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1. Introduction

Modern economic theory takes two different approaches to the problem of optimal

taxation. One approach emphasizes the effects of taxation on capital accumulation (see

Chari and Kehoe (1999) for an excellent survey). The basic assumption is that a government

faces a dynamic Ramsey problem: it needs to fund a stream of purchases over time using

linear taxes on capital and labor income. The hallmark result of this literature is that it is

optimal for the government to set capital income tax rates to zero in the long run (Chamley

(1986), Judd (1985)).

The second approach is based on the work of Mirrlees (1971,1976) and abstracts en-

tirely from capital accumulation. Instead, it models agents as being characterized by fixed

heterogeneous and unobservable skill levels. The goal of taxation in this setting is to transfer

resources from the highly skilled to the less skilled in an efficient way, given that incomes but

not skills are observable. An important lesson of this literature is the uniform commodity

taxation theorem of Atkinson and Stiglitz (1976, 1980). It states that if utility is weakly sep-

arable between consumption and leisure, then, despite the presence of the incentive problem,

it is socially optimal for all consumption goods to be taxed at the same rate.

In this paper, we re-examine the zero capital income taxation and uniform commodity

taxation theorems in a much more general setting than has been previously studied. We

consider a dynamic version of Mirrlees’ (1971) original model economy. In each period,

multiple perishable consumption goods are produced using a number of different types of

labor and an accumulable capital input. The agents have differential skills (productivities)

at the different types of labor, and skills are heterogeneous over agents. Moreover, skills

evolve stochastically over time in an arbitrary fashion (although this stochastic evolution is



independent across agents). A crucial element of our approach is that we do not impose

linearity (a la Ramsey) or piecewise differentiability (a la Mirrlees). We accomplish this

generality by allowing for any incentive-compatible and physically feasible allocation.

This environment is technically challenging: it features both dynamically evolving

private information, and a multiple-dimensional type space. There is no known way to develop

a full characterization of the socially optimal allocations in this environment. In particular,

simply plugging in first order conditions for the large number of incentive constraints might

well lead to misleading conclusions.

In the first part of the paper, we re-consider the zero capital income taxation theorem.

We specialize the environment to have only one consumption good. We assume also that

utility is additively separable in consumption and leisure. We prove that in a Pareto optimal1

allocation, individual consumption satisfies a “reciprocal” intertemporal first order condition

of the kind derived by Rogerson (1985):

1/u0(ct) = (βRt+1)−1Et{1/u0(ct+1)}

Here, Rt+1 is the marginal return to investment, u is the agent’s momentary utility function,

and β is the individual discount factor.

This “reciprocal first order condition” has an important consequence. If individual

consumption is not deterministic in a Pareto optimum, then from Jensen’s inequality we

1By Pareto optimal, we mean Pareto optimal relative to the set of all allocations that are both incentive-
compatible and physically feasible.
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know that for some t:

u0(ct) < βRt+1Etu0(ct+1) (1)

(The incentive problem means that it is typically efficient for individual consumption to be

stochastic: The planner needs to offer more consumption to high productivity types to get

them to work more.) We prove that (1) implies that if agents trade capital and consumption

in a sequence of competitive markets, it is optimal for tax rates on capital income to be

positive.

The intuition behind the inequality (1) (and the associated capital income tax result)

is as follows. Suppose society considers increasing investment by lowering an individual’s

period t consumption by ε and raising an individual’s period (t+ 1) consumption by εRt+1.

Doing so has two immediate consequences on social welfare (measured in utiles): there is a

cost u0(ct)ε and a benefit βεRt+1Etu0(ct+1).

However, there is a third, less obvious, consequence for social welfare. By increasing an

individual’s consumption in period (t+1) by εRt+1, society reduces the correlation between his

period (t+1) consumption and his period (t+1) productivity. The purpose of this correlation

is to provide incentives for the individual. Hence, the correlation reduction caused by the ε

increase in investment implies that the individual’s period (t + 1) effort and period (t + 1)

output falls.

This adverse effect on future incentives is an additional marginal social cost of increas-

ing investment by ε. In a Pareto optimum, the sum of all marginal social costs is equated

to the sum of all marginal social benefits. Hence, we obtain (1): the (partial) marginal cost

u0(ct) of additional investment is lower than the (total) marginal benefit βRt+1Etu0(ct+1).
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We go on to re-consider the uniform commodity taxation theorem. We revert to

the general assumption of multiple consumption goods, and assume that utility is weakly

separable between consumption and labor. We prove that any Pareto optimal allocation

has the property that within a period, the marginal rate of substitution between any two

consumption goods, for any agent, equals the marginal rate of transformation between those

goods. This result implies that if agents can trade consumption goods in a spot market, all

consumption goods should be taxed uniformly.

The idea behind the proof of the uniform commodity taxation theorem is as follows.

Because utility is weakly separable, consumption only affects the incentive constraints and the

planner’s objective function through the amount of utility derived from consumption. Hence,

as long as resources are scarce, the planner wants to find a way to deliver these utilities that

minimizes the resource cost of doing so. This immediately implies the uniform commodity

taxation theorem.

We make two distinct contributions to public finance. The first contribution is that

we find a general role for positive capital income taxes in a Pareto optimum.2 Here, we find

that thinking based only on representative agent models can be misleading. It is the dynamic

evolution of idiosyncratic shocks that makes positive capital income taxes optimal.

The second is that we greatly generalize the applicability of the uniform commodity

taxation theorem. The standard proof of this result is based on much stronger assumptions.

2Aiyagari (1995) argues that positive capital income taxes are optimal in an incomplete markets setting.
However, he considers only steady-states, rules out markets in an ad hoc basis, and allows only for linear
taxes. In contrast, we consider all possible allocations that are feasible and incentive-compatible in a given
environment, and thus allow for all possible taxation schemes.
Garriga (2001) shows that in overlapping generations contexts, the optimal linear tax on capital income

may be non-zero.
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Atkinson and Stiglitz (1976)’s argument is made in a setting without capital or informational

evolution. Moreover, the argument is made under restrictive assumptions: optimal taxes are

differentiable and that a first-order approach is valid. Both assumptions are typically satisfied

only under highly restrictive conditions. We simplify the proof and thereby greatly broaden

the range of environments to which it applies.

