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Stochastic Difference Equations

Introduction

Deterministic (nonrandom) difference equations of low order

can generate "cycles," but not of the kind ordinarily thought to charac-

terize economic variables. For example, we have seen that second-order

difference equations can generate cycles of constant periodicity that

are damped, explosive, or, in the very special case where the amplitude

r=l, of constant-amplitude. But the "cycles" in economic variables seem

neither damped nor explosive, and they don't have a constant period from

one cycle to the next; e.g., some recessions last one year, some last

for one and a half years. The "business cycle" is the tendency of

certain economic variables to possess persistent cycles of approximately

constant amplitude and somewhat irregular periodicity from one "cycle"

to the other. The distinguishing characteristic of "the" business cycle

is the apparent tendency of a number of important aggregate economic

variables to move together, with timing relationships among the variables

that tend to remain the same from one expansion-recession cycle to

another. The National Bureau of Economic Research has inspected masses

of data that indicate the presence of a business cycle of average length

of about three years from peak to peak in many important economic aggre-

gates for the U.S. The Bureau has also documented the tendency for the

timing relationships among variables to remain somewhat the same from

cycle to cycle.

Figure 1 graphs the 91-day Treasury Bill rate and the unemployment

rate over the postwar period for quarterly data. The "business cycle"

shows up in both series, interest rates tending to be high and unemployment

low in "booms," and interest rates tending to be low and unemployment

_ _
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high in recessions. Clearly the "cycles" are irregular in length and

don't "look like" those generated by our low-order difference equations.

As we have seen, low-order nonstochastic difference equations

do not generate data that look as irregular as do the graphs of economic

data just illustrated. However, high-order nonstochastic difference

equations can generate data that look like economic data. For example,

if yt is governed by a nonstochastic nth order homogeneous difference

equation, its solution can be written

n

(1) Yt = Gaat
j=1

where the Xj's are the roots of the characteristic equation and the a.'s

are chosen to satisfy n initial conditions. By making n large enough,

any sample of data can be modeled arbitrarily well with the

nonstochastic equation (1). However, this device of using high-order

nonrandom difference equations is generally regarded as an unpromising

one for two reasons. First, to get a model that is capable of generat-

ing time series that resemble economic data well, the order of the

difference equation must be made quite large, so that the model is not

parsimonious in terms of its parameterization. Second, strictly speak-

ing, the model (1) implies that once the appropriate equation is fit,

perfect predictions of the future of y can be made. Most economists

believe that predictions will always be subject to error, so that it

seems advisable to adopt a model that recognizes this condition.

While low-order nonrandom difference equations don't provide

an adequate model for explaining the cycles in economic data, low-order

stochastic or random difference equations do. In effect, if the initial

conditions of low-order deterministic difference equations are subjected
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to repeated random shocks of a certain kind, there emerges the possibility

of recurring, somewhat irregular cycles of the kind seemingly infesting

economic data. This is an important idea that is really the foundation

of macroeconometric models, an idea that was introduced into economics

by Slutsky and Frisch. These pages describe the elements of stochastic

difference equations and some of their applications in macroeconomics.

Preliminary Concepts

A stochastic process is a collection of random variables, a

collection indexed by a variable t. In our work, we will regard t as

time and will require t to be an integer, so that we'll be working in

discrete time. Thus, the stochastic process y is a collection of random

variables ... y-1 Y 0' Y1 ' Y 2 ' ... , there being one random variable for

each point in time t belonging to the set T, which in our case is the set

of integers. Alternatively, on each "drawing," we draw an entire sequence

{y k}k= . We are interested in the probability distribution of such

sequences. A single drawing of a sequence {yk } is called a realization

of the stochastic process yt"

We will characterize the probability law governing the collection

of random variables that make up the stochastic process by the list of

means of vt and by the covariances between y's at different points in
tt

time. (For a stochastic process that obeys the normal probability law,

these parameters completely characterize the probability distribution.

Even where y isn't normal, the first and second moments contain much

* The reader is assumed to be familiar with complex variables.

The chapter on complex variables in R.G.D. Allen's Mathematical Economics

is a good reference.

I
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useful information, enough information to characterize the linear structure

of the process.) In particular, we have that the mean of the process v is

Ev = u tET.t t

where E is the mathematical expectation operator. The covariances are

given by

E[(yt-vt) (Ys-1s)] = 0ts"

A stochastic process is said to be wide-sense stationary (or

covariance stationary or second-order stationary) if ~t is independent of

t and if o depends only on t-s. We will henceforth deal with sucht,s

stationary processes. The first and second moments of a stationary

process are summarized by the mean u and the covariogram c(T) defined by

E[(yt-) (ys-) ] = ots

-E-(y -i)(y -cj= aE[t t-T 
) ] = t,t-T c(T)

where T=t-s. The covariogram is easily verified to be symmetric, i.e.,

c(T)=c(-T), and to obey c(O)-ic(T)J for all T, this inequality being an

implication of the Schwarz inequality.

To find further restrictions on the covariogram, let xt be a

covariance stationary stochastic process with mean zero and covariogram

c(T). Consider forming a weighted sum of x's at different dates

y = ajx
j=l t.

where the a.'s are fixed real numbers and tl,..., t are integers. We3 1' " ' n

__

L



- ) -

must require that the random variable y have nonnegative variance, so that

(n n
Ey = E {Ya.xt  akx

j=lJ j k=1k tk

n n

= Za.aExt x
j=l k=l k j

n n

= a.akc(t-t) > 0
j=1 k=l k k k 0

This last inequality is required to hold for any n, any list of a.'s, and

any selection of (tl, t2' ... , t). A sequence c(T) that satisfies this

condition is said to be "nonnegative definite." The condition that c(T)

be nonnegative definite is a necessary and sufficient condition for a

sequence c(T) to be the covariogram of a well-defined stochastic process.

A basic building block is the serially uncorrelated random process

Et , which satisfies

E(E t ) = 0 for all t

(2) E( 2  2
E( ) sfor all t

E(EtEt s ) = 0 all t and all s0 .

This process is (wide-sense) stationary, each variate being uncorrelated

with itself lagged s = ± 1, 2, ... times, and is said to be serially

uncorrelated. The process is also often referred to as "white noise."

As we shall see, such a white-noise process can be viewed as the basic

building block for a large class of stationary stochastic processes.

The condition turns out to be equivalent with the condition
that the spectral density of x be nonnegative, a condition which also in
effect stems from the requirement :that the variance of every linear combi-
nation of x's at different points in time be nonnegative.



To illustrate how the white-noise process Et can be used to

build up more complicated processes, consider the random process yt

t bj t-jj=O

= B(L)Et

where B(L)= bL j , and where we assume 2 < , a requirement needed
j=0 j=0b j

to assure that the variance of y is finite. We assume that the E pro-

cess is "white" and thus satisfies properties (2). Equation (2) says

that the y process is a one-sided moving sum of a white noise process,

We seek the covariogram of the y process, i.e., we seek the

values of c (k)=E(ytYt- k ) for all k. It will be convenient to obtain

the covariance generating function gy(z) which is defined by

oo
(3) gy(z) = c (k)z .

k th

The coefficient on z in (3) is the k t h lagged covariance, c (k).

First notice that taking mathematical expectations on both

sides of (2) gives

oo

E(Yt) = b.E(E t - j )

t J=0 t-j

= 0 for all t.

It therefore follows that

c (k) = E{(Yt-Eyt)(yt-k-Eyt-k

= Eytt-_ k

S6 -

for all k.
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Notice yt.Yt-k is

Yt-k Z bht-k-h_
t J t-jhO

j=0 h=0

(b t+blEt-1+b2 ct-2+...) (b0t-k+blt-k-l+b2t-k-2+..)

2 2 2
YtYt-k = {b0bkt-k+blbk+ t-k-+b 2bk+2 t-k-2

+ crossproduct terms whose expectations are

zero.

Thus

c (k) Eyt yt k
2 j= o b bj+k"
S j=0 j

The covariance generating function is then

o k

g y(z) =  z c (k)
k=-D, Y

2 k b b= zJb.b
k=- j=0 j+k

2 k
= bjbj+kz

k=-j =0

2
gy(z) = E

j=0

bb k

-b.bj zkk=-

Let h=j+k, so that k=h-j. Writing the above line in terms of the index

h then gives

2
g (z) = a

j0 hb bhzh - j

2 -j  h
S~oC b z bhZ

j=0 j h=O

(4)
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The last equation gives the convenient expression

2 -1
(5) gy(Z) = o B(z )B(z)

where B(z )= b z-, B(z)= b z.

j=0 j=0

Equation (5) gives the covariance generating function gy(z) in terms of

2
the b.'s and the variance o of the white noise E.

J

To take an example that illustrates the usefulness of (5),

consider the first-order process

(6) y= y 1(6) yt t-1 + t

or

t 1-AL t t-i'
i=0

where, as always, E is a white-noise process with variance 0. We have

1
B(L) =-L

1-XL '

1 2 2
B(z) = = 1 + z + z +...

1-Az

-1 1 -1 2 -2
B(z ) - - 1+ Az + z +....

-1
1-Az

(Thus, B(z) is found by replacing L in B(L) by z.) So applying (5), we

have

2 1 1
(7) gy(Z) = " (- ) (-

l-Xz

From our experience with difference equations we know that the expression

(7) can be written as a sum
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(8) gy(Z)

where k 1 and k 2

must be, notice

g (z)

2 2 -1
kl k2a z
= +2
1-Az 1-A1

are certain constants. To find out what the constants

that (8) implies

2 2 2
= kl (1+z+A z +...)

E 1i

2k (-1+z-2+A 2 -3+...2 k ( z - + z + z + ))

so that c (0)=kl 2 and c (1)=2 2k =o2k.

By direct computation using (6) we note that

2i2 a2
2 2 _

Ey = Et
t iA t 2i=0 1-1

00

EytYt-= E E i-i=O t-ii__ t-i

2
2 2(i-1) A
Si=1  1-X2

So for (8) to be correct, we require that

k = 2
1 -X2

1-A

2 2 "
1-A

With these values of k1 and k2, we can ver

1 -1 A+ z ( )2 2
2 1-A 1-A

l-z 1-Az
E 1l-xz-

i i- t 2

i=1

verify directly that
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2 1 (1-Xz-1)+Az - 2

E 2 -1'
E l-a (1-az)(l-Az )

2 1
Cr ~-1,

= o -1-az)(1- z '

so that (8) and (7) are equivalent.

Expression (8) is the more convenient of the two expressions

since it yields quite directly

-I
2 1 1 Xz

g (z)= z - _

y =  1 2  1 - Xz  -1

2 1 22+... + -1+ 2-2 3-3

(9) = 2 [{1+z+ z + {z + z + z +...].
E 1-1

Thus, we have that for the "geometric" process (6),

2

c(k) = lk k=0, +1, +2, ...
y 1 2

The covariance declines geometrically with increases in Iki. We require

1I1<1 in order that the y process have a finite variance.

