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ABSTRACT

We propose a notion of smoothness of nonexpected utility functions, which extends the variational
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to state dependent utilities, as well as the multiple prior expected utility model, both of which
are not possible in previous literatures. Other nonexpected utility models are shown to satisfy
smoothness under more general conditions than the Fréchet and Gateaux differentiability used in
the literature. We give more general characterizations of monotonicity and risk aversion without
assuming state independence of utility function.

∗Ai, University of Minnesota and Federal Reserve Bank of Minneapolis. I thank Michele Boldrin for his advice
and continuous encouragement. I thank David Levine for helpful comments. All errors are mine. The views
expressed herein are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis
or the Federal Reserve System.



1. Introduction

Machina (1982) initiated the ”local expected utility analysis” and showed some of the

fundamental concepts of expected utility theory can be used for non-expected utility analysis.

This approach has been extended by many authors to analyze broader classes of nonexpected

utility functions, for example Allen (1987), Chew et al (1987), Machina (1989), Wang (1993),

Chew and Mao (1995), among others. However, some of the most important classes of

nonexpected utility functions cannot be analyzed by this approach. For example, none of

the above literature deals with the multiple prior expected utility (MPEU) model (Gilboa

and Schmeidler (1989)), which is probably the most widely used nonexpected utility model in

applied work. In addition, all of the above literatures study derivatives of nonexpected utility

functions with respect to distribution functions, therefore rule out state dependent utilities.

The purpose of this paper is to develop a notion of smoothness of nonexpected utilities that

applies to broader classes of nonexpected utility functions; in particular, to fill the gap of

state dependent utilities and MPEU. Our approach generalizes the notion of Gateaux and

Fréchet differentiability, and allows for calculus of variations analysis of nonexpected utility

functions under more general conditions. The notion of smoothness we propose is applicable

to MPEU, as well as to the class of state dependent utilities. Furthermore, our approach

also overcomes the difficulty in the Fréchet differentiability approach that the domain of the

utility function has to be a set of uniformly bounded random variables.

We achieve this generality by extending the existing theory along two dimensions.

First, we study utility functions defined on set of random variables, in stead of on distribution

functions. Therefore our approach does not assume probabilistic sophistication (Machina and

Schmeidler (1992)), and allows for state dependent utilities as well. Many notions associated



with probabilistically sophisticated utility functions, such as monotonicity and risk aversion

can be generalized to the state dependent case (for example, Werner (2004)). Our formulation

allows variational analysis of these properties in a more general setting. A technical advantage

associated with this is that we allow utility functions to be defined on set of random variables

with unbounded support, while the literature on Fréchet differentiability with respect to

distribution functions restricts the domain of the utility function to be a set of random

variables with bounded support. Next, we generalize the notion of Gateaux differentiability

and Fréchet differentiability to a weaker smoothness condition. Many utility functions, for

example, MPEU and the rank dependent expected utility (RDEU) model (Quiggin (1994),

Quiggin and Wakker (1994)) that are not even Gateaux differentiable with respect to random

variables satisfy our smoothness condition. We show how calculus of variations analysis can

be applied to utility functions that are smooth.

We analyze differential properties of the MPEU. We prove the smoothness of MPEU

without concavity assumptions. As a byproduct, our results imply that multiple prior ex-

pected utilities are Gateaux differentiable on a dense Gδ set of the Lp space of random

variables. We characterize the set of subdifferentials of MPEU.

Our theory builds on the ”local expected utility” analysis literature. Machina (1982,

1989) introduced the variational approach to nonexpected utility analysis and laid a theo-

retical foundation for linking local behaviors of nonexpected utility functions to its global

properties. Allen (1987) examined the relation between smooth preference and smooth local

utility representation and provided conditions under which smooth local utility exists. The

notion of differentiability used by Machina (1982, 1989) is L1 Fréchet differentiability with

respect to distribution functions. This turns out to be a strong requirement and is not satis-
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fied in many models used in practice. Efforts are made by many authors to extend Machina’s

original analysis to more general settings. Chew et al (1987) showed that RDEU, although

not Fréchet differentiable in Machina’s original formulation, is Gateaux differentiable, and

Machina’s theory can be extended to RDEU. Chew and Mao (1995) extended Machina’s

characterization of risk aversion of Fréchet differentiable nonexpected utilities to Gateaux

differentiable utilities. Wang (1993) extended Machina’s analysis to Lp Fréchet differentiable

utility functionals. These above literature all focused on the derivatives of nonexpected utility

functions with respect to distribution functions and thus not applicable to state-dependent

utility functions. Carlier and Dana (2003) characterized the Gateaux subdifferential of RDEU

with respect to random variables under concavity assumptions. Our purpose is to provide

a general theory of differentiability of nonexpected utility functions with respect to random

variables. Our approach also allows us to characterize the subdifferential of RDEU without

assuming concavity.

The paper is organized as follows. Section two lays out some mathematical prelimi-

naries. We define a notion of smoothness of nonexpected utility functions, and compare our

notion with the commonly used Gateaux differentiability and Fréchet differentiability in the

literature. Section three gives three examples of nonexpected utility models to illustrate the

relation of our notion of smoothness and other concept of differentiability in the literature.

We show that our notion can be applied to a wider class of nonexpected utility functions.

Section four shows how to apply our notion of smoothness to the variational analysis of non-

expected utilities. We relates differential properties of utility functions to some fundamental

concepts of preference defined on set of random variables, such as probabilistic sophistication,

monotonicity and risk aversion. The last section concludes.
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2. Preliminaries and Definition of Smoothness

We study utility functions defined on set of random variables. Let Ω = [0, 1], let F

be the σ field of Lebesgue measurable sets on Ω, and P be the Lebesgue measure 1. We

consider the space of real valued random variables defined on (Ω,F , P ) endowed with the Lp

norm, denoted Lp for 1 ≤ p <∞. We consider utility function V : Lp → R without assuming

expected utility representation. We identify elements in Lp as the equivalence class of random

variables that are equal P almost surely. By adopting this convention we are assuming the

utility function V represents a preference that is indifferent between random variables that

differ only on sets of measure 0. With this convention Lp is a complete metric space, and

the dual space of Lp is Lq, with
1
p
+ 1

q
= 1. For any X ∈ Lp, we use FX(·) to denote the

distribution function of X, that is FX : R→ [0, 1], ∀x ∈ R, FX(x) = P ({ω : X(ω) ≤ x}).

The commonly used notion of smoothness is Gateaux differentiability and Fréchet

differentiability. We first recall their definitions. Let S be a vector space, and V a real valued

function defined on an open set O ⊆ S.

Definition 1. 2: V is said to be Gateaux differentiable at x ∈ O if there exists a unique

linear functional DV (X) such that ∀Y ∈ S,

DV (X)(Y ) = lim
α→0

1

α
[V (X + αY )− V (X)] (1)

In this case, DV (X) is call the Gateaux derivative of V at X. V is said to be Gateaux

1This assumption is made for simplicity of exposition. Since any standard Borel space with nonatomic
probability measure is isomorphic to the unit interval with Lebesgue measure (Kechris (1995), theorem 17.41,
page 116), we are essentially assuming Ω is standard Borel and P is nonatomic.

2The term of Gateaux differentiability were used by many authors with slightly different meanings. Some
do not require DV (X) to be linear; some do not require the linear functional DV (X) to be the same for all
Y ∈ S.
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differentiable if it is Gateaux differentiable at X for all X ∈ O.

A stronger notion of differentiability used in the literature is Fréchet differentiability:

Definition 2. Let S be a normed vector space, and V a real valued function defined on an

open set O ⊆ S. Then V is said to be Fréchet differentiable at X ∈ O, if there exists a

continuous linear functional DV (X) such that ∀Y ∈ S,

lim
||Y ||→0

||V (X + Y )− V (X)−DV (X)(Y )||
||Y || = 0 (2)

In this case, the continuous linear functional DV (X) is called the Fréchet derivative of V at

X.

V is said to be continuously Fréchet differentiable at X if it is Fréchet differentiable

at X and ||Xn −X||→ 0 implies ||DV (Xn)−DV (X)||→ 0.

V is said to be (continuously) Fréchet differentiable if it is (continuously) Fréchet

differentiable at all X ∈ O.

Fréchet differentiability is strictly stronger than Gateaux differentiability, and requires

a notion of norm on S. Machina (1982)’s original analysis assumes Fréchet differentiability.

Chew et al (1987) and Chew and Mao (1995) showed Machina’s approach can be generalized

to the Gateaux differentiability case.

In the above mentioned local expected utility analysis literature, the domain of the

utility function S is taken to be some set of distribution functions. This formulation as-

sumes that the preference is state independent, i.e. probability sophisticated, in the language

of Machina and Schmeidler (1992). However, when states of nature are payoff relevant,
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agent’s preferences over uncertain outcomes are intrinsically state dependent. We study util-

ity functions defined on the set of random variables thus allowing for state dependent utility

functions. Our purpose is to develop a proper notion of smoothness that is strong enough

to allow for calculus-of-variations type of analysis, yet weak enough to incorporate most of

existing models of nonexpected utility.

To allow for a broader class of nonexpected utility to be considered, we generalize the

notion of subdifferential from the convex analysis literature (for example, Phelps (1993)), and

define sub-Gateaux differential as follows.

Definition 3. Let O ⊆ Lp be open. V : O → R is said to be sub-Gateaux differentiable

at X ∈ O if there exists a set of continuous linear functionals Γ(X) such that ∀Y ∈ Lp,

∀l ∈ Γ(X),

g0L(0) ≤ l(Y ) ≤ g0H(0) (3)

where

g(t) = V (X + tY )− V (X) (4)

and where g0L(0) = min{g0(0+), g0(0−)} and g0H(0) = max{g0(0+), g0(0−)}. In this case, Γ(X)

is called the set of sub(-Gateaux) differential of V at X.

V is called sub-Gateaux differentiable if it is sub-Gateaux differentiable at all X ∈ O.

In this case, the mapping X → Γ(X) is called the sub(-Gateaux) differential correspondence.

In the above definition, we require that the subdifferential be continuous linear func-

tionals. By Riesz’s representation theorem, elements in Γ(X) can be represented by vectors

in Lq, with
1
p
+ 1

q
= 1. The usual notion of Gateaux differentiability does not require the
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Gateaux derivative to be a continuous linear functional. It does not even require a notion of

norm to be defined on the domain of the utility function. However, the notion of Gateaux dif-

ferentiability is usually too weak in this respect. DV (X) ∈ Lq is usually neccessary for linking

properties of the Gateaux derivative of utility functions to its global properties. We therefore

build this requirement into the definition of sub-Gateaux differentiability. On the other hand,

this requirement is almost innocuous in the sense that for all the nonexpected utility mod-

els we consider in this paper, conditions that gurantee Gateaux differentiability also implies

DV (X) ∈ Lq (See section 3 for examples). It is also clear that given DV (X) ∈ Lq Gateaux

differentiability implies sub-Gateaux differentiability, and the sub-Gateaux correspondence Γ

is single valued. Finally, we remark that it is straightforward to verify that the subdifferential

correspondence Γ is convex and closed (in the weak∗ topology3) valued.

