(k; v},for v— oo, v=15v=6,and v=3. Thecase V= oo is
of course exactly the one portrayed in Figure 3. All functions are strictly concave to the
horizontal axis. For all v, ¥(k;v)/y(k) is an increasing function of k, with
lim, ,, (k; v)/y(k)>1 and lim,_,_ 7(k; v)/y(k)=oco. Thatis, the bound y(k) yielded by
the asymptotic analysis is a belter approximation the smaller is &, but it does not become
perfect as £k — 1. And as & becomes very large, the approximation becomes very poor.

Figure 4 shows that at least for modest degrees of freedom ( v = 15) and small values
of k (k <70) the asymptotic approximation of Section 4 is quite good; in the worst case,
v=15 and k =70, the approximation is correct to within about 10%. For linear functions

of interest of the coefficient vector in the normal linear model, the asymptotic
approximation will be excellent in most cases.




6. An example: The Markov chain model

The first-order Markov chain model is widely used to describe transitions of an entity
between a finite number of discrete states over time. For example, it is often used in
epidemiology to model transitions of individuals between infected and noninfected states
(e.g., Singer and Cohen, 1980). In economics it provides a simple way to describe the
labor market status of individuals as employed, unemployed, or not in the labor force
(Abowd and Zellner, 1985). It has also been a useful tool in studying the mobility of
individuals over different earnings quantiles (Shorrocks, 1978). Classical methods of
inference in the Markov chain model are described by Bartholomew (1973). A precursor to
Bayesian inference is provided by Zellner’s treatment of the multinomial distribution
(Zellner, 1971) and an early Bayesian treatment is that of Geweke, Marshall and Zarkin
(1986).

We use this model to illustrate numerical methods of studying density ratio class
robustness for two reasons. First, there is a posterior simulator for this model that is
simple, yet to our knowledge has not been presented in the literature. Second, typical
posterior moments of interest in this model do not have closed-form analytic expressions,
thus requiring the use of numerical methods.

6.1 The model and data
Index individualsby £=1,...,L, time by ¢=1,...,T, and states by i =1,...,m. Let s,

denote the state of individual £ attime f. In the first-order Markov chain mode] the
probability that an individual occupies state j at time ¢, conditioned on the history of all
individuals from time 1 to time #—1 depends only on the individual’s own state at time
t—1. Hence if the probability that an individual is in state { at time ¢ is denoted &, we
may write

Eff = 21‘:1 ,L'E,[—ijj 3
where p, is the probability that an individual who was in state i attime ¢—1 is in state j at

time f. Defining 7, =(#,,...7,,) and P =[p‘}.] we have

=P
If the distribution of individuals over states at time 1 is fixed exogenously, and the
states of the L individuals are observed from time 1 to time T, then the likelihood function

is

L) =TI TT. oy |p20Gi=t.mp 3 p=1G=t.m)],

10




where n, is the total number of observed transitions from state i at time ¢ —1 to state j at

time t over all L individuals at times ¢t =2,...,T.
The likelihood function is the product of m kernels of the multinomial distribution
indexed by i: H;":l p;*"' (i=1,...,m). A natural conjugate prior distribution for the

multinomial distribution is the Dirichlet (also known as the multivariate beta) distribution,

pi(p,.j)oc J_Ip [pu_O j=1,....m); 2 Py=La;2 -1(j=1,.. m)]. (5)
{For further discussion see Zellner, 1971, 38-39.) Hence a natural conjugate prior
distribution for the first-order Markov chain model is

GO | Y | o
[Py 20G = temh X 2y =10 =1 umlay 2 =1(3, = 1,...om)]

and the corresponding posterior density kernel is
o[Bls, (£= 1o iz =1, )] o [T T, 00

[p,.j 20 (i,j=L....m); Zj:ipﬁ =1 (i = I,...,m)].