To get this result more directly write the stochastic difference

equation ytxYtk+6t, then multiply yt by Yt-k' k>0, to obtain

Yyt-k XYt lt-k + EtYt k.

Taking expected values on both sides and noting that EEtYtk=0 gives the

famous Yule-Walker equation,

E(tYtk ) = AE(YtlYtk

or

c (k) = Ac (k-l)
y Y

k > 0
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which implies the solution

k
c (k) = ac (0)

y y
k > 0

From the symmetry of covariograms, it then follows that c (k) = x jk (0)
y y

for all k. Notice that the covariogram obeys the solution of the non-

random part of the difference equation with initial condition c (0).

As a second example, consider the second-order process

1 1 x1 +a 2 1 < 1, X1 # X2'

is white noise with variance a .
E

we have

1 1
B(L) = ( )( )

1-1L 1-X 2L1 2

1 1
B(z) = ( )(

1-A1Z 1-a2z

-1 1 1
B(z ) = ( ) ( _).

l-X1Z l-X 2 z

formula (5), we have that the covariance-generating function is

2 1 1 1 1
gy(z) C (1-X 1) (1--2z) -1 -U(l- 1 Z) (1- 2 z) (1-Xl z  )(l-1 2 z )

Notice that (10) can be written

_1 1 _ 2 1

t = X 2  -1X 1 L)Et - ) (
t x2 1xt l 2 1-X2L

1 i
(12) yt= xXt = - L 1 t-i

t 1-2 i=O

For yt-k' k > 0, we have

X 2  0 i

S-X 2 i1 2t-i1 2 i=0

(10)

where Et

For (10)

Applying

(11)

__ __ __
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1  i-k X2 2 i-k

t-k 2 i=k 1 t-i Xl-2 i=k 2 t-1

Multiplying (12) and (13) together and taking expectations gives

2 2

2 1  k+i+i 2 k+i i
E(ytYt k ) = o { 2 1 X1 2 +

2  2
( 1 - 2 ) i=0 (-X 2 )  i=0

t -2 E X l X 2 2 ) 2 X 2 X l }

1A2  0 k+i i A1 X2  0 k+i i

(Xl-X2) i=0 (X A 1 2 ) i=0

2+k 2+k

1 2 A1  2  2  k k
(14) Ey(y )  ( )]

t t-k -1 )- 2 2 1-1 2  1-A) (1-2) - 2  1  2

k > 0.

So (14) and the symmetry of gy(z) suggests that the appropriate factorization

of (11) is

2 -1
1 2 2 1 1 X 2 1z

S- 2 1- 11 -1
1 2 (1-A) -12 1 1-Alz

2 -1

+ ( ) - 1 ) ( -) .A2 1-XA z1-az -11- 2 1 2 2 1-A2z

According to (14) and (15) the covariogram of a y process

governed by the second-order process (10) consists of a weighted sum of

two geometric decay processes, the decay parameters being A1 and 12, the

inverse zeroes of the polynomial (l-A1 L)(1-A 2L). Expression (14) implies

that the covariogram displays damped oscillations if the roots A1 and

X2 are complex conjugates. This can be shown by substituting Al=re

iw
and X2=re into (14), and proceeding to analyze (14) as we above

analyzed the solution of the deterministic (nonrandom) second-order
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difference equation. An alternative way to reach the same conclusion

is as follows. Multiply both sides of (10) by (1-A 1 L)(1-X 2 L) to get

(16) yt = tlYt-1 + t 2 t-2 + Et

where t =(X1+X2 ) and t2=-X1X2 . Multiply (16) by yt-k for k>O to get

tYt-k = tlYt-lYt- k + t 2 Yt-2t-k + EtYtk'

Since EEctytk=0, we have

E(ytyt- k ) = tlE(yt-_lYt- k ) + t2(Yt_2Yt- k )  k> 0

which shows that c (k) obeys the difference equation (the Yule-Walker

equation)

(17) cy(k) = t 1 cy(k-l) + t 2 cy(k-2).

So the covariogram of a second (nth ) order process obeys the solution to

the deterministic second (n t h ) order difference equation examined above.

In particular, corresponding to (17) we consider the polynomial

(18) 1- tlk - t 2 k 2 = 0,

which has roots l/X1 and 1/ 2 . (We know that l-t k-t2k equals (l-X 1 k)
and 1''-2

(l-X2k) , with roots 1/x 1 and 1/X2.) Alternatively, multiply (18) by k

to obtain

2 -1-1

(19) x -t l x-t 2 0where x = k
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Notice that the roots of (19) are the reciprocals of the roots of (18),

so 1l and X2 are the roots of (19).

The solution to the deterministic difference equation (17) is,

as we have seen,

(20) c (k) = z 0 + k

where z 0 and z1 are certain constants chosen to make c (0) and c (1)
Y Y

equal the proper quantities. If the roots X1 and X2 are complex, we

know from our work with deterministic difference equations that (20)

becomes

k k
r r

(21) c (k) = z sinwk + z sinw coswk
y 0 sin w 1 sin w

iw -iw
where Xl=re and X2 =re . Accordingly to (21), the covariogram displays

damped (we require r<l) oscillations with angular frequency w. A complete

cycle occurs as wk goes from zero (k=0) to 2r (k=27/w, if that is possible).

The restrictions on t1 and t2 needed to deliver complex roots and so an

oscillatory covariogram can be read directly from Figure _ of "Notes on

Difference Equations."

Figure 4b below displays a realization of second-order processes

for values of t1 and t2 , values for which the roots are complex. Notice

the tendency of these series to cycle, but with a periodicity that is

somewhat variable from cycle to cycle.

The foregoing suggests one definition of a cycle in a single

series: a series may be said to possess a "cycle" if its covariogram is

characterized by (damped) oscillations. The typical "length" of the

cycle can be measured by 2i/w, where w is the angular frequency associated

with the damped oscillations in the covariogram (e.g., see 21). To be
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labelled a business cycle the cycle should exceed a year in length.

(Cycles of one year in length are termed "seasonals.")

The Cross Covariogram

Suppose we have two wide-sense stationary stochastic process

yt and xt . The processes are said to be jointly wide sense stationary

if the cross-covariance E(Yt-EYt)(Xtk-EXtk) depends only on k and not

on t. The cross-covariogram is the list of these covariances viewed as

a function of k. We denote it by

cyx(k) = E(yt-Ey)(x t - k-Ex).yx

Now suppose that both yt and x t can be expressed as one-sided distributed

lags of a single white-noise process E t:

Yt = B(L)Et

x t = D(L)F t

where B(L)= bL , D(L)= d . Since EEt=O, we have
j=0 j=0

c (k)
yx k ) = Eytxt-k

= E b. t dh h0 b j t-j hodh 
t - h - k

j=0 h=O

= E(b0Et+bet-l+b2 t_ 2+ . .. ) (dogEtk+dlt-kl+d 2 ctk- 2+...)

2
c (k) = db
yx E=0 jj+k

The cross covariance generating function gyx(z) is defined by

g (z) = c (k)zkyx k=C yx
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k
the coefficient on z being c yx(k). In

2 k
g (z) = djb

Yk=-W j=0

Letting h=j+k so

the present case, we have

2 1
I o d bj+kz

Ej= 0 k= -

that k=h-j, we have

2co c h
g (z) = d bkzh-

= d bh
Ej=0 j j=0

2-1
gyx() = D(z )B(z).

a counterpart to equation (5), and includes it as a special

Now suppose that we have the more general system

Yt = A(L)Et + B(L)ut

(23)

Xt = C(L)Et + D(L)ut

where Et and u t are two mutually uncorrelated (at all lags) white noise

2 2
processes with variances a and a respectively, and Eu t-k= for all

k. By carrying out calculations analogous to those just completed, it

is possible to express the cross-covariance generating function between

y and x as

2 -1 2 -4
(24) g (z) = 2A(z)C(z ) + ouB(z)D(z )

yX Q E E U

(22)

This is

case.
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As it turns out, (23) is a very general representation for a bivariate

stochastic process, including a large class of such processes.

A Mathematical Digression on
Fourier-Transforms and z-Transforms

The following theorem provides the foundation for the z-transform,

Fourier-transform, and "lag operator" methods that we use repeatedly in

these pages. The theorem, which we shall not prove, is a version of the

Riesz-Fisher theorem.

Theorem (Riesz-Fisher):
Co

Let {cn } be a sequence of complex numbers for which c 2 <
n=-0

Then there exists a complex-valued function f(w) defined for real

w's belonging to the interval [-,T], such that

(25) f(w) = c.e-iwj3

j=_WJ

where the infinite series converges in the "mean square" sense that

1 im -iwj 2
1i Zf c.e - f(w) dw = 0n-t j-R j=-n

The function f(w) is called the "Fourier transform of the c 's" and

satisfies

f f(w)12dw <
-FT

Namely, all jointly wide-sense stationary, indeterministic
processes.

For a proof of the Riesz-Fisher theorem, see Tom Apostol,
Mathematical Analysis, second edition, Addison-Wesley, Chapter 11.
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where the integral is a Lebesque integral (i.e. "f belongs to

L2 [- v,7 ]"' ). Given f(w), the ck's can be "recovered" from the

inversion formula

(26) ck 2i / f(w)e+iwkdw
-7T

Finally, the function f(w) and the ck's satisfy Parseval's relation

y1 ff(w) 2dw = cj 2

-71 j=-M

This completes the statement of the theorem.

Consider the space of all doubly infinite sequences {x }k
k k=-G

such that Ixk x2<m, i.e., the space of square summable sequences. We
k=- _

denote this space Q2(-"'m). It is a linear space in the sense that it

possesses the following two properties (among others):

(i) Let a be a scalar and let {xt } belong to £2(-CO,0).

Then {axk} belongs to Z2 (-O,c), i.e. xk 2XkI<C

(ii) Let {xk } and {yk } both belong to 2(-o,oo). Then

{xk+Yk } belongs to . 2 (-O,oo), i.e. (xk+Yk)2<

k=- 0

Now consider the space L2[-7,] consisting of all functions f(w) for

1r
which j If(w) 2dw<, i.e. the space of "square Lebesque integrable functions"

on [-r,w]. We denote this space L2 'r,Tr]. This space is a linear space

in the sense that it possesses the two properties:
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(a) Let a be a scalar and let f(w) belong to L 2[-,V,].

Then of (w) belongs to L2[- 7 ,i], i.e., f Tf(w) 2 dw< co.

(b) Let f(w) and g(w) both belong to L2 [-7,T7]. Then f(w)+g(w)

belongs to L 2 [-,Tf], i.e., j f(w)+g(w) 2 dw< co.
-T
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The spaces 2(-mo,co) and L [-,7] are each metric spaces in the

sense that each one possesses a well-defined metric or distance function.