It is important to re-emphasize that we prove our results while allowing individual

productivities to follow arbitrary stochastic processes. There are still many significant unre-

solved empirical disputes about the time series structure of individual wages. (See Storeslet-

ten, Telmer and Yaron (2001) for a brief discussion of the ongoing controversy.) For this

reason, we view the generality of our analysis as its most important feature.

2. Setup

The economy lasts for T periods, where T may be infinity, and has a unit measure

of agents. The economy is endowed with K∗
1 units of the single capital good. There are J

consumption goods, which are produced by capital and labor at N different tasks. The agents

have identical preferences. The preferences of a given agent are von Neumann-Morgenstern,

with cardinal utility function:

TX
t=1

βt−1U(ct, lt), 1 > β > 0

where ct ∈ RJ+ is the agent’s consumption in period t, and l ∈ RN+ is the amount of time spent

working in period t by the agent at the N different tasks. We assume that U is bounded from

above or bounded from below; this guarantees that the utility from any consumption/labor
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process is well-defined as an element of the extended reals.

The agents’ skills at the N different tasks differ across agents and over time. We model

this cross-sectional and temporal heterogeneity as follows. Let Θ be a Borel set in RN+ , and

let µ be a probability measure over the Borel sets that are subsets of ΘT . At the beginning

of time, an element θT of ΘT is drawn for each agent according to the measure µ; the draws

are independent across agents. This random vector θT is the agent’s type; its t-th component

θt is the agent’s skill vector in period t. We assume that a law of large numbers applies: the

measure of agents in the population with type θT in Borel set B is given by µ(B).

What makes the information problem dynamic is that a given agent privately learns

his θt at the beginning of period t and not before. Thus, at the beginning of period t, an

agent knows his history θt of current and past skill vectors but not his future skill vectors.

We represent this information structure formally as follows. Define Pt : ΘT → Θt to be the

projection operator: Pt(θ1, ..., θT ) = (θ1, ..., θt). Then, define a σ-algebra Ft = {P−1t (B)|B ⊂

ΘT is Borel}. An agent’s information evolution can then be represented by the sequence

(F1, F2, ..., FT ) of σ-algebras.

Notice that this stochastic specification allows for virtually arbitrary dynamic evolu-

tion of an agent’s skills. For example, the agent’s skills could be constant over time (which

is the traditional public finance assumption). Alternatively, the skills could follow stationary

or nonstationary stochastic processes over time. The only real restriction is that the skill

processes are independent across agents.

What is the economic impact of these skill vectors? An agent with type θt produces
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effective labor ynt in task n according to the function:

ynt = θntlnt

where lnt is the amount of time spent working at task n. Effective labor ynt is observable, but

actual labor lnt is not.

Along with the consumption goods, there is an accumulable capital good. We define

an allocation in this society to be (c, y,K) = (ct, yt, Kt+1)
T
t=1 where for all t:

Kt+1 ∈ R+

ct : Θ
T → RJ+

yt : Θ
T → RN+

(ct, yt) is Ft-measurable

Here, ynt(θT ) is the amount of effective labor at task n produced by a type θT in period t,

cjt(θ
T ) is the amount of the jth consumption good given to a type θT in period t, and Kt+1

is the amount of capital carried over period t into period (t+ 1).

LetG : RJ+2+N+ → R be strictly increasing and continuously differentiable with respect

to its first (J + 1) arguments, and strictly decreasing and continuously differentiable with

respect to its (J +2)th argument. This function tells us which vectors of capital input, labor

inputs and consumption outputs are technologically available. Specifically, we assume that
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the initial endowment of capital is K∗
1 , and define an allocation (c, y,K) to be feasible if:

(
Z
ctdµ,

Z
ytdµ) ∈ RJ+N+ for all t

G(
Z
ctdµ,Kt+1, Kt,

Z
ytdµ) ≤ 0 for all t

K1 = K∗
1

The first requirement is that ct and yt be integrable for all t.

Because θT is unobservable, allocations must respect incentive-compatibility condi-

tions. A reporting strategy σ is a mapping from ΘT into ΘT such that for all t, σt is Ft-

measurable. Let Σ be the set of all possible reporting strategies, and define:

W (.; c, y) : Σ→ R

W (σ; c, y) =
TX
t=1

βt−1
Z
U(ct(σ), (ynt(σ)/θnt)

N
n=1)dµ

to be the utility from reporting strategy σ, given an allocation (c, y). Let σ∗ be the truth-

telling strategy (σ∗(θT ) = θT for all θT ). Then, an allocation (c, y,K) is incentive-compatible

if:

W (σ∗; c, y) ≥W (σ; c, y) for all σ in Σ

An allocation which is incentive-compatible and feasible is said to be incentive-feasible.3

We allow for the possibility that the planner weights agents differently based on their

3We restrict attention to direct mechanisms. By the Revelation Principle, this is without loss of generality.
As well, we restrict attention to mechanisms in which an individual’s consumption and output depend only
on his own announcements. This is without loss of generality because there is a continuum of agents with
independent shock processes.
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initial skill levels. Specifically, let χ1 : Θ
T → R+ be F1-measurable, and suppose thatR

χ1dµ = 1. Then, we define the following programming problem, P1(K1), for an arbitrary

level K1 of initial capital:

Γ∗(K1) = sup
c,y,K

TX
t=1

βt−1
Z
U(ct, (ynt/θnt)

N
n=1)χ1dµ

s.t. G(
Z
ctdµ,Kt+1, Kt,

Z
ytdµ) ≤ 0 for all t

W (σ∗; c, y) ≥W (σ; c, y) for all σ in Σ

K1 given

ct ≥ 0, yt ≥ 0, Kt ≥ 0 for all t and almost all θT

We say that (c∗, y∗, K∗) solves P1(K1) if (c∗, y∗, K∗) lies in the constraint set of P1(K1) and:

Γ∗(K1) =
TX
t=1

βt−1
Z
U(c∗t , (y

∗
nt/θnt)

N
n=1)χ1dµ

In the actual model economy, there are initially K∗
1 units of capital. Hence, the

planner’s problem is to solve P1(K∗
1 ). We assume throughout that there is a solution to

P1(K∗
1 ) and that |Γ∗(K∗

1 )| <∞. Any solution to P1(K∗
1) is a Pareto optimum.