In the illustration here we use a flat prior distribution (a,=0 (i, J=1,.. .,m)). The data
are constructed from the Penn World Tables, version 5.6 (Summers and Heston, 1991).
The raw data is real GDP per worker in 1985 international prices, for each of 125
countries, in 1960 and 1985. The raw data is then converted to relative income levels by
dividing each observation by a population weighted average of GDP per worker for that
year. Finally, relative income levels are partitioned into six states: less than 1/8; 1/8 to 1/4;
1/4 to 1/2; 1/2 to 15 1 to 2; and greater than 2. The resulting values of the »,; are shown in
Table 1; e.g., there were 8 countries that were in state 3 (1/4 to 1/2) in 1960 and then state
2 (1/8 to 1/4) in 1985. The data and model are similar to those of Chari, Kehoe and
McGrattan (1995) in their study of the dynamics of international differences in real growth
rates.

6.2 The posterior simulator
The posterior density kernel is the product of m kernels of the multivariate beta

density,
H:;l p;‘““” [P,; = 0 L ); Z Py = 1] i=1,...,m). (6)

There is a convenient genesis for this density (Johnson and Kotz, 1972, 232-233).
Construct the m” independent random variables

d, ~ xz[z(nij ta, + l)] (i,j=1,...,m). (7
Then

11



py=4,/3" d, (ij=1...m) 8)

has probability density kernel (6). It is thus simple to construct i.i.d. drawings from the
posterior distribution. On a Sun 20 Sparcstation, 10,000 draws for 2 six-state model
(m = 6) requires 8.2 seconds. Computation is independent of sample size and proportional

to m?.

6.3 Posterior moments and their robustness

Under conditions that are not very restrictive, the first-order Markov model implies a
unique, equilibrium value of 7,. The vector #" is an equilibrium value of 7, if and only if

’
s

I
n' =7 P, ie., © isaleft eigenvector of P corresponding to the eigenvalue 1. (Since
the entries of each row of P sum to 1, there must always be such an eigenvalue.) If there

is only one eigenvalue of 1, then 7 is unique. An eigenvalue of P cannot exceed 1, and
if all eigenvalues but one have modulus less than unity, then 7, converges to 7" from any

initial value. For any Dirichlet prior (5), the probability that 7~ is unique and that =,

therefore converges to 7" from any initial value, is 1.

The posterior density and moments of 7~ can be computed by evaluating the
appropriate left eigenvector of P for each P drawn from the posterior distribution by means
of (7) and (8). (This evaluation requires 32.1 seconds for 10,000 draws of P, on a Sun 20
Sparcstation. Computation time is proportional to #’.) Posterior densities for #; and 7
are provided in Figure 5. We focus on these two values because of the contrast in their
posterior densities: while both are skewed to the right, the skewness for 7, is considerably
stronger than that for 7;.

Figure 6 presents upper and lower bounds for the posterior expectation of x;, for
prior density kernels p(6) in the class 1<p{8)<k, Values of %k are ploited on the
horizontal axis. The vertical axis indicates the bounds; it is centered at the original (k=1)
posterior mean of ,082. The posterior mean of 7, - the equilibrium probability for the
lowest output state -- is quite sensitive to changes in the prior within the density ratio class.
When k=4, it ranges from .065 to .103. At all values of %, variations in the prior can
increase the posterior mean of 71:,' , more than they can lower it: e.g., at k=50 the range
extends from .043 to .152. The dashed line indicates the asymptotic normal approximation
to the bounds, taken from the original posterior mean of .082 and standard deviation of
.036 and the function y(k). The approximation is poor, understating the upward
sensitivity and understating the downward sensitivity.

