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Stochastic Difference Equations

Introduction

Deterministic (nonrandom) difference equations of low order

can generate ''cycles,' but not of the kind ordinarily thought to charac-
terize economic variables. For example, we have seen that second-order
difference equations can generate cycles of constant periodicity that
are damped, explosive, or, in the very special‘case where the amplitude
r=1, of constant-amplitude. But the '"cycles" in economic variables seem
neither damped nor explosive, and they don't have a constant period from
one cycle to the next; e.g., some recessions last one year, some last
for one and a half years. The 'business cycle'" is the tendency of
certain economic variables to possess persistent cycles of approximately
constant amplitude and somewhat irregular periodicity from one '"cycle"
to the other. The distinguishing characteristic of 'the" business cycle
is the apparent tendency of a number of important aggregate economic
variables to move together, with timing relationships among the variables
that tend to remain the same from one expansion-recession cycle to
another. The National Bureau of Economic Research has inspected masses
of data that indicate the presence of a business cycle of average length
of about three years from peak to peak in many important economic aggre-
gates for the U.S. The Bureau has also documented the tendency for the
timing relationships among variables to remain somewhat the same from
cycle to cycle,

Figure 1 graphs the 91-day Treasury Bill rate and the unemployment
rate over the postwar period for quarterly data. The "business cycle"
shows up in both series, interest rates tending to be high and unemployment

1

low in "booms," and interest rates tending to be low and unemployment




high in recessions. Clearly the '"cycles' are irregular in length and
don't "look like'" those generated by our low-order difference equations.

As we have seen, low-order nonstochastic difference equations
do not generate data that look as irregular as do the graphs of economic
data just illustrated. However, high-order nonstochastic difference
equations can generate data that look like economic data. For example,
if Ye is governed by a nonstochastic nth order homogeneous difference
equation, its solution can be written

ey Ve = ;

where the ).'s are the roots of the characteristic equation and the aj's

3

are chosen to satisfy n initial conditions. By making n large enough,

e~

t
a,\
N

any sample of data can be modeled arbitrarily well with the
nonstochastic equation (1). However, this device of using high-order
nonrandom difference equations is generally regarded as an unpromising
one for two reasons. First, to get a model that is capable of generat-
ing time series that resemble economic data well, the order of the
difference equation must be made quite large, so that the model is not
parsimonious in terms of its parameterization. Second, strictly speak-
ing, the model (1) implies that once the appropriate equation is fit,
perfect predictions of the future of y can be made. Most economists
believe that predictions will always be subject to error, so that it
seems advisable to adopt a model that recognizes this condition.
While low-order nonrandom difference equations don't provide

an adequate model for explaining the cycles in economic data, low-order
stochastic or random difference equations do. In effect, if the initial

conditions of low-order deterministic difference equations are subjected




to repeated random shocks of a certain kind, there emerges the possibility

of recurring, somewhat irregular cycles of the kind seemingly infesting
economic data. This is an important idea that is really the foundation
of macroeconometric models, an idea that was introduced into economics

by Slutskv and Frisch. These pages describe the elements of stochastic

*
difference equations and some of their applications in macroeconomics.

Preliminary Concepts

A stochastic process is a collection of random variables, a

collection indexed by a variable t. In our work, we will regard t as
time and will require t to be an integer, so that we'll be working in
discrete time. Thus, the stochastic process e is a collection of random
variables ... y_1» yO, Yo Yo cees there being one random variable for
each point in time t belonging to the set T, which in our case is the set

of integers. Alternatively, on each ''drawing,'" we draw an entire sequence

{yk}:=_m . We are interested in the probability distribution of such

sequences. A single drawing of a sequence {yk} is called a realization
of the stochastic process Yo

We will characterize the probability law governing the collection
of random variables that make up the stochastic process by the list of
means of Vi and by the covariances between y's at different points in
time. (For a stochastic process that obeys the normal probability law,
these parameters completely characterize the probability distribution.

Even where v isn't normal, the first and second moments contain much

S

* The reader is assumed to be familiar with complex variables.
The chapter on complex variables in R.G.D. Allen's Mathematical Economics
is a good reference.




useful information, enough information to characterize the linear structure

of the process.) 1In particular, we have that the mean of the process y is
Ev. = u teT

where E is the mathematical expectation operator. The covariances are

given by

E[(yt-ut)(ys-us)] =0, 4 -

A stochastic process is said to be wide-sense stationary (or
covariance stationary or second-order stationary) if e is independent of
t and if Ot < depends only on t-s. We will henceforth deal with such

’

stationary processes. The first and second moments of a stationary

process are summarized by the mean p and the covariogram c(t) defined by

E[(yt-u)(ys—u)] =0, 4

c(t) ,

i

E[(yt-u)(yt_T~u)] =0 s

where t=t-s. The covariogram is easily verified to be symmetric, 1i.e.,
c(t)=c(-1), and to obey c(O)Z}c(T)l for all t, this inequality being an
implication of the Schwarz inequality.

To find further restrictions on the covariogram, let X, be a

covariance stationary stochastic process with mean zero and covariogram

c(t). Consider forming a weighted sum of x's at different dates
n
y = Z ajxt
=1 3%

where the aj's are fixed real numbers and tl, ey tn are integers. We




must require that the random variable y have nonnegative variance, so that

: |
a.x a, X
j=1 3ty k= K

(
Ev™ = E

~

|t~

n n
y
L Z ajakEXt xt'
j=1 k=1 k ]

n n
= Z z ajakc(tk-tj) 20 .

3=1 k=1
This last inequality is required to hold for any n, any list of aj's, and
any selection of (tl, t2, ceey tn). A sequence c (1) that satisfies this
condition is said to be ''monnegative definite.'" The condition that c(t)
be nonnegative definite is a necessary and sufficient condition for a
sequence c(t1) to be the covariogram of a well-defined stochastic process.*

A basic building block is the serially uncorrelated random process

€. , which satisfies

t
E(et) =0 for all t
(2) E(ei) = Oz for all t
E(etet_s) =0 all t and all s#0 .

This process is (wide-sense) stationary, each variate being uncorrelated
with itself lagged s = £ 1,6 *+ 2, ... times, and is said to be serially
uncorrelated. The process is also often referred to as "white noise."
As we shall see, such a white-noise process can be viewed as the basic

building block for a large class of stationary stochastic processes.

*
The condition turns out to be equivalent with the condition
that the spectral density of x be nonnegative, a condition which also in
effect stems from the requirement :that the variance of every linear combi-
nation of x's at different points in time be nonnegative.




To illustrate how the white-noise process e, can be used to

build up more complicated processes, consider the random process Ve

o

Y b

j=0

<
1}

£ .
J t=]

B(L)et

[e<]

- J
where B(L) z b,L”, and where we assume z b2 < ®, a requirement needed

3=0 §=0°3
to assure that the variance of y is finite. We assume that the € pro-
cess is "white" and thus satisfies properties (2). Equation (2) says
that the y process is a one-sided moving sum of a white noise process,
€.

We seek the covariogram of the y process, i.e., we seek the

values of Cy(k)=E(ytyt—k) for all k. It will be convenient to obtain

the covariance generating function gy(z) which is defined by

©

k
3 = .
(3) g, (2) kZ_mcy(k)z
The coefficient on zk in (3) 1is the kth lagged covariance, cy(k).

First notice that taking mathematical expectations on both

sides of (2) gives

o

jzobjn(et_j)

E(yt)

0 for all t.

It therefore follows that

cy(k) E{(y ~Ey ) (¥, "By )}

= Eyt-yt_k for all k.




Notice yt-yt_k is
y.Y. . = z b.e . E b e .
t’t-k =0 jt Inso h"t-k-h
= (bge Fbye 1¥bye, ot ) (Bgey y+brep g 1Py g o
2 2 2
VeYek = PoPrCroic™1Par Ceok-11P2Put2f e -2t
+ crossproduct terms whose expectations are
zero.
Thus
(4) c (k) = Ey.y = 02 E b.b,. . .
y tt-k ej=0 i j+k

The covariance generating function is then

e o]

g, (2) = kZ-:k%“"
2k§-m Z bJ 4
oZkg ijOb by K

gy(z)= Z OZD bbj*_kk

Let h=j+k, so that k=h-j. Writing the above line in terms of the index

h then gives




The last equation gives the convenient expression

(5) g (2) = o°B(z 1)B(2)
y €

where B(z-1)= z b z‘J, B(z)= z b,23.

§=0 b o J
Equation (5) gives the covariance generating function gy(z) in terms of
the bj's and the variance Og of the white noise €.

To take an example that illustrates the usefulness of (5),

consider the first-order process
(6) V. = )‘yt-l + €,

or

(=L )e

t - ‘I-ALt IAI <1

o~ 8
>
[ N
™
-

. . , 2
where, as always, € is a white-noise process with variance Oe‘ We have

B(L)

,‘.

1 2 2
I S A A .
B(z) 1-%z 1+ Az 4+ z- +

2 -2

1 - ——g =1+ kR

B(z

(Thus, B(z) is found by replacing L in B(L) by z.) So applying (5), we

have

21 1

).

From our experience with difference equations we know that the expression

(7) can be written as a sum



klci kzc:znl
(8) g (z) = 77—+ —
y 1-)z 1-\z 1

where kl and k2 are certain constants. To find out what the constants

must be, notice that (8) implies

_ 2 2 2
8y(Z) = oekl(lﬂzﬂ z+...)

+ oZk (z‘l+Xz—2+Azz-3+...),
e 2
so that c (0)=k 2 and ¢ (1)= zxk = 2k
y 1% y T 17052
By direct computation using (6) we note that
o 12 2 062:
Ey = z A EE =
t 1=0 t 1_>‘2
. i 1-1 ii-1 2
Eyy . =E z Ae,_ z A e, =E z AA €, _
-1~ F L Feg L t-1 - UL t-1
2
[ AC
2 2(i-1
=0 A Z A -1 ——QE
€ 4=1 1-)

So for (8) to be correct, we require that
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2 1 az Haz il
o] . 2 [ _1 ]
1-2 (1-x2z) (1-2z )

€

2 1

=0 >

€ (1-x2) (1-xz )

so that (8) and (7) are equivalent.

Expression (8) is the more convenient of the two expressions

since it yields quite directly

2 1 1 _ _\z

g (z) =0 (5=
y € 1-X2 1-)\z 1-xz

(9) = 02 1 5 [{1+Az+x222+...} + {Az-l+xzz—2+x32—3+...}].
€ 1.y
Thus, we have that for the 'geometric" process (6),
2
%e ||

c (k) = A k=0, +1, +2,

y 1-)2 o
The covariance declines geometrically with increases in |k|. We require

|A]<1 in order that the y process have a finite variance.
To get this result more directly write the stochastic difference

equation yt=xyt_k+et, then multiply Ve by Yeox? k>0, to obtain

YeVeore = Wee1Veek T e¥ex”

Taking expected values on both sides and noting that Eetyt_k=0 gives the

famous Yule-Walker equation,
E(Y Yooy = MEG 1Y)
or

cy(k) = Acy(k-l) k>0




which implies the solution

e, (k) = Akcy(O)

From the symmetry of covariograms, it then follows that cy(k) = X
for all k. Notice that the covariogram obeys the solution of the non-

random part of the difference equation with initial condition cy(O).

As a second example, consider the second-order process

1

k >0

a0y = GG

where € is white noise w

For (10) we have

L ) e
XZL t

ith variance oi.

1

B(L) = (1-§1L) (

1

)
1-),L

1

B(z) = (355 ¢

-Alz

1

——)
1 Azz

1

B(z™D) = (

l—Alz

Applying formula (5), we have that the covariance-generating function is

-1

) ( ).
1-;\2z'l

1 1 1

2 1
(11) 8y(z) = oe (1_A

Notice that (10

12) A=2,2) (1-Alz-1)(1-xzz-l).

) can be written

A A
1 1 2 1
y, = G5e, - ) ( )e
t ll XZ 1 llL t Al Az l“AZL t
P\ © A ©
1 i 2 i
(12) y, = A €p_qy = T Ag€, 4o
oM gz HED MY o271
For y k > 0, we have

t-k’

|A1+A2| <1, A 7 A




1 i-k 2 < |k
A17A 45k Mo g5 2l

(13) Ye-k

Multiplying (12) and (13) together and taking expectations gives

2 2
1 S kHii 2 v k+i i
A F 7 LA M

E(Gy.y, ) =0 {
Ltk (xl—xz) i=0

M T k1 MM T k4
BPNRY PRSI ook gkt M
M) MTh

2+k 2+k
A A A A
2 2 k, k
—) ol [t - o Oty
12 F s @Ry 172

(14) Ey Ve = ¢

k > 0.

So (14) and the symmetry of gy(z) suggests that the appropriate factorization

of (11) is
2 -1
2 A A Az
1 2 1 12 1 1
(15) g (z) = (=) o {( - G+ —)
y Al Az € (1-A2) 1 Alkz 1 Alz 1=z 1
1 1
2 -1
> My 1 A,z
MRS Rl e ur WA S e T
l-Xz 12 2 l—Xzz

According to (14) and (15) the covariogram of a y process
governed by the second-order process (10) consists of a weighted sum of
two geometric decay processes, the decay parameters being Al and XZ
inverse zeroes of the polynomial (l—AlL)(l—AZL). Expression (14) implies

, the

that the covariogram displays damped oscillations if the roots Al and

Az are complex conjugates. This can be shown by substituting Al=re—1w

and )\2=relw into (14), and proceeding to analyze (14) as we above

analyzed the solution of the deterministic (nonrandom) second-order




difference equation. An alternative way to reach the same conclusion

is as follows. Multiply both sides of (10) by (l-AlL)(l-AzL) to get
(16) Ye = 0Veo1 P Vet g

where tl=(Al+A2) and ty==A Aye Multiply (16) by y

t-k for kzg to get

YeVeok = 81%e-17e-k ¥ 2%e-2Ye-k b EtVe-k

Since E¢ 0, we have

tVe-k
EGYei) = 8B Venid + 8200V e k>0

which shows that cy(k) obeys the difference equation (the Yule-Walker

equation)
(17) cy(k) = tlcy(k—l) + tzcy(k-Z).