In particular, on Z 2 (-0,o) the real valued function

d2 (x,y) = k=m(xky)k2k k_

measures the distance between the two sequences {xk} and {yk } . The

function d2(.,*) is defined for all {xk) and {yk } in ,2(-Co,o) and is a

"natural" measure of distance (it satisfies a triangle inequality

d(x,y) d(x,z)+d(z,y) for all sequences x, y, and z in 2. On L2 [-'r ]

the real valued function

D2 (f,g)= = If (w) - g(w) 2dw
-Tr

is a metric that measures the "distance" between two functions f(w) and

g(w). The metric D2 (-,.) is defined for all f(w) and g(w) belonging to

L2 [- ' 7r] .

Now consider the mapping from Q 2 (-co) to L2 [-'T] defined by

the Fourier transform

(25) f(w) = cke -iwk
k= -w

We also have the inverse mapping

(26) c. = - f f(w)e dw j=0,+1,+2,...
-2 7

Now a converse of the Riesz-Fisher theorem is also true: let f(w) belong

to L2[-,]. Then there exists a sequence {ck} such that lck <x and

f(w) = C cke
'-- - cx
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where

I 7r +iwk
Ck 7 r f(w)ee dw ,

-TT

where the infinite sum converges in the mean square sense. This converse

theorem assures us that the mapping of Z 2 (-,c) into L2[-r,T] defined by

(25) is onto. It is also one-to-one. The usefulness of the mapping (25)

stems from the fact that it is an isometric isomorphism from k2(-,00) to

L2 [-~r ]; that is, it is a one-to-one and onto transformation of points

in k2(-m,) into points in L2 '[-,T] that preserves both linear structures

(i.e. it is an isomorphism) and distance between "points" (i.e. it is an

isometric mapping). That is, let {Xk},{k} belong to k2(-m), let a be

a scalar, and let

x(w) = Z xke-iwk

y(w) = i yke-iwk
k= -k

Then we have (as can be verified directly)

x(w)+y(w) = Y (x k + k)e-iwk
k=-CO

x(w) = Z xke-iwk
k=__0

So "the Fourier transform of a sum of two sequences is the sum of their

Fourier transforms" and "the Fourier transform of {ax k } is a times the

Fourier transform of {Xk}." This means that (25) is an isomorphism. We

also have
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i f Ix(w) - y(w) 2 dw = =I (xk - k2
-2 _ k -- O k

or

D2 (x(w),y(w)) = d 2 (x,y)

so that (25) is an isometric mapping.

The Fourier transformation (25) puts square summable sequences

{xk } into one-to-one correspondence with square integrable functions f(w)

on [-,T7]. The transformation preserves linear structure and a measure

of distance, as we have seen. The benefit from using the transformation

is that operations that are complicated in one space are sometimes the

counterparts of simple operations in another space. In particular,

consider the convolution of two sequences {xk} and {yk } defined to be

the new sequence

y Xk k= - YsXks

The Fourier transform of (y + x)k is given by

-iwk
Ysk-s e -iwk

k=-03 s=-o

-iws -iw(k-s)ye x eYS ye xk-s

= y(w) .x(w)

where y(w) = Yke , x(w) = eik
k= - oo  k=-k

Thus the Fourier transform of the convolution of {xk} with {yk) is the
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product of the Fourier transforms of {xk } and {ykI . The complicated convo-

lution operation corresponds simply to multiplication of Fourier transforms.

All transform techniques exploit properties like the preceding

one. The aim is to transform a problem from one space where it appears

complicated to another isometrically isomorphic space where the operations

are simpler, then to transform back to the original space using the

inversion mapping such as (26) after the calculations have been performed.

-iwBy making the change of variable z=e in the Riesz-Fisher theorem,

we obtain the following corollary which underlies our z-transform methods.

Corollary: Let {c } be a sequence of complex numbers for whichn
n=-oo

n c < c. Then there exists a complex valued function g(z) with
n=--oo

domain in the complex plain such that

g(z) = c.z j

where the infinite series converges in the mean square sense that

ZM nn-1m c jz - g(z) z = 0

rj=-n

where F denotes the unit circle and the above integral is a contour

integral. The function g(z) is defined at least on the unit circle

in the complex plane and satisfies

J 1 2 dzf

The function g(z) is called the "z-transform" of the sequence {c }

The ck's can be recovered from g(z) by ck 2 i fg(z)z-k- dz .

This completes the corollary.
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So long as we restrict ourselves to sequences satisfying

Ick < m , the theorem and the corollary guarantee that the "z-transforms"

and Fourier transforms that we shall manipulate are well defined. The

z-transform in effect maps the sequence {ck } into a complex-valued function

defined on the unit circle in the complex plane. The Fourier transform

maps the sequence {ck } into a complex-valued function defined on the real

line over the interval [-7,7].

Notice that the complex-valued functions eiwj, j=0, +1, +2, ...

are an orthogonal set on the interval [-i,w]. That is, for n#m, we have

1 iwn -iwm 1 i iw(n-m)dw
e e dwffe dw

-r7 --71

1 iw(n-m) T
27ri(n-m) [e ]

1 eiT (n-m)-e-ir(n-m)
27i(n-m)

sin 7(n-m) = 0T(n-m)

since sin T(n-m) = 0 for (n-m) an integer.

For the most part, the Riesz-Fisher theorem and its corollary

are sufficient for our needs. Below we will briefly touch on a deter-

ministic process for which the condition IckI 2 < is violated (where
< 0o is violated (where

the Ck's depict the covariogram) so that the theorem will not suffice

to define the Fourier transform of the ck 's. It turns out that there is

still a sense in which the Fourier transform of such "ill-behaved" {c

sequences is defined, as we shall see.
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The Spectrum

An alternative representation of the covariance-generating

function of y is the spectrum of the y process. Recall the covariance

generating function of y defined in (3),

oo

(3) g(z) = c (k)z .
k=-ooY

For the process yt = B(L)Et we have seen that

-l 2
g (z) = B(z)B(z )oE

If we evaluate (3) at the value z = e , we have

co

-iw -iwk
gy (e ) = c (k)e

yk=-_
--7 < W < T

-iw
Viewed as a function of angular frequency w, g (e ) is called the

y

spectrum of y. The spectrum is the Fourier transform of the covariogram.

As we would expect from the inversion formula (26), the spectrum

is itself a kind of covariance generating function. Given an expression

- iw
for g (e ) it is easy to recover the covariances gy(k) from the inver-

sion formula (26). To motivate the inversion formula, we multiply (27)

iwh
by e and integrate with respect to w from -i to 7:

Sg (e )e hiwhdw = I c (k)ew (h-k)
y- y dw

_T y _ff k _o y

o0 7T iw(h-k)
= Z c (k)f e dw

k=- Y -

(27)

(28)
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Now for h=k we have

iw(h-k)
f e dw = f Idw = 27.

For h#k we have,

f7iw (h-k) 7
Se dw = f cos w(h-k)dw + if sin w(h-k)dw

= -sin w(h-k)] + i cos w(h-k)]

= 0.

Therefore, (28) becomes

7r g - iw iwhf gy(e )e dw = 27c (h).
--7

iwh
Thus multiplying the spectrum by e and integrating from -7 to n gives

the h th lagged covariance times 2n. In particular, notice that for h=0,

we have

-iw
gy(e )dw = 27nc(0),

so that the area under the spectrum from -7 to r equals 27 times the

variance of y. This fact motivates the interpretation of the spectrum

as a device for decomposing the variance of a series by frequency. The

portion of the variance of the series occurring between any two fre-

quencies is given by the area under the spectrum between those two

frequencies.

Notice that from (27) we have

iw) -iwkgy(eiw) = c (k)e

ky_ C
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(29) = c (0) + c (k)(eiw+e - i w k )

Y k=l Y

= c (0) + 2 1 c (k) cos wk.
S k=l y

According to (29) the spectrum is real valued at each frequency, and is

obtained by multiplying the covariogram of y by a cosine function of the

frequency in question. Notice also that since cos x=cos -x, it follows

from (29) that

g(e iw ) = gy(eiw)

so that the spectrum is symmetric about w=O.

Notice also that since cos (w+2Tk)=cos (w), k=0, +1, +2, ... ,

it follows that the spectrum is a periodic function of w with period 2r.

Therefore, we can confine our attention to the interval [-,r], or even

[O, ] by virtue of the symmetry of the spectrum about w=0.

We know that if

(30) yt = B(L)E ,

where E is white noise, then the spectrum of y is related to the spectrum

of Et by

-iw -iw iw 2
gy(e ) = B(e )B(e )

or

(31) gy(e-i =B(e-iw)B(e )g(E )

-iw 2
since for the white noise E, g(e )= ~. It is straightforward to show

that for any Et not necessarily a white one, affecting y via (31), the
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spectrum of y is related to the spectrum of c by (31). Thus, assume

that y is related to X by

q
(32) yt = b Xt- B(L)Xt p>O , q

s=-p

and that the spectrum of X is defined. From (32) we know that

q q
y y tj= I bsXt- X b Xt-

t t-j ts -j-r
s=-p r=-p

q q
= bbX X

s r t-s t-j-r
s=-p r=-p

Taking expected values on both sides gives

q q
c (j) = E(y y ) = bsbc x(j+r-s).

y t t-j sr x
s=-p r=-p

The spectrum of y is defined as

-iw -iwk
gy(e ) = c y(k)e

k=-0

(33) = b bc (k+r-s)e-iwk
k=- s=-p r=-p

Define the index h=k+r-s, so that k=h-r+s. Notice that

-iwk -iw(h-r+s) -iwh -iws iwr
(34) e = e = e e e

Substituting (34) into (33) gives

-iw iwr -iws -iwhgy(e ) = be i bse x(h)e
r=-p s=-p h=-x

iw iw -iw -iw
(35) gy(e = B(e )B(e )gx(e )

or
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-iw iw) -iw
(36) g (e ) = I B ( e ) gx ( e -i)

which shows that the spectrum of the "output" y equals the spectrum of

the "input" x multiplied by the positive real number B(e )B(e ). Of

course, it is also true that

-1

gy(Z) = B(z)B(z )gx(z).

Expression (36) motivates the interpretation of the spectrum

as decomposing the variance of y by frequency. Thus, suppose we could

-iw
choose B(e ) so that

~ iw 1 = for wE[a,b]fO[-b,-a] 0 < a < b < n.
(37) B(e ) _

0 otherwise

Thus, we are choosing a "filter," i.e., a set of b.'s, that takes aJ

random process xt and transforms it into a random process yt according

to (34). A filter obeying (37) shuts off all of the spectral power for

frequencies not in the region [a,b] or [-b,-a]. To determine a set of

b 's that satisfies (37), we use the "inversion" formula seen earlier,

bj i__w )e-iw+iwj dwb 2 B(e dw

-a b
1 -aiwj 1 iwj

= Ij e dw + eiwidw
-b a

1 beiWj -iwj= 1 (  +e w)dw
a

i J 2 cos wjdw
a

- --- sin wj

] 

ba I
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1 sin jb-sin ja
(38) b. = - ( ), for all integer j.

