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Introduction

This paper describes estimators of portfolio balance schedules
of the form assumed by Phillip Cagan in his famous study of hyperinflation.
Under suitable restrictions on the disturbance process, the estimators
are statistically consistent under the circumstance that the public's
expectations of inflation are ratiomal im the sense of John F. Muth.

Except in the special case where the money supply process obeys certain
restrictions delineated in my earlier paper [ 1, it will not be rational
for the public to form its expectations using the adaptive expectations
scheme assumed by.Cagan. Under adaptive expectations, people ignore

past rates of money creation in forecasting inflation, even though where
Cagan's portfolio balance schedule prevails, past values of money can
typically be used to forecast inflation under most monetary regimes.
Interestingly enough, the estimators described here break dowm in the
singular case in which Cagan's adaptive gxpectations mechanism is rational.

From a technical viewpoint, the model studied here is interesting
because it provides an example of a case in which a key structural
parameter is identified from restrictions that the model imposes on the
systematic part of the vector autoregressive representation of the
system. This circumstance is not common in econometrics, but does
characterize a class of structures in which the public's expectations of
future variables enter and in which the public's expectations are rational.
It turns out that the vector autoregression fails to identify the slope
parameter in the portfolio balance schedule in the special case that
Cagan’'s adaptiﬁe expectations scheme is ratienal. That is what causes
the estimators here to break down for that case, and causes resorting to

estimators like those described in my earlier paper [ ].



The Model: Identification

I suppose that the portfolio balance schedule has the same
form that Cagan assumed,
(l), m -p =an +e

t t

where €, is a random variable with certain important properties to be

specified shortly, and where m is the natural logarithm of the money
supply, pt is the natural log of the price level, and us is the public's
current expectation of the rate of inflation next period, that is, the

P ] + . -
public's expectation at time t of Py P,

. . . .1
expectations are rational, which amounts to imp031ng—/

. I assume that the public's

(2) T = B (Prygpy)
or
Te = EXeng
where X1 = Piyg = P and where Etxt+1 = E[xt+l[xt, X 10 +ets Hps

Ueopo ... ], where p =mo-m . Let nt =g

. Then substituting

t = €t-1°

(2) into (1) and first differencing gives
mo-m ) = BPg) = alx 47F %) F e T e,y
or
(3) we — X T alBx 0 oE %)+ o
I now assume that n£ is serially independent with mean zero, that is

(4) Et__lﬂt = E[ntixt_lj xt_z’ ters ut_li ut_zj "'] = 0'



(As indicated below, assumption (4) can be relaxed to permit nt to follow
a low order Markov process.) Assumption (4) implies that n, is orthogonal
to (i.e., uncorrelated with) lagged x's and u's, but permits n, to be
correlated with current and future values of x and L. Indeed, the sense
of the model is that movements in nt, which is the first difference of
the disturbance in the demand function for money, cause responses in
current and future values of the price level (and maybe the money supply
too if the monetary authority is causing m to display feedback from p--as
seemed to be the case in several hyperinflations).

Using assumption (4) and taking expectations in (3) conditional

on information known at time (t-1) gives

(53 Bpoq¥e = EpogXe = @B g% 9B g%

)

where 1 am using the fact that E (Et Furthermore,
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letting © be any subset of (x «ss), and taking

t-1° Xe-27 *00 Meepr Heoopo

expectations in (3) conditional on 6 gives

(6) E(ut—xt)fe = aE(x_ ;%) |8,

t+1

since (4) implies that Ent’6_= 0 for @ any subset of (xt_

cer)e

l’ L ] Ut_ls

Now equation (5) is a (monlinear) restriction on the systematic
part of the vector autoregressive representation .of the (x, J) process.
It is a restriction which in general involves the parameter o in a
nontrivial way. Indeed, the restriction (5) or (6) in general identifies
0, and as will be seen, provides the basis for various possible methods
of estimating ¢ consistently. Before proceeding to these methods,

however, we take note of the fact that there is one singular case in



which o is not identified by restriction (5). This is the case in which

X, is governed by the process

_1-X

() X =00 Xe-1 t 5

where E[Etfxt_l, X _ns eers Ho g5 W o ees) = 0, Under (7), we have

E =..1;:.}_\._
t-1%¢ ~ I-AL Fe-1°

so that Cagan's assumption of adaptive expectations coincides with
expectations being "rational." Furthermore, as Muth pointed cut, under