Lower and upper bounds for the posterior mean of 7 are indicated in Figure 7. Here,
the asymptotic approximation is excellent. Since the posterior mean of z is 211 and its

12




posterior standard deviation is .058, variations in the prior within the density ratio class
have a smaller effect, relatively, on 7, than they do on ;. The asymptotic approximation
understates upward sensitivity and overstates downward sensitivity but the effect is mild,

amounting to less than 10%.
7. An example: Trend and difference stationarity

Beginning with the investigation of Nelson and Plosser {1982), the propositions that
most macroeconomic aggregates are trend stationary or, alternatively, that they are
difference stationary, have captured the attention of applied and theoretical econometricians.
These hypotheses have been approached using Bayesian methods by a number of
investigators, including Zellner and Tiao (1964), Sims (1988), DeJong and Whiteman
(1991), Phillips (1991), Sims and Uhlig (1991), Schotman and van Dijk (1991a, 1991b,
1992) and Geweke (1994).

Consideration of the sensitivity of inference and conclusions about trend and
difference stationarity in these models to different prior distributions within the density ratio
class is an interesting task for two reasons. First, because questions about trend and
difference stationarity involve the long run, conclusions are likely to be sensitive to prior
distributions; arguments to this effect are made in Sims (1988) and Geweke (1994).
Second, the parameters of interest in models best suited to study of these questions enter
nonlinearly (Schotman and van Dijk, 1991a) and there is strong evidence that disturbances
are leptokurtic (Geweke, 1993). One may therefore anticipate that posterior expectations of
functions of interest might be sensitive to prior distributions within the density ratio class,
and that this sensitivity might not be well approximated by the asymptotic analysis of
DeRobertis and Hartigan presented in Section 4.

7.1 The model and data
The essentials of the model are presented here. For further discussion the reader is

referred to Geweke (1994). The trend stationary model is

y,=y+0t+u, (9)

AL, =g; A(L)=(1-pL)-A(LY1-L); 0<p<l, (10)

Fifo

g ~ (0, 0% v).

A little manipulation of (9) and (10) yields
4 4
v =y(1-p)+ 6(p - Z,-=1“f) +38(1-p)t+py,_, + EJ,:] a3,y = Vs ) H

and the likelihood function may be expressed
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For computation it is convenient to adopt the hierarchical representation
vt~ 2 (v)]v, 8,[1!, ~N(0, o%v,).
This yields the equivalent likelihood function

Hi e exp[Zi (o7&t +v) /21),}.

The prior distribution consists of several independent components. An important one
is
Pi(p) = (s+ Dp"Xa(P)- (1n
In the analysis below in Section 7.3 we focus on s =9 to keep the presentation compact.
Geweke (1994) compares results for different values of 5. In Section 7.4 we focus on
5 — oo, which yields the difference stationary model with p =1,
V=Y =6+u, u= Z;aju,_j +&,
and on the posterior odds ratio for the models distinguished by s =9 and s — oo,
The prior specification for a,,...,a, is
a, ~N(0,m,z]) (m, =731, =, =.342).
This is a “Minnesota prior” (Doan, Litterman and Sims, 1984) in which the prior standard
deviation of g, is .5 and the prior standard deviation of g, is .1. The prior distribution of
v is diffuse:
7 ~N(yo:07) (o, =10}
Finally,
§~N(8,0%) (5=0,0,=.05),
p,(0) <™,
and
p, (V)= wexp(-ov) (@ =.25).

The example presented here uses for {y,}:'=1 the real GNP time series of Nelson and

Plosser (1982). Data were furnished by Charles Nelson, and the least-squares estimates
reported in Nelson and Plosser (1982, Table 5} were reproduced to all reported places.
The sample period for the results here is the same as that used by Nelson and Plosser
(1982), except for a few early observations that had to be dropped because more lagged
values were used here.