4

Note that the planner’s maximized objective Γ∗ is weakly increasing. In our analysis,

we will often require that Γ∗ is strictly increasing. The following lemma shows that, under

a mild regularity condition, Γ∗ is strictly increasing if U is additively separable between

consumption and leisure. (In the remainder of the paper, as is standard, we use the terms

4Specifically, any solution to P1(K∗
1 ) is interim Pareto optimal, conditional on the realization of θ1. If

χ = 1, the solutions to P1(K∗
1 ) are symmetric ex-ante Pareto optima.
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for almost all θT and almost everywhere (or a.e.) equivalently.)

Lemma 1. Let U(c, l) = u(c)− v(l), where u is strictly increasing and continuously differen-

tiable. Suppose that for any (c∗, y∗, K∗) that solves P1(K∗
1), there exists some t and positive

scalars c+, c+ such that c+ ≥ c∗jt ≥ c+ a.e. for all j. Then, Γ∗(K1) < Γ
∗(K∗

1) for all K1 < K
∗
1 .

Proof. Suppose Γ∗(K1) = Γ∗(K∗
1 ) for some K1 < K∗

1 . Let (c
∗, y∗, K∗) solve P1(K1) and

also P1(K∗
1 ). Without loss of generality, assume that c

∗
1 satisfies the uniform boundedness

conditions. Define c011(θ
T , ε) to be the solution to the equation:

u(c011(θ
T , ε), (c∗1j(θ

T ))j 6=1)− u(c∗1(θT )) = ε for all θT

for ε nonnegative. Here, c011(θ
T , ε) is the amount of consumption good 1 that gives a type

θT ε more utiles than c∗1. Clearly, c
0
11 is F1-measurable with respect to θ

T , and is continuous

with respect to ε.

From the mean value theorem, for ε small, we know that:

|c011(θT , ε)− c∗11(θT )| = ε/u1(c011(θT , ε0), (c∗1j(θT ))j 6=1), 0 < ε0 < ε

where u1 is the partial of u with respect to its first argument. From the regularity conditions

on c∗, we know that there exists M > 0 such that:

|c011(θT , ε)− c∗11(θT )| < Mε for ε small

Hence, for ε small, c011(θ
T , ε) is integrable as a function of θT . Moreover, adding ε to initial
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consumption is feasible for initial capital K∗
1 , as long as ε is sufficiently small. That is, for

sufficiently small ε,

G(
Z
c01(θ

T , ε)dµ,K∗
2 , K

∗
1 ,
Z
y∗dµ) < 0

where c01(θ
T , ε) ≡ (c011(θ

T , ε), (c∗1j(θ
T ))j 6=1). Thus, (c0, y∗,K∗) is feasible, given initial capital

K∗
1 .

For all θT ,

u(c01(θ
T , ε))− v((y∗n1(θT )/θn1)Nn=1)

= u(c∗1(θ
T )) + ε− v((y∗n1(θT )/θn1)Nn=1)

≥ u(c∗1(θ
T 0)) + ε− v((y∗n1(θT 0)/θn1)Nn=1)

= u(c01(θ
T 0, ε))− v((y∗n1(θT 0)/θn1)Nn=1)

which proves that (c0, y∗) is incentive-compatible. It follows that (c∗, y∗) cannot be a solution

to P1(K∗
1 ).

When utility is additively separable, there is a simple incentive-compatible way to

spread extra resources across the various types.

3. Capital Income Taxes

To obtain results about the intertemporal characteristics of optimal taxation, we sim-

plify the model. We set the number of consumption goods J = 1, and set:

G(Ct, Yt,Kt, Kt+1) = Ct +Kt+1 −Kt(1− δ)− Φ(Kt, Yt)
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where Φ is strictly increasing and continuously differentiable in its first argument. (These

restrictions on J and G do not apply in the next section.) Throughout the section, we assume

that the partial derivative Uc exists and is continuous in its first argument over the positive

reals. We proceed by first providing a partial characterization of Pareto optima, and then

establishing the implications of this characterization for capital income tax rates.

A. Characterizing Pareto Optima

The main result in this section is similar to (but much more general than) that derived

by Rogerson (1985) for optimal contracts in relationships with repeated moral hazard. We

obtain a restriction on the intertemporal behavior of consumption by minimizing the amount

of initial capital necessary to deliver a given amount of utility to each possible type of agent.

We use the notation E{.|Ft} to denote the conditional expectation operator.

Theorem 1. Let U(c, l) = u(c) − v(l). Suppose (c∗, y∗,K∗) solves P1(K∗
1 ), and that there

exists t < T and scalars M+,M+ such that M+ ≥ c∗t , c∗t+1, K∗
t+1 ≥M+ > 0 a.e.. Then:

β(1− δ + ΦK(K∗
t+1,

Z
y∗t+1dµ)) = E{u0(c∗t (θt)/u0(c∗t+1(θt+1))|Ft}

Proof. Define:

L∞(Ft) = {x Ft-measurable|∃A ∈ Ft s.t. µ(A) = 1 and sup
θT∈A

|x| <∞}

Consider the following minimization problem MIN1:

min
ηt,εt+1,ζt

[ζ t +
Z
ηtdµ]
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s.t.Z
εt+1dµ = Φ(K

∗
t+1 + ζt,

Z
y∗t+1dµ)− Φ(K∗

t+1,
Z
y∗t+1dµ) + (1− δ)ζt

u(c∗t + ηt) + βu(c
∗
t+1 + εt+1) = u(c

∗
t ) + βu(c

∗
t+1) a.e.

c∗t + ηt ≥ 0, c∗t+1 + εt+1 ≥ 0 , K∗
t+1 + ζt ≥ 0 a.e.