So the covariogram of a second (nth) order process obeys the solution to
the deterministic second (nth) order difference equation examined above.

In particular, corresponding to (17) we consider the polynomial

2 _
(18) 1- clk - t2k = 0,

which has roots l/)‘1 and 1/A2. (We know that l-tlk—tzk equals (l—xlk)

(l—xzk), with roots 1/)\l and 1/A2.) Alternatively, multiply (18) by k_2

to obtain

(19) x2 - tlx - t2 = 0 where x = k-l.
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Notice that the roots of (19) are the reciprocals of the roots of (18),
so Al and xz are the roots of (19).
The solution to the deterministic difference equation (17) is,

as we have seen,

ok k

where z and z, are certain constants chosen to make cy(O) and cy(l)
equal the proper quantities. If the roots A. and Az are complex, we

1

know from our work with deterministic difference equations that (20)

becomes

k k

A sin wk + z .r
0 sin w 1 sinw

cos wk

(21) cy(k) =z

where kl=reiw and k2=re—iw. Accordingly to (21), the covariogram displays
damped (we require r<l) oscillations with angular frequency w. A complete
" cycle occurs as wk goes from zero (k=0) to 2w (k=2m/w, if that is possible).
The restrictions on ty and t, needed to deliver complex roots and so an
oscillatory covariogram can be read directly from Figure _ of '"Notes on
Difference Equations."

Figure 4b below displays a realization of second-order processes
for values of tl and tz, values for which the roots are complex. Notice
the tendency of these series to cycle, but with a periodicity that is
somewhat variable from cycle to cycle.

The foregoing suggests one definition of a cycle in a single
series: a series may be said to possess a 'cycle" if its covariogram is
characterized by (damped) oscillations. The typical '"length'" of the

cycle can be measured by 2m/w, where w is the angular frequency associated

with the damped oscillations in the covariogram (e.g., see 21). To be




- 15 -

labelled a business cycle the cycle should exceed a year in length.

(Cycles of one year in length are termed "seasonals.")

The Cross Covariogram
Suppose we have two wide-sense stationary stochastic process

The processes are said to be jointly wide sense stationary

Y, and X, .

if the cross-covariance E(yt—Eyt)(x k ) depends only on k and not

on t. The cross-covariogram is the list of these covariances viewed as

a function of k. We denote it by
ny(k) = E(y, -Ey) (x,_, -Ex).

Now suppose that both Ye and x, can be expressed as one-sided distributed

lags of a single white-noise process et

«
(g
[}

B(L)et

X

¢ D(L)et

where B(L)= z b Lj, D(L)= z d Lj Since Eet=0, we have

j=0 3 j=0 3
Cyx(k) = By X
(o]
=EZb €
150 15 t-3ptg 4h®t-h-k

«o)(d.e, Hd,e +d.e +...)

= E(bge tbe,_+bye 0ft-k"918¢-k-1192F o2

2e-2*
Cyx ) = Z o3P+

The cross covariance generating function gyx(z) is defined by

(-]

- k
8y (2 = kz_mcyx(k>z ;
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the coefficient on zk being cyx(k). In the present case, we have

[eo]

g, (2) = ot ] 27 asb

yX ek:-.eo j =0 j+k
25 3 k

=g 2 z d.b z

€j=0 k=-w 33tk

Letting h=j+k so that k=h-j, we have

2“) >
g (2) =g¢ d.b, z
yx ejZO S

h-j

©

2 - . h
o d,z b, z
EjZO 3 jZO h

(22) 8 (®) cin<z’l>a(z>.

This is a counterpart to equation (5), and includes it as a special
case,

Now suppose that we have the more general system

¥, = A(L)e, + B(Lu,

t
(23)

X, = C(L)gt + D(L)ut

where Et and u, are two mutually uncorrelated (at all lags) white noise

processes with variances oz and oi respectively, and Eu =0 for all

tft-k
k. By carrying out calculations analogous to those just completed, it
is possible to express the cross-covariance generating function between

y and X as

26 g, (@) = GA@CET + ZBDET




As it turns out, (23) is a very general representation for a bivariate

*
stochastic process, including a large class of such processes.

A Mathematical Digression on
Fourier-Transforms and z-Transforms

The following theorem provides the foundation for the z-transform,

Fourier-transform, and "lag operator" methods that we use repeatedly in

* %
these pages. The theorem, which we shall not prove, is a version of the

Riesz~-Fisher theorem.

Theorem (Riesz-Fisher):

Let {cn}:=_OO be a sequence of complex numbers for which ) |c 12<'».

n=-—w

Then there exists a complex-valued function f(w) defined for real

w's belonging to the interval [-m,7], such that

(25) fw) = ) cje_iwj ,

Jz—m

where the infinite series converges in the "mean square' sense that

lim fﬂ

n-ro

th -iwj 2
Z c.e - f(w)|"dw = 0
—-Tr j:—n J

The function f(w) is called the "Fourier transform of the ck's" and

satisfies

|

ff(w)}zdw
m

< o

/

*
Namely, all jointly wide-sense stationary, indeterministic
processes.

Kk
For a proof of the Riesz-Fisher theorem, see Tom Apostol,

Mathematical Analysis, second edition, Addison-Wesley, Chapter 11.
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where the integral is a Lebesque integral (i.e. 'f belongs to

L,[-7,7]"). Given f(w), the ck's can be '"recovered" from the

inversion formula
1" +iwk
(26) ¢y = §;£ﬂf(w)e dw

Finally, the function f(w) and the ck's satisfy Parseval's relation

1" 2, % 2
E;—_nlf(w)l dw = ) chl

j:-m
This completes the statement of the theorem.

Consider the space of all doubly infinite sequences {xk}:=_w

«©

such that Z lx

=00

2 .
k‘ <o, i.e., the space of square summable sequences. We

denote this space 22(—w,w). It is a linear space in the sense that it

possesses the following two properties (among others):

(i) Let o be a scalar and let {xt} belong to 22(—w,w).

Then {axk} belongs to 22(—w,w), i.e. Z |axk!2< © .
k:—oo

(ii) Let {xk} and {yk} both belong to 22(—w,w). Then
. v 2
{xk+yk} belongs to 22(—w,w), i.e. kZ_m(xk+yk) <

Now consider the space LZ[—W,W] consisting of all functions f(w) for
m

which f ff(w)lzdw<w, i.e. the space of '"square Lebesque integrable functions"
-7

on [-m,7m]. We denote this space Lz[ﬂ,ﬂ]. This space is a linear space

in the sense that it possesses the two properties:




(a)

(b)

Let o be a scalar and let f(w) belong to L

-m,].

5l

T
Then af(w) belongs to LZ[-n,W], i.e., f {af(w)izdw<im.

=T

Let f(w) and g(w) both belong to LZ[—ﬂ,n].

m
belongs to Lz[—n,ﬂ], i.e., f lf(w)+g(w)|2d

-T

Then f(w)+g(w)

w < o,
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The spaces 27(—m,w) and L7[—n,n] are each metric spaces in the

sense that each one possesses a well-defined metric or distance function.

In particular, on lz(-w,w) the real valued function

measures the distance between the two sequences {xk} and {yk}. The
function d2(°,-) is defined for all {xk} and {yk} in Qz(—m,w) and is a
"natural" measure of distance (it satisfies a triangle inequality
d(x,y)=d(x,z)+d(z,y) for all sequences x, y, and z in 22. On L2[—ﬂ,ﬂ]

the real valued function
i
1 2
D,(f,g) = 5;-{n|f(w) - g(w)|“dw

is a metric that measures the '"distance'" between two functions f(w) and
g(w). The metric Dz(',-) is defined for all f(w) and g(w) belonging to

L

-7,m].

5l

Now consider the mapping from 22(-w,w) to L2[—n,ﬂ] defined by

the Fourier transform

(25) ) = ] e e M we [=7,7]

= =00

We also have the inverse mapping

1" +iwj
(26) oy =5 ]t Maw §=0,+1,+2,...
=T

Now a converse of the Riesz-Fisher theorem is also true: let f(w) belong

2
to LZ[—W,W]. Then there exists a sequence {ck} such that Z!ck!“<<v and

o)

f(w) = ) c,e
k= K

-iwk




ki
_ 1 +iwk
Ck = o {ﬂf(w)e dw

where the infinite sum converges in the mean square sense. This converse
theorem assures us that the mapping of £2(-w,w) into LZ[—W,H] defined by
(25) is onto. It is also one-to-one. The usefulness of the mapping (25)

stems from the fact that it is an isometric isomorphism from 12(—®,w) to

.

LZ[—W,W], that is, it is a one-to-one and onto transformation of points

in 22(—w,w) into points in L2[—n,w] that preserves both linear structures
(i.e. it is an isomorphism) and distance between "points" (i.e. it is an

isometric mapping). That is, let {Xk},{yk} belong to 22(—w,m), let o be

a scalar, and let

x(w) = Z xke_1Wk
k==

o o k
y) =] ye "
k=-w

Then we have (as can be verified directly)

@

Z (xk + yk)e-

=—c0

iwk

x(w) +y(w)

Z Xke-iwk

x(w)

k:-oo
‘So "the Fourier transform of a sum of two sequences 1is the sum of their
Fourier transforms" and '"the Fourier transform of {axk} is o times the

Fourier transform of {Xk}." This means that (25) is an isomorphism. We

also have




m
L Ix(w) - y(w)lzdw

27 - K=

i}
t~1
~
~
!
<

or

D, (x(w),y () = d,(x,y)

so that (25) is an isometric mapping.

The Fourier transformation (25) puts square summable sequences
{xk} into one-to-one correspondence with square integrable functions f(w)
on [-m,m]. The transformation preserves linear structure and a measure
of distance, as we have seen. The benefit from using the transformation
is that operations that are complicated in one space are sometimes the
counterparts of simple operations in another space. In particular,
consider the convolution of two sequences {Xk} and {yk} defined to be
the new sequence

% * =
by * . —'Z Ys¥k-s

J:—m

The Fourier transform of (y + x)k is given by

o

° ~iwk
Z Z ysxk—se

=00 S=—=00

_ - -iws © ~iw(k-s)
= Z v.e Z X _o©
S=—00 k=—00

= y(w) *x(w)

fee]

where y(w) = Z yke—1WR, x(w) = Z x, e

k= -0 =00

-iwk

Thus the Fourier transform of the convolution of {xk} with {yk} is the




- 23 -

product of the Fourier transforms of {xk} and {yk}. The complicated convo-

lution operation corresponds simply to multiplication of Fourier transforms.

All transform techniques exploit properties like the preceding
one. The aim is to transform a problem from one space where it appears
complicated to another isometrically isomorphic space where the operations
are simpler, then to transform back to the original space using the

inversion mapping such as (26) after the calculations have been performed.

By making the change of variable z=e " in the Riesz-Fisher theorem,

we obtain the following corollary which underlies our z-transform methods.

y: ” bers for which
Corollar Let {cn}n=—oo be a sequence of complex numbers for whic

) |cn[2<<w. Then there exists a complex valued function g(z) with

n=-o

domain in the complex plain such that

[oe)

g(z) = ) cjzj

L

where the infinite series converges in the mean square sense that
. n .

Loy Csz -g(2)]?492 -

n—»>e T j=—n V4

where I' denotes the unit circle and the above integral is a contour
integral. The function g(z) is defined at least on the unit circle

in the complex plane and satisfies

I 1 2 dz|
’2ni {18(2)' ~E_'< ©

The function g(z) is called the "z-transform" of the sequence {ck}.
' 1 k-1
The ¢, 's can be recovered from g(z) by ¢, = =—— fg(z)z dz
k k 2mi ¢

This completes the corollary.




So long as we restrict ourselves to sequences satisfying
Zlck[2< =, the theorem and the corollary guarantee that the 'z-transforms"
and Fourier transforms that we shall manipulate are well defined. The
z-transform in effect maps the sequence {ck} into a complex-valued function
defined on the unit circle in the complex plane. The Fourier transform
maps the sequence {ck} into a complex-valued function defined on the real
line over the interval [-m,m].

Notice that the complex-valued functions eiwj, j=0, +1, +2,

are an orthogonal set on the interval [-m,n]. That is, for n#m, we have

dw = 27
-7 -

. . m .
_L_j elwn.e—lwm 1 f e1w(n—-m)dw

_ 1 iw(n-m) ;7
- 21i(n-m) [e ]—w

1 ir(n-m) -in(n-m)
27i(n-m) [e —€

]

= ;Z%:ay sin m(n-m) = 0

since sin m(n-m) = 0 for (n-m) an integer.

For the most part, the Riesz-Fisher theorem and its corollary
are sufficient for our needs. Below we will briefly touch on a deter-
ministic process for which the condition Z]ck|2<0o is violated (where
the ck's depict the covariogram) so that the theorem will not suffice
to define the Fourier transform of the ck's. It turns out that there is
still a sense in which the Fourier transform of such "ill-behaved" {ck}

*
sequences is defined, as we shall see.
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The Spectrum

An alternative representation of the covariance-generating
function of y is the spectrum of the y process. Recall the covariance
generating function of y defined in (3),

o]

(3) g, (z) = ] Cy(k)zk .

= 00

For the process v, = B(L)et we have seen that
_ -1, 2
gy(Z) = B(2)B(z ")o_

If we evaluate (3) at the value z = e_lw, we have

fee]

(27) gy(e—iw) = z c:y(k)e—iWk -7 < w < T

k=—co

Viewed as a function of angular frequency w, gy(e_iw) is called the
spectrum of y. The spectrum is the Fourier transform of the covariogram.
As we would expect from the inversion formula (26), the spectrum
is itself a kind of covariance generating function. Given an expression
for gy(e_iw) it is easy to recover the covariances gy(k) from the inver-
sion formula (26). To motivate the inversion formula, we multiply (27)

iwh . .
by e and integrate with respect to w from -m to m:

™ ™ (o]
-iw, iwh iw
(28) {ngy(e Ye " dw {“ kZ_mcy(k)e (h-k)

o0}

m
z °°cy(k)f e

k=- -

1w(h-—k)dw



Now for h=k we have

T, b
f elw(h k)dw = f ldw = 27.
-7 -7

For h#k we have,

i it m
j eiw(h k)dw = f cos w(h-k)dw + if sin w(h-k)dw
-7 -7 -7
m m
= -gin w(h-k)] + i cos w(h-k)]
-m -
= 0.