7.2 The posterior simulator
The full posterior density for all parameters, including {v‘};, is intractable, but

conditional distributions are relatively simple. In particular, the joint conditional
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distribution of (¥, &) is bivariate normal, and that of (a,, @,, a;, @,} is multivariate normal.
The conditional distribution of p has kernel density

ps BXP[_(p - ﬁ)l/zﬂ‘z]x(n.n(p)
where p and A are known functions of the other parameters and the data. The conditional
distribution of Vv has kernel density

(vi2)™PT(v/2) " exp(-1v)
where 1= éz;[log(v,) + v ‘] +®. The v,,...,1, are conditionally independent with

(o7 + V) v, ~ (v +1).
Finally, the conditional distribution of o’ is
2 (E Mo ~ D).
The posterior density satisfies the conditions of Roberts and Smith (1994) for

convergence of a Gibbs sampler to the posterior distribution. A Gibbs sampler may

therefore be used to construct a posterior simulator, using six blocks corresponding to the
foregoing six conditional distributions. The conditional distributions of p and v are
unconventional; efficient algorithms for drawing from these distributions are developed in
Geweke (1992, Appendices A and B).

The output of the simulator provides the sequence of parameter vectors {Gm} , which
may be used to approximate the upper and lower bounds for any function of interest for
which the posterior expectation exists, as described in Section 3. Results presented here
are based on M =10,000 iterations of the Gibbs sampler, which required 90 seconds on a
Sun 20 Sparcstation.

7.3 Posterior moments and their robustness.

Figure 8 provides posterior densities for three parameters of particular interest in the
trend-stationary model: 8, the trend growth rate; v, the degrees-of-freedom parameter of
the Student-# distribution of the shocks; and p, the leading root of the autoregressive
process fory,. In each case the posterior density is plotted as a heavy line, and the prior
density as a light line. Notice that the posterior distribution of & is approximately
Gaussian whereas those of v and p are not.

Figure 9 presents upper and lower bounds for the posterior expectation of &, for prior
density kernels p{) in the class
p(6) < p(8) <kB(6),
where DP(8) is the prior density described in Section 7.1. Values of k are plotted on the

horizontal axis. The vertical axis indicates the bounds; it is centered at the posterior mean
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of 3.05%. The solid line indicates the actual upper and lower bounds, computed as
described in Section 3. The bounds are nearly symmetric about the posterior mean. The
mean displays some sensitivity to variation within the density ratio class: e.g., variations
by a factor of 40 lead to an upper bound on the trend growth rate half again as great as the
lower bound. The dashed line indicates the asymptotic normal approximation to the
bounds, taken from the posterior mean and standard deviation and the function y(k). The
approximation is good, though not nearly as good as would be the case in the linear model
discussed in Section 5 with the same degrees of freedom. In view of the near-normality of
the posterior density of & in Figure 8, the quality of the approximation is perhaps not
surprising.

Figure 10 presents upper and lower bounds for the posterior expectation of v. The
horizontal axis is the same as in Figure 9, the vertical axis is again centered at the posterior
mean (6.0, for v), and this axis has been scaled so that one posterior standard deviation is
the same distance in Figures 9 and 10. Reflecting the imprecision of the posterior density
for v displayed in Figure 8, the bounds encompass a substantial range for this parameter,
e.g. from v=3tov=13 when k£ =40. The asymmetry of the bounds is a reflection of
the asymmetry in the posterior density, which in turn is due to the characteristics of the
Student-¢ distribution itself: a change of one degree of freedom implies a more substantial
change in the distribution when v is lower than when v is greater. The asymptotic
approximation is quite poor for this posterior moment. It systematically overstates the
ability of priors within the density ratio class to lower the posterior mean of v, and
understates their ability to increase it. This effect may be understood from the skewed
posterior distribution of v indicated in Figure 8. The data speak strongly against values of

v much below the posterior mean, relative to values much above it. Hence the intervals in
Figure 10 are centered above the horizontal axis.

Figure 11 presents upper and lower bounds for the posterior expectation of p. The
horizontal and vertical axes are set up the same as in Figures 9 and 10, with the vertical
scaling again set so that one posterior standard distribution is the same distance in all three
figures. Variation in the posterior mean of p, over the density ratio class of priors, is quite
substantial. For example, when & =50 the lower bound is less than .80 and the upper
bound is about .97. The asymmetry in the bounds is due to the closeness of the original
posterior mean to the upper bound of the support of p, and to the asymmetric shape of the
posterior density exhibited in Figure 8. The asymptotic normal approximation to the
bounds is better than is the approximation for v, but not as good as the approximation for
8. As was the case with v, the difference between the actual and approximate bounds
may be understood in terms of the original posterior density in Figure 8. The posterior
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distribution for p is skewed to the left, in part because of the upper truncation of the
support at o =1. This limits the ability of prior distributions within the density ratio class
to raise the posterior mean much above its original value of .90. The potential to lower the
mean is greater. Once again, skewness in the posterior distribution is key in the
discrepancy between the exact and asymptotic bounds.