If Γ is the sub-Gateaux differential correspondence of V , we use the notation γ ∈ Γ

to denote that γ is a selection from Γ, i.e. ∀X ∈ Lp, γ(X) ∈ Γ(X). We will use l to denote

both a generic linear functional on Lp and its representation in Lq, the meaning of which will

often be clear from the context. Note if V is concave, then our notion subdifferentiability

coincides with that for concave functions. However, our approach in this paper does not rely

on any concavity or concexity assumptions.

To motivate our definition of smoothness, note that the following relation links local

properties of the function V and its global property on the domain O ⊆ S and is essential

3Note the dual space of Lp is Lq. The weak
∗ topology on Lq is the one induced by weak

∗ convergence
defined by : Xn → X weak∗ if ∀Y ∈ Lp, Z

Y XndP →
Z

Y XdP
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in any of the differential analysis of nonexpected utility literature. Fix X,Y ∈ O, define

g : [0, 1]→ R as in (4), then

V (X + Y )− V (X) = g(1)− g(0) =
Z 1

0
g0(t)dt (5)

=
Z 1

0
DV (X + tY )Y dt (6)

In general, Gateaux differentiability is not enough to guarantee the operation in (5) and

(6), not even Fréchet differentiability. A sufficient condition is V being continuously Fréchet

differentiable (See Tapia (1971), proposition 4.2, page 71. See also the discussion in Wang

(1993)). However, Fréchet differentiability is often a too strong restriction for many of the

nonexpected utility models (for example, Chew et al (1987)). We observe that the necessary

and sufficient condition for operation in (5) is g being an absolute continuous function on

[0, 1]. Given absolute continuity of g, a sufficient condition for operation in (6) is V being

sub-Gateaux differentiable. We thus propose the following definition of smoothness. Consider

a utility function V : Lp → R, where 1 ≤ p <∞.

Definition 4. V is said to be smooth if

1) ∀X, Y ∈ Lp, the function V (X + tY ) is absolutely continuous in t on [0, 1].

2) V is sub-Gateaux differentiable on Lp.

If a utility function V : Lp → R is smooth, then ∀X, Y ∈ Lp, (5) is true by the absolute

continuity of g. Also, by definition of sub-Gateaux differentiability, whenever g0(t) exists, we

have Z
Ω
γ(X + tY )Y dP = g0(t) (7)
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where γ ∈ Γ is an arbitrary selection of Γ. Since g0(t) exists a.s. on [0, 1],

V (X + Y )− V (X) =
Z 1

0

Z
γ(X + tY )Y dPdt (8)

Our definition of smoothness thus guarantees the validity of the operations in (5)-(6).

It maybe easily verified that neither Gateaux differentiability not Fréchet differentia-

bility implies smoothness, while continuous Frechet differentiability is a sufficient condition

for smoothness. On the other hand, many functions that are not even Gateaux differentiable

are smooth. We argue that the smoothness condition is an appropriate notion for variational

analysis of nonexpected utility functions, in the sense that it allows most of the nonexpected

utility models to be ”differentiable”, while at the same time validate the operations in (5)-(6).

We will also make frequent use of the following two conditions on smooth nonexpected

utility functions.

Condition 1. There exists a dense subset of Lp, denoted D, such that Γ is single-valued on

D.

Condition 2. The subdifferential correspondence Γ is Lp to weak
∗4 upper hemi-continuous

and (weak∗) compact valued.

To see why we need condition 1 and condition 2, consider functions defined on the real

line. Suppose we want to make a differential characterization of monotonicity, that is, we want

to make statements like:” f : R→ R is nondecreasing if and only f 0 is nonnegative. ” The ”if”

part is true if f is absolutely continuous. In our context, the analogue of absolute continuity

4See footnote 3 for the definition of weak* topology on Lq.
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is the smoothness condition defined above. The ”only if” part of the above statement is

not true if we only assumes absolute continuity. The reason is that f 0 can be negative on

a set of measure 0, yet f is still increasing. However, if we impose stronger differentiability

conditions on f , for example, continuous differentiability, then the above statement is true.

The generalization of continuous differentiability in infinite dimensional space is continuous

Frechet differentiability. In fact, it is straightforward to verify that continuously Frechet

differentiability implies condition 1 and condition 2. Our condition 1 and 2 play exactly the

role of continuous differentiability in the above example, but is much weaker than continuous

Frechet differentiability. The examples in the next section show that our smoothness condition

and condition 1 and 2 are satisfied by most of the nonexpected utility models, many of which

are not even Gateaux differentiable.

3. Examples

In this section, we verify the smoothness of several important nonexpected utility

models that appear in the literature, and characterize their subdifferential correspondences.

We do not intend to cover all examples of nonexpected utility models; in stead we emphasize

two points: our approach can be applied to broader classes of utility functions, and it allows

the utility functions to be defined on larger domains. In the first example, we study the

relationship between our notion of smoothness and Machina (1982) and Wang (1993)’s notion

of Fréchet differentiability. We show that, under mild conditions, the class of models that

can be analyzed in Machina (1982, 1989) and Wang (1993) can also be analyzed with our

approach. However, our approach allows utility functions to be defined on larger domains.

The second example deals with expected utility and the weighted utility (Chew (1983, 1989),

10



Dekel (1986)). These two models are all differentiable in Machina’s approach. The purpose of

this example is to illustrate the form of the derivatives of nonexpected utility functions with

respect to random variables, and compare that with derivatives with respect to distribution

functions. We use these models as an example to illustrate why our approach allows utility

to be defined on a larger domain, in particular, allow for unbounded random variables. In the

Third example, we study MPEU. MPEU serve as a good example to illustrate the strength of

our theory. In general, it does not satisfy probability sophistication, and is not differentiable

with respect to distribution functions even if it satisfies probabilistic sophistication. However,

we show that it is smooth and satisfies condition 1 and 2; consequently, all of our theorems in

section four would apply to this model. Other comparative statics results in Machina (1982,

1989) and Wang (1993), with proper modifications, also applies to MPEU. MPEU models

also serve as an example in which the subdifferential correspondence is not single valued.

We give characterizations of its subdifferential correspondence. We establish an important

property of the subdifferential correspondence, i.e. it is single-valued on a dense Gδ set of Lp.

A. Example 1: Lp Fréchet differentibility and Smoothness.

This section studies the relation between Fréchet differentiability with respect to dis-

tribution functions and our notion of smoothness. We show utility functions that satisfy

Lp differentiability also satisfies our notion of smoothness under mild conditions, yet we al-

low utility functions to be defined on larger domains. One of the significance of the local

expected utility analysis approach is that it allows one to derive first order conditions of

consumer’s optimization problem and do comparative statics analysis. Machina (1982, 1989)

laid a theoretical foundation for this approach. Machina’s notion of differentiability is Fréchet
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differentiability with respect to distribution functions. Wang (1993) extended this approach

to Lp Fréchet differentiability and allowed for a larger class of utility functions. Their results

require that the domain of the utility function is a set of random variables with a common

compact support, which allows one to define a notion of norm on the set of distribution

functions. For more discussion on the choice of norm and topological structure on the set

of distribution functions in this context, see Allen (1987) and Wang (1993). It is not clear,

however, whether a proper notion of norm could be chosen on the space of distribution func-

tions with unbounded support, so that Machina and Wang’s result generalize to this case.

Our approach however, indicates that if one instead considers differentiability with respect

to random variables, this difficulty can be easily overcome.

To links their notion of differentiability to our approach, let’s first recall Machina

(1982)’s notion of Fréchet differentiability. Let DF ([−M,M ]) denote the set of distribution

functions with support [−M,M ]. The conclusion in Machina (1982) is that if U(·) is a Fréchet

differentiable utility function of distribution functions, then ∀F ∈ DF ([−M,M ]),

U 0(F )(G− F ) =
Z
uF (x)d [G(x)− F (x)] (9)

where uF is the local expected utility function. Machina uses L1 norm on the set of distri-

bution functions, while Wang (1993) generalize to Lp norm for 1 ≤ p < ∞. It is important

to distinguish their use of Lp norm and ours. Machina and Wang use Lp norm on the space

of distribution functions, i.e. the Lp space on ([−M,M ],B, Leb), where Leb denotes the
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Lebesgue measure. The norm is defined by: for distribution functions F and G,

||F −G||p =
(Z M

−M
|F (t)−G(t)|pdt

) 1
p

(10)

The Lp norm in our framework is defined on the space of random variables. To be precise,∀X, Y ∈

Lp(Ω, F, P )

||X − Y ||p =
½Z

Ω
|X(ω)− Y (ω)|pdP

¾ 1
p

(11)

Note distribution functions does not vanish at infinity, therefore Machina (1982, 1989) and

Wang (1993) need require the support of the distributions to be compact to prevent ||F ||p =

∞. Our formulation, however, does not need this requirement. We can represent the same

preference represented by U by a utility function defined on the set of random variables. Let

RV ([−M,M ]) = {X ∈ L1 : ∀ω ∈ [0, 1],−M ≤ X(ω) ≤ M}, Define V : RV ([−M,M ]) → R

through the relation

∀X ∈ RV ([−M,M ]), V (X) = U(FX) (12)

The following proposition establishes the link between the two notions of differentiability.

Proposition 1. Suppose U is L1 Fréchet differentiable, and ∀F ∈ DF ([−M,M ]), uF :

R → R is Lipschitz continuous, then V is smooth and Gateaux differentiable. The Gateaux

differential of V at X ∈ RV ([−M,M ]) is given by: ∀Y ∈ RV ([−M,M ]),

V 0(X)(Y ) =
Z
u0F (X) · Y dP (13)

If further, U is L1 continuously Fréchet differentiable, then V is smooth and satisfies
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condition 1 and 2.

(Proof in appendix.)

The above theorem shows that continuous L1 Fechet differentiability of U (with respect

to distribution functions) and Lipschitz continuity of the local expected utility function imply

smoothness of V and condition 1 and 2. Although Machina (1982)’s original analysis does

not impose continuous Fréchet differentiability explicitly, this is in fact needed5. The above

theorem therefore implies the class of nonexpected utility functions that are differentiable in

Machina’s framework is also smooth and satisfies condition 1 and 2, provided that the local

utility functions are Lipschitz continuous. The later condition is a rather innocuous one as

long as one is interested in deriving first order conditions of consumer’s optimization problem

and performing comparative static analysis, because differentiability of local expected utility

is needed anyway.