(7) we have

_ 1-2

= = i > 1.
E 1% = 15T Fe-1 for all j > 1

Bo1¥e4

Consequently under (7), we have
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for all t. Under this circumstance, {(5) becomes

1 — =
(5" Et—lut Et—lxt 0,

which is a restriction on the systematic part of the vector autoregressive
representation of.the (x, 1) process, but one that does not involve o.
Therefore, restriction (5') does not identify «. This result is
consistent with the findings of my previous paper [ ] in which I

showed that under the circumstances in which Cagan's adaptive expectations
mechanism is rational, o is not identified even from knowledge of the.
entire vector autoregressive representation of the (x, 1) process--which
includes the systematic part and the covariance matrix of the innovations.

That earlier finding implies the present result, since the present



result only considers the implicatiocns for identification of knowing a
subset of the information assumed in the earlier paper. Throwing away
information obviously cannot cure underidentification.

That a structural parameter O is in general identified by
restriction (5) on the systematic part of the vector autoregression is a
special circumstance not encountered in usual macroeconomic applications,
where identification of structural parameters almost always requires
restrictions on the covariance matrix of innovations and on the matrix
of contemporaneous structural coefficients. There are two special
features of the presént model that permit only the systematic part of
the vector autoregression to identify the structural parameter 0. The

first is the feature that in (1) m_ - P, is posited to vary with the

t

public's expectation of inflation one period forward. The second is

that the public's expectations are assumed to be ratiomal. Applications
that share these two features regarding timing-and rationality will
often by associated with implied vector autoregressions, the systematic

parts of which carry identifying restrictions.

Nonlinear Estimation of ©

To derive the restrictions on the vector autoregression implied

by (5), assume quite generally that

(8) E x = v{L)x, + h(L)K,

VO + vlL + ien

+ hlL T oeeee

_ where v(L)

h(L)

b,



Substituting (8) into (3) gives

or

[1-0h(L) (1-1) Ju, = [1+oav(L) (1-L) Jx  + n.

This can be written

(1—oah0)ut = a(hl-ho)ut-l + oc(hz-hl)ut_2 + ...

+ (l+0tv0)xt + a(vl_vo)xt~1 + Ot(vz-vl)xt_2 + ...

Substituting E_,n, = 0 and E__;x = v(L)x _; + h{ldx _; gives

(l_ahO)Et—lut = a(hl-ho)ut_l + OL(hZ—hl)ut_2 + ...
+ a(vl—vo)xt_l + a(vz—vl)ﬁt_z + ...
+ (l+uv0)(v(L)xt_1+h(L)Ut_1)

= (a(vl—vo) + (l+av0)v0)xt_1
+ (a(vz—vl) + (l+0tv0)v1)xt_2 + ..

+ (@hy-hg) + (L hdu ) +

F (alhy=hy) + (LRI DU, + eee

He - %, = ov(L)x, + ¢h(@L)¥_ - ov(L)Lx, - ¢h(L)LE_ + N,

+ N

t



This can be written as

(9) (1-0hE,_ . = {-L Tav e (-Lv(L) + (av)vLlx,

-1 -1
+ {1 Tah gt 0 (L) R L)+ (v dh @) T g -

Equations (8) and (9) embody the restrictions across Et—lxt and Et—lut

implied by equation (5).