ηt ∈ L∞(Ft), εt+1 ∈ L∞(Ft+1), ζ t ∈ R

We claim that MIN1 is solved by setting (ηt, εt+1, ζ t) = 0. Suppose not, and that

there exists some element (ηt, εt+1, ζt) of the constraint set which generates a negative value

for the objective. There exists a subset B of ΘT such that µ(B) = 1 and:

u(c∗t (θ
T ) + ηt(θ

T )) + βu(c∗t+1(θ
T ) + εt+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) for all θT in B

Define (c0, K 0) so that c0 = c∗ and K 0 = K∗ except that:

c0t(θ
T ) = c∗t (θ

T ) + ηt(θ
T ) for all θT in B

c0t+1(θ
T ) = c∗t+1(θ

T ) + εt+1(θ
T ) for all θT in B

K 0
t+1 = K∗

t+1 + ζt

We claim that (c0, y∗,K 0) is incentive-feasible, delivers the same value of the planner’s

objective as (c∗, y∗,K∗) and uses fewer resources. The allocation (c0, y∗,K 0) is obviously
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feasible because:

Z
c0tdµ+K

0
t+1 =

Z
c∗tdµ+K

∗
t+1 + ζ t +

Z
ηtdµ

<
Z
c∗tdµ+K

∗
t+1

We next want to show that the allocation (c0, y∗, K 0) is incentive-compatible. By construction:

u(c0t(θ
T )) + βu(c0t+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) for all θT

(not just θT in B). Then, we know that for any σ in Σ and for all θT :

TX
s=1

βs−1u(c0s(σ(θ
T )))

=
t−1X
s=1

βs−1u(c∗s(σ(θ
T ))) + βt−1[u(c0t(σ(θ

T ))) + βu(c0t+1(σ(θ
T )))] +

TX
s=t+2

βs−1u(c∗s(σ(θ
T )))

=
t−1X
s=1

βs−1u(c∗s(σ)) + β
t−1[u(c∗t (σ(θ

T ))) + βu(c∗t+1(σ(θ
T )))] +

TX
s=t+2

βs−1u(c∗s(σ(θ
T )))

=
TX
s=1

βs−1u(c∗s(σ(θ
T )))

This means that for any σ, agents get the same utility from c0 as from c∗. It follows that

(c0, y∗) is incentive-compatible:

Z TX
t=1

βt−1[u(c0t)− v((y∗nt/θnt)Nn=1)]dµ

=
Z TX

t=1

βt−1[u(c∗t )− v((y∗nt/θnt)Nn=1)]dµ
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≥
Z TX

t=1

βt−1[u(c∗t (σ))− v((y∗nt(σ)/θnt)Nn=1)]dµ for any σ

=
Z TX

t=1

βt−1[u(c0t(σ))− v((y∗nt(σ)/θnt)Nn=1)]dµ

The inequality comes from the fact that (c∗, y∗) is incentive-compatible.

Hence, (c0, y∗,K 0) uses fewer resources, is incentive-compatible, and delivers the same

value of the objective to the planner. This violates Lemma 1.

We can therefore characterize (c∗,K∗) using the first order conditions ofMIN1. Here,

we do this for the case in which Θ is finite. We establish the first order conditions more

generally in the appendix.

Suppose θt has positive probability under µ, and let µ{θt, θt+1} denote the probability

of (θt, θt+1). Let λt+1 be the multiplier on the resource constraint, and let ν(θt+1)µ{θt, θt+1}

be the multiplier on the utility constraint for state θt+1. The first order conditions of MIN1

with respect to (η, ζ , ε) are:

µ{θt}− u0(c∗t (θt))
X

θt+1∈Ωt(θt)
ν(θt+1)µ{θt, θt+1} = 0

λt+1[(1− δ) + ΦK(K∗
t+1,

Z
y∗t+1dµ)] = 1

λt+1 − βu0(c∗t+1(θt+1))ν(θt+1) = 0 for all θt+1 ∈ Ωt(θt)

where Ωt(θ
t) is the set of θt+1 that have positive probability conditional on θ

t. By substituting

out for ν, we get:

u0(c∗t (θ
t))E{1/u0(c∗t+1(θt+1))|θt} = β/λt+1

By substituting out for λt+1, we get the theorem.
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The intertemporal restriction stated in Theorem 1 may seem unintuitive. We can

connect it back to the usual first-order condition for individual capital accumulation when

agents are uncertain about their future consumption. This standard first-order condition has

the form:

Etzt+1 = 1

where zt = β(1− δ + ΦK(Kt,
R
ytdµ))u

0(ct)/u0(ct−1). The theorem states that because of the

informational frictions, the optimum obeys the following first-order condition instead:

Et(1/zt+1) = 1

Clearly, if zt+1 is perfectly predictable using period t information, then these first-order

conditions are equivalent. Otherwise, they differ.

This kind of thinking informs the next two corollaries. The first concerns the (typical)

case in which c∗t is not perfectly predictable.

Corollary 1. Let U(c, l) = u(c)− v(l). Suppose (c∗, y∗,K∗) solves P1(K∗
1), and that there

exists t < T and scalars M+,M+ such that M+ ≥ c∗t , c
∗
t+1, K

∗
t+1 ≥ M+ > 0 a.e.. Suppose

also that
R
[V ar(c∗t+1|Ft)]dµ > 0. Then with positive probability:

u0(c∗t ) < β(1− δ + ΦK(K∗
t+1,

Z
y∗t+1dµ))E{u0(c∗t+1(θt+1))|Ft}

Proof. Simply apply Jensen’s inequality to the condition in Theorem 1.

16



This corollary says that if c∗t+1 is not predictable given Ft, the expected marginal utility

of investing in capital is higher than the marginal utility of current consumption. Note that

this lack of predictability is to be expected in general because the planner wants to elicit high

labor from high productivity types.

It is interesting to contrast Corollary 1 with the results concerning optimal linear

taxation of capital and labor income in a representative agent economy. Chamley (1986) and

Judd (1985) prove for a general specification of u that it is optimal in the long run to eliminate

the wedge between expected marginal utility of investing in capital and the marginal utility

of current consumption. Indeed, when u(c) = c1−σ/(1−σ), Chamley proves an even stronger

result: it is optimal for the wedge to be zero for all t, not just in the long run. In contrast,

we find that for any specification of u, as long as c∗t+1 is not predictable given Ft, the tax on

capital income in period t should be positive.

There are special circumstances in which the inequality in Corollary 1 becomes an

equality instead. In particular, if agents have fixed productivities over time, then the Pareto

optimal allocations display no wedge between the marginal utility of consumption and the

expected marginal utility of investment.