Wang (1993) extended Machina (1982, 1989)’s analysis and proved Machina’s result

holds for Lp Fréchet differentiable utility functions as long as the path is Lp-smooth. The

extension can be explained by the following: if p > 1, then the set of utility functions that

are Lp Fréchet differentiable are strictly larger than the the set of L1 Fréchet differentiable

utility functions. This is clear from equation (2). Lp differentiability requires the limit in

(2) to exist for a smaller set of Y 0s, since convergence in Lp is a more stringent requirement

than convergence in L1. It is also clear that a weaker notion of differentiability is obtained

at the expense of a stronger notion of norm on the space of distribution functions. This

means there are less smooth paths in Wang’s formulation than in Machina’s formulation.

5See footnote 9 in Wang ([25]) for discussion of this point.
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This is the reason why the results in Wang (1993) holds only along Lp-smooth paths. For

the same reason, we are not able to show that all Lp Fréchet differentiable functions are

smooth. However, they are smooth along ”smooth paths”. The following corollary formalizes

the statement. Let first recall Wang (1993)’s definition of smooth paths. Let F (·, α) be a

local path through F on D([−M,M ]), and let W be the associated neighborhood of 0. Then

F (·, α) is called a weakly smooth path at F if Fα(·, α) exists and is bounded on [−M,M ]×W .

If in addition, the mapping α→ Fα(·, α) is continuous in the Lp norm, then the path F (·, α)

is called Lp-smooth. The following corollary establishes Gateaux differentiability of V along

weakly smooth paths:

Corollary 1. Suppose U is Lp Fréchet differentiable, and ∀F ∈ D([−M,M ]), uF is Lip-

schitz continuous. Suppose at X, Y ∈ Lp, the path FX+αY is weakly smooth, then V is

Gateaux differentiable in the direction of Y .

Although we are not able to prove that all Lp Fréchet differentiable utility functions

are smooth in all directions, the models studied in Wang (1993) can all be analyzed using our

notion of smoothness. This is not surprising, since the results obtained in Wang only needs

differentiability along smooth paths.

B. Example 2: Expected Utility and weighted Utility

In this section, we provide sufficient conditions under which the expected utility and

the weighted utility are smooth. It is not our purpose to give a minimum set of conditions

under which they are smooth, neither do we intend to provide a comprehensive study of

the differentiability of all nonexpected utility models. Our purpose is to use these models

as an example to illustrate the properties of derivatives of utility functions with respect to
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random variables. Since both models satisfy probabilistic sophistication, they also serve as

an example for illustrating the results in example 1.

We first consider the expected utility function, denoted VE, where

VE(X) =
Z
u(X)dP (14)

Proposition 2. Suppose u is bounded and Lipschitz continuous, then VE is smooth, Gateaux

differentiable and satisfies condition 1 and 2. The Gateaux derivative of V is given by:

∀Y ∈ Lp,

DVE(X)(Y ) =
Z
u0(X)Y dP (15)

Proof. Since expected utility is a special case of weighted utility (with w ≡ 1), the result

here can be obtained as a special case of proposition 3.

From the above theorem it clear that the subdifferential correspondence of expected

utility is single valued. The Gateaux differential of expected utility takes the form:

Γ(X) = u0(X) ∈ Lq (16)

Note the Gateaux differential of expected utility is not constant. This is in contrast with

Machina’s formulation. The expected utility defines a linear funtional on the set of dis-

tribution functions; therefore its derivative with respect to distribution functions is a con-

stant. However, expected utility is not linear in random variables unless the von Neumann-

Morgenstern utility function is linear. Therefore its derivative with respect to random vari-

ables is not constant. Note even the expected utility is not Fréchet differentiable with respect
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to distribution functions unless the set of random variable on which the utility is defined have

a common compact support. However, it is smooth and satisfies condition 1 and 2. Here

we assume that the von Neumann-Morgenstern utility function u is bounded for simplicity.

It could be replaced by more general integrability conditions, in which case the bounded

convergence theorems in the proof can be replaced by the dominated convergence theorem.

We next consider the weighted utility. The weighted utility is defined as:

VB(X) =

R
w(X)u(X)dPR

w(X)dP
(17)

for some w : R → R, such that w > 0, and u : R → R. The following proposition gives

sufficient conditions under which VB is smooth.

Proposition 3. Suppose w and u are both bounded and Lipschitz continuous, assume also,

w is bounded away from 0, then VB is smooth, Gateaux differentiable and satisfy condition 1

and 2. The Gateaux differential of VB is given by:

Γ(X) =
[w0(X)u(X) + w(X)u0(X)]R

w(X)dP
−
R
w(X)u(X)dP

[
R
w(X)dP ]2

w0(X) (18)

(Proof in appendix)

C. Example 3: MPEU and RDEU

In this section, we study the smoothness of MPEU. The MPEU model formalizes

the idea of Knighten uncertainty and is of fundamental importance in nonexpected utility

analysis. It is perhaps the most widely used nonexpected utility model in practice. For a
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recent survey on applications of MPEU models in asset pricing theory, game theory, contract

theory and others, see Luo and Ma (1999). However, none of the previous local utility analysis

literature addresses MPEU. We show that under fairly general conditions (no more stringent

than the conditions under which expected utility is smooth), MPEU is smooth, and satisfies

condition 1 and 2. We also characterize the sub-Gateaux derivative of MPEU. We show it is

Gateaux differentiable on a dense Gδ
6 set of Lp.

Consider the following utility function defined on Lp:

VM(X) = inf
π∈Π

Z
u(X)dπ (19)

where Π is a convex set of probability measures on Ω. We assume ∀π ∈ Π, π is absolute

continuous with respect to P , so that the set of probability measures Π can also be represented

by densities, denote

M = { dπ
dP

: π ∈ Π} (20)

Then VM can be written as:

VM(X) = inf
φ∈M

Z
φu(X)dP (21)

The set of densities M is saided to be bounded if ∃K > 0, such that ∀φ ∈M , φ ≤ K; closed

if it is closed under almost sure limit. Closedness and boundedness of M implies the inf in

6Recall a set is Gδ if it can be represented as intersection of countably many open sets.
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(21) is always achieved7, we can write:

VM(X) = min
φ∈M

Z
φu(X)dP (22)

Proposition 4. Suppose u is bounded and Lipschitz continuous, and M is convex, closed

and bounded, then the MPEU VM is smooth, and satisfies condition 1 and 2. The subdiffer-

ential correspondence of VM is given by:

Γ(X) = {φu0(X) : φ ∈ Ψ(X)} (23)

where

Ψ(X) = argmin
φ∈M

Z
φu(X)dP (24)

(Proof in Appendix).

Corollary 2. Under the conditions of proposition 4, VM is Gateaux differentiable on a

dense Gδ set of Lp.

Proof. See lemma 6 in appendix.

Note MPEU cannot be Gateaux differential on Lp unlessM is a singleton, in which case

it reduces to the expected utility. The above proposition shows it is subGateaux differentiable

and smooth under fairly general conditions. If u is concave, so that V is a concave function

of random variables, results from convex analysis can be applied to show the existence of

7Closedness and boundedness of M implies it is compact in some properly chosen topology, thus the inf
is always achieved. For proof of this, see the proof of lemma 4 in appendix B.
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subdifferentials. However, our results do not rely on any concavity assumption. Finally, we

consider the rank-dependent expected utility (RDEU) model (Quiggin (1982), Quiggin and

Wakker (1994)) defined by:

VR(X) =
Z
R
u(x)dg ◦ FX(x)

where g : [0, 1]→ [0, 1] is increasing, concave, continuous and

g(0) = 1− g(1) = 0

and FX denote the distribution function of X. Since RDEU can be viewed as a special case of

MPEU where the set of prior is the core of some convex distortion of the probability measure P

(Schmeidler (1986)), RDEU is smooth and satisfies condition 1 and 2 by proposition 3. Chew

et al (1987) showed that RDEU is not Fréchet differentiable in Machina (1982)’s sense, but it is

Gateaux differentiable, therefore local expected utility analysis is still possible. Motivated by

the fact that Fréchet differentiability yields strong results and allows for study of larger class of

comparative static analysis, Wang (1993) introduced the notion of Lp Fréchet differentiability

(with respect to distribution functions), and recovered the Fréchet differentiability of RDEU

under a different notion of norm. Carlier and Dana (2003) argued that it is often more useful

to know the derivative with respect to random variables in applications, and they characterize

the set of Gateaux (sub)differentials of RDEU. Their results are based on the assumption

that u is concave. The above proposition establishes subGateaux differentiability of RDEU

without concavity. The following proposition characterizes the subdifferential correspondence

of RDEU:
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Proposition 5. Suppose u is strictly increasing, bounded and Lipschitz continuous, g0 is

bounded a.s on [0, 1], then V is smooth and satisfies condition 1 and 2. The subdifferential

correspondence of V is given by:

Γ(X) = co {g0(σ) · u0(X) : σ is measure preserving, and X = X∗ ◦ σ} (25)

for all X ∈ Lp. Moreover, Γ is single-valued on a dense Gδ set of Lp.

(Proof in appendix)

In equation (25), co means convex hull. It is easy to verify that FX(X) is a measure

preserving transformation that satisfies X = X∗ ◦FX(X). See also Corollary 2 of Carlier and

Dana (2003). Therefore

g0(FX(X)) · u0(X) ∈ Γ(X) (26)

and Γ(X) = g0(FX(X)) ·u0(X) whenever Γ(X) is a singleton. We also note g0(FX(X)) ·u0(X)

is a measurable function of X.

There are certainly other nonexpected utility models that we do not discuss here, for

example, the quadratic utility and the implicit weighted utility. However, they are all smooth

under fairly general conditions. The analysis of these cases is very similar to the analysis we

did for weighted utility above. We thus do not repeat here.

4. Smooth Nonexpected Utility Functions

In this section, we link global properties of nonexpected utility functions to its local

properties, we show that the variational analysis of nonexpected utilities can be done under

the smoothness condition and condition 1 and 2. No attempt is made to exhaust all applica-
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tions of the variational analysis approach. Interested reader are referred to Chew and Mao

(1995), Machina (1982, 1989), and Wang (1993), among others. We just remark here that

although their theorems are stated for utility functions that satisfies probabilistic sophistica-

tion, as far as comparative statics analysis are concerned, they can all be reformulated in our

settings as well.

The purpose of this section is to extend the differential characterizations of mono-

tonicity, risk aversion of nonexpected utility in previous literature on variational analysis of

nonexpected utilities to the class of smooth utility functions, and demonstrate why our notion

of smoothness and condition 1 and 2 proposed in section 2 are sufficient for variational analy-

sis of nonexpected utility functions. We give characterizations of probabilitistic sophistication

(i.e. state independence), monotonicity, and risk aversion of the nonexpected utility functions

in terms of properties of its Gateaux derivative. Utility functions are defined as functions of

random variables. This formulation allows for state dependence. The notion of monotonicity

and risk aversion Werner (2004) for state independent utilities can be generalized to the state

dependent case. Our theorems are formulated to allow for this generality.