Therefore, (28) becomes

™

/ gy(e

=T

..1w)e1whdw - 2ncy(h).

Thus multiplying the spectrum by eiWh and integrating from -n to 7 gives

- the hth lagged covariance times 2q. In particular, notice that for h=0,

we have

m .

f_“gy(e‘lw>dw = 2ne (0),
so that the area under the spectrum from -7 to 7T equals 27 times the
variance of y. This fact motivates the interpretation of the spectrum
as a device for decomposing the variance of a series by frequency. The
portion of the variance of the series occurring between any two fre-
quencies is given by the area under the spectrum between those two
frequencies.

Notice that from (27) we have

=]

-iw, _ -iw
gy(e ) = kE_wcy(k)e

k




iwk

(29) )

= iwk -
cy(O) + kzlcy(k)(e YK te

cy(O) + Zkzlcy(k) cos wk.

According to (29) the spectrum is real valued at each frequency, and is
obtained by multiplying the covariogram of y by a cosine function of the
frequency in question. Notice also that since cos x=cos -x, it follows

from (29) that

so that the spectrum is symmetric about w=0.

Notice also that since cos (w+2mk)=cos (w), k=0, +1, +2, ...,
it follows that the spectrum is a periodic function of w with period 2m.
Therefore, we can confine bur attention to the interval [-m,m], or even
[0,7] by virtue of the symmetry of the spectrum about w=0.

We know that if

(30) Ve = B(L)e,,

where € is white noise, then the spectrum of y is related to the spectrum

of € by
gy(e'iw> = B(e™™)B(e™)o?
or
(31) gy(e_iw) - B(e—iw)B(eiw)gE(e—iw)

-iw) 2

since for the white noise €, gy(e =°e' It 18 straightforward to show

that for any Et, not necessarily a white one, affecting y via (31), the
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spectrum of y is related to the spectrum of ¢ by (31). Thus, assume

that y is related to X by

q
(32) Y, = sz_pbsxt-s = B(L)xt p>0,q>0

and that the spectrum of X is defined. From (32) we know that

s=-p r=-p

q
tp rZ_pbsbrxt—sxt—j-r'

1
o~

Taking expected values on both sides gives

q

q
Cy(j) = E(ytyt—j) =) ) b.b c (j+r-s).

The spectrum of y is defined as

k

-iw P ~-iw
y(e ) kz_mcy(k)e

z z z brbscx(k+r—s)e—iWk.

k=-w s=-p r=-p

(33)

Define the index h=k+r-s, so that k=h-r+s. Notice that

(34) e-iwk - e—lw(h~r+s) - e-iwhe—lwselwr.

Substituting (34) into (33) gives

. q . q .,

-iw, _ iwr -iws -iwh

gy(e ) = z bre Z bse Z cx(h)e
r=-p s=-p =—c0

(35) g ™ = Be™)B(e™¥) g (e

q q
YeYe-y = I bXe gl b X j-r
|
|
or
|




(36) gy(e_

which shows that the spectrum of the "output" y equals the spectrum of
the "input" x multiplied by the positive real number B(eiw)B(e-iw). of

course, it is also true that
2 (z) = B(z)B(z D)g_(2).
y X

Expression (36) motivates the interpretation of the spectrum
as decomposing the variance of y by frequency. Thus, suppose we could
choose B(e-iw) so that

1w { 1 for we[a,b]N[-b,-a] 0<a<b«< .
(37) B(e ™) =
0 otherwise .
Thus, we are choosing a '"filter," i.e., a set of bj's, that takes a
random process X, and transforms it into a random process Ye according
to (34). A filter obeying (37) shuts off all of the spectral power for

frequencies not in the region [a,b] or [-b,-a]. To determine a set of

b,'s that satisfies (37), we use the "inversion'" formula seen earlier,

3

™
b, = li-f B(e-iw)e+iwjdw
A

-a b
— f eiwjdw +-l— j eiwjdw
a

N Ll

27

b
f (eiwj+e_iwj)dw
a

N =
=

1 b
ol jaz cos widw

b
sin wj

n
e
e

a
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(sin‘jb-sin ja
|

(38) b, = %- ), for all integer j.

With the bj's chosen in this way, the y process defined by
Ve = L byXe
J==c
has all of its variance occurring in the frequency bands w [a,b], w [-b,-a].
The variance of y is given by

L jTT g (e ¥yaw = L f—ag (e ¥yaw + L fbg (e %) qw.
2m .Y 2m b X 2m a X

In this sense, gx(e_iw) gives a decomposition of the variance of x by
frequency, the variance occurring over a given frequency being found by
integrating the spectrum over that band and dividing by 2m. We have
already seen that by integrating the spectrum from -7 to T we obtain the
variance of x times 2m. As we shall show shortly, the decomposition of

the variance of x by frequency that is reflected in the spectrum is one

in which components at different frequencies can be regarded as orthogonal.
More precisely two components formed by applying two filters like (37)

that let through power over disjoint frequency bands are mutually orthogonal
at all lags.

Incidentally, the preceding calculations can be used to prove
that the spectrum is always nonnegative. This can be done by proceeding
by contradiction. Suppose that the spectrum gx(e°iw) is negative over a
small band. Then choose a filter that shuts off all variance outside of
this band. The result is to produce a new random process that has a
negative varianée, a contradiction. So the spectrum must be nonnegative.

Let us examine the spectra of some simple processes. First

consider the white noise process




Ve T €

2
€, white so that cy(O)—oe, cy(h) 0 for h#0.

For this process the covariance generating function is simply
2
gy(z) = Ce ’
so that the spectrum is

g (e-iw) = 02, -T < W<T
y € - =

so that the spectrum is flat, and equals 02 at each frequency. Notice
that

™

- 2
[ 8,(e yau = 2007,
- y €

as expected. So a white noise has a flat spectrum, indicating that all
frequencies between -y and 7 are equally important in accounting for its
variance.

Next consider the first order process

- = 1 -
Y, = BL)m, T-iL € 1 <<l

For this process the covariance generating function is

1 1 2
g, (2) = (=) (—o".
y 1-)z 1-)z 1°7¢
Therefore, the spectrum is
-1 2
g (7™ = (oo
y 1-)e 1-)e €
1 2
= ANe)

(1-.x(eiw+e-iw)+xz) €
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1 2
g (w) = 5 O
y 1-2)1cos wH\

Notice that

dgz(W)

= -(1-2)cos w+x2)—2(2xsin w)g2
dw €

The first term in parenthesis is positive. Since sin w>0 for O<w<n, the
second term is negative on (0,7) if A<0 and positive on (0,n] if A>O0.
Therefore, if A>0, the spectrum decreases on (0,7] as w increases; if
A<0, the spectrum increases on (0,m] as w increases. Thus, if A>0, low
frequencies (i.e., low values of w) are relatively important in compos-
ing the variance of w, while if <0, high frequencies are the more
important. It is easy to verify that the higher in absolute value is A,
the steeper is the spectrum. Notice that the first order process can
have a peak in its spectrum only at w=0 or w=+7. A peak at w=T corres-
ponds to a periodicity of 2m/w=2m/m=2 periods. A peak at w=0, corresponds
to a cycle with "infinite" periodicity, which is unobservable and hence
not a cycle at all.

With quarterly data, a business cycle corresponds to a peak in
the spectrum at a periodicity of about 12 quarters. A first-order
process is capable of having a peak only at two quarters or at "infinite"
quarters, and so is not capable of rationalizing a business
cycle in the sense of a peak in the spectrum at about twelve quarters.

As we saw above, a first-order process cannot possess a covariogram with
a periodicity other than two periods, and so with quarterly data cannot
rationalize a business cycle in the sense of an oscillatory covariogram.

Next consider the second-order process




1
y, = ——— £,
t 2 Tt
l—tlL—tzL

€, white noise. For this process the covariance generating function is

1 1

2 -1
l-tlz-tzz l-tlz -tzz

Sy(Z) = =7 9.

Therefore, the spectrum of the process is

g (édw)= 1 1 s
y e o miw o <2dw 0 dw o 21w e
1 tle t2e 1 tle tZe
2
o
= €
2.2 iw, -iw -2iw, 2iw
l+tl+t2+(t2tl—tl)(e +e )—tz(e +e” )
2 2
o] o
= £ = €
2 2 h(w) °
1+tl+t2—2tl(l-t2)cos w—2t2cos 2w
Differentiating with respect to w, we have
d§x(e—iw) 2, -2
T = —gah(w) (2t1(1—t2)sin w + atzsin 2w)

- -oih(w) “2(2s1n w- [t (1-t,)+4tcos wl).

We know that h(w)>0. TFor the above derivative to be zero at a w belonging

to (0,7), we must have the term in brackets equal to zero:
tl(l-tZ) + 4t2 cosw=20

or

-tl(l—tz)

(39) cos w = Xy

2

so that




-tl(l—tz)

-1 )

(40) w = cos ( 4t2

Equation (35) can be satisfied only if

-t. (1-t
(41) |'—1éé'2_21| <1,
since |cos x| < 1 for all x. If (41) is met, the spectrum of y does
achieve a maximum on (O,7). Condition (41) is slightly more restrictve
than the condition that the roots of the deterministic difference equation
be complex so that the covariogram display oscillations. Let us write

(41) as

-tl(l—tz)

(42) -1 < —'—4—{2—'— < 1.

The boundaries of the region (42) are

(43) -tl(l-tz) = 4t2
and
(44) —tl(l—tz) = -4t,.

The points (tl,t2)=(0,0) appear on both boundaries, while the point
(tl,t2)=(2,-l) appears on (43 and (tl,t2)=(—2,—l) appears on (44).
Differentiating (43) implicitly with respect to tl gives

t,-1

1 Y

dt2
dt

&S

so that along (43)




pifferentiating (44) with respect to tl gives

dt 1-t,,
_2_ 2
dtl 4+tl

so that along (44)

e _1
dtl 4
t;=t,=0

dt2
—= =1,
dt1
£ =2
t,=-1

Such calculations show that the boundaries of region (42) are as depicted

in Figure 2. To be in region (42) with t_ <1 (a requirement of covariance

2
stationarity) implies that the roots of the difference equation are
complex. However, complex roots don't imply that (42) is satisfied.
Consequently, the conditions for an oscillatory covariogram aren't quite
equivalent with these for a spectral peak.

To illustrate the ability of low-order stochastic difference
equations to generate ''realistic" data, Figures 4a and 4b show simula-

tions of first- and second-order stochastic difference equations, while

Figure 4c shows the solution of the deterministic part of the same
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second-order difference equation with initial conditions yo’yl'l.

Notice that even the first-order stochastic difference equation

¢ = o Wep tee

Et a serially uncorrelated random term, appears to generate roughly

alternating periods of boom and bust. This illustrates how stochastic

difference equations can generate processes that '"look like'" they have ‘
|
business cycles even if their spectra don't have peaks on (0,n) and even |
|

if their covariograms don't oscillate.

The Cross Spectrum
An alternative representation of the cross covariogram is
provided by the cross spectrum. Recall that the cross covariance generating function
between the jointly stationary processes y and x is defined by
T k
z) = c__(k)yz.
gyx( ) kz—w yx (&)

If we evaluate gyx(z) at the value z=e_iw, we have the cross spectrum

-iw, _ s -iwk
gyx(e ) = kZ-mcyx(k)e .

Viewed as a function of angular frequency w, gyx(e-iw) is called the
cross spectrum between y and x.

The cross spectrum is of course a cross-covariance generating
function. Given an expression for gy(e—iw), it is possible to recover

the cross covariances from the inversion formula

_1 7 -iw, 1wk
cyx(k) =3 f-“gyx(e e  dw

The validity of this inversion formula can be checked by following




calculations analogous to those used to verify the inversion formula for

the spectrum.

Unlike the spectrum, the cross spectrum is in general a complex
quantity at each frequency, this being a consequence of the fact that

cyx(k) is in general not symmetric (cyx(k) does not in general equal

cyx(—k)). In place of the symmetry property, we have the readily verified
property
(43) g (e—iw) - (e—lw) - g (e+1w)

Xy yX VX

and cxy(k) = Extyt—k' Notice that cxy(k) = cyx(-k).

Suppose that the stationary stochastic process Ye is related to

the stochastic processes X, and €. by
q
= +
(46) Y, 'Z hjxt—j .
J=-p
where Eet = Ext = 0, and Estxt_S = 0 for all s, an orthogonality condition

that characterizes Zh.xt_j as the projection of y, on the space

t4p? T Xt—q} - Then we have already seen that the spectrum of y

g (e~ ) = lh(e_iw)fz gx(e-iw) + ge(e—iw)
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» q e
h(e lw) = Z h.e Wl
i=—p

To find the cross spectrum between y and x, first use (46) to calculate
th .
the k lagged covariance as

Eytxt—k = jz_phjE(xt_jxt_ﬁ

q
o) = ] hye, (k=1)
J=-p
Thus the cross-covariogram between y and x is the convolution of the
sequence {hj} with the sequence Cx(j)' From the convolution property
we immediately have

gyx(e—iw) - h(e—iw)-gx(e—iw)

since the Fourier transform of a convolution of two Sequences is the

product of the Fourier transforms of the two sequences. That is, taking
. . . . . ~iwk .

Fourier transforms of each side (i.e., multiplying by e and summing

over k) gives

< -iwk 3T . —iwk
kZ_mcyx(k)e = 'z_p kg_whjcx(k-J)e

-iwk _ e-lw(k—J)d-lWJ

Noting that e » the above can be written as
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a9
~
(0]
|
[N
£
N
]

q e PP
Z hoe iwj Z ¢ (k-i)e iw(k-j)
. b X

j=-p k==-c

or

-iw
(47) N C

h(e-iw)gx(e‘iw)

Notice that the covariance between y and x can be recovered from the

inversion formula

1" —iw —iw, iwk
cyx(k) = §;~{ﬂh(e )gx(e e dw

Further, notice that given gyx(e—iw) and gx(e‘lw) the hk's can be

recovered from

-iw
mTg (e ) .
hk - ;% f yX elwkdw

-iw ’
-m e
8, ( )
. —iw ~-iw .
Where estimators of gyx(e ) and gx(e ) are used in the above equa-
tion, the resulting estimator of the hk's is known as Hannan's inefficient

estimator.
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Formula (22) can now be used to show that the spectrum reflects
a decomposition of X, into processes that are orthogonal across frequencies.