Corollary 2. Suppose that µ(B) > 0 only if µ(B) = µ{θT ∈ B|θt = θ1 for all t}. Let

U(c, l) = u(c) − v(l). Suppose (c∗, y∗, K∗) solves P1(K∗
1 ), and that there exists t < T and

scalars M+,M+ such that M+ ≥ c∗t , c∗t+1, K∗
t+1 ≥M+ > 0 a.e.. Then:

βu0(c∗t+1)(1− δ + ΦK(K∗
t+1,

Z
y∗t+1dµ))/u

0(c∗t ) = 1a.e.
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This corollary follows from the fact that θt is perfectly predictable, given θ1. In fact,

using a similar approach as in Theorem 1, we can prove (at least when Θ is finite) that

even if preferences are non-separable between consumption and labor, we obtain a version of

Chamley-Judd’s classic result for this case of fixed productivities.

Proposition 1. Suppose T = ∞, Θ is finite, and that µ{θ∞} > 0 iff θt = θ1 for all t.

Suppose that Γ∗(K1) < Γ
∗(K∗

1 ) for all K1 < K
∗
1 . Let a strictly positive allocation (c

∗, y∗,K∗)

solve P1(K∗
1 ), and suppose that for all θ1, the sequence {c∗t (θ1), y∗t (θ1), K∗

t }∞t=1 converges to a

positive limit (css(θ1), yss(θ1),Kss). Then:

β−1 = 1 + ΦK(Kss,
Z
yssdµ)− δ

Proof. We claim that (c∗, K∗) solves the following minimization problem:

min
c,(Kt)

T+1
t=1

K1

s.t.
Z
ctdµ+Kt+1 = Kt(1− δ) + Φ(Kt,

Z
y∗t dµ) for all t

∞X
t=1

βt−1U(ct(θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) =

∞X
t=1

βt−1U(c∗t (θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) for all θ1, θ̂1

Kt ∈ R+, ct ≥ 0 for all t

Suppose not. Then, there exists nonnegative (c0, K 0) such that K 0
1 < K

∗
1 and:

Z
c0tdµ+K

0
t+1 = K 0

t(1− δ) + Φ(K 0
t,
Z
y∗t dµ) for all t

∞X
t=1

βt−1U(c0t(θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) =

∞X
t=1

βt−1U(c∗t (θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) for all θ1, θ̂1
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It is clear that (c0, y∗, K 0) is feasible; (c0, y∗) is incentive-compatible because we have kept

the utility of all announcement/true type pairs the same. This allocation solves P1(K1), for

K1 < K
∗
1 , which violates the assumption that Γ

∗ is strictly increasing.

Now, we can characterize (c∗, y∗, K∗) using the first order conditions to this problem.

Let λt be the multiplier on the period t feasibility constraint and let γ(θ1, θ̂1) be the multiplier

on the appropriate utility constraint.

Abusing notation slightly, we use µ(θ1) to denote µ{(θ1, θ1, θ1, ...)}. Differentiating

with respect to ct(θ1) for any θ1, we obtain:

X
θ̂1

γ(θ1, θ̂1)β
t−1Uc(c∗t (θ1), (

y∗nt(θ1)

θ̂n1
)Nn=1) = λtµ(θ1)

where Uc is the partial derivative of U with respect to c. Differentiating with respect to Kt+1

we obtain:

λt = λt+1(1 + ΦK(Kt+1,
Z
y∗t+1dµ)− δ)

The assumption that (ct(θ1), yt(θ1), Kt) converges to a positive limit for all θ1 guar-

antees that:

lim
t→∞λt/λt+1 = 1/β

lim
t→∞λt/λt+1 = (1 + ΦK(Kt+1,

Z
y∗t+1dµ)− δ)

This implies the proposition.
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B. Capital Trading and Capital Income Taxes

The above results concern the wedges (or lack thereof) between marginal rates of

substitution and transformation in Pareto optima. We now allow agents to trade consumption

and capital in a sequence of competitive markets. We prove that in this sequential markets

setting, our previous results about wedges translate directly into conclusions about capital

income taxes (as long as utility is additively separable). We assume throughout this subsection

that Φ is strictly concave in its first argument, that T is finite, and that Θ is finite. (We

believe, though, that the results are robust to relaxing the latter two assumptions.)

It is useful to isolate our questions about optimal capital income taxes from the (con-

siderably more difficult) ones about optimal labor income taxes. To do so, we consider a

class of capital-trading mechanisms that work as follows. In each period, each agent makes a

report from the set Θ to a social planner. Based on the history of these reports, each agent

receives some amount of consumption as after-tax income and is told what vector of effective

labor to provide.

Up until this point, the capital-trading mechanisms are standard direct mechanisms.

The difference is that agents need not consume their income processes. Instead, they can

exchange capital and consumption, and rent out capital services, in a sequence of competitive

markets. In each period, an agent faces a linear tax on his capital rental income; the tax rate

may be a function of his history of reports.

The other side of the capital rental market is assumed to be a single representative

firm. The firm is also partially centralized, because it is simply endowed with a sequence

of effective labor which it cannot alter. However, the firm can freely rent capital from the

agents; firm profits are split evenly among the agents in the economy.
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Thus, under a capital-trading mechanism, labor and after-tax income are allocated

according to a direct mechanism. However, agents are allowed to engage in decentralized

trade in capital markets. The only restriction is that they face (possibly report-contingent)

tax rates on their capital income.

Formally, a capital-trading mechanism is a specification (z, y, τ ) = (zt, yt, τ t)Tt=1 such

that:

zt : Θ
T → R+

yt : Θ
T → RN+

τ t : Θ
T → R

(zt, yt, τ t+1) is Ft-measurable

Here, we interpret z as an after-tax income process, y as an effective labor process, and τ as

the tax rate on capital income. Thus, given (z, y, τ ), and a rental rate sequence r ∈ RT+, a

typical agent, initially endowed with K∗
1 units of capital, solves the problem:

max
(c,k,σ)

Z TX
t=1

βt−1U(ct, (ynt(σ)/θnt)Nn=1)dµ

s.t. ct + kt+1 ≤ kt(1 + rt(1− τ t(σ))− δ) + zt(σ)

ct ≥ 0, kt ≥ 0, k1 = K∗
1

ct, kt+1 Ft-measurable

σ ∈ Σ
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Note that agents take into account their ability to trade in the sequential capital markets

when they are making their reports about their types. Their after-tax incomes and their

capital income tax rates depend on their reports.