A way to estimate ¢ can now be advanced. Write

= E +
t t-1%t 7 @zt

Wy = Ep ¥y tag,

where A, is the innovation in x (the part of x that can't be predicted

X

using lagged x's and U's) and a ' is the innovation in . Where Et—l ‘

Ut

and Et_lut are given by (8) and (9), respectively, we have

T —
(8") xt.— h(L)xt_l + V(L)Ut_l + a_.
" po= —i {7 lay +L"1a(1-L)v(L)+(1+av v (@) }Ix
t  1-Oh, 0 0 -1
+—2 (oo +L-1a(1-L)h(L)+(1+av Yh(l)} +a
1-0h, 0 0 He-1 ™ Fyes

On the assumption that (axt’ aUt) has a bivariate normal distribution,
maximum likelihood estimates of the h's, v's and g under restriction

(5) can be obtained by minimizing

axt axtapt
‘!/\ ~ ~ 2
(10 Laxtaut Eaut

subject to (8') and (9").



While this procedure is more efficient asymptotically than
the procedures to be implemented below, its drawback is thaf the
restrictions across (8') and (9') are highly nonlinear, so that minimizing
(10) under (8') and (9') is computationally very difficult.

A computationally feasible variant of the above procedure can
be obtained by using (6) and adopting a convenient parameterization
of the (x, Y) process. Define Y. = utﬂxt, and consider the restricted

moving average autoregressive representation

_ Lo _
Ve Bl B Ve 0 0 Y2
= +
g1 %y 0 0 X1 Byy  Baa|{®eo2
. PO 1r N
axt ' Y11 Y12 axt—l 0 Q axt—?_
+ + +
qe ° o aut—;J Vo1 Ya2 B2
L_ L — L —t
where Et-laxt = Et—laut = (), Under (11) we have

B 1% T Big¥eor ¥ Bio®er * Ya18xe-1 Y V12801

B ®err ™) = BpnVeon + Bop®eoq + Yorfxee1 V22?1
In the above equations, restriction (6) implies
(12) Byg = 0Bgys Ypp = @Yy

B = 0B

12 220 Y12 T %Yoy



For fixed ¢, maximum likelihood estimates of the B's and y's can be
obtained by minimizing (10) under (11) and (12). The algorithm of
Wilson [ ], for example, could be used to do this. Searching over
o for the value that minimizes the determinant (10) under (11) and (12)
would then give maximum likelihood estimates under the restrictions (11)

and (12).
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A Two-Step Procedure

Equation (6) suggests the following two-step estimator of ¢,
which is statistically consistent. First, where © is any subset of
information available at t-l--say some subset of lagged U's and x's, a

constant, and a trend--regress x ~xX,_ on 8 in the sample period and

t+1
call the systematic part Et_l(xt+1—xt). In the second step, compute the
regression of Homx, against Et_l(xt+l—xt). (In practice, a constant and

trend are also included in this regression.) Adopt the decompositions

E x, ,,~E x. = (E

Y o=
e Pt x) b (E 0)

t—lxt+1 t=-1"¢t t-1 t

~

B 1® e Bro1®e T B X 5 (Egt]e N

Substituting these two equalities into (5) gives

(13) u = x

. = aEt—l( 41X ) + n, + a? + aE

where Wt, being in the nature of an innovation, obeys E[Wt|xt_l, vaes
ut—l’ .v.] = 0, and where by construction EEtIB = (. Then least squares
estimation of the above equation gives a consistent estimate of «, since
the composite disturbance nt + aWt + uEt is orthogonal to the regressors.
Notice that even though Wt and nt are serially uncorrelated, Et is in
general serially correlated. This means that the composite disturbance

is in general serially correlated. To see this, use (13) to write the

once lagged composite disturbance as

~

-1 T B Bexp g
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Then we have that

E{(nt+aWt+aEt)(nt_l+aTt_l+agt_l)}

= E{(n +o¥ +af ) (u _;-x _~0E__,(x,—x_ Dk

Since E[ntlut_l, sees X go cea] = E{thut—l’ vesy X cea] = 0,

the covariance above equals

=12

GE[Et{ut_l—x 1.