Thus let

¥ie = B L)%,

Yo = Bp(LIx,

where Bl(L) and BZ(L) are chosen to satisfy

1 we[-b,-a]N[a,b]
B, (") = {

0 Wé[—b’-a]n[aab]

1 WC[-d’_C]n[C’d]
Bz(e-iw) - {

0 wi[-d,-c]N[c,d]

To find the individual distributed lag coefficients, equation (38) can
be used. Equation (22) evaluated at z=e_iw implies
-iw, _ -iw iw -iw
gylyz(e ) = B;(e T)By(e" g (e )
1f [-b,-alN[a,b] does not intersect with the set of frequencies [-d,-c]N

iw

[c,d], then Bl(e-iw)Bz(e )=0 for all w, so that g y (e-iw)=0. This in

Y
turn implies that ¥y and y, are processes that are orihogonal (uncorrelated)
at all lags, as can be verified directly from the inversion formula.
In this sense the spectrum gx(e—iw) decomposes the variance of x into a set
of mutually orthogonal processes across frequencies.

The cross spectrum is a complex quantity that is usually

charaterized by real numbers in various ways. One characterization is

in terms of its real and imaginary parts




gyx(e-iw) = co(w) + iqu(w)

where co(w) is called the cospectrum and qu(w) is called the quadrature

spectrum. A more usual representation is the polar one

(48) gyx(e—iw) = rwel®®

where

r(w) = \[CO(W) 2+qu (w) 2

g(w) = t:an_l [HESE)] .

co(w)

The phase statistic gives the lead of y over x at frequency w, while the
"gain'" r(w) tells how the amplitude in x ié amplified in contributing to
the amplitude of y at frequency w. Another interesting number is the
coherence

Byx

g, (e y

coh(w) =

.wbich, being essentially the ratio of a covariance squared to the product
of two variances, is analogous to an R2 statistic. It indicates the
proportién of the variance in one series at frequency w that is accounted
for by variation in the other series.

Notice that from (47) and from the fact that the spectrum

gx(e—iw) is real, the phase of the cross-spectrum equals the phase of h(e~iw) =

Ehje_iwj, which is the Fourier transform of the hj's. That 1is, writing

(47) and (48) we have

) =g ™) = n(eg (71

?(w)e vx
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or

h(e_iw) _ r(w) . eie(w)

gx(e-iw)

which shows that the phase of gyx(e—iw) equals the phése of h(e-iw).

For convenience, represent h(e_iw) in the polar form

-iw ig (w)

h(e ) = s(w)e

where s(w)=r(w)/gx(e—iw).
The following provides a heuristic device for interpreting
9(w). Suppose we consider as an input into the system (46) an x series

consisting of a pure cosine wave of frequency w:

w -
xt = 2co0s wt = ei t + e iwt

For this input path, suppressing the disturbance et, (46) becomes

y, - zhj[eiw(t-j)+e—iw(t—j)]

- eiwtzhje-iWJ + e-iwtzhje+in

- i 3
But the iwj=s(w)e 6 (w) in, being the complex conjugate of

e-iwj

and zhje+

-16(w)

» equals s(w)e Therefore, we have

- eiwt;s(w)eie(w) + e-iwts(w)e-ie(W)

s(w)[ei(wt:+9(w))_Fe-i(wt+e(w))]

s(w)2cos(wt+a(w)).
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Therefore, the response of (46) to an input in the form of a cosine wave
of frequency w is a cosine wave at the same frequency with amplitude
multiplied by s(w) and phase shifted by o(w). The input cosine wave is
at its peak at t=0, while the output is at its peak at wt+8(w)=0 or

t= units of time. Thus, for 6(w)>0, the output leads the input

e

w
by -g(w)/w units of time (where we adopt the usual convention that 8(w)
is constrained to be between -t and +¢, a convention needed to make the
arctangent function single-valued).

While useful, the preceding interpretation of the phase has to
be used cautiously. The reason is that the stochastic difference equa-
tions that we have been studying generate random processes with spectral
power distributed across a continuum of frequencies between -m and +m.
It is really only over a nonnegligible band of frequencies that there
occurs a positive contribution to variance. Thus, for such processes
there really don't occur input processes that are pure cosines, though
this situatioh could be approached if the spectral density did display a
very sharp peak at a given frequency. Processes with positive speétral
power at a single given frequency do exist, and realizations of these
processes do consist of (sums of) sine and cosine waves. But such
processes aren't generated by the stochastic difference equations that
we are studying. |

It is interesting to note the following two facts about

-iw iw)

h(e ). First, from the definition of h(e”

~dwy il

h(e = Zh.
j J

we note that h(e-iw) evaluated at w=0 is the sum of the lag weights,

that is




- 44 -

Notice that since
Zhje-iwj = Zhjcos wi - iZhjsin W]

and that since sin 0=0, we have that

Since h(e_lw) is real at zero frequency, the phase statistic 8(w) is

zero at zero frequency:

. -1 —Zh sin wj
(49) p(w) = tan [“{@m]
8(0) = tan—l[O] = 0.

Next, it is possible to show that the derivative of the phase
statistic with respect to w evaluated at w=0 equals minus the mean lag.

Recall that

4 tan-lu =1 du
dx l+u2 dx

Applying this to (43) gives

-Yh,cos wj)h,jcos wj-)h,jsin wj)h, sin wj
8'(w) = 1 5 { 1% 1 212 Iy }
—Zh.sin wj (Zhjcos wj)
1+ hjcos wji

Evaluating o'(w) at w=0 gives
Lo - hy3
6(0)-2'}1—’1—
J
(Here we have used the facts that cos 0=1, sin 0=0.) The right side of

this equation is minus the '"mean lag" of the lag distribution formed by
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the h's, a statistic often reported in econometric studies involving

estimates of distributed lags.

A Digression on Leading Indicators

For years, the National Bureau of Economic Research (NBER) has
employéd a number of heuristic techniques designed to isolate ''leading
indicators" of business cycle movements, presumably as an aid in the
early recognition and prediction of cyclical movements. To translate
into our vocabulary, essentially a good leading indicator displays a
sizable phase lead at the low business cycle frequencies over some
important "coincident' measures of the cycle like unemployment or GNP
(as well as a large coherence with those coincident measures--so that
the phase lead is not only large on average but is regular in its
occurrence). While searching for leading indicators is perhaps an
important thing to do by way of categorizing the data, it is important
to recognize that a series Ve that displays a sizable phase lead over
another series X, at the most important business cycle frequencies does
not necessarily help in predicting X, any better than can be done by
using past x's alone to predict x. We illustrate this fact with two
examples.

First suppose we have the system governgd by

(50) - x = Ax._qtug [A] <1
e = BgXe T hXe g toe
where Eut=E€t=Eut€t-s=0 for all t and s, and where both u and x are

serially uncorrelated. The cross spectrum between y and x is given by
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-iw, _ -iw -iw
= (h,+h,cos w-ih,sin w)g (e—iw)
01 1 X
_ r(w)eie(w)gx(e_iw)
where
r(w) =.VRL +h_cos w)2+(h sin w)2
01 1
-h.sin w
-1 1
8(w) = tan e
[ho+hlcos w]

Now by suitably choosing hO and hl’ at a given frequency 6(w) can be set
arbitrarily in the interval (-w, w). This is in spite of the fact that

the model (50) implies that Ve is of no use in terms of predicting X, s

1

for x, is governed by a pure "autoregression,' and depends only on

t

itself lagged and the unpredictable random term u . Thus, even if Ve

leads x, at the low business cycle frequencies, it is of no use in

predicting X, .

To specialize this example somewhat, suppose we have

£ - Mgty

]
]

Ve = (%))t

where as before u and € are mutually orthogonal (at all lags) white

noise process., Calculating h(e-iw), we have

h(e-lw) =1 - e—iw
w oW w
~ -12 ii -1‘2-
= e (e “-e )




W
—1—-
= e 2-21 sin ¥
2
EFLANLA
2 72 . w
= Je e “sin -
2
(“_ _w
2 27 . w
= 2e sin 5

For low frequencies (i.e., those for which n/2>w/2) the phase angle
7/2-w/2>0, implying that the output y leads x at the low frequency
components. By making )\ large enough, we can assure that these low
frequencies account for most of the variation in x. Inspite of the fact
that y leads x at these important low frequency components, y is of no
use in predicting x once lagged x's are taken into account.

As our second example, consider the system

Ve = Mep oY

where we assume Eetxs=0 for all t,s, Eut=0, and u is a white-noise

stationary process. We further assume that
h, = h . for all j > 1.

The cross spectrum between y and x is calculated to be

-iw iw, -iw 2iw, -2iw -iw
gyx(e ) {h0+hl(e +e ) + h2(e +e ) + ...} gx(e )

n
(hy+2 E

h.cos wj)g (e_iw)
j=11 *

which is real for all w. Therefore, the phase shift 8(w)=0 for all w,

so that y and x are perfectly in phase at all frequencies. Despite




this, by using a theorem due to Sims (see below) it is possible
to show that even given the past of x, past y does help predict present
and future x's. This is a consequence of the lag distribution of hj's
being two-sided and of Sims's theorem 2, which we will describe in
detail shortly.

Taken together, these two examples illustrate the fact that
displaying a phase lead is neither a necessary nor a sufficient condi-
tion for one series to be of use in predicting another.

Analysis of Some Filters: The Slutsky Effect
and Kuznets' Transformations

Relation (36) can be used to show the famous ''Slutsky effect."
Slutsky considered the effects of starting with a white noise €0

taking a 2 period moving sum n times, and then taking first differences

m times. That is, Slutsky considered forming the series

- _ n
z, = (L4L)(141) ... (IHl)e, = (4L) e,
and
_ _ m
Ye = (1-L) (1-1) ... (l-L)Zt = (1-L) Zt
(51) y, = () -1 .

Applying (36) to (51) we have

n n m m
g (e ) o el (e (1-e1Y) (1-e71Y) oi

y

n
[a+el™) +e ™) ] [(1-e7T9) (1-e

n
[2+(e™+e™™) ] [(2-(e1¥4e™1¥) ]



-iw

(52) g () = o§2“[1+cos wl® 2 ™[1-cos w]™

Consider first the special case where m=n. Then (52) becomes
n

g (e-lw) = ozan[l—cos2 w]
Yy €

(53) = oi&n[sinz w]n
On [0,n], the spectrum of y has a peak at w=n/2, since there sin w=l.
Notice that since sin w<l, (53) implies that as n becomes large, the
peak in the spectrum of y at /2 becomes sharp. In the limit, as n-w,
the spectrum of y becomes a "spike'" at n/2, which means that y behaves
like a cosine of angular frequency n/2.

Similar behavior results for fixed m/n as n becoﬁes large
where m#n. Consider (52) and set dgy(e-iw)/dw equal to zero in order
to locate the peak in the spectrum:

dg
A
dw

022m+n{n[l—cos w]m[l+cos w]n—l(-sin w)

+ m(l-cos w)m—l(sin w) [1+cos w]n}

= oiZm*Psin w{(l-cosx@m—l(l+cos w)n—l'

[m(1+cos w)-n(l-cos w)]}

This expression can equal zero on (0,m) only if the expression in

brackets equals zero:

m(l+cos w)-n(l-cos w) = 0
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which implies

1 -1

n
cos w = o

1+ 2

n

or

_ -1,1-m/n
w = cos (1+m/n)

which tells us the frequency at which the spectrum of y attains a peak.
For fixed m/n, the spectrum of y approaches a spike as n>». This means
that as n»o, y tends to behave more and more like a cosine of angular
frequency cos-l((l—m/n)/(l+m/n)).

What Slutsky showed, then, is that by successively summing and
then successively differencing a serially uncorrelated or 'white noise"

process g,, a series with "cycles" is obtained.

t
Another use of (36) is in the analysis of transformations that -
have been applied to data. An example is Howrey's analysis of the
transformations used by Kuznets. Data constructed by Kuznets have been
inspected to verify the existence of '"long swings,'" long cycles in
economic activity of around twenty years. Before analysis, however,

Kuznets subjected the data to two transformations. First, he took a

five-year moving average:

Z = %[L_2+L—l

2
+1+L+ = .
¢ 1+L+L ]Xt z A(L)Xt

Then he took the centered first difference of the (nonoverlapping) five-

year moving average:

= - 172121z =
Ve = Zeps = Zp_g = [L7-L71Z = BLIZ,.
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So we have that the y's are related to the X's by

% [L’S—L5 ] [1.'2+L°1+1+L+L2]xt

<
]

A(L)B(L)Xt.

The spectrum of y is related to the spectrum of X by

(54) gy(e_iw) = At ™aE™Be ™ B Mg (7).
We have
2 iw2 -iw3
A(e-iw) % X e—iwj - %»(e -fi )
j=- (1-e"")
Thus,
w o (%QZ(eiWZ_e—iw3)(e—iw2_eiw3)
ale JA(e™) = -iw iw
(1-e ") (l-e™)
(%)2(2_(e1w5+e—iw5))
(2_(eiw+e—iw))
(%)22(1—cos 5w) (%)z(l—cos 5w)
= 2(1-cos w) = (1-cos w)
Next, we have
B(e-iw) - (e+iw5_e-iw5)
so that
B(e-iw)B(eiw) - (eiw5_e-iw5)(e-iw5_eiw5)

(2-(eT104e~1¥10yy _ 9 (1 cos 10w).
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So it follows from (49) that

1.2
. (e-iw) ) [(39 (1-cos 5w)2

-iw
y (i=cos ) (1-cos 10w)]gx(e )

g, ().

where G(w)=2[(%)2(1-cos 5w) (1-cos 10w)/(l-cos w)]. The term G(w) is
graphed in Figure 5. It has zeroes at values where cos 5w=1 and where

cos 10w=1. The first condition occurs on [0,n] where
5w = 0, 2w, 4w,

or

'The condition cos 10w=1 on [0,7] where

10w = 0, 2m, 4w, 6w, 8w, 10w

or

w =0, %ﬂ, %ﬂ, %ﬂ, and 7.