We consider smooth utility functions V : Lp → R. Let Γ : Lp → Lq denote the

subdifferential correspondence of V . We first reformulate Machina and Schmeidler (1992)’s

definition of probabilistic sophistication in our context: A utility function V : Lp → R is

probabilistically sophisticated if ∀X,Y ∈ Lp, X and Y have the same distribution implies

V (X) = V (Y ).

The notion of probabilistic sophistication is proposed by Machina and Schmeidler

(1992). Their purpose is to derive subjective probability without assuming decision maker’s

preference over lotteries conforms to the expected utility hypothesis. Previous literatures
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on local expected utility analysis deal with utility function defined on set of distribution

functions, therefore assumes probabilistic sophistication automatically. On the other hand,

some important non-expected utility models does not satisfy the probabilistic sophistication

condition, for example, MPEU. It is therefore important to give a differential characterization

of probabilistic sophistication in this more general setting.

Recall that for any smooth utility function V : Lp → R, the sub-Gateaux derivative of

V , is a correspondence from Lp to Lq. If γ ∈ Γ is a selection of Γ, then ∀X ∈ Lp, γ(X) ∈ Lq.

Probability sophistication implies more structure on Γ, as is stated in the following lemma:

Lemma 1. Suppose V is smooth, if V is probabilistically sophisticated, then ∀γ ∈ Γ, E[γ(X)|X] ∈

Γ(X).

In general, ∀X ∈ Lp, γ(X) may or may not be measurable with respect to (the

completion of σ−field generated by) X. The above lemma implies that under the probability

sophistication condition, Γ(X) is closed with under taking conditional expectations with

respect to X. Since E[γ(X)|X] is measurable with respect to X, we immediately conclude

that under probability sophistication, there is at least some γ ∈ Γ, such that γ(X) is X

measurable for all X ∈ Lp. This is summarized in the following corollary:

Corollary 3. If a smooth utility function V satisfies probabilistic sophistication, then ∃γ ∈

Γ such that ∀X ∈ Lp, γ(X) is σ(X) measurable, where σ(X) denote the P−completion of

the σ field generated by X.

In the examples of section three, Lp-Fréchet differentiable utility functions, expected

utility function, and weighted utility are all probability sophisticated and have a single valued
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subdifferential correspondence. In this case, the above lemma implies that the representation

of the Gateaux differential at X ∈ Lp is σ(X) measurable, and thus can be represented as a

measurable function of X. It is easy to verify that their Gateaux differentials all satisfy this

condition. See equation (13), (16), (18). RDEU also satisfies probabilistic sophistication, but

the subdifferential correspondence is not single valued, however, the lemma implies there exist

a selection of the subdifferential correspondence that satisfies the measurability condition.

This selection is given in (26). There is no guarantee however, that every selection of Γ

satisfy the measurability condition. In the case of RDEU, it is easy to construct elements

in Γ(X) that does not when Γ(X) is not a singleton. MPEU, on the other hand, does not

satisfy probability sophistication in general.

Under the conditions of lemma 1, if γ is a selection of Γ such that γ(X) is σ(X)

measurable, then γ(X) can be represented as a measurable function of X, i.e. γ(X) = ρ ◦X

for some ρ : R→ R. We define such function ρ as the representation function of γ(X):

Definition 5. Let V : Lp −→ R be a smooth utility function. Suppose for some X ∈ Lp,

l ∈ Γ(X), l(ω) = ρ ◦X(ω) a.s. for some measurable function ρ : R→ R, then ρ is called the

representation function of l.

Suppose there exists a family of measurable functions ( = {ρX : X ∈ Lp, ρX : R→ R}

and a selection of Γ, γ ∈ Γ, such that ∀X ∈ Lp, γ(X)(ω) = ρX ◦X(ω) a.s., then ( is called

a system of representation functions of Γ.

If γ(X) ∈ Γ(X) is σ(X) measurable, the representation function ρX exists. However,

ρX may not be unique. In particular, it can take arbitrary values outside the range of X.

However, it can be easily verified ρX is unique on the set X(Ω) except on a set of P measure
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0, where X(Ω) is the range of the random variable X, that is ρX is unique QX a.s., where

QX denote the distribution of X. We will identify ρX as the equivalent class of QX − a.s.

equal functions. Under this convention, there is a unique representation function system for

the sub-Gateaux differential correspondence of any smooth utility function.

For each X ∈ Lp, the representation function maybe different. We use the notation

ρX to emphasize the dependence of ρ on X. For example, the representation function of

weighted utility at X ∈ Lp is

[w0(·)u(·) + w(·)u0(·)]R
w(X)dP

−
R
w(X)u(X)dP

[
R
w(X)dP ]2

w0(·)

and the system of representation functions is given by:

(
[w0(·)u(·) + w(·)u0(·)]R

w(X)dP
−
R
w(X)u(X)dP

[
R
w(X)dP ]2

w0(·) : X ∈ Lp

)

Similiarly, the form of representation functions of the Gateaux derivative of expected utility,

Lp−Fréchet differentiable utility and RDEU are given in (16), (13) and (26), respectively.

Expected utility is special in the sense that the representation function does not depend on

the distribution of X. For Lp−Fréchet differentiable utility, weighted utility, and RDEU, the

representation function ρX depends nontrivially on X. However, they depends on X only

through its distribution.

The next proposition gives a characterization of probability sophistication for smooth

utility functions. It turns out that for smooth utility functions that satisfy condition 1 and 2,

probability sophistication is equivalent to existence of a representation function system, and
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representation functions being invariant to random variables with the same distribution. As

we have noted above, expected utility, Lp−Fréchet differentiable utility, weighted utility, and

RDEU all satisfy this condition. MPEU, on the other hand, does not satisfy this condition

in general.

Proposition 6. Let V : Lp → R be smooth. If the system of representation functions (

satisfies: ∀X,Y ∈ Lp, X and Y have the same distribution implies ρX = ρY QX − a.s., then

V is probability sophisticated. Suppose in addition V satisfies condition 1 and 2, then the

converse of the above theorem also holds.

(Proof in appendix)

If a system of representation functions exists for V, properties of the subdifferential

γ can be stated in terms of the properties of the representation function ρ. The theorems

in Machina (1982, 1989), Wang (1993) and Chew et al (1987) can viewed as linking global

properties of utility function V to the properties of the representation function ρ. In fact, it

may be easily checked that for Lp−Fréchet differentiable utilities, the representation function

and the local expected function uF (·) is related through: u0F (t) = ρ(t), ∀t.

Our theorems are concerned with properties of the subdifferential correspondence and

do not rely on probabilistic sophistication therefore the existence of representation functions.

However, whenever representation functions exist, our theorems can be formulated in terms

of properties of the representation functions as well. We give characterizations of mono-

tonicity, and risk aversion of utility functions in terms of properties of the sub-differential

correspondence. Standard notions of monotonicity and risk aversion for nonexpected utilities
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are generalized to allow for state-dependent utilities as well. Our definition of risk aversion

follows Werner (2004). Under probabilistic sophistication, we also give characterization of

monotonicity and risk aversion in terms of properties of the representation functions.

Definition 6. A utility function V : Lp → R is monotone if ∀X,Y ∈ Lp, V (X+Y ) ≥ V (X)

whenever Y ≥ 0 a.s..

Under probabilistic sophistication, the standard notion of monotonicity is the follow-

ing: V is monotone if V (X) ≥ V (Y ) whenever X first order stochastic dominate Y . Since

X first order stochastic dominate Y if and only ∃ random variables fX, eY such that fX and

X have the same distribution, and eY and Y have the same distribution, and fX ≥ eY a.s.. It

follows immediately that our definition of monotonicity is equivalent to the standard defini-

tion under probabilistic sophistication. The following proposition gives a characterization of

monotonicity without assuming probabilistic sophistication:

Proposition 7. Suppose V : Lp → R is smooth. If ∃γ ∈ Γ, such that ∀X ∈ Lp, γ(X) ≥ 0

a.s., then V is monotone. Suppose in addition, V satisfies condition 1 and 2, then the

converse is also true.

(Proof in appendix)

If V is probability sophisticated, the above theorem can be stated in terms of the

representation function:

Corollary 4. Suppose V : Lp → R is smooth and satisfies probabilistic sophistication. Let

( be the system of representation functions for Γ. If ∀ρ ∈ (, ρ ≥ 0, then V is monotone.

Suppose in addition, V satisfies condition 1 and 2, the converse is also true.
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Proof. Follows directly from proposition 5.

It is clear from example 1, if the utility function is continuously L1 Fréchet differen-

tiable in the sense of Machina (1982), and the local expected utility is Lipschitz, then it is

also smooth and satisfies condition 1 and 2. In this case, the representation is the (almost

sure) first order derivative of the local expected utility function. Machina (1982) characterize

monotonicity as the local expected utility being nondecreasing. Our proposition is thus a

generalization of Machina’s theorem.

We next provide equivalent characterizations of risk aversion. The notion of risk

aversion can also be generalized to utility functions that do not satisfy the probabilistic

sophistication condition. Our definition of risk aversion for state dependent utility functions

follows Werner (2004):

Definition 7. A utility function V : Lp → R is averse to mean independent risk if ∀X,Z ∈

Lp, such that E(Z|X) = 0 a.s., V (X + λZ) ≥ V (X + Z) for all 0 ≤ λ ≤ 1.

If V satisfies probabilistic sophistication, the above definition is equivalent to the

Rothchild-Stiglitz definition of risk aversion Rothchild and Stiglitz (1970), i.e., V is risk averse

if V (X) ≥ V (Y ) whenever X second order stochastic dominate Y . For further discussions of

the notion of aversion to mean-independent risk, see Werner (2004). The following theorem

characterizes mean-independent risk aversion in terms of properties of the subdifferential

correspondence.

Proposition 8. Suppose V : Lp → R is smooth. If ∃γ ∈ Γ, such that one of the following

two conditions hold, then V is averse to mean-independent risk. Suppose in addition, V
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satisfies condition 1 and 2, then the converse is also true.

1) ∀X ∈ Lp, ∃ a null set N ∈ F , such that ∀ω, ω0 ∈ Ω,

[X(ω)−X(ω0)][γ(X)(ω)− γ(X)(ω0)] ≤ 0 (27)

2) ∀X ∈ Lp, ∀ sub σ field G ⊆ F ,

Z
γ(X)[X − E(X|G)]dP ≤ 0 (28)

Condition (27) is sometimes called the ”negative comonotone” condition that also

appears, for example in Machina (1982) and Chew and Mao (1995). Thus the above propo-

sition is a generalization of those characterizations of risk aversion to the state dependent

case, and to a weaker notion of differentiability. Under probabilistic sophistication, mean-

independent risk aversion reduces to the usual Rothchild-Stiglitz notion of risk aversion. We

give additional characterizations of risk aversion for this case.

Corollary 5. Suppose V : Lp → R is smooth and satisfies probabilistic sophistication. Let

( be the system of representation functions, and let γ ∈ Γ be generated by (, i.e. ∀X ∈ Lp,

γ(X) = ρX(X). V is Rothchild-Stiglitz risk averse if one of the following two conditions hold.