T

Now Et is by construction orthogonal to 8, which does not necessarily

span the space in which (ut_l—xt_l—uﬁt_z(xt-xt_l)) lies. Therefore,

there is no assurance that the above covariance is zero. The serial
correlation in the composite disturbance will be smaller the smaller is

the variance of Et relative to the variances of Yt and Nye To the

extent that for forecasting x and y the information set £ well approximates
the entire information set [xt_l, - ut—l’ .+.], the serial correlation

in the composite disturbance will be small.

It is tempting to use the serial correlation parameter of the
estimated composite residuals from the two-step estimator as a diagnostic
test of the assumption that n. is serial ungorrelated. The preceding
observations indicate that this can be done only with some care.

Table 1 recqrds the results of applying the two—step estimator
to six of the hyperinflations studied by Cagan for the same periods

studied by Sargent [ 1, and where § = { Table 2 reports

X_y> Xp_p)-

the results obtained by extending 9§ in steps from {xt_l} to {xt—l’

Xi_9v Xe_gs X 4}. Each of the estimators reported is consistent on
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the null hypothesis. To say the least, we do not recover a statistically
significant estimate of 0. Compared with Cagan's estimates of a, which
ranged from -2.30 to -8.55, the estimates in Table 2 are small in absolute
value., Furthermore, they are as often positive as they are negative,
and are uniformly of low statistical significance.

The disappointing nature of these results naturally leads one
to question whether the condition is met that Et-l{utﬁxt} # 0,
which is necessary for the estimators to work and which breaks down
where Cagan's adaptive expectation scheme is rational. Table 3 contains
F-statistics pertinent for testing the null hypothesis-E{(ut-xt)l
ut—l’ “t-z’ ut-3’ X, 1> X9 X _g» t} = 0. Only for the German data
are we able to reject the null hypothesis at the .95 confidence level.
This suggests that, except perhaps for Germany, the preconditions are
probably not met that must be for the estimators here to be able to
estimate ®. The parameter o is only identified by the present procedures

to the extent that E__ {u -x } # 0.
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Correcting for Serial Correlation

The techniques above all require the assumption (4) that Ny is
serially independent. The techniques can be modified to incorporate the
assunption that nt follows a low-order Markov process. To illustrate, I

will suppose that

where E[gt]xt_l, Ko_os +ves He s He_ps veo]

Quasidifferencing (3) then yields

- - x + = -
He = PHp_g — X+ ox o = alBx 7B 4%)

- palE _yx "B _ox ) + £

Taking expectations conditional first on information available at time

t-1, then on information available at time t-2 gives

(52) B qQuemone ) — By (pmoxy) = @B % 0 - _g%)

= op(E_yx "E._ox _4)-

(5b) B oGuoup g} - E,(emox, 4} = (B %, =B, _o%)

T OB X B pXey)

From equation (5a), a two—step estimator along the following lines is

(

indicated. First get estimates of E )} and E

=1+ e t—l(xt_Et—ZXt—l)
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by replacing mathematical expectations with the corresponding values
from linear least squares regressions. Second, estimate (5a) by (nonlinear)
least squares, say a la Hildreth and Lu.

It is of some interest that if p#0, then this two-step estimator

recovers 0 even under the situation in which

1-A

i1 = 1530 ®e-1°

so that Cagan's adaptive expectations scheme is rational. Under the

above scheme, we have

B 1%t~ Bead®e T
for ali t, but also

_ 1=
Ee1¥e Et—ZXt-_-l =10 Fe-1%e-2)>
so that (5a) becomes

1-A
ESVRAGTIR R R

Et_l(ut—put_l) - Et_l(xt—oxt_l) = —ap(

"in which both ¢ and p are identified. Notice that identification of

o is lost if p=0, which is our previous result.