So G(w) has zeroes at w=0, /5, 2/5n, 3n/5, 4n/5, and T.

Froh the graph of G(w), it follows that even if Xt is a white
noise, a y series generated by applying Kuznets' transformations will
have a large peak at a low frequency, and hence will seem to be char-
acterized by '"long swings.'" These long swings are clearly a statistical
artifact; that is, they are something induced in the data by the trans-

formation applied and not really a characteristic of the economic system.
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With annual data, the biggest peak in Figure 5 corresponds to a cycle of
about 20 1/4 years which is close to the 20-year cycle found by Kuznets.
Howrey's observations naturally raise questions about the authenticity

of the long swings identified by studying the data used by Kuznets.

A Small Kit of h(e ™¥)'s
In order to provide some feel for the effects of various
commonly used filters Figure 6 reports the amplitude and phase of h(e-iw)
for various h(L) lag distributions.

We have already calculated that for h(L)=1-L,

G-
= 2e sin;

-iw
) 3

h(e

as the graphs confirm.

For h(L)=1+L it is straightforward to calculate

\ \ w
L. -y
he ™ =1+eVee e He D)
w
= 2 -15;03 2

which again agrees with our graphs.
Notice that for h(L) = (1~t1L—t2L2)—l, we have chosen (tl, t2)
in the regions of peaked spectra of our figure (2). Notice that as

required, h(e-iw) is characterized by peaks. (See Figure (2)).

Alternative Definitions of the Business Cycle
We have already encountered two definitions of a cycle in a
single series that is governed by a stochastic difference equation.
According to the first definition, a variable possesses a cycle of a

given frequency if its covariogram displays damped oscillations of that




frequency, which is equivalent with the condition that the nonstochastic

part of the difference equation has a pair of complex roots with argu-
ment (¢ in the polar form of the root reie) equal to the frequency in

question. A single series 1s said to contain a business cycle if the

cycle in question has periodicity of from about two to four years (NBER
minor cycles) or about eight years (NBER major cycles).

A second definition of a cycle in a single series is the
occurrence of a peak in the spectral density of a series. As we have
seen, thisvdefinition is not equivalent with the previous one, but
usually leads to a definition of the cycle close to the first one.

It is probably correct, however, that neither one of these
definitions is what underlies the concept of the business cycle that
most experts have in mind. In fact, most economic aggregates have
épectral densities that do not display pronounced peaks at the range of
frequencies associated with the business cycle. The peaks that do occur
in this band of frequencies tend to be wide and of modest height. The
dominant feature of the spectrum of most economic time series is that it
generally decreases drastically as frequency increases, with most of the
power in the low frequency, high periodicity bands. This shape was
dubbed by Granger the ''typical spectral shape' of an economic variable,
and is illustrated by the spectral density of the monthly average call
rate over the period 1890-1913, which is shown in Figure 7. The

generally downward sweeping spectrum is characteristic of a covariogram

‘that is dominated by high positive, low-order serial correlation. (The

call rate spectrum displays a second feature that is often possessed by .
spectra of economic time series: peaks at the seasonal frequencies of

12, 6, 4, 3, 2.4, and 2 months.) As mentioned earlier, the fact that a
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spectrum doesn't display a peak at the business cycle frequencies should
not be taken to mean that the series didn't experience any fluctuations
associated with the business cycle. On the contrary, as on Figure 4a
indicated, a series could very well seem to move in sympathy with general
business coﬁditions say as identified by the NBER and yet have no spectral
peak on the open internal (0,m). This example cautions the reader

against interpreting the lack of a peak in the spectrum at the business
cycle frequencies as indicating the absence of any business cycle in the
series.

What the preceding example does indicate is that our two
preceding possible definitions of the business cycle are deficient. The
following definition seems to capture what experts refer to as the
business cycle: the business cycle is the phenomenon of a number of
important economic aggregates (such as GNP, unemployment, and layoffs)
being characterized by high palrwise coherences at the low business
cycle frequencies, the same frequencies at which most aggregates have
most of their spectral power if they have 'typical" spectral shapes.

This definition captures the noﬁion of the business cycle as being a

condition symptomizing the common movements of a set of aggregates.
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Representation Theory

So far we have generally started with a white noise €, as a
building block and considered constructing a stochastic process X, via

a transformation

X, = B(L)et .

In this section we reverse this procedure and start out by assuming that
ﬁe have a covariance stationary process X, with covariogram C(T)f We
then show that associated with_every such process {xt} is a white noise
process {et} that .is its fundamental building block. One purpose of this
construction is to convey the sense in which the models we have been
studying are quite general ones for covariance stationary processes.
Suppbse that we have a covariance stationary stochastic process
X, with covariogram c(t) and mean zero. We think of forming a sequence

of linear least squares projections of X, against a sequence of expanding

f ! . :
sets of past x's, {xt-l’ Xy _g» R xt-n}
n T o4
R = . . = P[x e
*t ,z %1 [ tlxt—l’ X )
i=1
or |
n n
= +
xt Xt £

n . . L.
where Eetxt_i = 0 for i=1,...,n by the orthogonality principle. These
n
orthogonality conditions uniquely determine the projection 22 = a?xt P
i=1

The population covariogram c(t) contains all of the information necessary




n, *

to calculate the a,'s from the least squares normal equations.

i
As n is increased toward infinity, it is possible to show that
the sequence of projections {ﬁ:} converge to a random variable it in the

* %
"mean square" sense that

. . SN2
lim E (xt xt) =0 .

n->-o

This means that for any 6>0, we can find an N(§) such that

m, 2
E(ﬁt - ﬁt) < 8

for all m>N(8), so that in the mean square. sense, we can approximate
arbitrarily well the projection in the space spanned by the infinite set
of lagged x's with the projection of x, on a suitable finite set of
lagged x's.+ We write the projection of x, on the space spanned by the

infinite set (xt—l’ Xe o> ...) as

ﬁt = P[xtlxt_l,x _

The a?'s will be unique only if there are no linear depen-

dencies across the xt_i's. The projection of x, on the space spanned

by {x X —n} is unique even without that condition.

-1
*%

t

. . n
It is not necessarily true that the sequence of (a,)'s settles
down nicely as n»~, only that successive ﬁg's get closer to each other
and to it as nowo,

For a proof, see T. W. Anderson, The Statistical Analysis
of Time Series, Wiley, p. 419.
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and have the decomposition of X, as
= cee) +
(55) X, P[thxt-l’xt—Z’ ] €,
where €, is a least squares residual that obeys the orthogonality con-
dition Eet t—i = 0 for all i21. In mean square, €, is the limit as n-e
n lim n,2 _
of €es 1oen o E(et et) = 0.

We can now state an important decomposition theorem due to
Wold.
Theorem: Let {xt} be any covariance stationary stochastic

process with Ex_ = 0. Then it can be written as

Z d.e
j=0 7

X =

+
t n

t-j t

_ T .2 2 2
where d0~1, where Z dj <o, Eet = ¢ 20, Eetes

= 0 for t#s (so that {et}
j=0

is serially uncorrelated), Eet = 0 and Entes = 0 for all t and s (so
that {e} and {n} are processes that are orthogonal at all lags); and {nt}
is a process that can be predicted arbitrarily well by a linear function

of only past values of X, s i.e., n, is linearly deterministic. Further-

t

more, £, = X

. e T P[xtfxt_l,xt_o,...].

Proof: We let €, be the same €, as appears in (55), so that

t

€. = X, - P[xtlxt—l’xt—Z""]

So

from its own past.

€, is the error or "innovation' in predicting X,

Now €, is orthogonal to {xt-l’xt-Z"'°}’ by the orthogonality principle.

But ¢

t-s is a linear combination of past x's:



= -p
€t-s = *t-s [x

t-slxt—s~l""]

Therefore Eetet_s = 0 for all t and s. So we have proved that {et} is

a serially uncorrelated process.
Now think of projecting X, against a sequence of sets spanned

by (et,e cesE —m) for successively larger m's. The typical projection

t-17"° t

of xt on such a set is

m

m
X = d.e .
t 4204t

where, since the et_j's are mutually orthogonal, the dj's are given by
Ex e, .
d =—tt:l
j 2
o
02 = Ee .
Notice that since e P[xtlxt—l’xt-Z""] and since Eetxt—i = 0 for

2 2
i2 = = = i
all i2l1, we have Eet Extst. Thus, we have d0 Extet/Eet 1. Since

the e's are orthogonal, the dj's don't depend on m. Now calculate the

variance of the prediction error, which is

? 2
E(x, - d.e_ .)
t j=0 3 t-J
2 T T 22
= Ex, - 2E ) d,Ex, e, ., + E| ) d5e” .
t jeo 4t t-d j=p 1 t-]
m [Ex e .]2 m |Ex e _ ,|2
- Ex2 B 202 z t t-j + 02 z t t-j
t . 2 . 2
j=0 o} j=0 o
m
= Exi-—-o2 Z d2 20,
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where the last inequality follows because the variance of the prediction

. . 2 L . .
error cannot be negative. Since Ext<<°, from the last inequality it
follows that for all m

m
02 z d? < Exi
j=0J

foe] oo
so that Z d?<<n. It follows that Z d.e__, is well defined, i.e. it

converges in the mean square sense.*

Now define the process e by

m

That is, the sequence of z djet_j's is a Cauchy sequence.
j=0

In particular, for n>m

? | E
E d.e . - d.e
5=0 3 t-j 520 7 t-j

n
E| } d?ei+.
jem1 I FTI

n
02 z d.2
j=n+1 J

oo
Since Z dj2<<n, it follows that we can choose an m big enough to drive
j=0

a Z d.2 arbitrarily close to zero.
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Notice that for sst we have

Entes = ExteS—E-z djeset—j
j=0
= Ex e -4d Ee 2
s t-s
= ExteS - ExteS =0

In addition Entes = 0 for all s>t because € is orthogonal to all x's
dated earlier than s and by construction N, is in the space spanned by
x's dated t and earlier. Thus {nt} is orthogonal to {et} at all lags
and leads. That is, the entire {e} process is orthogonal to the entire
{n} process.

Because Ny is orthogonal to €0 My must lie in the space

*
spanned by {xt-l’xt-Z""} since square summable linear combinations of

‘ *%
{Xt-l’xt—Z""} form the space of all random variables orthogonal to €

This implies that nt can be predicted perfectly from lagged x's. More

o
precisely, project n,o=xo - Z d

. against {xt
j=0

WX 2,...} to get

3%t-j -1°%¢-

P[ntlxt_l,...] = P[xtlxt_l,...] - .Zldjet-j
J=

. - . = >
since P[etlxt_l,...] 0 and since P[Et_klxt_l,...] for k21.

€r-k

Subtracting the above equation from the definition of n. gives

Ne - P[ntlxt—l"'°] = (xt - P[xtlxt_l,...])‘-doet =0

[oe] oo
Those linear combinations Z f.x, ., for which z f.2<<b, so
j=l J t-J j=l J
that the variance of the sum is finite.

K%
This is an implication of the orthogonality principle. See

T.W. Anderson, p. .
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since the one-step-ahead prediction error for X, is doet. Thus,

n. = P[nt!xt-l""] so that n_ can be predicted arbitrarily well (in the

t t

mean squared error sense) from past x's alone. More generally, we have

o

P[ntlxt-k’xt—k"l"..] = P[xt|xt_k!‘°‘] +j§kdj€t-j
Subtracting this from the definition of N, gives
k-1
Ne - P[ntlxt_k,...] = (xt - P[xtlxt-k"'°]) - .=Odj€t-j =0 ,
k-1
since Z djet—j is the k step ahead prediction error in predicting X,
j=0

from its own past. Thus, we have proved that N is (linearly) determin-
istic in the sense that it can be predicted arbitrarily well (in the mean
squared error sense) arbitrarily far into the future from past x's only.
This completes the proof of Wold's theorem.

The n, process is termed the (linearly) deterministic part of
X, while z djet—j is termed the (linearly) indeterministic part. The
3=0 |

reason for the adverb 'linearly" is that the decomposition has been
obtained by using linear projections.

Wold's theorem is important for us because it provides an expla-
nation of the sense in which stochastic difference equations provide a
general model for the indeterministic part of any univariate stationary
stochastic process, and also the sense in which there exists a white
noise process €, that is the building block for the indeterministic part
of X, - Not surprisingly, the construction of the theorem can be extended

to multivariate stochastic processes for which a corresponding orthogonal




decomposition exists in which the deterministic and indeterministic parts

are vectors.
As a particular example of a process that conforms to the repre-

sentation given in Wold's decomposition theorem, consider the process
o o]

X, = d. .+ a, A.t + b, sin )t
Z € Z ( § €os AL b1 sin A )‘

where € is covariance stationary, serially uncorrelated process with

o]

mean zero and variance 062, d.2<°>, ay and bi are random variables
j=0 -
orthogonal to the entire e process and satisfying Eai = Ebi = Eaibi =0
for all i; Ea.a, = Eb.b, = 0 for all i,j; and Ea 2 = Eb.2 = 0.2; the
ij i7j i i i

Ai's are fixed numbers in the interval [-m,m]. The process

n

z (aicos Ait + bi sin Ait) is deterministic, is orthogonal to the process
i=1

*
Zdjet—j at all lags, and is easily deduced to have covariogram given by

*
For example, let

x(t) = a cos At + b sin At

where Ea = Eab = Eb = 0, Ea2 = Eb2 = 02 . Then

2
Ex(tl)x(tz) = E{a“cos A.t cos Atz +

1

ab(cos At2 cos Atl + sin At251n Atl)

2 . .
+
b sin Atl sin Atz}

2
= + 1 i
o {cos Atl cos Atz sin ltl sin Atz}

Since cos(a-B) = cosocos B + sin a sin B, we have

Ex(tl)x(tz)

2
0~ cos A(tl-tz)

or Ex(t)x(t-T)

cos AT .