If in addition, V satisfies condition 1 and 2, then the converse is also true.

1)∀X ∈ Lp, ∀ρX ∈ (, ρX is nonincreasing.

2)∀X, Y ∈ Lp, X and Y have the same distribution implies

Z
[γ(X)− γ(Y )](X − Y )dP ≤ 0 (29)
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Proof. Condition 1) is just a restatement of (27) in terms of the representation functions.

Proof of condition 2) is in appendix.

The first condition says Rothchild-Stiglitz risk aversion is equivalent to there existing

a system of nonincreasing representation functions. In the expected utility case, this reduces

to the first order derivative of von Neumann-Morgenstern utility function being a decreasing

function. Condition (29) is new. It says the subdifferential of V is a negatively monotone

operator on the set of random variables that has the same distribution. Recall a function

is concave if and only if the sub-Gateaux derivative is a negatively monotone operator (See

Phelps (1993)). Note also, a probabilistic sophisticated utility function V : Lp → R is

Rothchild-Stiglitz risk averse if and only if is quasiconcave on the set of random variables

that has the same distribution (Ai (2004)). Condition (29) is thus a differential analogue of

the above result.

The above theorems extended the variational analysis in Chew and Mao (1995),

Machina (1982, 1989), and Wang (1993) to smooth nonexpected utility functions. Many

nonexpected utility functions that are neither Gateaux differentiable nor concave satisfies

our smoothness condition. In fact, as was shown in section 2, most of the nonexpected utility

models in the existing literature satisfy smoothness under fairly general conditions, including

MPEU, which is not differentiable under any notion of differentiability used in this litera-

ture. Our approach also allow for state dependent utility functions. We do not attempt to

reformulate all the theorems appeared in this literature in our setting, however, this can be

done in an analogous fashion as we did here.
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5. Conclusion

We propose a notion of smoothness of nonexpected utility functions. Our notion of

smoothness allows the type of variational analysis of nonexpected utility models proposed by

Machina (1982) to be performed under very general conditions. In particular, our formulation

allows for state dependent utilities, as well as the MPEU model. Other nonexpected utility

models, are shown to satisfy our smoothness condition under more general conditions than

Fréchet differentiability and Gateaux differentiability used in the literature. We analyze the

properties of the subdifferential correspondence of nonexpected utility functions, and show

how the type of variational arguement in Machina (1982, 1989), Wang (1993), and Chew et

al (1987) among others, can be applied to smooth utility functions. We also give characteri-

zations of monotonicity and risk aversion without assuming probabilistic sophistication. We

give a careful analysis of the subdifferential correspondence of MPEU. We establish subdif-

ferentiability of MPEU without concavity assumption. We also show that MPEU is Gateaux

differential on a dense subset of Lp.

References

[1] Ai, H. (2004): Risk Aversion without Independence Axiom, working paper.

[2] Allen, B. (1987): Smooth Preferences and the Approximate Expected Utility Hypothesis.

Journal of Economic Theory 41, 340-355.

[3] Carlier,G and R.A. Dana. (2003), Core of Convex Distortions of Probability, Journal of

Economic Theory 113, 199-222.

[4] Chew, S.H. (1983), A Generalization of the Quasilinear mean with applications to the

31



measurement of income inequality and decision theory resolving the Allais paradox,

Econometrica 51,, 1065-1092.

[5] Chew, S.H. (1989), Axiomatic Utility Theories with the Betweenness Property, Annals

of Operations Research. 19, 273-298.

[6] Chew, S.H., E. Karni and Z. Safra. (1987), Risk Aversion in the Theory of Expected

Utility with Rank Dependent Probabilities. Journal of Economic Theory, 42, 370-381.

[7] Chew, S.H. and M.H. Mao (1995), A Shur Concave Characterization of Risk Aversion

for Non-expected Utility Preferences, Journal of Economic Theory, 67, 402-435.

[8] Dekel, E. (1986), An Axiomatic Characterization of Preference under Uncertainty:

Weakening the Independence Axiom, Journal of Economic Theory 40, 304-318.

[9] Gilboa, I. and D. Schmeidler (1989): Maxmin Nonexpected Utility with Nonunique

Prior, Journal of Mathematical Economics.

[10] Lou, X. and C. Ma (1999) Recent Advancements in the Theory of Choice under Knighten

Uncertainty and Their Applications in Economics, working paper.

[11] Kechris, A.S. (1995), ”Classical Descriptive Set Theory”, Springer.

[12] Lunberger, D.G. (1969), ”Optimization by Vector Space Methods”, New York: John

Wiley and Sons, Inc.

[13] Machina, M.J. (1982), Expected Utility without the Independence Axiom. Eonometrica,

Vol 50, 2 (1982), 277-324

32



[14] Machina, M.J. (1989), Comparative Statics and Nonexpected Utility Analysis, Journal

of Economic Theory 47, 393-405.

[15] Machina, M.J. and D. Schmeidler (1992): A More Robust Definition of Subjective

Expected Utility. Econometrica.

[16] Muller, A. and D. Stoyan. (2002), ”Comparison Methods for Stochastic Models and

Risks”, John Wiley and Sons, Inc.

[17] Phelps, R.R (1993), ”Convex Functions, Monotone Operators and Differentiability”,

Springer-Verlag.

[18] Quiggin, J.P. (1982) ”A Theory of Anticipated Utility”, Journal of Economic Behavior

and Organization 3, 323-343

[19] Quiggin, J.P. and P. Wakker (1994) The Axiomatic Basis of Anticipated Utility: A

Clarification, Journal of Economic Theory 64, 486-499.

[20] Rothschild, M. and J.E. Stiglitz. (1970), Increasing Risk: I. A Definition, Journal of

Economic Theory 2, 225-243.

[21] Rudin, W. (1974), Real and Complex Analysis, McGraw-Hill, second edition.

[22] Ryff,J.V.(1970), ”Measure preserving transformations and rearrangements,” Jounal of

Mathetical Analysis and Applications. 118, 315-347.

[23] Schmeidler, D. (1986), Integral representation without additivity, Proc. AMS 97 (2),

255-261.

33



[24] Tapia,R.A. (1971), The Differentiation and Integration of Nonlinear Operators, in Non-

linear Functional Analysis and Applications, Academic Press.
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Appendix

A1. Proof of proposition 1 and 3.

In the proof of the propositions, we will make frequent use of the following lemma:

Lemma 2. Suppose u : R→ R is Lipschitz continuous, then ∀X,Y ∈ Lp,

lim
t→0

1

t

Z
[u(X + tY )− u(X)]dP =

Z
u0(X)Y dP (A1)

Proof. First note Lipschitz continuity imply absolute continuity of u, we have u0 exists almost

surely, and ∀x, y ∈ R,

u(y)− u(x) =
Z y

x
u0(t)dt (A2)

Note also, u0 is bounded by the Lipschitz constant K. The left hand side of (A1) can be

written as

lim
t→0

1

t

Z Z t

0
u0(X + θY )Y dtdP

= lim
t→0

1

t

Z t

0

Z
u0(X + θY )Y dPdt

=
Z
u0(X)Y dP

The first equality is Fubini’s theorem. This is valid because

Z t

0

Z
|u0(X + θY )Y |dPdt ≤

Z t

0

Z
K|Y |dPdt = tKE|Y | <∞

35



The second equality is because as θ → 0,

Z
u0(X + θY )Y dP →

Z
u0(X)Y dP

By dominated convergence theorem. Since for every θ, u0(X + θY )Y is dominated by the

integrable function K|Y |. This proves the lemma.

Proof of Propostion 1:

First, assume U is Fréchet differentiable with respect to distribution functions. We

first prove V is Gateaux differentiable with respect to random variables, i.e.

lim
α→0

1

α
[V (X + αY )− V (X)] =

Z
u0F (X) · Y dP (A3)

Let Fα denote the distribution function of X + αY , We have

V (X + αY )− V (X) = U(Fα)− U(F )

= U 0(F )(Fα − F ) + o||Fα − F || (A4)

Note

o||Fα − F || = o|α| (A5)

To see this, note X and Y are both bounded by M , we have

Fα(x) = P (X + αY ≤ x) ≤ P (X − αM ≤ x) = F (x+ αM)
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similarly, Fα(x) ≥ F (x− αM). Also, F (x− αM) ≤ F (x) ≤ F (x+ αM) therefore,

||Fα − F || ≤
Z
[F (x+ αM)− F (x− αM)] dx

=
Z +∞

−∞

Z x+αM

x−αM
1dF (t)dx

=
Z ∞
−∞

Z t+αM

t−αM
dxdF (t)

= 2αM (A6)

This proves (A5).

To see Gateaux differentiability, note

U 0(F )(Fα − F ) =
Z
uF (x)d(Fα − F )

=
Z
uF (X + αY )dP −

Z
uF (X)dP (A7)

Therefore

lim
α→0

1

α
[V (X + αY )− V (X)] = lim

α→0

1

α
[
Z
uF (X + αY )− uF (X)dP ]

=
Z
u0F (X)Y dP (A8)

by lemma 2. This establishes the Gateaux differentiability and hence condition 1.

To prove the second part of the theorem, suppose U is continuously differentiable,

we need to prove V is smooth and satisfies condition 2. We first prove condition 2. Since

the subdifferential correspondence is single valued, this amounts to proving the following:
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Xn → X in Lp implies Z
u0Fn(Xn)Y dP →

Z
u0F (X)Y dP (A9)

for every Y ∈ RV ([−M,M ]), where Fn is the distribution function of Xn, and F is the

distribution function of X.

To see (A9) is true, note Xn → X in Lp implies Fn → F weakly, i.e. Fn(t) → F (t)

whenever F is continuous at t. Note also, F is an nondecreasing function, hence the set of

discontinuity of F is of measure 0. Therefore

Z
|Fn(t)− F (t)|dt→ 0

by bounded convergence, i.e. Fn → F in L1. Continuous Fréchet differentiability of U implies

uFn → uF pointwise
8. Note uFn → uF pointwise implies u

0
Fn → u0F a.s. To see this, uFn → uF

point wise implies ∀x, y ∈ R

¯̄̄̄Z y

x
u0Fn(t)dt−

Z y

x
u0F (t)dt

¯̄̄̄
→ 0

Therefore ¯̄̄̄Z
A

h
u0Fn(t)− u0F (t)

i
dt
¯̄̄̄
→ 0

On any A with positive measure, i.e. u0Fn → u0F a.s.. To prove (A9), note Xn → X in Lp

implies Xn → X a.s., togehter with u0Fn → u0F a.s., (A9) can be obtained by applying the

bounded convergence theorem.

8Continuous Frechet differentiability of U implies uFn → uF in the || · ||∗p norm defined in Wang (1993), in

particular, this implies convergence almost surely. Continuity of uF implies convergence is in fact point wise.
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To prove smoothness, we need to show the absolute continuity of g(t) = V (X + tY )

on [0, 1]. We prove absolute continuity by showing g(t) is continuously differentiable on [0, 1].