There is a representative firm which operates every period. Given y, and a rental rate

sequence r, the firm solves the following deterministic maximization problem:

max
Kt≥0

Φ(Kt,
Z
ytdµ)− rtKt

in each period. We assume that firm profits are split evenly among the agents, and so are

embedded directly into zt.

Given a capital-trading mechanism (z, y, τ ), (c, k, r,K) is a sequential markets equilib-

rium if it satisfies three conditions. First, (c, k, σ∗) solves the agent’s problem given (z, y, τ , r).

(Recall that σ∗ is the truth-telling strategy in Σ.) Second, K solves the firm’s problem, given

(y, r). Finally, markets clear in every period:

Z
ctdµ+Kt+1 = Φ(Kt,

Z
ytdµ) + (1− δ)KtZ

ktdµ = Kt

We now prove two results about capital-trading mechanisms. Both require the as-

sumption that utility is additively separable. The first result is that any incentive-feasible

allocation is a sequential markets equilibrium of some capital-trading mechanism. The key

to the result is that all agents, regardless of their type, have the same preferences over con-

sumption processes.
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Proposition 2. Let U(c, l) = u(c) − v(l), where u0,−u00 > 0. Suppose (c∗, y∗, K∗) is

incentive-feasible and (c∗t , K
∗
t+1) > 0 for all t. Then, there exists (k, r, z, τ ) such that (c

∗, k, r,K∗)

is an equilibrium of a capital-trading mechanism (z, y∗, τ).

Proof. Given (c∗, y∗, k∗), define:

kt = K
∗
t

rt = ΦK(K
∗
t ,
Z
y∗t dµ)

τ t+1 = 1− (−1 + δ + u0(c∗t )/[βE{u0(c∗t+1)|Ft}])/rt+1

zt = c
∗
t +K

∗
t+1 −K∗

t (1 + rt(1− τ t)− δ)

K is clearly optimal for the firm given the rental rate sequence r and the (aggregate) effec-

tive labor sequence
R
ydµ. We need to show that (c∗, k∗) solves the agent’s problem given

(z, y∗, τ , r).

To do so, fix any reporting strategy σ. Conditional on this strategy, the agent faces

the decision problem:

max
(c,k)

TX
t=1

βt−1
Z
u(ct)dµ

s.t. ct + kt+1 = kt(1 + rt(1− τ t(σ))− δ) + zt(σ)

ct, kt+1 Ft-measurable

ct ≥ 0, kt ≥ 0, k1 = K∗
1

We claim that the solution to this problem is to set kt = K∗
t and ct = c

∗
t . The choice set is

23



convex. Clearly, these choices satisfy the agent’s intertemporal first order conditions. They

also satisfy his flow budget constraints because of the definition of zt(σ).

Now, which reporting strategy does the agent use? Conditional on any σ, the agent

receives the allocation (c∗t (σ), y
∗
t (σ)). But because (c

∗, y∗) is incentive-compatible, it is at

least weakly optimal for the agent to choose σ∗.

Because (c∗, y∗, K∗) is feasible, the sequential markets clear.

Proposition 2 demonstrates that when we optimize over incentive-feasible allocations

(as in Theorem 1), we are implicitly optimizing over capital-trading mechanisms. The fol-

lowing converse proposition shows that in any sequential markets equilibrium, the sign of the

capital income taxes is the same as the sign of the wedge between intertemporal marginal

rates of substitution and transformation.

Proposition 3. Let U(c, l) = u(c)− v(l), where u0,−u00 > 0. Suppose (c, k, r,K), kt > 0 for

all t, is a sequential markets equilibrium of a capital-trading mechanism (z, y, τ). Then:

(1 + ΦK(Kt+1,
Z
yt+1dµ)(1− τ t+1)− δ) = u0(ct)/βE{u0(ct+1)|Ft}.

Proof. Individual optimality and firm optimality imply that:

rt = ΦK(Kt,
Z
ytdµ)

u0(ct) = (1 + rt+1(1− τ t+1)− δ)βE{u0(ct+1)|Ft}

which in turn implies the proposition.

Combining Propositions 2 and 3 with Corollary 1, we conclude that it is typically
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Pareto optimal for capital income taxes to be positive.

4. Uniform Commodity Taxation

In this section, we prove the uniform commodity taxation theorem. We return to

the general setup described in the first section (with multiple commodities and a general

production structure), except that we assume that utility is weakly separable:

U(c, l) = V (u(c), l), u : RJ+ → R+

We also assume that u is strictly increasing and is continuously differentiable over the positive

orthant of RJ . The notation uj and Gj represents the partial derivatives of those functions

with respect to their jth arguments.

Theorem 2. Suppose Γ∗(K1) < Γ
∗(K∗

1) for all K1 < K
∗
1 . Let (c

∗, y∗, K∗) solve P1(K∗
1 ) and

suppose that there exists scalars c+, c+ such that c+ > c∗jt(θ
T ) > c+ > 0 for all j and for

almost all θT . Then:

uj(c
∗
t (θ

T ))/uk(c
∗
t (θ

T ))

= Gj(
Z
c∗tdµ,K

∗
t+1, K

∗
t ,
Z
y∗t dµ)/Gk(

Z
c∗tdµ,K

∗
t+1,K

∗
t ,
Z
y∗t dµ)

for all j, k and almost all θT .

Proof. We claim that c∗ solves the following optimization problem MIN2:

min
c
G(
Z
ctdµ,K

∗
t+1, K

∗
t ,
Z
y∗t dµ)
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s.t. u(ct) = u(c
∗
t ) a.e.

s.t. ct ∈ L∞(Ft)

s.t. ct ≥ 0 a.e.

Suppose not. Then, there exists a nonnegative c0t in L
∞(Ft) such that:

G(
Z
c0tdµ,K

∗
t+1,K

∗
t ,
Z
y∗t dµ) < 0

and u(c0t(θ
T )) = u(c∗t (θ

T )) for all θT in A ⊆ ΘT , where µ(A) = 1. Let c00t (θT ) = c0t(θT ) for all

θT in A and c00t (θ
T ) = c∗t (θ

T ) for all θT not in A. Let c00 = (c00t , c
∗
−t).