With the b 's chosen in this way, the y process defined by

Yt= bjx t _

has all of its variance occurring in the frequency bands w [a,b], w [-b,-a].

The variance of y is given by

S -iw-a iw b -iw
2 g (e )dw = - f g(e - i w ) dw + gx ( e  )dw.- 27-b a

In this sense, gx(e ) gives a decomposition of the variance of x by

frequency, the variance occurring over a given frequency being found by

integrating the spectrum over that band and dividing by 2 . We have

already seen that by integrating the spectrum from -f to 7 we obtain the

variance of x times 27. As we shall show shortly, the decomposition of

the variance of x by frequency that is reflected in the spectrum is one

in which components at different frequencies can be regarded as orthogonal.

More precisely two components formed by applying two filters like (37)

that let through power over disjoint frequency bands are mutually orthogonal

at all lags.

Incidentally, the preceding calculations can be used to prove

that the spectrum is always nonnegative. This can be done by proceeding

by contradiction. Suppose that the spectrum gx(e-w) is negative over a

small band. Then choose a filter that shuts off all variance outside of

this band. The result is to produce a new random process that has a

negative variance, a contradiction. So the spectrum must be nonnegative.

Let us examine the spectra of some simple processes. First

consider the white noise process
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Yt " Ct

2
E white so that c (0)=o , c. (h)=0 for h#0.t y 0 y

For this process the covariance generating function is simply

2
gy(z) o,

so that the spectrum is

-iw 2gy(e ) , - < w <

so that the spectrum is flat, and equals a2 at each frequency. Notice

that

-iw 2
g (e )dw = 27or,

as expected. So a white noise has a flat spectrum, indicating that all

frequencies between -n and r are equally important in accounting for its
variance.

Next consider the first order process

y = B(L)t L Et -1 < X < i.
t t 1-XL t

For this process the covariance generating function is

1 1 2
gy(z) = (i z) (  -)o .l-lz

Therefore, the spectrum is

-iw 1 1 2
g (e ) = ( i _

1-e 1-le

1 2
= *0

iw -i )+2 2)
(l- X(e +e )+x )
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1 2
gy(w) = 2 E

1-2Xcos w+a

Notice that

dg (w) 2 -2 2
d = -(1-2Xcos w+X ) (2Xsin w)(o
dw E

The first term in parenthesis is positive. Since sin w>0 for 0<w<7T, the

second term is negative on (0,n) if X<0 and positive on (0,7] if a>0.

Therefore, if X>0, the spectrum decreases on (0,n] as w increases; if

X<0, the spectrum increases on (0,7] as w increases. Thus, if X>0, low

frequencies (i.e., low values of w) are relatively important in compos-

ing the variance of w, while if X<0, high frequencies are the more

important. It is easy to verify that the higher in absolute value is X,

the steeper is the spectrum. Notice that the first order process can

have a peak in its spectrum only at w=0 or w=+n. A peak at w=n corres-

ponds to a periodicity of 2n/w=27/=2 periods. A peak at w=0, corresponds

to a cycle with "infinite" periodicity, which is unobservable and hence

not a cycle at all.

With quarterly data, a business cycle corresponds to a peak in

the spectrum at a periodicity of about 12 quarters. A first-order

process is capable of having a peak only at two quarters or at "infinite"

quarters, and so is not capable of rationalizing a business

cycle in the sense of a peak in the spectrum at about twelve quarters.

As we saw above, a first-order process cannot possess a covariogram with

a periodicity other than two periods, and so with quarterly data cannot

rationalize a business cycle in the sense of an oscillatory covariogram.

Next consider the second-order process
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1
Yt 2 Et'

l-tlL-t2L

Et white noise. For this process the covariance generating function 
is

1 1 2
gy(z) 2 -1 -2 a

1-tlz-t2 z  1-t1z  -t2z

Therefore, the spectrum of the process is

-iw 1 1 2
(e-W )= -iw -2iw iw 2iw

1-tle -t2e 1-tle -t2e

2

2 22 iw -iw -2iw +e2iw
1+t 1 +t 2+(t 2 tl-tl)(e +e )-t 2 (e +e )

2 2
a a

2 2 h(w) "
1+tl+t2-2tl(1-t 2 )cos w-2t2cos 2w

Differentiating with respect to w, we have

-iw)
dg (e 2 -2

dw = -o h(w) (2t(1-t 2 )sin w + 4t2sin 2w)

2 -2
= - 2 h(w) (2sin w.[tl(1-t 2 )+4t 2 cos w]).

We know that h(w)>0. For the above derivative to be zero at a w belonging

to (0,.), we must have the term in brackets equal to zero:

t l (1-t 2 ) + 4t 2 cos w = 0

or

-tl(1-t 2)(39) cos w =
4t2

so that
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-t l (l-t 2 )
(40) w = cos ( 4t 2

Equation (35) can be satisfied only if

-tl(l-t 2 )

4t 2(41) 1 4t2  < 1,

since Icos xl < 1 for all x. If (41) is met, the spectrum of y does

achieve a maximum on (0,Tr). Condition (41) is slightly more restrictve

than the condition that the roots of the deterministic difference equation

be complex so that the covariogram display oscillations. Let us write

(41) as

-tl (l-t 2)
(42) -1 < 4t < 1.

2

The boundaries of the region (42) are

(43) -t l ( l-t 2 ) = 4t 2

and

(44) -tl(1-t 2 ) = -4t 2 .

The points (t1 ,t2 )=(0,0) appear on both boundaries, while the point

(tl,t 2 )=(2,-1) appears on (43) and (tl,t 2 )=(-2,-1) appears on (44).

Differentiating (43) implicitly with respect to t1 gives

dt 2  t2-1

dtl 4-t 1

so that along (43)

dt
2  1

t =t =0
1 2
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and

dt 2

i) = -1.

t =2
1

t2=-1

Differentiating (44) with respect to t1 gives

dt 2  l-tn

dt1 4+t1

so that along (44)

dt2

dt 4

t t =0
1 2

dt2

-) - 1.
dt 1

t1=-2

t2=-1

Such calculations show that the boundaries of region (42) are as depicted

in Figure 2. To be in region (42) with t 2 <1 (a requirement of covariance

stationarity) implies that the roots of the difference equation are

complex. However, complex roots don't imply that (42) is satisfied.

Consequently, the conditions for an oscillatory covariogram aren't quite

equivalent with these for a spectral peak.

To illustrate the ability of low-order stochastic difference

equations to generate "realistic" data, Figures 4a and 4b show simula-

tions of first- and second-order stochastic difference equations, while

Figure 4c shows the solution of the deterministic part of the same
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second-order difference equation with initial conditions yOY=1l.

Notice that even the first-order stochastic difference equation

Yt = 9Yt-1 +  t'

t a serially uncorrelated random term, appears to generate roughly

alternating periods of boom and bust. This illustrates how stochastic

difference equations can generate processes that "look like" they have

business cycles even if their spectra don't have peaks on (0,7) and even

if their covariograms don't oscillate.

The Cross Spectrum

An alternative representation of the cross covariogram is

provided by the cross spectrum. Recall that the cross covariance generating function

between the jointly stationary processes y and x is defined by

ook

gyx(z) = Cyx(k)z .
yx k=-Y

-iw
If we evaluate gyx(z) at the value z=e , we have the cross spectrum

yx

-iw -iwk
gyx(e ) = Cyx(k)e
yx k=-00 yx

k=-o

-iw
Viewed as a function of angular frequency w, gyx(e ) is called the

cross spectrum between y and x.

The cross spectrum is of course a cross-covariance generating

-iw
function. Given an expression for gy(e ), it is possible to recover

the cross covariances from the inversion formula

c (k) -g (eiw)e dwyx 2 yx"

The validity of this inversion formula can be checked by following
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calculations analogous to those used to verify the inversion formula for

the spectrum.

Unlike the spectrum, the cross spectrum is in general a complex

quantity at each frequency, this being a consequence of the fact that

cyx(k) is in general not symmetric (cyx(k) does not in general equal

cyx(-k)). In place of the symmetry property, we have the readily verified

property

-iw -iw +iW
(45) gxy(e ) = gyx (e )=gyx(eiw)

where the bar denotes complex conjugation and

-iw -iwk
gx (ei) = c (k)e

xyo° xy

and c (k) Exy Notice thatc (k) =c (-k).and cxy(k) = Ext yt-k. Notice that cxy(k ) = cyx(-k).

Suppose that the stationary stochastic process yt is related to

the stochastic processes xt and et by

q
(46) yt Z h.x. + E

j=-p

where EEt = Ext = 0, and Etxt- 0 for all s, an orthogonality condition

that characterizes Eh.xt-j as the projection of yt on the space

xt+p' ... , xt- q } . Then we have already seen that the spectrum of y

satisfies

gy(eiw = Ih(ei ) gx(e ) + g (e )
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where

h-iw q -iwjh(e ) = ' h.e

j=-p

To find the cross spectrum between y and x, first use (46) to calculate

th
the k lagged covariance as

EYtXt-k = h.E(x x
j=-p J

q
Cy x (k) =Z h.c (k-j)yx J x

J=-p

Thus the cross-covariogram between y and x is the convolution of the

sequence {h.} with the sequence c x(j). From the convolution property

we immediately have

-iw -iw -iw
gyx(e ) = h(e )g (eiw )

since the Fourier transform of a convolution of two sequences is the

product of the Fourier transforms of the two sequences. That is, taking

Fourier transforms of each side (i.e., multiplying by e-iw and summing

over k) gives

C -iwk q -iwk
c x(k)e = 2 _h.c (k-j) e-iwk

k=- yx j=-p k=- x

Noting that -iwk -iw(k-j) -iwj, the above can be written asNoting that e = e d , the above can be written as
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g (e ) = e (k e-iw(k-j)

j=-p k=-_x

or

-iw -iw -iw
(47) gy(e )= h(e )gx(e )

Notice that the covariance between y and x can be recovered from the

inversion formula

Sh( - iw -iw iwkwcy x (k) =~ h(e )gx ( e )e dw
-T

Further, notice that given gyx(e ) and gx(e ) the hk's can be

recovered from

-iw
-r g ( e )h _ 1 x iwkdw .

k 2 -iw
- gx ( e  )

-iw -iwWhere estimators of gyx(e ) and gx(e ) are used in the above equa-

tion, the resulting estimator of the hk's is known as Hannan's inefficient

estimator.



- 40 -

Formula (22) can now be used to show that the spectrum reflects

a decomposition of xt into processes that are orthogonal across frequencies.