By equation (A3), for tn → t, tn ∈ [0, 1], all n,

g0(t) =
Z
u0Ft(X + tY ) · Y dP

g0(tn) =
Z
u0Fn(X + tnY ) · Y dP

where Ft and Fn are the distribution function of X+tY and X+tnY , respectively. As tn → t,

X + tnY → X + tY in Lp, by the proof of condition 2, g
0(tn)→ g0(t), as needed.

Proof of the Corollary:

All the above aguments go through except the proof of equation (A5), where the norm

||Fα−F || is understood as the Lp norm defined in (10). The path FX+αY (·) is weakly smooth

implies

lim
α→0

||Fα − F ||
α

≤
(Z "

|FX+αY (x)− FX(x)|
α

#p
dx

) 1
p

≤ C

for some constant C by weak smoothness of the path.

Proof of proposition 3:
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We first prove VB is Gateaux differentiable and ∀Y ∈ Lp

lim
α→0

1

α
[VB(X + αY )− VB(X)] =

Z
Γ(X)Y dP (A10)

where Γ(X) is given by (18). Denote

Xt = X + tY (A11)

We have:

VB(X + tY )− VB(X)

=

R
w(Xt)u(Xt)dPR

w(Xt)dP
−
R
w(X)u(X)dPR

w(X)dP

=

R
w(Xt)u(Xt)dP · R w(X)dP − R w(Xt)dP · R w(X)u(X)dPR

w(Xt)dP · R w(X)dP (A12)

The numerator in (A12) can be written as:

Z
w(Xt)u(Xt)dP ·

Z
w(X)dP −

Z
w(X)dP ·

Z
w(X)u(X)dP

+
Z
w(X)dP ·

Z
w(X)u(X)dP −

Z
w(Xt)dP ·

Z
w(X)u(X)dP

=
Z h

w(Xt)u(Xt)− w(X)u(X)
i
dP ·

Z
w(X)dP (A13)

+
Z h

w(X)− w(Xt)
i
dP ·

Z
w(X)u(X)dP (A14)
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Therefore the left hand side of (A10) is:

lim
t→0

1

t

(R
[w(Xt)u(Xt)− w(X)u(X)] dP · R w(X)dPR

w(Xt)dP · R w(X)dP
−
R
[w(Xt)− w(X)] dP · R w(X)u(X)dPR

w(Xt)dP · R w(X)dP
)

=

R
Ω [w

0(X)u(X) + w(X)u0(X)]Y dP · R w(X)dP − RΩw0(X)Y dP · R w(X)u(X)dP
[
R
w(X)dP ]2

=
Z (

[w0(X)u(X) + w(X)u0(X)]R
w(X)dP

−
R
w(X)u(X)dP

[
R
w(X)dP ]2

w0(X)

)
Y dP

The first equality is by lemma 2, note Lipschitz continuity and boundedness of u and w

implies uw is Lipschitz. Therefore VB is Gateaux differentiable, and the Gateaux differential

is given by (18). The Gateaux differential is an element of Lp by boundedness of u and w.

To prove smoothness, need to show g(t) = V (X + tY ) is absolutely continuous. We

prove a slightly stronger result, i.e. g is Lipschitz continuous. Take t, s ∈ [0, 1],

g(t)− g(s) =

R
w(Xt)u(Xt)dPR

w(Xt)dP
−
R
w(Xs)u(Xs)dPR

w(Xs)dP

=

R
w(Xt)u(Xt)dP · R w(Xs)dP − R w(Xs)u(Xs)dP · R w(Xt)dPR

w(Xt)dP · R w(Xs)dP

=

R
[w(Xt)u(Xt)− w(Xs)u(Xs)] dP · R w(Xs)dPR

w(Xt)dP · R w(Xs)dP

+
+
R
w(Xs)u(Xs)dP · R [w(Xs)− w(Xt)] dPR

w(Xt)dP · R w(Xs)dP
(A15)

Note w, u and w · u are all Lipschitz continuous. Let K denote the upperbound on u, w, and

the Lipschitz constant of u and w, and wu, We have

¯̄̄
w(Xt)u(Xt)− w(Xs)u(Xs)

¯̄̄
≤ K|Xt −Xs|
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= K|t− s||Y | (A16)

Similarly, ¯̄̄
w(Xs)− w(Xt)

¯̄̄
≤ K|t− s||Y |

Therefore,

|g(t)− g(s)| ≤ K|t− s| R |Y |dP ·K
ε

+
K2 ·K|t− s| R |Y |dP

ε

≤ K̄|t− s| (A17)

for some constant K̄, as needed.

Next, we need to verify condition 1 and 2. Condition 1 is trivial since VB is Gateaux

differentiable everywhere. To see condition 2 is true, we need to verify Xn → X in Lp implies

γ(Xn)→ γ(X) in the weak∗ topology, i.e. ∀Y ∈ Lp,

Z
γ(Xn)Y dP →

Z
γ(X)Y dP (A18)

Using (18), boundedness of u,w,u0, w0 implies γ(Xn) → γ(X) a.s. and γ(Xn) are bounded

by some constant K for all n. Hence γ(Xn)Y are dominated by K|Y |, (A18) is true by

dominated convergence.

A2. Proof of proposition 4 and 5.

We establish the smoothness of MPEU through several lemmas.
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Lemma 3. ∀X, Y ∈ Lp, define

g(t) = VM(X + tY ) on t ∈ [0, 1] (A19)

then g is absolutely continuous.

Proof. We prove absolute continuity by verifying Lipschitz continuity. We define Xt as in

(A11). Define the correspondence Ψ : Lp → M as in (24), and for t ∈ [0, 1], let φt ∈ Ψ(Xt).

First, take t, s ∈ [0, 1]

g(t)− g(s) =
Z
φtu(X

t)dP −
Z
φsu(X

s)dP

≥
Z
φt
h
u(Xt)− u(Xs)

i
dP

≥ −
Z
φt
¯̄̄
u(Xt)− u(Xs)

¯̄̄
dP

≥ −
Z
K ·K

¯̄̄
Xt −Xs

¯̄̄
dP

≥ −
Z
K2|t− s| · |Y |dP

≥ −K2|t− s|
Z
|Y |dP (A20)

The second line of (A20) is by definition of φs. The fourth line is by boundedness of M and

the Lipschitz continuity of u, where K is both the bound on M , and the Lipschitz constant

for u. Similarly, we have:

g(t)− g(s) ≤
Z
φs
h
u(Xt)− u(Xs)

i
dP

≤
Z
φsK|Xt −Xs|dP
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≤ K2|t− s|
Z
|Y |dP (A21)

Combining (A20) and (A21), we have

|g(t)− g(s)| ≤ K2|t− s|
Z
|Y |dP

as needed.

Lemma 4. Define the correspondence Ψ : Lp → M as in (24), then Ψ is Lp to weak
∗ upper

hemi-continuous and compact valued, where the weak∗ topology is generated by the following

convergence concept:

φn → φ weak ∗ if
Z
φnXdP →

Z
φXdP for every X ∈ L1

Proof. We first prove the function F (φ,X) =
R
φu(X)dP is continuous in the weak∗ × Lp

topology. To see this, Take (φn,Xn)→ (φ,X), we have:

¯̄̄̄Z
φnu(Xn)dP −

Z
φu(X)dP

¯̄̄̄

≤
¯̄̄̄Z

φnu(Xn)dP −
Z
φnu(X)dP

¯̄̄̄
+
¯̄̄̄Z

φnu(X)dP −
Z
φu(X)dP

¯̄̄̄

≤
Z
φn |u(Xn)− u(X)| dP +

Z
|φn − φ| |u(X)|dP (A22)

Note φn → φ in weak∗ implies φn → φ a.s.9, Xn → X in Lp implies convergence a.s..

9To see this, not convergence in weak∗ implies
R
φnIAdP →

R
φIAdP for every measurable A ∈ F , where
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Therefore the two terms in the last line of (A22) both converge to 0 by bounded convergence.

Next, we prove M is compact in the weak∗ topology. To see this, enough to show it is

a closed subset of some weak∗ compact set. Closedness is by assumption. Note ∀φ ∈M ,

| R φXdP |R |X|dP ≤ B

Hence M is a subset of {l ∈ dual(L1) : ||l|| ≤ B}, the later is a compact set by Alaoglu’s

theorem (Luengerger (1969), theorem 1, page 128). SinceM is compact, and F is continuous,

Ψ is u.h.c. and compact valued by Berge’s theorem.

Lemma 5. ∀X, Y ∈ Lp, let g be defined as in (A19), then ∀t ∈ [0, 1], g0+(t) and g0−(t) exists,

and

1) ∀φ ∈ Ψ(X + tY )

g0+(t) ≤
Z
φu0(X + tY )Y dP ≤ g0−(t) (A23)

2) ∃φ+, φ− ∈ Ψ(X + tY ) such that

g0+(t) =
Z
φ+u

0(X + tY )Y dP (A24)

and

g0−(t) =
Z
φ−u

0(X + tY )Y dP (A25)

IA is the indicator function. Take A = {ω : lim supφn > φ},
R
φnIAdP →

R
φIAdP implies P (A) = 0.

Similarly one can show P (lim inf φn < φ) = 0. This proves convergence almost surely.
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Proof. Let Xt be defined as in (A11), we first prove

lim sup
h→0+

1

h
[g(t+ h)− g(t)] ≤

Z
φtu

0(Xt)Y dP for every φt ∈ Ψ(Xt) (A26)

To see this, ∀h > 0,

1

h
[g(t+ h)− g(t)] =

1

h

∙Z
φt+hu(X

t+h)dP −
Z
φtu(X

t)dP
¸

≤ 1

h

∙Z
φt[u(X

t + hY )− u(Xt)]dP
¸

(A27)

The second line is by definition of φt+h. By lemma 2 the last line has a limit as h→ 0+, we

have

lim
h→0+

1

h

"Z h

0

Z
φtu

0(Xt + θY )Y dPdθ

#
=
Z
φtu

0(Xt)Y dP

Taking limsup on both sides (A27) gives us (A26).