7.4 Posterior odds ratios

Since much of the literature has focused on whether macroeconomic time series are
trend or difference stationary, it is of some interest to compute the posterior odds ratio for
the hypotheses

H,: p=1
and
Hy: O<p<l.

Given Hj the prior distribution for p is (11). Under both hypotheses, the prior
distributions for all other parameters are the ones indicated above in Section 7.1. (For
further discussion of these points see Schotman and van Dijk (1991a, 1991b) and Geweke
(1994).) For conveneince we take the prior odds ratio to be 1:1 in what follows.

There is a convenient generic approach to computing the posterior odds ratio (POR)

that may be applied in situations like this. In the general case, suppose that two models (A
and B) have the same likelihood function L(8) and differ only in their prior distributions,

which have probability density kernels p,(8)=x,(8)p(8) and p,(6)=r,(8)p(8)
respectively. The functions 7,(6) and 7,(6) are normalized proper p.d.f.’s, but p{6)
need not be proper. In this case it is of interest to examine the robustness of the posterior
odds ratio over the density ratio class p(6): a(6) < p(6) < b(8). This class leaves the prior
density ratio p,(0)/p,(8) = 7,(6)/7,(6) unaffected, while varying the absolute levels of
the densities within the bounds specified by the density ratio class. Since

[,z (8)p(O)L(6)d | [7.(6)/7,(6)]m,(6)p(6)L(8)d6
L,m@p(O)LO)d8 | 7 (6)p(6)L(8)dE

one may compute the posterior odds ratio by taking g(8) = n,(8)/7,(€) as the function of

POR =

7

interest in Model B. All the methods of Sections 1 - 4 apply to the analysis of this
situation, with g(8) = 7,(6)/7,(6) the function of interest, and p(6):a(8) < p(8) < b(6)

the density ratio class.
Next, consider a specialization of this approach to the case in which 8’ = (6{ \ 9;) ,

p,(0) = 7,(8,)p(6,) and py(6) < m;(6,)p(H,). The models differ only in the prior
distribution for the subvector 8,. The prior densities 7,(8,) and 7,(8,) are proper and
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normalized. The models have a common, independent prior density kernel p(Qz) for 6,.
This prior need not be proper and if proper p( 0,) need not be normalized. Then

J Lk, w0 Le)as, /[, (0100140, |, mi(0)LU0)(0:)aa o, (
.[e, J‘el E;(B‘)L(a) p(@z )dﬂldﬂz -
If the expressions _fe 7,(6,}1{8)d6, and L 7,(6,)L(6)d6, can be evaluated quickly, then

POR =

12)

one may approximate the posterior odds ratio by drawing € from the posterior distribution

under Model B, and treating the term in brackets in (12) as the function of interest.
This method applies in the limit as 7} (6, ) places all its mass on a single point 8;. The

numerator in the term in brackets in (12) then becomes L(G:, 62). This situation is

precisely the one that occurs here. Model A is the model of Section 7.1 with p=1
imposed; model B is the model of Section 7.1 with the prior 7,{-) indicated by (11); 8,

consists of p; and 8, consists of all the other parameters. Geweke (1994) shows that the
bracketed term in (12) is
exp[—(l — [5)2/2.1’]
Y N 3 ]
(s+1) Jo P’ exp[-(p —9)2/233]0’;?
where § and A are functions of the data and ,.