These calculations can easily be extended to prove the assertion made in
the text. )
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o]

2 .
0, cos AiT . As we have seen, the covariogram of Z d,e

. has gener-
1t 520 3 3

e~

i
. . 2 -1 . C e s
ating function o, d(z)d(z 7). The spectral density of the deterministic
part turns out not to be well defined as an ordinary function. This can
be seen by noting that the ordinary Fourier transform of the covariogram

2 .
0~ cos A.T is
i
o o | JAT T -iAT

2 -iwt 2 e + e -iwT
o Z cos Ate o Z e

T=-o T=-=00

©
2
(¢
T==-0

+
2

{5 () —w) + 3 1
[el(A w) T e 1()\+w)'rJ

Notice that the first term can be written

E RYCOE: [ei(x-w)r . e-i(A-w)T]

oo
=1+Z
=1

==00

oo

1+2 z cos(A-w) T .

]

=1
© .
The series Z cos(A-w) T is not a convergent series, so that the spectrum
=1

of the deterministic part of our process is not well defined by the usual
Fourier transformation.

However, it happens that there is a sense in which the spectrum
of the deterministic part does exist, namely, in the sense of a generalized
function or "distribution." In particular, let §(w) be the delta generalized
function which has "infinite mass" at w=0 and is zero everywhere else.

That is, 6(w) is defined by

L]

] stwgwaw = g(0)

- 00



where g(w) is any ordinary "test function" that is continuous at zero.

' . . . 2 .
Then the spectral density of a process with covariogram ¢ cos At is
defined as

2 2
£(w) = 21 07 § (w=1) + 92—6(w+)\)

With the spectral density so defined, notice that the inversion formula

holds, i.e.

1 ® iwT
c(t) o {wf(w)e dw

=a?|f sw-0e™Taw + [ 6 (wrh)e M Taw
2 -0 -Q00
5 elkr + e-lkt

= g 2

2
0~ cos AT .

]

Then the spectral density of the deterministic part of our process is

n
o Z 012 $ (W—)\i) . ) (W‘l")\i)
i=1 2 2 !

so that the spectral density function of the deterministic part is zero
except for the singular points w=iki, i=1l,...,n, at which the spectrum has

2 ) *
mass 0. /2. The spectral density thus has "spikes" at the points w=iki.

*
There are essentially two ways in which a process can be

deterministic. One is if its spectral density consists entirely of a
number of "spikes" or delta functions. A second way is if its spectral
density, even though having no spikes, is zero on some interval of w's of
positive length, or is "too close" to zero over such an interval.
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Linear Least Squares Prediction

It is common in economics to assume that X, is purely (linearly)
indeterministic, which means that nt = 0 for all t, or else that nt has

*
been removed. Wold's theorem says that any indeterministic covariance

stationary stochastic process x, has the moving average representation

oo
z d.e
j=0 -

»
I

t-3

or

(56) X

1

d(e, , 4w =7 a1
t 50 3

where {st} is the sequence of one-step ahead linear least squares fore-

casting errors (innovations) in predicting X, as a linear function of

{

Xy 11 Xe_or ...} . (As we have seen, it is natural to normalize d(L)
. . 2 2 . .

so that d0=l, in which case ¢ = Eet is the variance of the one-step

ahead prediction error.)

Now suppose that d(L) has an inverse that is one-sided in

n .
nonnegative powers of L. Where 4d(L) = Z d.LJ, a necessary and sufficient
j=0

condition for d(L) to have such a one-sided inverse is that the roots u of

all lie outside the unit circle, i.e. all have absolute values exceeding

* ,
For example, by suitable detrending and seasonal adjustment.
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unity. An inverse a(L) = d(L) " of d(L) satisfies a(L)d(L) = d(L)a(L) = I

2

where I is the identity lag operator I = 1 + OL + OL" + ... . Operating

on both sides of (56) with a(L) = d(L) ' gives

- - _ j
(57) a(L)xt = et ’ a(L) = ao jElajL

or

Since d. is unity, it turns out that a

o is unity also. Equation (57) is

0

termed the autoregressive representation for X, - While every linearly
indeterministic covariance stationary process has a moving average repre-
sentation, not all of them have an autoregressive representation. Still,
those that do have both a moving average and an autoregressive represen-

tation constitute a very wide class, and we shall henceforth assume that

*
we're dealing with a member of this class.

We now derive some formulas due to Wiener and Kolmogorov for

linear least squares predictors. Let Pt_.x

5%¢ be the linear least squares

projection of x, on the space spanned by {xt-j’ X 41 L.} dile.

. = P . .. .
P, .x [xtlxt_ ' ]

t-37¢t 3 %—g-1""

*
We remarked earlier that in general the sequence of (ajn's) in

1 n
T a.

oo X ]=
t-1 t-n 5=1 3

P[ftlx t-3

does not converqg as n*> . However, under the roots condition given in
the text, the aj 's do converge. In particular, they converge to the aj's

of equation (57), so that lim a.n=a. for all j=1,2,... .
n-o 3
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Now project both sides of (56) against {xt /X, .,...} to get

-1 t-2

8

= X d.e

j=1 ] t_j

which follows since P = 0, because et is orthogonal to lagged x's;

t-1%¢

= €¢_ . for all j21, because ¢

and since Pt-let-j t-3 t-3

is in the space

spanned by {x } . We write the above equation as

t—l'xtFZ'.'°

3
P,_.x = Z d.L" |e
_l . -
t t 5=1 J ] t-1
(@ (L)
Pear®e = |73 J ft-1
+
where { }+ means "ignore negative powers of L." Now assuming that X,
has an autoregressive representation, we can write €eo1 = a(L)xt_l
= d(L)-lxt_l . Substituting this into the above equation gives
d(L) 1
P = | == —
(58) £-1%¢ [ L ]+ amw *e-1°

which is a compact formula for the one-step ahead linear least squares
forecast of xt based on its own past.
To get a formula for the general k-step ahead linear least squares

forecast, project both sides of (56) against {x } to get

t-k " Xe-k-1""""

(e 2]

d(L)
P, x =)de . = |92 ¢
ek 8 5 e [ k J+ t-k
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' d (L) 1
(59) P, .x = [ L 4
t-k"t { Lk ]+ d(L) "t-k

which generalizes formula (58).

Some Examples

First-order Markov

Consider the first-order autoregressive process

(1-)\L)xt = €, P white noise, IA]<1.

X = l€
t 1-ALJ t :

We have

-1 2_2
Py_1%¢ [L " (1+AL +2°L +...)]+ (l-)\L)xt_l

]

2.
A+ AL+ ..0)Q - AL x,

It

A
II:XEJ(I-AL)xt-l

)

More generally,

P = [L'k(l +AL+ .0, (1-AL) x, _

t-k ¢t 1

‘Thus we have

|
>
»

P =
txt+k t
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First order moving average

X, = (1 + BL)et N white [B|<1 .

Then we have

1 X
1+8Lj t-1

ae)
"
I

-1
[L ~(1 + BL)]+ {

P. .x B8 x
t-1"t 1+8L "t-1

We also have that for k=22

e
»
I

-k 1
L™ + 811, [——] Xe_1

t-k"t 1+8L

which can also be seen directly by projecting on {xt—k'xt-k-l’

sides of

xt = (1 + BL)et .

First order moving average, autoregressive

Suppose we have

1+al .
xt = {l—ZLJet ’ Ct WhJ.te, la|<l' l8’<l .

We then have

...} both

b ox = L (a+an))  (1-8L w - Lt . 2| [1-BL)
t-1"t (1-BL) + 1+alL] t-1 1-BL 1-8L + l1+aLj t-1




_ B+a||1-BL
Peo1%e = {1-8L][1+aL]xt—1

= (218

Pe1®e = 'Tar®ea1

which expresses the forecast of X, as a geometric distributed lag of past

x's. The first order mixed moving average, autoregressive model for X,

thus provides a rationalization for the familiar "adaptive expectations"
model. As we let B~>1 (from below, in order to assure that the roots

condition |B|<l is met), P approaches

t-1%¢

1+a
Peor®e = D) %o

which with a<0 is equivalent with Cagan's adaptive expectations scheme

1-
Proa¥e = USD %y

with a=-A. Notice that as B-»1 (from below), we approach the situation in

which
(l-L)xt = (1l+4al),

so that the first difference of xt follows a first order moving average.
The parameter a must be negative in order that A>O.

For the general case in which k21, we have

oy - (L% (1+a1))  (1-8L .
(. 1-BL l1+al| t-k

(L% N ar k1 1-L]
(1-BL " 1-BL  J  (T+aL™t-k

B oY T I el T YOV
(1-8L ¥ I-BL | |1%aL)¥t-x (I+al) Stk -
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We can write this alternatively as

o x o B l(eta)
t t+k 1+al t

Notice that as B+1 (from below) we approach the situation in which

px = |Brta |
t7t+k  (1+aL) "t '

so that the same forecast is made for all horizons k21. In this sense,
there is a well-defined concept of "permanent x." This was first pointed
out in the economics literature by John F. Muth,* who showed that the
hypothesis of rational expectations in conjunction with the model for
income (l-L)xt = (1+aL)et provides a rationalization both for the concept

of permanent income and the geometric distributed lag formula that Milton

Friedman had earlier used to estimate permanent income in empirical work.



Deriving a Moving Average Representation

The univariate prediction formulas given above assume that one
has in hand a moving average representation er the covariance stationary,
zZero mean process {xt}. Often, all that one has is the covariogram c (1)
of x from which the appropriate moving average representation must be
calculated. To illustrate one method of finding the moving average coef-
ficients, suppose that c(t) is simply zero for |T|>1, so that only c(0)
and c(l) are nonzero. It is apparent that X, then has a first-order

moving average representation

(60) x, = dge, +dieg

-where dO and d1 are to be determined, and €y is required to be a white
noise process of errbrs in predicting xt from its own past. As we shall
see, this latter condition must be imposed in order to determine the d's.
For a process obeying (60) with {et} being a white noise with variance 082,
it is straightforward to calculate

2 2. 2

(dO + dl )oE

(61) c(0)

c(l)

2
(dgdy)o,

Given the known values of c(0) and c(l) that characterize the x process,

these are two (nonlinear) equations that can be solved for d_ and 4.,

0 1
given an assumed value for gsz. The equations are graphed for fixed 062

and c(1)>0 in Figure . In general, the two equations determine two pairs

of solutions, one pair consisting of do =qa > B = dl and dl =qa > B = dO'



A~ doedt T

Sy

do

d.d, =C(l)6"2




where a and 8 are the positive scalars depicted in Figure ; the second

pair is the reflection of the first pair in the negative quadrant. As
082 varies, the solutions for dO and dl vary in a way easily determined
from the graphs. We can forget about the solutions in the negative
quadrant, since our discussion of Wold's theorem indicates that we want

to choose do=l. Which of the two solutions with d0>0 should be chosen?
The answer comes from the condition that the derived €, process has to
have a convergent series representation in terms of current and lagged x's.

Suppose, for example, that we choose the solution for which d1>do. We have

or

(62) €

o+
Il
.
N—————
Ed
o
|
QJIHQJ
™
o+
[
—

so that Et cannot be expressed as a convergent series of lagged x's.

That is, the backward solution of the above equation

S e A
t do =0 do t-3
_dl
is not convergent because ' N >1 . The forward solution of the
0

difference equation (62) is "stable" if d >d0. That is, as we saw earlier

1
we can write
-
£ = L = dl X
t d0+dlL t dO -1 t
1+ {d—'JL
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so that

€ -1
t d1

which if ]dol<|dllexpresses et as a convergent (square summable) series
of future x's. Thus, if dl>d0, the associated Et does not lie in the

space spanned by current and lagged x's. However, if 4 _>d the associated

0o "1’

*
€, process does lie in the space spanned by current and lagged x's, which
is the condition that will always result in choosing the correct roots
of (61). The general principle is this: in selecting among the sequences

{do’dl’dz""} that solve the equations that are the general counterparts

2
of (61), choose the representation in which 4.0

is maximal. This
0 ¢ —_—

selection is the unique one that makes d the one-step ahead error in

0%t
predicting xt linearly from its own past; the et's with this property are
said to be the fundamental white noise process for X, - Ordinarily, we

. . 2 .
normalize by choosing 0E so that 4 =1. In this case et equals the

0

one-step ahead prediction error for X, -
As a practical matter, solving the equations of the form (61)
can be very tedious because they are highly nonlinear. A method of
achieving an approximation to tie moving average representation is to use
c(t) to calculate an autoregressive representation of some order n, i.e.,

to use the c(t)'s to fill out the elements of the least squares normal

. . n .
equations required to compute the ai 's in

*
By an appropriate limiting argument it can be shown that ¢

lies in that space even if d0=d1.

t




where Eet t-i 0 for i=1,...,n. Then an approximation to the moving

average lag operator d(L) can be taken as

a.nLl)ml .

dn(L) = (1 - i
1

i

o~ 3

. *
By making n large enough, an arbitrarily good approximation to dn(L) can

be obtained.

*
Arbitrarily good in the sense that the variance of the {e n}
process can be made as close as desired to the variance of {s } by
making n large enough.
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The Chain Rule of Forecasting

The law of iterated projections implies a recursion relationship

that is sometimes very useful in a forecasting context. The relationship

is known as Wold's '"chain rule of forecasting.'" It shows how projections
Ptxt+k for all k22 can be calculated from knowledge of the form of P cXe41
alone.

Suppose that {xt} is a linearly indeterministic covariance

stationary stochastic process for which

2
Px . = Z h_ x , L h <e
tTt+l j t-J j=0 J
It follows that
Penc®etkd1 = Po¥ean P P ¥eaer T T X

Projecting both sides of this equation on (Xt’xt—l"") gives, via the

law of iterated projections,

(63) P x = h.P x + h P x ... +h

ferktl T PoleFere Y M PR t k-17t%e41 +i£0hk+ixt-i

This recursion relationship is the '"chain rule of forecasting" which

shows how to build up projections of X, arbitrarily far into the future

from knowledge alone of the formula for the one-step ahead projection.
To take an example, suppose that {xt} is a first order Markov

process so that

Ptxt+1 = Axt [A]<1




From application of (63) it follows that

= Ax j21 .