Thus let

Ylt = Bl(L)xt

Y2t = B2(L)xt

where B1 (L) and B 2 (L) are chosen to satisfy

-iW 1 wc[-b,-a]n[a,b]

Bl(e i) =
0 wj[-b,-a]n[a,b]

_-i 1 we[-d,-c]N[c,d]
B2(eiw) =

0 w¢[-d,-c]N[c,d]

To find the individual distributed lag coefficients, equation (38) can

- iw
be used. Equation (22) evaluated at z=e implies

g81Y2(e ) = B1l(e B 2 (eigx (e )

If [-b,-a]n[a,b] does not intersect with the set of frequencies [-d,-c]n

-iw iw - iw
[c,d], then B(e-iw)B2 (eiw)=0 for all w, so that gy (e )=0. This in

turn implies that yl and y2 are processes that are orthogonal (uncorrelated)

at all lags, as can be verified directly from the inversion formula.

-iw
In this sense the spectrum gx(e ) decomposes the variance of x into a set

of mutually orthogonal processes across frequencies.

The cross spectrum is a complex quantity that is usually

charazterized by real numbers in various ways. One characterization is

in terms of its real and imaginary parts
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gy (eiW) = co(w) + iqu(w)

where co(w) is called the cospectrum and qu(w) is called the quadrature

spectrum. A more usual representation is the polar one

-iw iO(w)
(48) gyx(e ) = r(w)e

where

r(w) = co(w) 2+qu(w)2

e(w) = tan-1 [u(w)]co(w)

The phase statistic gives the lead of y over x at frequency w, while the

"gain" r(w) tells how the amplitude in x is amplified in contributing to

the amplitude of y at frequency w. Another interesting number is the

coherence

-iw 2

coh(w) = y x
-iw -iw

gx(e )gy(e )

which, being essentially the ratio of a covariance squared to the product

of two variances, is analogous to an R2 statistic. It indicates the

proportion of the variance in one series at frequency w that is accounted

for by variation in the other series.

Notice that from (47) and from the fact that the spectrum

- iw ,4w
gx(e ) is real, the phase of the cross-spectrum equals the phase of h(e ) =

[he , which is the Fourier transform of the h 's. That is, writing

(47) and (48) we have

ie(w) -iw) -)g w)r(w)e =gyx(e - =h(e )gx(-Y
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or

h(e - i w)  r(w) •ie(w)
-iw

gx(e )

-iw -iw
which shows that the phase of gy(e ) equals the phase of h(e ).

-iw

For convenience, represent h(e ) in the polar form

e- i w )  ie(w)

h(e-w) = s(w)e

where s(w)=r(w)/gx(e-iw).

The following provides a heuristic device for interpreting

e(w). Suppose we consider as an input into the system (46) an x series

consisting of a pure cosine wave of frequency w:

iwt -iwt
x t  2cos wt = e + e

For this input path, suppressing the disturbance Et, (46) becomes

iw(t-j) -iw(t-j)
yt=Ih,[e +e ]

= eiwt h e - iwj + e-iwt h . e+iwj

But h e-iwj-=s(w)ei(w) and hj e+iwj, being the complex conjugate of

h e- i w j , equals s(w)ei(W). Therefore, we have

eiwts(w)eie(w) + -iwt -i0(w)

= s(w)lei(wt+(w))+e-i(wt+0(w))

= s(w)2cos(wt+e(w)).
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Therefore, the response of (46) to an input in the form of a cosine wave

of frequency w is a cosine wave at the same frequency with amplitude

multiplied by s(w) and phase shifted by 0(w). The input cosine wave is

at its peak at t=O0, while the output is at its peak at wt+6(w)=0 or

t = - (w units of time. Thus, for e(w)>O, the output leads the input
w

by -e(w)/w units of time (where we adopt the usual convention that 6(w)

is constrained to be between -7 and +f, a convention needed to make the

arctangent function single-valued).

While useful, the preceding interpretation of the phase has to

be used cautiously. The reason is that the stochastic difference equa-

tions that we have been studying generate random processes with spectral

power distributed across a continuum of frequencies between -7 and +7.

It is really only over a nonnegligible band of frequencies that 
there

occurs a positive contribution to variance. Thus, for such processes

there really don't occur input processes that are pure cosines, though

this situation could be approached if the spectral density did display a

very sharp peak at a given frequency. Processes with positive spectral

power at a single given frequency do exist, and realizations 
of these

processes do consist of (sums of) sine and cosine waves. But such

processes aren't generated by the stochastic difference equations 
that

we are studying.

It is interesting to note the following two facts about

h(e-iw). First, from the definition of h(e )

h(e i) = hej ,

we note that h(e -i w) evaluated at w=0 is the sum of the lag weights,

that is
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h(eiO) =  h.

Notice that since

hje = - hjcos wj - ihj.sin wj

and that since sin 0=0, we have that

h(e-i) = s(O) = hj .

Since h(e -w) is real at zero frequency, the phase statistic 8(w) is

zero at zero frequency:

-Xhjsin wj

(49) e(w) = tan- [ h ]
hcos wj

-l
8(0)- tan- [0] = 0.

Next, it is possible to show that the derivative of the phase

statistic with respect to w evaluated at w=0 equals minus the mean lag.

Recall that

d -1 1 du
--- tan u = 2dx

dx l+u

Applying this to (43) gives

1 2 { -jhcos wj hjcos wj-Xhjsin wj h sin wj
6'(w)

-h.sin wj (hj.cos wj2)
l+[hjcos wj

Evaluating e'(w) at w=O gives

- h.j
o'(o) =

(Here we have used the facts that cos 0=1, sin 0=0.) The right side of

this equation is minus the "mean lag" of the lag distribution formed by
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the h's, a statistic often reported in econometric studies involving

estimates of distributed lags.

A Digression on Leading Indicators

For years, the National Bureau of Economic Research (NBER) has

employed a number of heuristic techniques designed to isolate "leading

indicators" of business cycle movements, presumably as an aid in the

early recognition and prediction of cyclical movements. To translate

into our vocabulary, essentially a good leading indicator displays a

sizable phase lead at the low business cycle frequencies over some

important "coincident" measures of the cycle like unemployment or GNP

(as well as a large coherence with those coincident measures--so that

the phase lead is not only large on average but is regular in its

occurrence). While searching for leading indicators is perhaps an

important thing to do by way of categorizing the data, it is important

to recognize that a series yt that displays a sizable phase lead over

another series xt at the most important business cycle frequencies does

not necessarily help in predicting x t any better than can be done by

using past x's alone to predict x. We illustrate this fact with two

examples.

First suppose we have the system governed by

(50) x t 
= Xxt-_ + ut 1XI < 1

y = hoxt + hlxt- + Et

where Eu =EE =Eu~ 0O for all t and s, and where both u and x are
ereEt t t t-s

serially uncorrelated. The cross spectrum between y and x is given by
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gyx(e-i) = (h 0 +hle-iw)gx(e-iw)

= (h 0 +hlcos w-ih1 sin w)gx(e-iw)

= r(w)e1(w) gx(e-iw)

where

r(w) = (h 0 +hlcos w) 2 +(hlsin w) 2

h0+hlcos w'0(w) = tan' h[0+::1:os1

Now by suitably choosing h 0 and hl, at a given frequency 8(w) can be set

arbitrarily in the interval (-T, f). This is in spite of the fact that

the model (50) implies that yt is of no use in terms of predicting x t ,

for xt is governed by a pure "autoregression," and depends only on

itself lagged and the unpredictable random term u t . Thus, even if yt

leads xt at the low business cycle frequencies, it is of no use in

predicting xt .

To specialize this example somewhat, suppose we have

x t = Xxt-1 + u t

t = (xt-xt-l) + Et

where as before u and e are mutually orthogonal (at all lags) white
noise process. Calculating h(e ), we have

h(e ) = 1 - e

w w w-i- i-- -i-2 2 2
e (e -e )
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-i- .w
= e *2i sin -

.w TT
-i- 1-
2 22. w

= 2e e sin

= 2e sin

For low frequencies (i.e., those for which 7/2>w/2) the phase angle

7 /2-w/2>0, implying that the output y leads x at the low frequency

components. By making X large enough, we can assure that these low

frequencies account for most of the variation in x. Inspite of the fact

that y leads x at these important low frequency components, y is of no

use in predicting x once lagged x's are taken into account.

As our second example, consider the system

= h.x+jyt hjxt-j + 
ct

= Aytl +Yt t-1 + ut

where we assume EE x =0 for all t,s, Eu =0, and ut is a white-noise
t s t t

stationary process. We further assume that

h. = h . for all j > 1.

The cross spectrum between y and x is calculated to be

gyx(ew) = {h0+h l (e w+eiw ) + h 2 (e iw-2iw) + ... gx(e

n -iw

= (h 0 +2 E h cos wj)gx(e )
j=1

which is real for all w. Therefore, the phase shift 8(w)=O for all w,

so that y and x are perfectly in phase at all frequencies. Despite
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this, by using a theorem due to Sims (see below) it is possible

to show that even given the past of x, past y does help predict present

and future x's. This is a consequence of the lag distribution of h.'s

being two-sided and of Sims's theorem 2, which we will describe in

detail shortly.

Taken together, these two examples illustrate the fact that

displaying a phase lead is neither a necessary nor a sufficient condi-

tion for one series to be of use in predicting another.

Analysis of Some Filters: The Slutsky Effect

and Kuznets' Transformations

Relation (36) can be used to show the famous "Slutsky effect."

Slutsky considered the effects of starting with a white noise Et,

taking a 2 period moving sum n times, and then taking first differences

m times. That is, Slutsky considered forming the series

Z = (1+L)(1+L) ... (l+L) = (l+L)nE
t t t

and

yt = (l-L)(l-L) ... (1-L)Zt = (1-L) mZ

(51) Yt = (1+L)n(1-L) mE

Applying (36) to (51) we have

-iw iw - iw -iwm 2
g(e ) = (l+e ) (l+e )(l-e )(l-e ) o

n m
iw -iw -iw iw 2

= [(l+e )(l+e )] [(1-e )(l-e )] a

n m
iw -iw iw -iw 2

= [(2+(e +e )] [(2-(e +e )] c
S
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-iw 22n n m
(52) g (e ) = G2 [1+cos w] 2 m[1-cos w] .

Consider first the special case where m=n. Then (52)- becomes

n

-iw= 2 n 2g (eiw )= 4 [1-cos w]

2n n

(53) = 0 4 [sin 2 w]

On [0,7], the spectrum of y has a peak at w=T/
2 , since there sin w=1.

Notice that since sin w<l, (53) implies that as n becomes large, the

peak in the spectrum of y at /2 becomes sharp. In the limit, as n-to,

the spectrum of y becomes a "spike" at -ff/2, which means that y behaves

like a cosine of angular frequency 7/2.