(13)

Suppose now that we examine robustness of the posterior odds ratio to changes in
p(8,) within a density ratio class p(6,):a{8,) < p(8,)<b(6,). The bracketed term in (12)
is invariant with respect to changes in p(Bz). The methods of Sections [ - 3 therefore
apply to this sitvation, taking as the function of interest
L}l 7,{6,}1(6)d8, / -‘-91 7,{6,)1(8)d8, . This expression for our H, and H, is (13). The

methods of Section 4, however, do not apply because the function of interest changes with
sample size.

We examine the sensitivity of the posterior odds ratio in favor of H, over the density
ratio class p(8,): p(6,) < p(8,) < kp(6,) where p(8,) is the prior density kernel for all the
parameters except p described in Section 7.1. The results of this analysis are presented in
Figure 12, in the solid curve. This figure is set up similar to Figures 9-11, vertically
centered at the posterior odds ratio of .53 computed with the original prior, and scaled
according to the posterior standard deviation of (13). The posterior odds ratio is quite
sensitive to priors within the density ratio class. When &k =3 the posterior odds ratio can
exceed 1 or drop below .30; when & =30, it can exceed 3 or fall below 0.05. Clearly the
limits are not at all well described by the function (k) of Section 4. Moreover, the

assumptions of Proposition 5 are not satisfied here. (The function of interest changes with
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sample size.) Whether there is a variant of Proposition 5 that would apply to the posterior
odds ratio is an interesting and open question.

Figure 13 provides bounds for the log posterior odds ratio. The shape of the bounds
here is closer to the one suggested by y(k) but the resemblance is still not close.

Moreover, there is no formal reason to expect this to be a useful approximation.
8. Conclusion

The density ratio class provides a range of prior distributions that reflects uncertainty
about the prior distribution of the kind that is likely to arise from uncertainty in elicitation.
It is a very convenient class to use. Given the output of any posterior simulator, one can
form upper and lower bounds for a postertor moment. The computations involved are very
fast and are not specific to the problem at hand, i.e., the same algorithm and code is
applicable for all problems.

The examples taken up here are nontrivial applications that cannot be approached by
analytical methods. It proved straightforward to obtain upper and lower bounds over
several posterior moments for many density ratio classes. These bounds often differed
substantially from their asymptotic (in sample size) values. In particular, the more skewed
the posterior probability density the less accurate was the asymptotic approximation. It is
likely that this feature will be found in most nontrivial applications. A modest extension of
these methods makes it possible to examine the robustness of posterior odds ratios within
the density ratio class, but in this extension there is no applicable asymptotic
approximation. The posterior odds ratio studied in one of our examples proved sensitive to
variations in the prior, These observations, combined with the ease of obtaining good
numerical approximations to exact results, suggest that investigators should work with the
exact results and not asymptotic approximations.

A little additional work substantially broadens the applicability of the method.
Suppose that a client has access to the output of the investigator’s posterior simulator,
{ 8, w(6, )};lfor the posterior density kernel L(€)H(@), and the corresponding

evaluations of the function of interest, {g(@m)}:=1. The client’s density ratio class of prior
distributions is p(0): a{6) < p(8) <b(0). The client may proceed exactly as indicated in

Section 3, so long as the assumptions of Proposition 4 are satisfied. The practical

limitations of this procedure are currently being explored (Geweke, 1995). This analysis
may be undertaken for any function of interest g(6,,} that the client can compute, and need

not be limited to those whose posterior expectation has been reported by the investigator.
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Figure 1: Some hypothetical E ( f ) functions
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Figure 5: Some posterior densities in the first order Markov chain model
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Figure 6: Upper and lower bounds for E {'n::ln j (= 1,6
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Figure 8: Some posterior densities in the trend stationary model
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Figure 9: Upper and lower bounds for E (5| y)

E@Gly)
0.04

0.036 1

0.032 1

0.028 1

0.024 1

0.024
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Figure 12: Upper and lower bounds for posterior odds ratio




Figure 13: Upper and lower bounds for log posterior odds ratio
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