Clearly, (c00, y∗, K∗) is feasible. It is also incentive-compatible because:

W (σ∗; c00, y∗)

= W (σ∗; c∗, y∗)

≥ max
σ∈Σ

W (σ; c∗, y∗)

= max
σ∈Σ

W (σ; c00, y∗)

Thus, (c00, y∗, K∗) also solves P1(K∗
1). However, because G is strictly increasing in Kt+1,

and strictly decreasing in Kt, there exists K 0 such that (c00, y∗, K 0) solves P1(K1) for some

K1 < K
∗
1 . But this means that Γ

∗(K1) = Γ
∗(K∗

1) which is a contradiction.

Thus, c∗ solves the above minimization problem. The rest of the proof is simply

technical: establishing that the solution to the minimization problem satisfies the first-order

conditions in the theorem. We defer this to the Appendix.
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Thus, in a Pareto optimum, the marginal rate of substitution between two consumption

goods is equalized to the marginal rate of transformation between those two goods. Because

consumption only enters the incentive constraints through the sub-utility u(c), the planner

wants to find the way to deliver this sub-utility from consumption in a way that minimizes

the resource cost of doing so.

Theorem 2 establishes a result about marginal rates of substitution and transformation.

However, we can follow the line of attack in Section 3B to translate it into a statement about

taxes. In particular, suppose agents can trade consumption goods in a competitive spot

market in each period. Then, Theorem 2 implies that it is suboptimal for them to face taxes

or subsidies in those markets that differ across consumption goods.

5. Related Literature

In this section, we discuss the connections between our paper and others in the litera-

ture. It is useful in doing so to divide the prior literature into two strands. The first analyzes

model economies in which agents’ private information affects their willingness to substitute

between consumption goods (over time or within a period). Our paper is not in this literature.

The second instead requires that agents’ private information is independent of their marginal

rates of substitution between consumption goods. Our paper provides generalizations of the

prior results in this second literature.

In terms of the first strand of literature, there are nowmany papers on efficient dynamic

insurance in the presence of hidden idiosyncratic shocks to endowments or tastes (see, among

others, Townsend (1982), Green (1987), Thomas and Worrall (1990), Atkeson and Lucas

(1992), Khan and Ravikumar (1997)). A key result that runs through this literature is that
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in Pareto optimal allocations, the typical agent’s shadow interest rate exceeds the societal

shadow interest rate. This result is similar to our Corollary 1. However, the result from

the dynamic insurance literature depends crucially on the nature of the shock process to

endowments or tastes.

To see this point, consider a two-period economy with a continuum of agents. The

typical agent’s endowment is ((1+ θ), (1+ θ)2), where θ is random with positive support; the

endowments are private information. Then, in an optimal allocation, agents’ shadow interest

rates are lower than the societal shadow interest rate. Intuitively, with hidden endowments,

the direction of the gap depends on whether the agents who need insurance payments are

more or less willing to substitute current for future consumption.

The other related papers all belong to the second strand of literature. Diamond and

Mirrlees (1978, 1986) consider a special case of our general setup. In their model, agents

are long-lived and can be disabled or not. Disabled agents are unproductive; able agents

have known productivities. Once disabled, the agent stays disabled; the probability of an

able agent becoming disabled is exogenous. The informational problem is that the disability

status of the agent is known only to the agent. Diamond and Mirrlees prove that in the social

optimum, the shadow societal interest rate is less than the private shadow interest rate. They

argue explicitly that this result implies that capital income taxation is socially optimal. Our

contribution over their work is that we generalize their positive capital income taxation result

to a much larger class of individual productivity processes.

There are several papers on the properties of efficient allocations in the presence of

repeated moral hazard (see, among others, Rogerson (1985), Phelan and Townsend (1991),

Phelan (1994)). Again, in these settings the optimal allocations have the property that agents’
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shadow interest rates are higher than the societal shadow interest rate. The intuition behind

this result is essentially the same as that behind Corollary 1. However, in this literature, the

idiosyncratic output shocks are restricted to be independently and identically distributed; we

instead allow for a much wider range of productivity shock processes.

We were originally motivated to write this paper by the work of da Costa and Werning

(2001). They examine optimal monetary policy in two models (a cash-credit good framework

and a shopping-time setup) in which agents are privately informed about their fixed produc-

tivities. In the cash-credit good framework, da Costa and Werning prove that if preferences

is weakly separable between consumption and leisure, then the Friedman Rule (zero nominal

interest rates) is socially optimal. This is essentially an implication of the uniform commod-

ity taxation theorem, and so we conjecture that this result could be established in our more

general setup. They also consider how deviations from weak separability of preferences affect

optimal monetary policy.

In a paper written at the same time as ours, but independently, Werning (2001)

analyzes the properties of optimal capital income taxes in a model economy with unobservable

and heterogeneous fixed productivities. Like us (Corollary 2), he finds that it is optimal for

capital income taxes to be zero in this setting.

6. Conclusion

In this paper, we consider the problem of optimal taxation when individual skills

are unobservable, evolve stochastically over time, and are multi-dimensional. We show that

when utility is weakly separable between consumption and leisure, it is optimal to equate

the marginal rate of substitution between consumption goods for any agent to the marginal
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rate of transformation between those goods. It follows that Pareto optimal allocations are

consistent with uniform taxation of all consumption goods.

We consider the intertemporal structure of optimal taxation when there is only a sin-

gle consumption good and utility is additively separable between consumption and leisure.

In this case, if the optimal allocation requires future consumption to be random given cur-

rent information, then individuals face distorted consumption paths. We show that these

distortions are consistent with the presence of positive capital income taxes.

Given additive separability of preferences between consumption and labor, the uniform

commodity taxation theorem is generally valid, but the zero capital income taxation theorem

is generally not. The reason for this distinction is that over time, individuals are acquiring

information about their types. It is this idiosyncratic uncertainty that generates positive

capital income taxes. In particular, if individuals knew their entire sequence of productivities

in period 1, then we could use exactly the same reasoning as in Theorem 2 (or Corollary 2)

to conclude that Pareto optimal allocations are consistent with zero capital income taxation.

We are able to prove the theorems in a highly general setting. We allow for a multi-

dimensional specification of productivity. Individual productivities are independent over a

continuum of individuals but follow arbitrary stochastic processes over time. As far as we are

aware, these are the first characterizations of optimal tax policy for this kind of environment,

with dynamically evolving private information and/or multiple-dimensional types.