Similar behavior results for fixed m/n as n becomes large

-iw
where m#n. Consider (52) and set dg (e )/dw equal to zero in order

to locate the peak in the spectrum:

dg= 2m+n {n[-cos w]m[l+cos w]n (-sin w)
dw

+ m(l-cos w)m-l(sin w)[l+cos w]
n }

= 22m \sin w{(1-cos m-1(l+cos w) n - 1

[m(l+cos w)-n(1-cos w)]}

This expression can equal zero on (O,n) only if the expression in

brackets equals zero:

m(l+cos w)-n(1-cos w) = 0
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which implies

1 - -
n

COS W =,

1 +-
n

or

-1 1-m/n
w = cos ( )

1+m/n

which tells us the frequency at which the spectrum of y attains a peak.

For fixed m/n, the spectrum of y approaches a spike as n
- . This means

that as n-*c, y tends to behave more and more like a cosine of angular

-l
frequency cos-1((l-m/n)/(l+m/n)).

What Slutsky showed, then, is that by successively summing and

then successively differencing a serially uncorrelated or "white noise"

process et, a series with "cycles" is obtained.
Another use of (36) is in the analysis of transformations that

have been applied to data. An example is Howrey's analysis of the

transformations used by Kuznets. Data constructed by Kuznets have been

inspected to verify the existence of "long swings," long cycles in

economic activity of around twenty years. Before analysis, however,

Kuznets subjected the data to two transformations. First, he took a

five-year moving average:

1 -2 -1L 2
Z = -[L-2+L ++L+L ]Xt - A(L)Xt

Then he took the centered first difference of the (nonoverlapping) five-

year moving average:

Yt = Zt - Z 5 = [L -L ]zt = B(L)Zt.
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So we have that the y's are related to the X's by

1 -5 5 L-2 -1 2
=Y [L -L ][L -2+L +1+L+L ]X

= A(L)B(L)Xt.

The spectrum of y is related to the spectrum of X by

g (e-iw) = A(e-iw)A(e )B(e )B(eiw)g(e

gy~ -)Ae
(54)

We have

-iw 1
A(e ) =1

5

2 -iwj 
1

e =-Se 5
j=-2

iw2 -iw3
(e -e )

-iw
(l-e )

-iw iw
A(e )A(e ) =

12 iw2 -iw3 -iw2 iw3
( (e -e )(e -e )

(1-e )(1-e )

(1 2(2-(eiw5+e-iw
5

iw+ -iw )(2-(e +e ))

(5) 2(1-cos 5w)

2(1-cos w)

(1)2(1-cos 5w)

(1-cos w)

Next, we have

-iw +iw5 -iw5
B(e )= (e -e )

so that

-iw iw iw5 -iw5 -iw5 iw5
B(e )B(e ) = (e -e )(e -e )

= (2-(eiwl0+e- i w l 0 ) ) = 2(1-cos 10w).

Thus,
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So it follows from (49) that

(1)2 (1-cos 5w)2

gy(e -i) = [ 1(1-cos w) (-cos lOw)]gx(e
- i w )

-iw)

= G(w)gx(e ).

where G(w)=2[()2 (1-cos 5w)(l-cos lO0w)/(l-cos w)]. The term G(w) is

graphed in Figure 5. It has zeroes at values where cos 5w=1 and where

cos 10w=1. The first condition occurs on [0,7] where

5w = 0, 2r, 4n,

or

2 4
w = O, 5r, 5'.

The condition cos lOw=1 on [0,n] where

10w = 0, 2n, 4n, 6n, 8n, 10n

or

1 2 4
w = 0, -lI, -, -', and it.

So G(w) has zeroes at w=0, n/5, 2/5n, 37/5, 4n/5, and n.

From the graph of G(w), it follows that even if Xt is a white

noise, a y series generated by applying Kuznets' transformations will

have a large peak at a low frequency, and hence will seem to be char-

acterized by "long swings." These long swings are clearly a statistical

artifact; that is, they are something induced in the data by the trans-

formation applied and not really a characteristic of the economic system.
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With annual data, the biggest peak in Figure 5 corresponds to a cycle of

about 20 1/4 years which is close to the 20-year cycle found by Kuznets.

Howrey's observations naturally raise questions about the authenticity

of the long swings identified by studying the data used by Kuznets.

A Small Kit of h(e-iw)'s

In order to provide some feel for the effects of various

commonly used filters Figure 6 reports the amplitude and phase of h(e
- iw )

for various h(L) lag distributions.

We have already calculated that for h(L)=1-L,

-iw 2 2 w
h(e ) = 2e sin-,

as the graphs confirm.

For h(L)=1+L it is straightforward to calculate

w w *w
-i- +i- -1-

-iw -iw 2 2 2
h(e ) = 1 + e = e (e +e )

2 w
= 2e cos

which again agrees with our graphs.

Notice that for h(L) = (l-tlL-t 2 L ) , we have chosen (t 1 , t 2 )

in the regions of peaked spectra of our figure (2). Notice that as

-iw
required, h(e ) is characterized by peaks. (See Figure (2)).

Alternative Definitions of the Business Cycle

We have already encountered two definitions of a cycle in a

single series that is governed by a stochastic difference equation.

According to the first definition, a variable possesses a cycle of a

given frequency if its covariogram displays damped oscillations of that
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frequency, which is equivalent with the condition that the nonstochastic

part of the difference equation has a pair of complex roots with argu-

ment (8 in the polar form of the root rei ) equal to the frequency in

question. A single series is said to contain a business cycle if the

cycle in question has periodicity of from about two to four years (NBER

minor cycles) or about eight years (NBER major cycles).

A second definition of a cycle in a single series is the

occurrence of a peak in the spectral density of a series. As we have

seen, this definition is not equivalent with the previous one, but

usually leads to a definition of the cycle close to the first one.

It is probably correct, however, that neither one of these

definitions is what underlies the concept of the business cycle that

most experts have in mind. In fact, most economic aggregates have

spectral densities that do not display pronounced peaks at the range of

frequencies associated with the business cycle. The peaks that do occur

in this band of frequencies tend to be wide and of modest height. The

dominant feature of the spectrum of most economic time series is that it

generally decreases drastically as frequency increases, with most of the

power in the low frequency, high periodicity bands. This shape was

dubbed by Granger the "typical spectral shape" of an economic variable,

and is illustrated by the spectral density of the monthly average call

rate over the period 1890-1913, which is shown in Figure 7. The

generally downward sweeping spectrum is characteristic of a covariogram

that is dominated by high positive, low-order serial correlation. (The

call rate spectrum displays a second feature that is often possessed by

spectra of economic time series: peaks at the seasonal frequencies of

12, 6, 4, 3, 2.4, and 2 months.) As mentioned earlier, the fact that a

I
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spectrum doesn't display a peak at the business cycle frequencies should

not be taken to mean that the series didn't experience any fluctuations

associated with the business cycle. On the contrary, as on Figure 4a

indicated, a series could very well seem to move in sympathy with general

business conditions say as identified by the NBER and yet have no spectral

peak on the open internal (0,7). This example cautions the reader

against interpreting the lack of a peak in the spectrum at the business

cycle frequencies as indicating the absence of any business cycle in the

series.

What the preceding example does indicate is that our two

preceding possible definitions of the business cycle are deficient. The

following definition seems to capture what experts refer to as the

business cycle: the business cycle is the phenomenon of a number of

important economic aggregates (such as GNP, unemployment, and layoffs)

being characterized by high pairwise coherences at the low business

cycle frequencies, the same frequencies at which most aggregates have

most of their spectral power if they have "typical" spectral shapes.

This definition captures the notion of the business cycle as being a

condition symptomizing the common movements of a set of aggregates.

1
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Representation Theory

So far we have generally started with a white noise et as a

building block and considered constructing a stochastic process x t via

a transformation

x t = B(L)E
t •

In this section we reverse this procedure and start out by assuming that

we have a covariance stationary process xt with covariogram c(T). We

then show that associated with every such process {xt} is a white noise

process {Et) that .is its fundamental building block. One purpose of this

construction is to convey the sense in which the models we have been

studying are quite general ones for covariance stationary processes.

Suppose that we have a covariance stationary stochastic process

x t with covariogram c(T) and mean zero. We think of forming a sequence

of linear least squares projections of x t against a sequence of expanding

sets of past x's, {xt-l, xt- 2 , ... , Xt-n}:

n
n

S= a.x = P[xx ,...,x ]
t i=1 t-i t t-1 t-n

i=l

or

x t= + n
t t t

n

where EEtxt i = 0 for i=l,...,n by the orthogonality principle. These
n

orthogonality conditions uniquely determine the projection n = aixti
i=l

The population covariogram c(T) contains all of the information necessary
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to calculate the a.'s from the least squares normal equations.*

As n is increased toward infinity, it is possible to show that

the sequence of projections {t } converge to a random variable It in thet t

"mean square"' sense that

limE (t - )n2 =0 .
t t

n->

This means that for any 6>0, we can find an N(6) such that

E( - gm2< 6

for all m>N(6), so that in the mean square sense, we can approximate

arbitrarily well the projection in the space spanned by the infinite set

of lagged x's with the projection of xt on a suitable finite set of

lagged x's.t We write the projection of x t on the space spanned by the

infinite set (xt_l, xt_2 , ... ) as

t = P[x t-1 x t -2 . ]

*n
The a 's will be unique only if there are no linear depen-

dencies across the xt- i s. The projection of x t on the space spanned

by {xt-1,...,x t n)} is unique even without that condition.

It is not necessarily true that the sequence of (a n )'s settles
down nicely as n-*+o, only that successive tn's get closer to each other
and to k as n-+. t

t

For a proof, see T. W. Anderson, The Statistical Analysis
of Time Series, Wiley, p. 419.
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and have the decomposition of x ast

(55) x = P[x t ixt xt2 .. ] + E

where Et is a least squares residual that obeys the orthogonality con-

dition EEtxt i = 0 for all il. In mean square, Et is the limit as n-o
n lim n2

of i.e. E( - ) = 0.
t noo t t

We can now state an important decomposition theorem due to

Wold.

Theorem: Let {x t ) be any covariance stationary stochastic

process with Ex t = 0. Then it can be written as

x = Zd.E +r
t dj tj + tx =0

where d =1, where d 2 <o, Ee = o20, EE = 0 for t#s (so that {t }
j=O0 j t ts t

is serially uncorrelated), EE = 0 and Erlts = 0 for all t and s (sot ts

that {e} and {n} are processes that are orthogonal at all lags); and {n t }

is a process that can be predicted arbitrarily well by a linear function

of only past values of xt, i.e., r t is linearly deterministic. Further-

more, Et = x t - P[xtxt-1_,xt_0,.. . ] .

Proof: We let E be the same Et as appears in (55), so that

Et = xt - P[x t l xt - ,xt _ 2, . ]

So et is the error or "innovation" in predicting x t from its own past.

Now Et is orthogonal to {xt-1 , x t _ 2 , ... } , by the orthogonality principle.

But et-s is a linear combination of past x's:
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Et-s t-S t-s Xt-s-1'

Therefore EEtEt-s = 0 for all t and s. So we have proved that {Et } is

a serially uncorrelated process.