By similar arguement, one can prove

lim inf
h→0−

1

h
[g(t+ h)− g(t)] ≥

Z
φtu

0(Xt)Y dP for every φt ∈ Ψ(Xt) (A28)

Next, we will prove:

lim sup
h→0+

1

h
[g(t+ h)− g(t)] = lim inf

h→0+
1

h
[g(t+ h)− g(t)] (A29)

and

lim sup
h→0−

1

h
[g(t+ h)− g(t)] = lim inf

h→0−
1

h
[g(t+ h)− g(t)] (A30)
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To see (A29), note for h > 0,

1

h
[g(t+ h)− g(t)] ≥ 1

h

∙Z
φt+h[u(X

t + hY )− u(Xt)]dP
¸

=
1

h

"Z h

0

Z
φt+hu

0(Xt + θY )Y dPdθ

#
(A31)

by similar arguement as in (A27). Since M is compact, as h → 0+, φt+h → φ+ for some

φ+ ∈M . Note h→ 0 and Y ∈ Lp implies X
t + hY → Xt in Lp. Upper hemicontinuity of Ψ

then implies φ+ ∈ Ψ(Xt). As θ → 0+,

Z
φt+hu

0(Xt + θY )Y dP →
Z
φ+u

0(Xt)Y dP

by dominated convergence. Taking liminf on both sides of (A31), we have

lim inf
h→0+

1

h
[g(t+ h)− g(t)] ≥

Z
φ+u

0(Xt)Y dP with φ+ ∈ Ψ(Xt) (A32)

Compare (A32) with (A26), we get (A29). This implies g0+(t) exists and the left inequality in

(A23) is true. At the same time, we proved ∃φ+ ∈ Ψ(Xt) such that equation (A24) is true.

The rest part of theorem can be proved in a similar way.

Combining lemma 3-5, we established V is sub-Gateaux differentiable everywhere and

the subdifferential correspondence is given by Γ(X) = {φu0(X) : φ ∈ Ψ(X)}. The following

two lemmas establish condition 1 and 2, respectively:

Lemma 6. VM is Gateaux differentiable on a dense Gδ set of Lp.

Proof. First note Lp is seperable (Rudin (1974), page 97). Let {ξn}∞n=1 be a countable dense
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subset of Lp. Let N be the set of natural numbers, for each m,n ∈ N define

Am,n = {X ∈ Lp : ∃φ, φ
0 ∈ Ψ(X) such that

Z
(φ− φ0)u0(X)ξndP ≥

1

m
}

Since {ξn} is dense, and
R
(φ − φ0)u0(X)Y dP is continuous in Y, Ψ(X) is not a singleton if

and only if X ∈ Am,n for some m,n ∈ N , i.e. X ∈ ∪∞m=1 ∪∞n=1 Am,n. We first prove ∀m,n,

Am,n is closed. To see this, take {Zk}∞k=1 ⊆ Am,n, and Zk → Z̄, need to show Z̄ ∈ Am,n.

∀k, Zk ∈ Am,n implies ∃φk, φ
0

k ∈ Ψ(Zk) such that
R
(φk − φ0k)u

0(Zk)ξndP ≥ 1
m
. Note M is

compact, therefore φk → φ and φ0k → φ0 at least along some subsequence. Since Ψ is u.h.c.

and compact valued, φ, φ0 ∈ Ψ(Z̄). Therefore

Z
(φk − φ0k)u

0(Zk)ξndP ≥
1

m

implies Z
(φ− φ0)u0(Z̄)ξndP ≥

1

m

by dominated convergence. This shows Am,n is closed. Therefore Lp\Am,n is open. Next we

show ∀m,n, Lp\Am,n is dense in Lp. Take any X ∈ Lp, we need to construct Xk → X in Lp,

and Xk ∈ Lp\Am,n for all k. Define

g(t) = VM(X + tξn) on t ∈ [0, 1]

By lemma 1, g0(t) exists a.s. on [0, 1]. Pick a sequence of {tk} such that tk → 0 and g0(tk)
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exists, we have, by lemma ,

g0(tk) =
Z
φu0(X + tkξn)ξndP

for all φ ∈ Ψ(X+tkξn), i.e. X+tkξn ∈ Lp\Am,n for all m. Note tk → 0 implies X+tkξn → X

in Lp. We have Lp\Am,n is dense in Lp. For each m,n, Lp\Am,n is dense and open in Lp,

also Lp is a complete metric space, we have ∩m=1 ∩n=1 {Lp\Am,n} = Lp\{∪∞m=1 ∪∞n=1 Am,n}

is dense in Lp by Baire’s theorem (Rudin (1974), page 102). D = Lp\{∪∞m=1 ∪∞n=1 Am,n} is

the dense subset on which Γ is single valued. This proves condition 1. It is also clear by

construction that D is Gδ (intersection of countably many open sets).

Lemma 7. Γ is u.h.c. and compact valued.

Proof. This follows directly from the fact that Ψ is u.h.c. and compact valued and the fact

that M and u0 are both bounded.

Proof of proposition 5:

The form of the Gateaux differential follows from Carlier and Dana (2003)’s charac-

terization of core of g. See theorem 5, and corollary 2 and 3 of Carlier and Dana (2003). The

rest follows proposition 3.

A3. Proof of lemma 1 and proposition 6.

Proof of lemma 1:
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Let T : (Ω,F , P ) → (Ω,F , P ) be the measure preserving isomorphism such that

IT = σ(X), where IT denote the invariant σ field associated with T , and the equality is

interpretated the two σ−field differ only by sets of measure 0. For existence of such measure

preserving transformation see exercise 17.43 in Kechris (1995).

First, if l ∈ Γ(X), then so is l ◦ T . To see this, note l ∈ Γ(X) implies ∀Y ∈ Lp , either

lim
α→0+

1

α
[V (X+αY ◦T−1)−V (X)] ≤

Z
lY ◦T−1dP ≤ lim

α→0−
1

α
[V (X+αY ◦T−1)−V (X)] (A33)

or

lim
α→0+

1

α
[V (X+αY ◦T−1)−V (X)] ≥

Z
lY ◦T−1dP ≥ lim

α→0−
1

α
[V (X+αY ◦T−1)−V (X)] (A34)

We first assume (A33) is the case, then ∀α,

V (X + αY )− V (X) = V (X ◦ T + αY )− V (X ◦ T )

= V (X + αY ◦ T−1)− V (X) (A35)

The first line of (A35) is true since IT = σ(X) implies X = X ◦ T a.s., the second line is

because T is a measure preserving isomorphism. Note also

Z
lY ◦ T−1dP =

Z
l ◦ TY dP
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Therefore (A33) becomes

lim
α→0+

1

α
[V (X + αY )− V (X)] ≤

Z
l ◦ T · Y dP ≤ lim

α→0−
1

α
[V (X + αY )− V (X)] (A36)

If in stead, (A34) is true, we have

lim
α→0+

1

α
[V (X + αY )− V (X)] ≤

Z
l ◦ T · Y dP ≤ lim

α→0−
1

α
[V (X + αY )− V (X)] (A37)

Therefore, ∀Y ∈ Lp, either (A36) or (A37) is true, we have l ◦ T ∈ Γ(X), as needed.

Next, since Γ(X) is convex and closed, we have ∀n,

1

n

nX
j=1

l ◦ T n ∈ Γ(X)

Also, ∀n, l ◦ T n ∈ Lq ⊆ L1, therefore

1

n

nX
j=1

l ◦ T n → E[l|IT ] = E[l|X] a.s. and in L1 (A38)

The convergence is due to Birkhauf’s ergodic theorm, E[l|IT ] = E[l|X] bacause IT = σ(X)

by construction. Because ∀n, 1
n

Pn
j=1 l ◦ T n are dominated by l (trivially), the convergence

in (A38) is also in Lq, which in turn implies weak
∗ convergence, closedness of Γ(X) therefore

implies E[l|X] ∈ Γ(X).

Proof of proposition 6

First, suppose V is smooth, and ∃ a system of representation functions ( such that

X and Y have the same distribution implies ρX = ρY , we need to show V is probability
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sophisticated. First we show if T is a measure preserving transformation on (Ω,F , P ), then

V (X) = V (X ◦ T ). To see this, let θ denote the r.v. that is 0 a.s. We have:

V (X ◦ T ) = V (θ) +
Z 1

0

Z
ρtX◦T (tX ◦ T )X ◦ TdPdt

= V (θ) +
Z 1

0

Z
ρtX◦T (tX)XdPdt

= V (θ) +
Z 1

0

Z
ρtX(tX)XdPdt

= V (X) (A39)

The second line is because T is measure preserving. The thrid line true since tX and tX ◦ T

have the same distribution. To prove the proposition, we recall Ryff’s theorem: For any

random variable Z, one can define the nondecreasing rearrangement of Z by:

Z∗ = inf{x ∈ R : FZ(x) ≥ ω}

Ryff’s theorem (see Ryff (1970)) states that ∃ a measure preserving transformation T such

that Z = Z∗ ◦ T . It is clear that if X and Y have the same distribution, then X∗ = Y ∗.

Therefore, X = X∗ ◦ T1, and Y = X∗ ◦ T2, for some measure preserving transformation T1

and T2. By the result in last part, V (X) = V (X∗) = V (Y ) as needed.

Next, suppose V is probability sophisticated, lemma 1 implies ∃γ ∈ Γ such that

∀X ∈ Lp, γ(X) is σ(X) measurable. For each X nondecreasing, let ρX be the measurable

function such that γ(X) = ρX ◦X a.s. Then define ( = {ρX∗ : X ∈ Lp}. Note if X and Y

have the same distribution function, then X∗ = Y ∗, so ρX∗ = ρY ∗ . Therefore ( is distribution

invariant. We next show ( is a system of representation functions. Note ∀X ∈ Lp, X = X∗◦T
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for some measure preserving transformation T . Note ρX∗(X) ∈ γ(X∗) by construction, since

X∗ is nondecreasing. This implies ∀Y ∈ Lp, either

lim
α→0+

1

α
[V (X∗ + αY )− V (X∗)] ≤

Z
ρX∗(X

∗)Y dP ≤ lim
α→0−

1

α
[V (X∗ + αY )− V (X∗)] (A40)

or

lim
α→0+

1

α
[V (X∗ + αY )− V (X∗)] ≥

Z
ρX∗(X

∗)Y dP ≥ lim
α→0−

1

α
[V (X∗ + αY )− V (X∗)] (A41)

Suppose (A40) is true, then

lim
α→0+

1

α
[V (X∗ ◦ T + αY ◦ T )− V (X∗ ◦ T )] ≤

Z
ρX∗(X

∗ ◦ T )Y ◦ TdP

and Z
ρX∗(X

∗ ◦ T )Y ◦ TdP ≤ lim
α→0−

1

α
[V (X∗ ◦ T + αY ◦ T )− V (X∗ ◦ T )]

i.e.

lim
α→0+

1

α
[V (X + αY ◦ T )− V (X)] ≤

Z
ρX∗(X)Y dP ≤ lim

α→0−
1

α
[V (X + αY ◦ T )− V (X)]

since T is measure preserving. If instead (A41) is true, we have

lim
α→0+

1

α
[V (X + αY ◦ T )− V (X)] ≥

Z
ρX∗(X)Y dP ≥ lim

α→0−
1

α
[V (X + αY ◦ T )− V (X)]

Since this holds for all Y , it implies ρX∗(X) ∈ Γ(X), i.e. ( is a representation system, as
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needed.

A4. Proof proposition 7, 8 and corollary 5.

We first prove the following lemma:

Lemma 8. Suppose Γ : Lp → Lq is upper hemicontinuous and compact valued. Suppose at

X ∈ Lp, Γ(X) is single valued, and
R
Γ(X)ZdP < 0 for some Z ∈ Lp. Then ∃δ > 0 and

γ ∈ Γ such that ||Y −X||p < δ implies
R
Γ(Y )ZdP < 0.