The paper abstracts from government purchases. This is merely for notational conve-

nience. The results can be easily extended to two kinds of model economies with government

purchases. The first is one in which per-capita government purchases are a deterministic

stream that the government must fund using taxes. The second is one in which government
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purchases are a choice variable for the social planner. In both kinds of models, the results

are all valid regardless of how government purchases affect production or enter preferences.
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Appendix

In this appendix, we provide proofs of Theorems 1 and 2 for arbitrary Borel sets Θ. We use

the following notation:

L1(Ft) = {x Ft-measurable|
Z
|x|dµ <∞}

L∞(Ft) = {x Ft-measurable|∃A ∈ Ft such that sup
θT∈A

|x| <∞, and µ(A) = 1}

Let ||.||∞ denote the usual norm on L∞(Ft).

The general proofs of Theorems 1 and 2 are based on two results. The first is Theorem

1, p. 243 of Luenberger (1969). This theorem assumes that in an optimization problem with

equality constraints, the objective and constraints are continuously Frechet differentiable in

the neighborhood of a local optimum. It then proves that this local optimum must satisfy

analogs of the usual Lagrangian first-order conditions.

The second key result is the following lemma. It establishes that as long as c∗t is

bounded from above and below, the constraints in the minimization problems in the proofs

of Theorems 1 and 2 are defined by a function that is continuously Frechet differentiable in

a neighborhood of c∗t .

Lemma 2. Let u : R+ → R and let c∗t be an element of L
∞(Ft). Suppose there exists scalars

c+ and c+ such that c+ ≥ c∗t ≥ c+ > 0. Define U : L∞(Ft)→ L1(Ft) by:

U(ct)(θ
T ) = u(ct(θ

T ))

Then U is continuously Frechet differentiable in a neighborhood of c∗t .
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Proof. Let ηt be some element of L
∞(Ft) so that |ηt| < c+/2 a.e.. Let {∆nt}∞n=1 be an

arbitrary sequence in L∞(Ft) that converges to zero in the L∞ norm. Then, we can show

that:

lim
n→∞ sup

Z
|u(c∗t +∆nt + ηt)− u(c∗t + ηt)− u0(c∗t + ηt)∆nt|dµ/||∆nt||∞

= lim
n→∞ sup

Z
|(u(c∗t +∆nt + ηt)− u(c∗t + ηt))/∆nt − u0(c∗t + ηt)||∆nt|dµ/||∆nt||∞

≤ lim
n→∞ sup

Z
|(u(c∗t +∆nt + ηt)− u(c∗t + ηt))/∆nt − u0(c∗t + ηt)|(||∆nt||∞)dµ/||∆nt||∞

= lim
n→∞ sup

Z
|(u(c∗t +∆nt + ηt)− u(c∗t + ηt))/∆nt − u0(c∗t + ηt)|dµ

= lim
n→∞ sup

Z
|u0(c∗t + λn∆nt + ηt)− u0(c∗t + ηt)|dµ, 0 < λn < 1

= 0

The last statement follows from the Bounded Convergence Theorem. In particular, |u0(c∗t +

λn∆nt+ηt)−u0(c∗t+ηt)| is bounded from above and converges to zero a.e. from the continuity

of u0.

It follows that in a neighborhood of c∗t , the Frechet derivative of U is well-defined and

given by U 0(ct)(∆) = u0(ct)∆ for all ∆ in L∞(Ft). The norm of this linear operator is given byR |u0(ct)|dµ. But this is continuous in ct in a neighborhood of c∗t . So U is continuously Frechet
differentiable in a neighborhood of c∗t .

We can now turn to completing the proofs of Theorems 1 and 2.

A1. Proof of Theorem 1

Suppose we enlarge the constraint set by dropping the non-negativity constraints.

The non-negative orthant of L∞(Ft) has a non-empty interior. Hence, 0 must also be a local

33



minimum of the enlarged minimization problem without the non-negativity constraints.

From Lemma 2 and Luenberger (1969; Theorem 1, page 243), we can conclude that

there exists z∗t+1 ∈ L∞(Ft+1) (the dual of L1(Ft+1)) and λ∗t ∈ R such that 0 is a stationary

point of the following Lagrangian.

L(ζt, ηt, εt+1)

= ζt +
Z
ηtdµ+ λ

∗
t [
Z
εt+1dµ− (1− δ)ζt −Φ(K∗

t+1 + ζt+1, Y
∗
t+1)]

−
Z
z∗t+1[u(c

∗
t + ηt) + βu(c

∗
t+1 + εt+1)]dµ

In other words:

1− λ∗t (1− δ)− ΦK(K∗
t+1, Y

∗
t+1)λ

∗
t = 0Z

ηtdµ−
Z
z∗t+1u

0(c∗t )ηtdµ = 0 for all ηt in L
∞(Ft)

λ∗t
Z
εt+1dµ−

Z
z∗t+1βu

0(c∗t+1)εt+1dµ = 0 for all εt+1 in L∞(Ft+1)

Recall that y = E{x|Ft} if y is Ft-measurable and R x1Adµ = R
y1Adµ for all A in Ft. It

follows that:

λ∗t = βu0(c∗t+1)z
∗
t+1

1 = E{u0(c∗t )z∗t+1|Ft}

λ∗t = [1− δ + ΦK(K∗
t+1, Y

∗
t+1)]

−1

Theorem 1 follows.
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A2. Proof of Theorem 2:

Note that Lemma 2 can easily be extended to the case in which c∗t is a finite-dimensional

random vector. As in the proof of Theorem 1, if we drop the non-negativity constraints from

the minimization problem, we know that c∗t is a local minimum in the resulting problem. From

Lemma 2, and Luenberger (1969; Theorem 1, p. 243), we know that there exists z∗t ∈ L∞(Ft)

such that c∗t is a stationary point of the Lagrangian:

L(ct) = G(
Z
ctdµ,K

∗
t+1,K

∗
t , Y

∗
t )−

Z
z∗t u(ct)dµ

In other words:

0 = Gj(
Z
c∗tdµ,K

∗
t+1,K

∗
t , Y

∗
t )− z∗t uj(c∗t )

0 = Gk(
Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )− z∗t uk(c∗t )

Note that zt is positive because Gj is positive. Then, we get the theorem.
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