- 15 -

Conclusions

The discouraging results from implementing the estimators
described here were to an extent foreshadowed by the overfitting tests
implemented by Sargent [ }. Those tests indicated that the model
formed by assuming that the money supply process was such as to make
Cagan's adaptive expectations scheme rational is not drastically inconsistent
with the data, and for three of the countries cannot even be rejected at
conventional confidence levels relative to several more general stochastic
models. The estimators in this paper break down in precisely those
circumstances in which adaptive expectations coincide with rational
expectations. Consequently, evidence that the model formed by assuming
that adaptive expectations are rational is approximately adequate does
not speak well for the prospects of implementing the estimators described
here.

Nevertheless, from a technical point of view the estimators
described here are of interest in a broader range of apﬁlications then
we have studied here. Versicns of the procedures described here are
appropriate ones in a host of macroeconomic applications where expectations
of rational agents are important explanatory wvariables, and where
simultaneity is a problem. Examples include analysis of the permanent

income consumption schedule and the labor supply schedule.
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Footnotes
L/The reader can regard E[zt+l|xt, ...] either as the mathematical
expectation of Zi4l conditioned on the indicated wvariables, or as the
projection of Z 4l against the space spanned by the indicated wvariables.

Either way, the argument goes through. The projection interpretation is
the relevant one from a practical viewpoint, since it rationalizes the
linear regressions to be computed below.



Table 1
Two-Step

Estimates of @
Eal

Et-l(xt+1uxt)’ constant and trend.

- % regressed on
Ut r g

é EE d.w.
Austria .220 .102 1.989
Feb'21-Aug'22 {.354)
Greece 480 . 360 1.739
Feb'43-Aug'd4 (.176)
Hungary I ~-.124 .125 1.465
Aug'22-Feb'24 (.401)
Russia 080 .183 1.652
Feb'22-Jan'24 (.621)
Poland ~.148 .127 1.782
May'22-Nov'23 (.769)
Germany .229 . 051 1.598
Oct'20~July'23 (.405)

Note Et_l(xt+l-xt) formed by regressing X "%, On

Epa1? ¥e-27

constant and trend.

12

12

12

17

12

27



u - X

t4+1 t+1
Country Estimates
1
AUSTRIA . 397
{.960)
GREECE . 466
(.187)
HUNGARY I -.137
{.387)
RUSSIA 1.211
(.731)
POLAND ~.566
(2.477)
GERMANY .143
(.441)

= u(Etx

Table 2

w2 P¥ee) T Bt By
For Forecasts Based on No. of Lags
2z 3 4
.220 .274 .187
(.354) (.316) (.366)
.480 .433 476
(.176) {.161) (.098)
-.124 © =-.100 ~.245
(.401) (.401) (.436)
.080 -.330 -.116
(.621) (.725) (.879)
-.148 .255 .231
(.769) (.500) (.267)
.299 .220 .211
(.405) (.410) (.215)

Standard errors are in parentheses.



_ Table 3

3 3
Regression: Mo = %, = izl ¢i Mo g + kZl kat_k + Blt + BO

F-Statistics for Testing Hypothesis (1) ¢i=0, i=1,2,3 or (2) ?k=0, k=1,2,3

Country 1 2 3

AUSTRIA 2.790 .400 1.41
' (3,6) (3,6) (7,6)

GREECE 1.114 . 248 1.15
HUNGARY I 1.421 1.222 2.25
(3,6) (3,6) . (7,6)

RUSSIA .341 1.333 1.87
(3,11) (3,11) (7,11)

POLAND .948 .733 (1.29)
(3,6) (3,6) (7,6)
Kk *

GERMANY 6,830 1.906 3.637
(3,21) (3,21) (7,21)

Numbers in parentheses are degrees of freedom for F-statistics

Col. 1 Hypothesis: ¢l = ¢2 = ¢3 =0

ig: Y =Y =V =
Col. 2 Hypothesis: 1 5 3 0

Col. 3 Hypothesis: all coefficients = 0

*
Significant @ 5% level
*%
Significant @ 1% level