Ptxt+j t
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Some Applications to
Rational Expectations Models
Let us return to the example of Cagan's portfolio balance
schedule, only now where we assume that m is a covariance stationary
stochastic process and the price level now expected for next period is
the linear least squares projection of Pt on information available at

+1

time t. We then have the difference equation

(64) m_ - p

N = aPtp

- ap, a<0

t t+1

where Ptpt+l is the linear least squares forecast of Pyl given information
available at time t. Projecting the above equation on information available

at time (t-1) gives

Pea®e = 0P 1Py ¥ 3 - )P gp,
or
-1 1-o _1
[B T ]Pt-lpt = a Pe-1™
where BP X = P X and B-lP X = P X Operatin
t-1%e+5 T Te-1%e+j-1 t-1%t+j = e-1%e+j+1 - P &

on both sides of the above equation by B gives

a-1 1
(1 -~ BP 4P, = 5 Pegmp

a-1

As before, since «a<0 and >1, we should solve this equation in the
forward direction. Proceeding exactly as with our earlier calculations,

we obtain the solution




1
t-1 l1-a

3
0{“°1] Pt—lmt+j

which is identical with our earlier solution with {xt} being replaced by

P

t_l{xt} everywhere.

Now suppose that m has the moving average representation

mt = z d

.€ .
j=0 J t-)

where Zdj2<<>° and € is fundamental for m. Then we have, applying (59),

o o]

j .
1 a d(L)
P _.p, = 3= Z [ = ] . e _
t-1"t 1-a =0 1-a LJ+{-+ t-1
B 2
_Ljd@) d(L)[ a ] d(L)[ a } N .
1—a-L LZ l-a+ L3 1l-a |+ t-1
i~ © j -
= 1 a -(G+D)
Peo1Pe T 1.2 [l—a) L dL)) epy
| 13=0 +

Then the solution for Pt—lpt in terms of current and lagged mt's is (using

mt=d(L)et)

1

!

QQ
-

[

I _
L

|

(j+l)d(L) —;L—-m
+ d(L) t-1

Substituting the above expression for Pt-lpt into (64) gives
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1

® j
m = (l_a)pt 4 Z [_2_] L_(j+l)d(L) 1

d(L) 't

l-a 40 1-a +

which expresses the stochastic process for P, as a function of the exo-
genous stochastic process for m .
The preceding solution process is a constructive one. A quicker

method of solution is the following one. Let us again assume that m has

the moving average representation m d(L)et. Guess at a solution for

*
Pe of the form

p, = v(L)e , Y vt = v
t t 520 9

Then equation (64) can be written

d(L)et = (l—a)v(L)st + a[véL)J+st

which implies

d(L) = (1-a)v(L) + a{!%l)+

an equation that can be used to solve for v(L) as a function of d(L) and

@. Once v(L) has been determined, the solution for P, can be written

P = Ve, = vggy ™ -

*%
This method of solution was used by John F. Muth.

It will turn out that the € 's are fundamental for p, i.e.,
they are the one-step ahead prediction érrors. This rationalizes the
prediction formulas to be used.

*
"Rational Expectations and the Theory of Price Movement,"
Econometrica, 1961.
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Let us now consider the supply-demand example of section

where X, is now a covariance stationary, indeterministic random process

with mean zero and moving average representation

x, = d(L)et

Our system is naturally modified to become

Ct = -Bpt 8>0
Yt = yPt_lpt + X, v>0
Lo =a®py - p) >0
Te =Gt - T

where Yt is production, Ct demand for consumption, and It holdings of

inventories. Substituting the first three equations into the third gives

(65) (y+a)P P, + (a+B)p, = aP p . . + ap,. 1 T X,

Taking projections of both sides against information available at time

(t-1) gives

P X

aP t-1Pe-1 = Peo1¥e

t—lpt+l - (y+8+2a)Pt_1pt + oP

or

-1 1
- + = =
(B ¢ +B)P b = P _ X

:P_Z - =___.B+Y
t t-1"t+1, BPt— z = Pt—lzt-l’ and where ¢ S + 2>0 .

where B—lP z
t-1
17t



Multiplying by B gives

2
(1 - ¢B+ B )Pt—lpt =

Q|

P 1%

1 _1
(66) (1 -2XB)AQ - ¥ B)P P, = = P 1%,

1

1 A
1
A - 1-

where |A|<1 satisfies A + %-= ¢. Notice that
A

1 _
(1~AB)(1—%-B) A --%

1
1
3 B

To insure covariance stationarity of the solution, we need to insist

that all lag distributions are square summable. Therefore we substitute

1 -1 ) )
1 = 1 > which gives
1 -=8B 1-AB
)
1 1,1 BT
aqmu—%m A-%1“3 w% 1-A"L

Multiplying both sides by (1-AB) gives

1-)B I ¢ YY)
1 - 1 1 -1
(1-AB)(1- £ B) A= (= DAY

Operating on both sides of (66) with the preceding operator gives

(1-AB)B 1
(A= %)(I-AB_

= A 1
(l-AB)Pt_lp = M P

t 1
A3

1
t-1%e-1 T 1. o Pe-1%¢

)

Assume that the set conditioning Pt—lx includes x Then we have

t t-1°
(1—-AB)Pt.1xt = Pt—lxt - )\Pt_lxt_l = Pt_l(xt-Axt_l) = Pt_l(l—AL)xt.

Substituting this into the above equation gives




1 1

(1A, _p, = —= Ty 41 -
A= 5 @ “ - = 1-aB

1 Pt_l(l—)\L)xt s
which is a solution for Pt-lpt' This solution suggests that the solution

for P, is given by

A 1 1
T X1 Yy TT T op P @Lxg
A

o 1 -1
A= X 1-AB

=1
pt-lpt—l - al

which can be rearranged to read

(67) by = Ap; = A ]

)\ipt(l x
i=0 o

t+i)
That (67) is a solution can be verified by direct substitution into (65).
We can reduce (67) further by eliminating Ptx via the Wiener-Kolmo-

t+i

gorov formula to get

- ild(L) 1
P, - Ap,__, = [— & AT = X
t t-1 °i=0 l: i:L_d(L) t

Fourier Analysis of Data

To motivate further the interpretation of the spectrum as a
decomposition of variance by frequency, suppose that we have T obser-
vations on yt, t=1, 2, ..., T. Suppose for convenience that Y is an even
number (assuming that it is odd would require some minor modifications in
some of the formulas that follow). We consider computing the following
regression of Y, on sine and cosine functions of angular frequency wj=2wj/T

where j=0, 1, ..., T/2:
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T/2. T/2-1.
(68) yt = kzdu(wk)cos wkt + kz B(wk)sin wkt
= =1

where wk=2nk/T. There are T observations and T dependent variables in
this regression, which means that the regression will fit perfectly
provided that the regressors are linearly independent, as they are.

Indeed, the regressors are pairwise orthogonal. Thus, recall that

(eik+e-ix)/2

cos A

ix

sin A (e -e-il)/Zi.

Now use these equalities to write

T
(69) 2 cos -2—;-1 t[cos 21[,1.—1?-3:+’i sin 2k t]
T
t=1
T 12’,]';1 t -izgi t 12—,}”3 t
= ] 3(e +e ) (e )
t=1
i21r(j+k)T_l i21t(j+k)t i21r(k-—j)T_1 i21T(k—j)t
1 T T 1 T T
= ie z e +-§ e z e
t=0 t=0
) iZnS%+k) l_eizﬂ(j+k) . iZﬂS%-j! l_eiZH(k-j)
e ————— + P ——————
2¢ 12n +k) 2° iZn(k—jz
T T
l-e 1-e

= 0<k#j<sT

2u(j+k) .
1 i T 1_e12ﬂ(3+k)

1 1
Se ——— +5T,0<k=3j <=T
2 iZn(%+k2 2 3 <3
l-e

k=j=0,%T




0 (because eiZn(j+k) =1) 0<k¢#] f_% T
1 1

= 5-T 0 <k=j< 5 T
. 1

T k=3=0,'2—T

Equating the real and imaginary parts, respectively, of the first line

in this equation with the last gives

1
0 0<k#j<=5T
k7323
T
(70) ) cos 1) ¢ ocos 2R = { L 0<k=3j< L
L 08T T 2 2
T k=j=20, %-T
and
T 2 2k 1
(71) ) cos ~%J-t sin —%— t=20 k, j =0, 1, » 7 T
t=1
A similar argument shows that
0 0<k#j<5T
T
(72) ) sin 2} ¢ g 2k o (Lg 0 <k =7j <Lir
LS T 2 2
0 k=j-0,32'-T

Taken together, equalities (70), (71), and (72)

show that the regressors

in (68) are mutually orthogonal. Notice that setting j=0 in (70) and

(72) gives
T T
) cos 2nk t=0= J sin 2k t, k=1,
T T
t=1 t=1

2, ..., T/2.

Where the regressors are mutually orthogonal, as they are in

(68), the least squares estimator of the multiple regression coefficients

is identical with the vector of simple least squares regression coefficients.

These are given by




T
R tzlytcos Wkt
a(wk)- k=0, l, ceey T/2

fa(wk) - £l k=1, 2, ..., T/2-1

Using (70), (71), and (72), the above can be simplified to

T
Yy
o) = BEL
***o T
T
~ 1 t
a(w.,,) = —'z y, (-1)
T/2 Tt=1 t
A 2 T
a(w) =3 1 y.cos W t, k=1, 2, ..., T/2-1
t=1
A 2 T .
B(wk) = nglytsin W t, k=1, 2, ..., T/2-1.

Since 68 ) represents a regression of T observations on y against T

orthogonal independent variables (which guarantees that the X'X matrix

of the linear statistical model is of full rank), we know that the

regression fits the data exactly, i.e., it gives a perfect fit. So what

we have achieved is a decomposition of yt{t-l, +eeey T} into a weighted
21K

sum of sine and cosine terms of angular frequencies wk T k=0, ...,

T/2. The least squares regression coefficients &(wk) and g(wk) give a

' measure of how important the various frequencies are in composing the

series Ve To make this more precise, notice that from (.68), the sample

variance of the y's can be written




T Ye 2 T
1 1 ~ 2
=) (y .- ) ==) (y_ ~a(w,))
thl t T thl t 0

T/2-1,  , T T/2-1, |, § )
(w,) cos” (w, t) + B (w,) sin” (w, t)
kél . tzl k kzl K21 k

"
1ﬂ~

. 2T
+ a(wT/Z) tzlcos (wT/zt)},

which follows by virtue of the orthogonality of sines and cosines of

T
different frequencies. From our earlier calculations of z cos2 wkt
T t=1
and § sin2 W b the above equation becomes
t=1
T Yy T/2-1
1 t.2 _ 1 - ~2
(73) T‘X (Yt‘ _T—) T*{T/Z )} [ (wk) + 8 (Wk)]
t=1 k=1
T/2-1

- -2
1 2 (

+ T (ugy ) = 5 T ] + o’ Gag )

Thus, the term 1/2[02(wk)+32(wk)] measures the contribution of sine and

cosine terms of frequency W, to the sample variance of y. Equation (73)

is an example of Parseval's relation.

An equivalent but more compact version of the preceding

decomposition is provided by the exponential Fourier series representation:

n
sz —igfi t
(74) yt= Yje t=1, 1, ..., T
3=-T/2+1

which provides an exact representation of Yoo t=1, ..., T. We assert

that the Yh's are given by
2th
€+iﬁr t
yt

(75) Y, = :}-E
t=1

This can be verified by substituting (74) into the above equality to get
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T/2 T 1311%:11 t

Yh=% ; vy le
j==T/2+1 Je=1
But
T f =h
p g2l or J
z e = . __i2n(h-3)
=1 12“(2 1) | 1=e = 0 for j#h
e iZn(h—j!
1-e T
Thus, we verify that
T i21rht
LVye © =y
T Lt h

The list of the YhEY(wh) by frequency is called the finite Fourier

transform of Yes t=1l, ..., T. To match this up with our earlier work

write
T T
o r b e B (2] o 2
t=1 t=1
= o, + iBh
where
o, = l-% y,cos 27ht
h Tt=1 t T
and
T
1 2Tht
B, == ) y sin
h Tt=l t T
Substituting

Yy = % + iBh

into (74) and writing




cos Z%l t - 1 sin Z%l t

for

_i2mi
T

e

and noting that Yh=;;h so that ap=a_y Bh=-sh, gives

Ve

(76) Ye

Comparing aj

have

T/2 © a(w T/2)

T/2

= + Z a (cos —11— -i sin ——l t)
j= l
T/2-1
+ ) a,(cos —gﬂi— -i sin =01 Z2nj t)
351 3
T/2 .
+ i Z 3 (cos Z%i& - 1 sin Cg%lt)
J—
T/2-1 _2 —omit
-1 2 ej<co=e(-—3—" ) + 1 sin (F27dY))
j=1
T/2-1
= uo + 2 jzl ajcos Z%1£-+ aT/zcos EI%ILE
+ 2T/§_18 sin2mj ¢
=1 3T

and Bj in (76) with our earlier least squares estimates, we

a(wo)

A

1
E“(“k)’ k=1, 2, ..., T/2-1
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17 ;
By = Eﬁ(wk)

Thus, the real and imaginary parts of szah+iBh are (apart from a scalar
for k=1, ..., T/2-1) the regression coefficients in (68).
A "natural" measure of the importance of the cosine and sine

waves of frequency Wi in composing Ye is the squared amplitude of

=Y ()
— 2
Y@IYGD = [yGa)|
= () +18(w)) (e ) -18(w))
= of) + 82w,

The higher is this quantity, the larger are the weights placed on the
sine and cosine of frequency Vi in (51) in making up Yer The quantity
Iy(wk)l2 is called the periodogram ordinate at frequency Vo and turns

out to provide a basis for estimating the spectrum at w The rela-

K
tionship between the spectrum and the periodogram ordinates a2+82
provides one illuminating way of depicting the spectrum as a decompo-
sition of variance by frequency.