Now think of projecting x t against a sequence of sets spanned

by (Et,tl',...,tm) for successively larger m's. The typical projection

of xt on such a set is

m
XI

t = 
.

j=0 t-

where, since the Et_1 's are mutually orthogonal, the d.'s are given by

Ex t-

d. = t t-j
j 2

2 2
2 = EE2

t

Notice that

all iLl, we

the e's are

variance of

since Et = X t - P[x tlt_l,Xt_2,... ] and since Etxt_ i = 0 for

2 2have EE2 = ExtE t . Thus, we have d =Ex t /EE =. Since
t ttd0 tt t

orthogonal, the d.'s don't depend on m. Now calculate the

the prediction error, which is

m 2

E(x - Yd.e )
j=O j t-jj=0

= Ex2 - 2E yd Ex . + E{d2e2
t j=0 t t-j jO j t -j

mEx E .2

= Ex2 - 26 2 Ext tj2 + 02 { t t-32
t 2

= Ex - d2 0 ,t j=O j
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where the last inequality follows because the variance of the prediction

error cannot be negative. Since Ex2< 3 from the last inequality it

follows that for all m

2 2 2
0 d < Ex

j=0J

so that dj.<c. It follows that d . % is well defined, i.e. it
j=0 j=0 J

converges in the mean square sense.*

Now define the process nt by

Tit = xt - d .Et

j=-0

* m

That is, the sequence of d.E 's is a Cauchy sequence.
j=0 t

In particular, for n>m

m n 2

j= Jt-j j=0 j t-j

nd 2
jn+l j t

22 2

= EQ I d. .

j =n+l J

Since d. <m , it follows that we can choose an m big enough to drive

j=O 3

2 2d. arbitrarily close to zero.

j=m+1 3
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Notice that for sit we have

Entc = Ex E -E Y d.e
jsts s t-j
j=0

= Ex c - d EE
t s t-s s

SEXtEs - EXt s = 0

In addition Entc = 0 for all s>t because E is orthogonal to all x's
ts s

dated earlier than s and by construction nrt is in the space spanned by

x's dated t and earlier. Thus {rnt } is orthogonal to {et } at all lags

and leads. That is, the entire {e} process is orthogonal to the entire

{n) process.

Because nt is orthogonal to Et, rt must lie in the space

spanned by {xtlxt 2,...} since square summable linear combinations of

{xt_'xt-2',...} form the space of all random variables orthogonal to a t

This implies that nt can be predicted perfectly from lagged x's. More

precisely, project nt = x - d.sEt- against {x ,x t- 2 ,...} to get

j=0

P[ntltl,... = P[xtlxtl .]- .djt-

since P[etlXtl1 ,...] = 0 and since P[tkiXt-1,...] = ct-k for kl.

Subtracting the above equation from the definition of rlt gives

nt - P[ntxt_1 ,...] = (xt - P[xtIxt 1_,...]) -doE = 0

Those linear combinations C f.x. for which f* 2 < , so

j=l t-j j=l 1
that the variance of the sum is finite.

This is an implication of the orthogonality principle. See
T.W. Anderson, p.
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since the one-step-ahead prediction error for xt is d 0 Et . Thus,

Tt = P[ntlxtl'...] so that n t can be predicted arbitrarily well (in the

mean squared error sense) from past x's alone. More generally, we have

P[ntxt-k,xt-k-l,...] = P[xt lt-k,...] + dj e-j

j=k

Subtracting this from the definition of r t gives

k-1

t - P[n t l xt _ k,...] = (x t - P[xtl x t -_ k . . . ] ) - d.t-j = 0
j=0

k-1
since j d.E-j is the k step ahead prediction error in predicting xtj=0 J tj -t

from its own past. Thus, we have proved that rt is (linearly) determin-

istic in the sense that it can be predicted arbitrarily well (in the mean

squared error sense) arbitrarily far into the future from past x's only.

This completes the proof of Wold's theorem.

The nt process is termed the (linearly) deterministic part of

x t while d j.t is termed the (linearly) indeterministic part. The
j=O t

reason for the adverb "linearly" is that the decomposition has been

obtained by using linear projections.

Wold's theorem is important for us because it provides an expla-

nation of the sense in which stochastic difference equations provide a

general model for the indeterministic part of any univariate stationary

stochastic process, and also the sense in which there exists a white

noise process ct that is the building block for the indeterministic part

of x t . Not surprisingly, the construction of the theorem can be extended

to multivariate stochastic processes for which a corresponding orthogonal
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decomposition exists in which the deterministic and indeterministic parts

are vectors.

As a particular example of a process that conforms to the repre-

sentation given in Wold's decomposition theorem, consider the process

oo n

x= Y d .c + (a cos A.t + b. sin A.t)
t j=0 t-j k=l i 1 1 1

where Et is covariance stationary, serially uncorrelated process with

2 2mean zero and variance a , d. <m0, a. and b. are random variables
j 1 1
j=0

orthogonal to the entire a process and satisfying Ea. = Eb. = Ea.b. = 0
1 1 1 1

2 2 2for all i; Ea.a. = Eb.b = 0 for all i,j; and Eai = Eb. = o. ; the1 J 1J i 1 1

Ai' s are fixed numbers in the interval [-i,i]. The process

n
n (a.cos At + bi sin Ait) is deterministic, is orthogonal to the process
i=l

ZdjEt-j at all lags, and is easily deduced to have covariogram given by

For example, let

x(t) = a cos At + b sin At

where Ea = Eab = Eb = 0, Ea 2 = Eb2 = . Then

Ex(tl)x(t 2 ) = E{a2cos Alt cos At2 +

ab(cos At2 cos Atl + sin At2sin Atl)

+ b2sin Atl sin At 2

= a2 {cos Atl cos At2 + sin Atl sin At2

Since cos(c-B) = coscicos 8 + sin a sin 8, we have

Ex(tl)x(t2) = a cos (tl-t2)
2

or Ex(t)x(t-T) = 2 cos AT

These calculations can easily be extended to prove the assertion made in
the text.
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n o

a. cos A.T . As we have seen, the covariogram of ccd..E has gener-
i=l j=

ating function a 2d(z)d(z-1). The spectral density of the deterministic

part turns out not to be well defined as an ordinary function. This can

be seen by noting that the ordinary Fourier transform of the covariogram

a2 cos A.T is
1

2 -iwl 2 e i  + e -iwT
a cos ATe = { e e_=- 

T=- 2

2  00 i(A-w)t ; -i(X+w)Tl
2 e + e

Notice that the first term can be written

Sei(-W) T = 1 + ei(-w) T + e-i(A-w)T

T=-00 T=1

0o

= 1 + 2 Y cos(A-w)T
T=1

0o

The series cos(A-w)T is not a convergent series, so that the spectrum
T= 1

of the deterministic part of our process is not well defined by the usual

Fourier transformation.

However, it happens that there is a sense in which the spectrum

of the deterministic part does exist, namely, in the sense of a generalized

function or "distribution." In particular, let 6(w) be the delta generalized

function which has "infinite mass" at w=0 and is zero everywhere else.

That is, 6(w) is defined by

0

COO

r
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where g(w) is any ordinary "test function" that is continuous at zero.

Then the spectral density of a process with covariogram a cos XT is

defined as

f(w) = 21 6(w-a) + °-6(w+) .
2 2

With the spectral density so defined, notice that the inversion formula

holds, i.e.

C(t) 1 (w) e
i

Tdw

000

= 6 (wX)e dw+ 6 (w+A)e+ dw

2 e + e

2
= cos XT

Then the spectral density of the deterministic part of our process is

n 2 6(w-X.) 6(w+a.)
27 r o i i

i=l 2 2 '

so that the spectral density function of the deterministic part is zero

except for the singular points w=±l., i=l,...,n, at which the spectrum has
1

2 *
mass o. /2. The spectral density thus has "spikes" at the points w=±X..

1 1

*

There are essentially two ways in which a process can be
deterministic. One is if its spectral density consists entirely of a
number of "spikes" or delta functions. A second way is if its spectral
density, even though having no spikes, is zero on some interval of w's of
positive length, or is "too close" to zero over such an interval.

1
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Linear Least Squares Prediction

It is common in economics to assume that xt is purely (linearly)

indeterministic, which means that nt = 0 for all t, or else that nt has

been removed. Wold's theorem says that any indeterministic covariance

stationary stochastic process xt has the moving average representation

t . 3 t-j
=0o

or

Co

(56) x t = d(L)E , d(L) = d L
t t j=0

where {Et } is the sequence of one-step ahead linear least squares fore-

casting errors (innovations) in predicting xt as a linear function of

{xt-1 , xt-2' ... } . (As we have seen, it is natural to normalize d(L)

2 2
so that d0=1, in which case a = E t is the variance of the one-step

ahead prediction error.)

Now suppose that d(L) has an inverse that is one-sided in
n

nonnegative powers of L. Where d(L) = d.L3, a necessary and sufficient
j=0 j

condition for d(L) to have such a one-sided inverse is that the roots u of

n

Sd.j = 0
j=0J

all lie outside the unit circle, i.e. all have absolute values exceeding

For example, by suitable detrending and seasonal adjustment.
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unity. An inverse a(L) - d(L)-1 of d(L) satisfies a(L)d(L) = d(L)a(L) = I

where I is the identity lag operator I = 1 + OL + OL2 + .... Operating

on both sides of (56) with a(L) = d(L)-1 gives

(57) a(L)x t = t a(L) = a 0 - a.L

j=1

or

a0xt = +alxt-1 + a2xt-2 + ... + st

Since dO is unity, it turns out that a 0 is unity also. Equation (57) is

termed the autoregressive representation for xt. While every linearly

indeterministic covariance stationary process has a moving average repre-

sentation, not all of them have an autoregressive representation. Still,

those that do have both a moving average and an autoregressive represen-

tation constitute a very wide class, and we shall henceforth assume that

we're dealing with a member of this class.

We now derive some formulas due to Wiener and Kolmogorov for

linear least squares predictors. Let Ptjxt be the linear least squares

projection of x t on the space spanned by {xt , xt-j-1, ... ); i.e.

Pt-jxt E P[x t x t j x t - j - l ' '

We remarked earlier that in general the sequence of (a. 's) in
n

P[x t xt l1 ,...,xt-n] = a x
j=l -

does not converge as n+ . However, under the roots condition given in
the text, the a. 's do converge. In particular, they converge to the a.'s

of equation (57), so that lim a. =a. for all j=1,2,....
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Now project both sides of (56) against {xtl,xt_2,...} to get

P x= d.P tPt-lxt j t-l t
Jo

00

j=1 j

which follows since Pt-lEt = 0, because Et is orthogonal to lagged x's;

and since Pt-1 t-j = t-j for all j>l, because t-j is in the space

spanned by {xt- 1 , x t _ 2 , . . . } . We write the above equation as

P x = d.LJ Et-1Xt . j Et-1

= [i(L) tt-lt L t-1
+

where { i+ means "ignore negative powers of L." Now assuming that x

has an autoregressive representation, we can write Et_ = a(L)xt- 1
-1

= d(L) xt-1 . Substituting this into the above equation gives

(58) t-1t L= + d(L) t-1

which is a compact formula for the one-step ahead linear least squares

forecast of xt based on its own past.