Proof. Take an arbitrary selection γ ∈ Γ, upper hemicontinuity of Γ and single valuedness

of Γ at X implies if Xn → X in Lp then γ(Xn) → γ(X) in the weak∗ topology. That is,

∀Z ∈ Lp, ε > 0, ∃δ > 0 such that ||Y −X|| < δ implies |R γ(Y )ZdP − R γ(X)ZdP | < ε, as

needed.

Proof of proposition 7: To prove proposition 7, let V be smooth and suppose ∃γ ∈ Γ,

such that γ(X) ≥ 0 for all x ∈ Lp, need to show V is monotone, i.e. V (X + Y ) ≥ V (X)

whenever Y ≥ 0 a.s.. Define g(t) = V (X + tY ) then

V (X + Y )− V (X) =
Z 1

0
g0(t)dt

=
Z 1

0

Z
γ(X + tY )Y dPdt ≥ 0

the lase inequality is true since γ(X + tY ) ≥ 0, and Y ≥ 0.

Next assume V also satisfies condition 1 and condition 2. To see the reverse of the

theorem is also true, let D be the dense subset of Lp such that Γ(X) is single valued on D.

We first prove ∀X ∈ D, Γ(X) ≥ 0 a.s.. Suppose not, then ∃A ∈ F , P (A) > 0 such that
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R
Γ(X)IAdP < −ε for some ε > 0, where IA denote the indicator function of A. By lemma 8,

∃ε > 0 such that for 0 ≤ t ≤ ε,
R
γ(X + tY )IAdP < 0. Therefore

R ε
0

R
γ(X + tIA)IAdPdt < 0,

i.e. V (X + εIA) < V (X), contrdicting monotonicity. This is proves Γ(X) ≥ 0 if X ∈ D. For

general X, take Xn ∈ D, and Xn → X in Lp, upper hemicontinuity implies at least along a

subsequence γ(Xn) → l in weak∗, and l ∈ Γ(X). Note for each n, γ(Xn) ≥ 0 a.s., we have

l ≥ 0 a.s., as needed.

To prove proposition 8, we need the following lemmas:

Lemma 9. Condition (27) is not satisfies if and only if ∃A,B ∈ F such that P (A), P (B) > 0

and ∃a, b, c, d ∈ R such that ∀ω ∈ A, ∀ω0 ∈ B,

a ≤ X(ω) < b ≤ X(ω0) ≤ c (A42)

and

γ(ω) < d ≤ γ(ω0) (A43)

Proof. The proof of this lemma is bit long, but not particularly helpful for understanding

the propositions, therefore is omitted here, but availible upon request10.

Lemma 10. Suppose (27) is true, take any G ⊆ F , define S : Ω∗ → R by:

∀ω̂ ∈ Ω∗, S(ω̂) = sup{γ(ω) : ω ∈ Ω∗, X(ω) ≥ E(X|G)(ω̂)} (A44)

10It can be found on the author’s webpage: www.econ.umn.edu/˜hai/research/appendix.pdf
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where Ω∗ = Ω\N , and N is the null set given in (27). Then S is G measurable, and ∀ω̂ ∈ Ω∗,

γ(X)(ω̂)[X(ω̂)−E(X|G)(ω̂)] ≤ S(ω̂)[X(ω̂)−E(X|G)(ω̂)] (A45)

Proof. To see S is G measurable, define f : R→ R ∪ {∞} by

f(x) = sup{γ(ω) : ω ∈ Ω∗, X(ω) ≥ x}

then f is nondecreasing thus measurable. Note S(ω) = f(E(X|G)(ω)) therefore is G measur-

able.

To see (A45) is true, first consider ω̂ such that X(ω̂) ≥ E(X|G)(ω̂). In this case

X(ω̂) ≥ E(X|G)(ω̂) implies S(ω̂) ≥ γ(X)(ω̂), therefore (A45) is true. Next, if instead

X(ω̂) < E(X|G)(ω̂), then take any ω0 such that X(ω0) ≥ E(X|G)(ω̂), we have X(ω0) > X(ω̂).

Equation (27) implies

γ(X)(ω0) ≤ γ(X)(ω̂) (A46)

Therefore S(ω̂) ≤ γ(X)(ω̂) by definition of S(ω̂). In this case, equation (A45) is still true

since X(ω̂)−E(X|G)(ω̂)] < 0.

Lemma 11. Suppose V is smooth, let γ ∈ Γ be a selection of the subdifferential correspon-

dence, then condition (27) and (28) are equivalent.

Proof. First, (27) implies (28). Suppose (27) is true, if we define S̃ : Ω → R such that it
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agrees with S defined in (A44) on Ω∗, then S̃ is G measurable and

γ(X)(ω̂)[X(ω̂)−E(X|G)(ω̂)] ≤ S(ω̂)[X(ω̂)− E(X|G)(ω̂)] a.s.

we have

Z
γ(X)[X −E(X|G)]dP ≤

Z
S̃[X −E(X|G)]dP

= E
n
E{S̃[X −E(X|G)]|G}

o
= E{S̃E{[X −E(X|G)]|G}}

= 0

The second line is law of iterated expectation, and third line is because S̃ is G measurable.

Next, we prove the reverse direction by showing the following: If (27) is not true, then

∃G ⊆ F , such that R γ(X)[X − E(X|G)]dP > 0. If (27) is not true, by lemma 9, ∃A,B ∈ F

and ∃a, b, c, d ∈ R that satisfies condition (A42) and (A43). Since P is nonatomic, we can

find C ⊆ A, D ⊆ B, such that Z
C∪D

XdP = b

Let G = σ{F|(C∪D)C , C ∪D}, where F|(C∪D)C denote the restriction of the σ field F on the

complement of C ∪D. Then

E(X|G)(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(ω) ω /∈ C ∪D

b ω ∈ C ∪D
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Hence we have

Z
γ(X)[X − E(X|G)]dP

=
Z
C
γ(X)[X −E(X|G)]dP +

Z
D
γ(X)[X −E(X|G)]dP

=
Z
C
[γ(X)− d] [X − E(X|G)]dP +

Z
D
[γ(X)− d][X − E(X|G)]dP

+d
Z
C∪D

[X − E(X|G)]dP

=
Z
C
[γ(X)− d] [X − E(X|G)]dP +

Z
D
[γ(X)− d][X − E(X|G)]dP > 0

as needed.

Proof of proposition 8:

To prove the proposition, we only need to prove (28). First suppose V is smooth, and

(28) is true. Let E(Z|X) = 0, and 0 < λ < 1, need to verify V (X+λZ) ≥ V (X+Z). Define

g(t) = V (X + tZ)

then

V (X + Z)− V (X) =
Z 1

λ
g0(t)dt

=
Z 1

λ

Z
γ(X + tZ)ZdPdt

=
Z 1

λ

1

t

Z
γ(X + tZ)tZdPdt

=
Z 1

λ

1

t

Z
γ(X + tZ) [X + tZ −E(X + tZ|X)] dPdt

≤ 0 (A47)
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as needed.

Next assume V also satisfies condition 1 and 2, need to show mean independent risk

aversion implies (28). First, (28) must hold on D. To see this, suppose the contratrary is

true, then Z
γ(X)[X −E(X|G)]dP > 0

for some X ∈ D, G ⊆ F . Then by lemma 8, ∃ε > 0, such that for 1 − ε < t < 1,

Y = tX + (1− t)E(X|G), Z
γ(Y )[X − E(X|G)]dP > 0

Therefore, let

g(t) = V (tX + (1− t)E(X|G))

we have:

V (X)− V (εX + (1− ε)E(X|G))

=
Z 1

1−ε
g0(t)dt

=
Z 1

1−ε

Z
γ(tX + (1− t)E(X|G))[X −E(X|G)]dPdt

> 0

However, X differ from E(X|G) by a mean independent risk, this contradict risk aversion.

For general X ∈ Lp, take Xn ∈ D all n, Xn → X in Lp, then ∀G ⊆ F ,∀n,

Z
γ(Xn)[Xn −E(Xn|G)] ≤ 0
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As n→∞, Xn − E(Xn|G)→ X −E(X|G) in Lp, and γ(Xn)→ l ∈ Γ(X) in weak∗, we have

Z
l[X −E(X|G)] ≤ 0

as needed.

Proof of corollary 5:

We only need to prove condition (29). First, suppose V is Rothchild-Stiglitz risk

averse. Take X,Y ∈ Lp such that X and Y have the same distribution. Then by proposition

6, ρX = ρY , we have

Z
[γ(X)− γ(Y )](X − Y )dP =

Z
[ρX(X)− ρX(Y )][X − Y ]dP ≤ 0 (A48)

The inequality is true because by first part of the theorem, ρX is nonincreasing.

Next, suppose (29) is true, and V is smooth and satisfies condition 1 and 2, need to

show V is Rothchild-Stiglitz risk averse. By the first part of the corollary, it is enough to

show ∀X ∈ Lp, ∀ρX ∈ (, ρX is nonincreasing (QX − a.s.). Suppose this is not true. By

lemma 9, ∃A,B ∈ F and a, b, c, d ∈ R such that P (A) = P (B) > 0 and ∀ω ∈ A, ∀ω0 ∈ B,

a ≤ X(ω) < b ≤ X(ω0) ≤ c (A49)

and

ρX(X)(ω) < d ≤ ρX(X)(ω
0) (A50)
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(The reason we can choose A,B such that P (A) = P (B) is that the probability space

(Ω,F , P ) is nonatomic.) Let T : (Ω,F , P ) → (Ω,F , P ) be the measure preserving transfor-

mation11 such that ∀ω ∈ A, T (ω) ∈ B, ∀ω0 ∈ B, T (ω0) ∈ A, and T (ω) = ω if ω ∈ (A ∪B)C .

Since T is measure preserving, X and X ◦ T have the same distribution. Consider;

Z
[γ(X)− γ(Y )](X − Y )dP

=
Z
[ρX(X)− ρX(X ◦ T )][X −X ◦ T ]dP

=
Z
A
[ρX(X)− ρX(X ◦ T )][X −X ◦ T ]dP

+
Z
B
[ρX(X)− ρX(X ◦ T )][X −X ◦ T ]dP

> 0 (A51)

The first equality is true because X and X ◦T have the same distribution implies ρX = ρX◦T .

The second equality is because on (A ∪B)C X = X ◦ T . Note on A, X(ω) < X ◦ T (ω), and

ρX(X)(ω) < ρX(X ◦ T )(ω), and on B, X(ω) < X ◦ T (ω) and ρX(X)(ω) < ρX(X ◦ T )(ω) by

(A49) and (A50), therefore the strict inequality in (A51) is true. But this contradict (29).

11For existence of such measure preserving transformation, see corollary 13.4 on page 82 in Kechris (1995).
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