To establish the relationship between the periodogram ordinates

and the spectrum and cross spectrum, suppose that we have observations on
two jointly covariance stationary stochastic processes Ye and X, for
t = -T+1, -T+2, ..., -1, 0, 1, ..., T . Assume that Y, and X, have zero

means. Then we compute the Fourier transforms




L
x(w) = 57
—-i.
y(wi) = o7

-iWkt
X e
t

yte-lwkt
t=-T+1

Consider now the cross-periodogram ordinates defined by

* = L
2T y(wk)x (wn) = 57

Letting s=t-1 so that

2T y(wk)x* (w ) =

Taking expected values, we

(77)

For b>a, b and a integers,

inj

I o~

This is obvious for A=

E2Ty(wk)x*(wn) =

T

)

T

y. X e

-iwpt eiwns

t=-T+l s=-T+l © °
T=t-s, we have
+T-
I S —twt _dwy (t-1)
2T ) ! YeXe-1® €
=-T+1 t=t-T
T t+T-1 .
= é%. Z X Y X -iwpT e—l(wk wnp)t
=-T+1 t=t-T
have
1 T -1 (wg-wp)t t+I-1 -iwt
T e Z e C x(‘l‘)
t=-T+1 T=t-T Y
we have
il(b+a)/2 sin A(b-a+l)/2
€ sin (A/2) A0
b-a+1 A=0

0. For A#0, we have
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b iia ii(b+1)
v 1xj _ e - e
Le 7T i
j=a 1 -e
ix(a+b+1)/2 -ix{b-a+1)/2 ix(b-a+1)/2
_ e (e ~ e )
2 B A
e12 e—lz - e+12

_ Ui (atb)/2(sin (A (b-a+1)/2))

| sin (%)
Therefore, for w,=w_, we have
k 'n
: i (wp-wk)t
(78) z el Wn~Wk = 27
t=-T+1
For w #w_, we have
k' "n
I i : sin (w_-w )T
(79) ) o ilwn-wp)t _ el(wn~wk)/2 n "k
t=-T+1 . (Wn—wk}
sin
"7

-w
which is bounded in absolute value by 1/sin{Yn2 k} for all T. Substi-

(

tuting (78) and (79) into (77) and taking the limit as T goes to infinity,

we have
‘Z e—lwk'fc7 (T) o
. T=—co Y k 'n
{ 2Tv =
(80) ELT)(wk)x (wn)
0 wk?wn
or
X iwy _
f by\( ) wk wn
E2Ty (o )x () = <
y (W )x Wy S
0 wk#wn




In other words, for large enough T, E2Ty(wk)x*(wk) approaches closely to

the cross spectrum, while the ordinates y(wk) and x*(wh) are asymptotically
orthogonal if wk#wn.

For the special case in which xtEyt, the above results show
that as T>=,

gx(e—iwk) w
E2Tx(wk)x*(wn)+

This shows that the periodogram ordinates 2T|x(wk)|2 are asymptotically

unbiased estimators of the spectrum at frequency w Let us denote the

k'

periodogram ordinate by

IT(wk) = 2T|x(wk)|2 .

By using (80) and performing a few additional calculations,
*
the following properties of the periodogram ordinates could be established.
Assume that {xt}obeys the normal probability law. Then we have that for

k not equal to zero or T,

ZIT(wk)

g (e 1K)

is distributed asymptotically as chi square with two degrees of freedom.

For k equal to zero or T,

Lp(w)

gx(e’iwk)

*
See Koopmans, pp. 260-265.
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is distributed asymptotically as chi square with one degree of freedom.
Since a chi-square variate with r degrees of freedom has mean r and

variance 2r, it follows that (asymptotically)

- -1wg
EIT(wk) = gx(e )
(81) var Ip(w) = (gx(e‘i"k))2 K#0, T
var IT(wk) = Z(gx(e-iwk))2 k=0,T .

Further, it can be shown as an implication of (80) that periodogram
ordinates are asymptotically independent, so that I(wk) is asymptotically
independent of I(wh) for wk#wh.

From (81l) we see that the (asymptotic) variance of the period-
ogram ordinates does not depend on T, and in particular does not decrease

with increases in sample size T. Therefore, though IT(wk) is an (asymp-

totically) unbiased estimator of gx(e—iw), it is not consistent; i.e.
there is no tendency for the variance of IT(wk) around gx(e-iwk) to
decrease as T+« . This is the reason that raw periodogram ordinates
I(wk) are regarded as noisy estimates of the spectrum.

In applied work, the spectrum and cross-spectrum are estimated
by first calculating the periodogram and cross-periodogram ordinates.
Then the assumption is adopted that the population spectrum and cross-—
spectrum are ''smooth" functions of w. (To make these assumptions appro-
ximately correct, the data are typically filtered to give series with

approximately locally flat spectra and cross-spectra.) Then the spectrum

and cross-spectrum are estimated by taking some sort of moving average




of periodogram ordinates across frequencies. Since the periodogram

ordinates are asymptotically orthogonal, this averaging reduces the
sampling variability of the resulting estimates. In effect, different
spectral estimators differ only in the form of the moving average they
apply.*

*%
The Cramér Representation

We have seen that the spectrum of X, represents an orthogonal

decomposition by frequency of the variance of X Suppose we select a

set of points 0=wl<w2<...<wn+l=ﬂ. We then form Bi(L) to satisfy
- - N
iy 1 wel-viy vyl [wgowyy))
Bi(e ) =
0 vl In vy, gy
Define x., = B.(L)x.. Then we have that
it i t
n
X, = ) x,
t i=1 it

where Exit-xjs=0 for i#j and all s and t. So for any finite n, we are

able to decompose Xy by frequency into n orthogonal processes, where the
spectrum of X equals the spectrum of X, wherever the spectrum of LI

is not zero.

This section in effect addresses the question: what happens

See Koopmans and T. W. Anderson.

*%
This section is optional. It follows the treatment in

Papouiis [pp. 468-472].
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when we drive n to infinity in the above construction? It is perhaps

natural to conjecture that X, can be represented in a form

i +iwt
X = f e dF (w)
t -7

where F(w) is a stochastic process with certain strong orthogonality
properties inherited from those of the xit's. This conjecture is correct
and is the intuition underlying the Cramér representation possessed by
all covariance stationary stochastic processes.

Let {xt}:____°° be a covariance stationary stochastic process with
mean zero. It would be tempting to try to compute the Fourier transform
of the {xt} process accordiﬁg to

o]

(82) f(w) = Z xte-iwt we[-m,m]

=—0
and thereby obtain a new stochastic process f(w); that is, essentially
(82) would be used to define f(w) for each realization of {xt}:=_oo .
thereby creating a probability distribution on f(w)'s, which are thus
random functions defined on [-m,7]. Unfortunately, however, the right
side of (82) is not in general well defined. Fundamentally, this is
because realizations of a covariance stationary stochastic process {xt}

oo

need not in general be square summable (i.e. satisfy Z Ixtl2<«»), so
that there is no guarantee that the infinite sum on th;—:ight side of
(82) is well defined.

However, the 'generalized Fourier transform" of the stochastic

process x is well defined. 1In particular, let us define a stochastic

process G(w), we[-m,m] as follows. We set G(-m)=0 and for n2w1>w22~n
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we define

o« -iwt -iwgt
e 1t _ o 2

X

(83) G(w;) = G(w,) It ¢

t=-—c

The complex-valued random process G(w) thus defined is called the "gener-
alized Fourier transform" of the stochastic process X3 G(w) is a stochastic
process OT "random function'" defined on w in [-m,7m], because it is a
function of the stochastic process {xt}. The distribution of G(w) is

traced out as the sequence {xt}:=_w varies from realization to realization.
The generalized Fourier transform'of the x process is well defined even
where the right side of (82) is not well defined. To indicate why, set
wl=w+€ and Wy=W-e to obtain

© . ite -ite
Z e-lwt e - e

it t

]

(83') G(wte) - G(w-€)

=—

[+ <)
_ Z e-iwt 2 sin et X
t t

t=—

Thus G(w+e) - G(w-e) is the ordinary Fourier transform of X, multiplied

by 2—55%—55 . The function 2 sin et/t goes to zero rapidly as |t|—>-°°
R . . 2 sin et P
Heuristically, this permits T % to satisfy the square summability

condition necessary for the Fourier transform to be well defined even
where {xt} fails to be square summable. This is what underlies the fact
(which we won't prove) that the generalized Fourier transform G(w) is
well défined, i.e. the infinite sum on the right side of (83) converges
in mean square.

Now divide both sides of (83') by 2¢,e>0, to obtain
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(84) G(wte) - G(w-¢) _ E e-iwt sin et x A
2¢ et t
t=-o
So Glute) ;EG(W—E) is the ordinary Fourier transform of §12E5£ xt.
. sin et . ' . '
The funct1on‘——gg—— is plotted in Figure 7. From 1'Hospital's rule

we have that

lim sin et _ lim € cos et

t>0 et >0 € =1
sin €t -
The fact that —-;E¢—~+o as ltl*w is what makes the infinite sum on the

right side of (84) well defined.

We now formally apply the inversion formula to (84) to obtain

_ 1 " dwt G(wre) - G(w=¢)
et t 2 { € 2e dw

sin et
—_— x
kil
|

Letting €>0, the left side approaches X which we write as

|

i
1 +iwt

x, = '2—"'1( e dG(w) ,

-7
| which is the Cramér representation for the process X, -
\
The "integral" on the right is defined as follows as a "mean square limit."
Let Pn be a "partition" of the interval [-w,m], i.e. Pn is a collection of

points wi,i=l,...,n

Pn = [wl,wz,...,wn]

where STEW<Wo<...<w = . Let the "norm" of the partition be A;
A = max (w,-w, .) .
"o4=2,...,n I i1




- 101 -

Let {Pn}:=2 be a sequence of partitions with A0 as n>>~, For each n let

Si be points satisfying LA <6 <wi . Then it can be shown that

171

lim 1 T eyt 2
(86) o E|xt -5 izle (Gw,) - G(wi_l))l =0,
. . 1T i6.t
i.e. the sequence of approximating sums —— z e 17 (G(w.) - G(w, ,))
2m is1 i i-1

converges to X, in the mean square sense that the variance of the difference
between X, and the approximating sum approaches zero. The notation

i
é%- e+thdG(w)

m
is intended to denote the mean square limit of the sequence of approximating
sums in (86).

Equation (85) is the "spectral representation" or Cramér repre-
sentation for the stochastic process {xt}. The random function G(w) is
intimately related to the spectrum, as we shall now show.

To interpret G(w), let us return to a version of the "band pass"

system we considered above. 1In particular, let

2m W, <w<w
(87) h (e 21
2 0 wi[wz,wl]

The distributed lag weights hw w (j) corresponding to (87) are, from the

172
inversion formula, given by
w
. iw1i _  iwpj
(88) L =%f QWi 4o e i’e '
172 J w J

2
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With {xt] as the input to the system with these distributed lag weights,

the output Y w (t) is given by
172

o eile _ elWZJ
yw 1 (t) = z
12 j=-

ij t-]
Adopting the change of variable 1=t-j so that j=t-1, we have

© elwl(t—r) _ elwz(t—r)

Y. (t) = = X
waw, T i(t-1) T

For t=0 we therefore have

® e—iwlr _ e‘iWZT
(89) lewz“’) =T£_m e X

= G(wl) - G(WZ)

where the last equality is a repetition of the definition (83). Thus,
the increment G(wl) - G(wz) in G(w) has the following interpretation: it

is the random variable Ve w (0) that is derived by applying the '"bandpass"
172

filter hw w (j) to the X, process and evaluating the resulting stochastic
12

process at time t=0.

The interpretation (89) is useful in establishing the properties
of the random process G(w). The first property is:

If w1>w2, then

' ) w
2 1
B, - 6w |*Y = 2nf g (e ¥)au
w. X
2
To prove this, consider applying the bandpass filter hw w (j) defined by
172




(88) to the X, process. From (35) we then know that the spectrum of the

*
output

<w<w

2 1
W, W
172 0 wf[wz,wll ,

2 -iw
. (e°iw)}h (2m)7g (e ™), w
X

where g (e_lw) is the spectrum of x. Then the variance of y (v),
be v,
which equals the variance of Yo w (0) by covariance stationarity, equals
172

2 w
E{Iyw WZ(O)‘Z} =‘§%‘ f '
1 w

gx(e—lw)dw

2

But from (89) we have

2.
E{|y 0) |7}
Y12

2
E.{IG(wl) = 6w, |7}
The second property of G(w) is that it is a process with "ortho-~
gonal increments." That is, let n>w1>w22w3>w42—n. Form the two bandpass

systems with frequency response functions

,

3 2w W <wW<w
hw.w (e—lw) - -2 1
172 0 0, w¢[w2,W1]
s (2 w4<w<w3
hw w (e 1W) -
3%% 0 0, wt[w4,w3]

With x, as the input to the systems with filters described by (88), we

obtain outputs Yy Q (t) and . (t). From (22), it follows that their
172 374

*
Notice that the output is a complex-valued stochastic process,

which is why its spectrum is not symmetric about zero.
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cross-spectral density is given by

+iw
)C

-iw ~-iw
hyj,(e "h,, (e g e )

]

-iw
8yz(e )

Therefore, the y and z processes are orthogonal at all lags. In particular
we have (applying (89))
{ 0 x(0)} = E{ * *w)1d =0
Ely, o (0-z *(0)} = E (6w - Gw )]G (wy) - G (w1} =
172 374
Thus, G(w) is a process with orthogonal increments.
Finally we have, since Ext=0, applying (89)

® -iwjt _ e—iwzt

— e —-—
E{G(w)) - G(w,)} = tz_m Y Ex, = 0

Collecting these properties, we have
(a) 1If ﬂ2w1>w22-ﬂ,

E{fc( ) - 6( )lz} =2 jwl (e ™4
w1 w2 = 27 gx e w

b

(b) If m2w >w, 2w >w, >-m,

* *
E{[G(wl) - Gw)1IG (wy) - € w1 =0
(c) E[G(wl) - G(wz)] =0

In summary, the Cramér representation theorem assures us that
o
for every covariance stationary stochastic process {xt}t=—m with mean zero,
there exists a related complex-valued stochastic process G(w), we[-m,n]

such that




. e+iwt
t 2w

X dG(w)

It is properties (a) and (b) of the stochastic process G(w) that motivate
the interpretation of the spectrum as representing an orthogonal decompo-

sition by frequency of the variance of X, .

Vector Stochastic Difference Equations

Let x, be an (nxl) - vector wide-sense stationary stochastic

process that is governed by the matrix difference equation

(91) C(L)xt =€,

where Et is now<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>