To get a formula for the general k-step ahead linear least squares

forecast, project both sides of (56) against {xtk,xt k l ... } to get

=t t =kd f-d(L)
t-kt j J k k tt
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(59) Pt-kxt= d(L)+ d(L) Xtk

which generalizes formula (58).

Some Examples

First-order Markov

Consider the first-order autoregressive process

(l-AL)x t = Et  Et white noise, A I<1.

t1
xt 1-AL t

We have

Pt-lxt = [L - (1+AL +A2L2+...)]+ (l-iL)x

= (A + A2L + ... )(1 - AL)x
t-1

= {l-I (1-AL)x
l-AL t-1

= Axt-
1

More generally,

-kPt t = [L (1 + L + ... )] (1-AL)xt-k t + t-1

k
= Xt-k

Thus we have

_ k

t t+k t
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First order moving average

Suppose

x t = (1 + BL)Et Et white 8<i .

Then we have

-Ptxt = 1
P xt = [L (1 + SL)] +

[ 1
1+8L t-1

P x = x
Pt-1Xt 1+L xt-1

We also have that for k 2

-kl L)
P x = [L (1 + ] xt- 1

= 0

which can also be seen directly by projecting on {xtk,xt-_kl-,...} both

sides of

xt = (1 + BL)Et

First order moving average, autoregressive

Suppose we have

l+aL
Xt -iL t

We then have

L-1 (l+aL) I -SL L-  a 1-BL
Pt-lXt = (-L)J )+1+aL Xt-l 1--L 1+ I-L Jl+aL Xt-1

e t white, lal<l, 8 <1



- 71 -

8+a l-L
t-ixt 1-SL 1+aL t-1

a+8
t-1lt 1+aL t-1

which expresses the forecast of x t as a geometric distributed lag of past

x's. The first order mixed moving average, autoregressive model for x

thus provides a rationalization for the familiar "adaptive expectations"

model. As we let -8+1 (from below, in order to assure that the roots

condition I8I<1 is met), Pt- 1xt approaches

P ix 1l+a

t-1 t 1+aL t-1

which with a<O is equivalent with Cagan's adaptive expectations scheme

P x  = { } xt-1Xt = 1-L t-1

with a=-A. Notice that as B-*l (from below), we approach the situation in

which

(l-L)x t = (l+aL),

so that the first difference of x t follows a first order moving average.

The parameter a must be negative in order that A>O.

For the general case in which k-l, we have

-k

L (l+aL) 1- L
Pt-kXt 1-L + +aL Xt-k

: -k -k+l

-- L 1L 1+aL t - k

a 1-8L k  (8+a)1--L -L 1+L Xt-k (1+aL) Xt-k
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We can write this alternatively as

k-i
8 (+a)

PtXt+k l+aL t

Notice that as 8+1 (from below) we approach the situation in which

P x -f x+a x
t t+k 1l+aLJ xt

so that the same forecast is made for all horizons k>l. In this sense,

there is a well-defined concept of "permanent x." This was first pointed

out in the economics literature by John F. Muth, who showed that the

hypothesis of rational expectations in conjunction with the model for

income (l-L)xt = (1+aL)Et provides a rationalization both for the concept

of permanent income and the geometric distributed lag formula that Milton

Friedman had earlier used to estimate permanent income in empirical work.
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Deriving a Moving Average Representation

The univariate prediction formulas given above assume that one

has in hand a moving average representation for the covariance stationary,

zero mean process {xt}. Often, all that one has is the covariogram c(T)

of x from which the appropriate moving average representation must be

calculated. To illustrate one method of finding the moving average coef-

ficients, suppose that c(T) is simply zero for ITI>1, so that only c(0)

and c(1) are nonzero. It is apparent that xt then has a first-order

moving average representation

(60) x t = d0 t + dlet- 1

where do and dl are to be determined, and E t is required to be a white

noise process of errors in predicting xt from its own past. As we shall

see, this latter condition must be imposed in order to determine the d's.

2
For a process obeying (60) with {E } being a white noise with variance E ,

t E

it is straightforward to calculate

(61) c(0) = (d + d ) e

c(1) = (d0dl)O 2

Given the known values of c(0) and c(l) that characterize the x process,

these are two (nonlinear) equations that can be solved for do and dl ,

2 2given an assumed value for g . The equations are graphed for fixed a
given an assumed value for gE

and c(1)>0 in Figure . In general, the two equations determine two pairs

of solutions, onepair consisting of d o = a > B = d I and d = a > 8 = d o,
1 1
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where a and are the positive scalars depicted in Figure ; the second

pair is the reflection of the first pair in the negative quadrant. As
2

o varies, the solutions for d o and dl vary in a way easily determined

from the graphs. We can forget about the solutions in the negative

quadrant, since our discussion of Wold's theorem indicates that we want

to choose d0=1. Which of the two solutions with d0>0 should be chosen?

The answer comes from the condition that the derived et process has to

have a convergent series representation in terms of current and lagged x's.

Suppose, for example, that we choose the solution for which dl>d 0 . We have

xt = d0Et + dl t-1

or

(62) Et Xt - -Jtl

so that t cannot be expressed as a convergent series of lagged x's.

That is, the backward solution of the above equation

1 -dl
t d z7d J t-jt do j=0 0

-dld0

difference equation (62) is "stable" if dl>d 0 . That is, as we saw earlier

we can write

1
£ = x = xt d f+dL tt 1+ - L- I
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so that

t d1 t+j
1 j=l

which if Id <Idl expresses et as a convergent (square summable) series

of future x's. Thus, if dl>d0 , the associated Et does not lie in the

space spanned by current and lagged x's. However, if d0 >dl, the associated

Et process does lie in the space spanned by current and lagged x's, which

is the condition that will always result in choosing the correct roots

of (61). The general principle is this: in selecting among the sequences

{d0,dl,d2,...} that solve the equations that are the general counterparts

2
of (61), choose the representation in which d0c2 is maximal. This

selection is the unique one that makes d0g t the one-step ahead error in

predicting xt linearly from its own past; the Et's with this property are

said to be the fundamental white noise process for xt. Ordinarily, we

normalize by choosing as so that d0=1. In this case Et equals the

one-step ahead prediction error for xt.

As a practical matter, solving the equations of the form (61)

can be very tedious because they are highly nonlinear. A method of

achieving an approximation to be moving average representation is to use
c(T) to calculate an autoregressive representation of some order n, i.e.,

to use the c(T)'s to fill out the elements of the least squares normal

equations required to compute the a. 's in
1

By an appropriate limiting argument it can be shown that E
lies in that space even if d =d .

O 1
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n

= r ainxt -

n
i-1

where EE xt i  = 0 for i=l,...,n. Then an approximation to the moving

average lag operator d(L) can be taken as

n
d (L) = (1 - nL )-1

i= 1

By making n large enough, an arbitrarily good approximation to d (L) can
n

be obtained.

Arbitrarily good in the sense that the variance of the {E }
process can be made as close as desired to the variance of {E } by
making n large enough. t



- 78 -

The Chain Rule of Forecasting

The law of iterated projections implies a recursion relationship

that is sometimes very useful in a forecasting context. The relationship

is known as Wold's "chain rule of forecasting." It shows how projections

Ptxt+k for all k22 can be calculated from knowledge of the form of Ptxt+l

alone.

Suppose that {xt} is a linearly indeterministic covariance

stationary stochastic process for which

Px = h.x , h. 2 <
txt+1 j t-j j=0 J

It follows that

Pt+kxt+k+l = h0Xt+k 1 h lt+k- + "' + hkxt + hk+lxt-1 + "

Projecting both sides of this equation on (xt,xt-l,...) gives, via the

law of iterated projections,

00

(63) Ptx =t+k+l h0Ptxt+ k + hP x + +h Pt+ + .h xk+i
t t+k+l 0 t t t+k-l k-1 txt+l+0 k+i t-i

i=0

This recursion relationship is the "chain rule of forecasting" which

shows how to build up projections of x t arbitrarily far into the future

from knowledge alone of the formula for the one-step ahead projection.

To take an example, suppose that {xt) is a first order Markov

process so that

Ptxt+ = xt IAI<1
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From application of (63) it follows that

Pxt+= jx j_>1
t t+j t •
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Some Applications to
Rational Expectations Models

Let us return to the example of Cagan's portfolio balance

schedule, only now where we assume that m t is a covariance stationary

stochastic process and the price level now expected for next period is

the linear least squares projection of Pt+l on information available at

time t. We then have the difference equation

(64) mt -t = Ptpt+l - apt a<0

where Ptpt+1 is the linear least squares forecast of pt+l given information

available at time t. Projecting the above equation on information available

at time (t-l) gives

Pt-_mt = aPt-_Pt+l + (1 - a)Pt-1Pt

or

-1 +1-a P  - 1PB + P p P 1 m

-1
where BP xt+ - P t-x t+jl and B P- x t+ P t-lxt++l. Operating

on both sides of the above equation by B gives

a-i 1
(1- B)P p P=-P m

a t-l t a t- t

As before, since a<0 and a-1 >1, we should solve this equation in the

forward direction. Proceeding exactly as with our earlier calculations,

we obtain the solution
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1 _

P pPPt- p t  1-a . a, t-lmt+j

which is identical with our earlier solution with {x t } being replaced by

Pt-1{x t } everywhere.

Now suppose that m t has the moving average representation

m =Y d.E
t .

j  t-j
3=0

where d. 2< and E is fundamental for m.jt Then we have, applying (59),

P 1 a J d(L)
t-1 t -[ j 1=O LL +_It-1

1 d(L) d(L) a 1 d(L) a
1-a L L2 1-a L3 1-aL L

+ ESt-1

1 aC ( 3 -(j+1)

SL d(L) EPt-lPt 1-a 0 -0 ++ t-1

Then the solution for Pt_-Pt in terms of current and lagged mt's is (using

mt=d(L)t )t t

1 I= al(i+)
Pt-1 t 1-a iL LV 1-a L-("l d )

1
d(L) mt- 1

Substituting the above expression for Ptipt into (64) giveslt t (4 ie
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1 0m = (l-a)p+ L d(L) mt t 1-a . 1-a+ d(L) t

which expresses the stochastic process for pt as a function of the exo-

genous stochastic process for mt.

The preceding solution process is a constructive one. A quicker

method of solution is the following one. Let us again assume that m has

the moving average representation mt = d(L)t . Guess at a solution for

Pt of the form

Pt = v(L) t  , vjL v(L)

j=O

Then equation (64) can be written

d(L)Et (l-a)v(L)Et + a v(L))

which implies

d(L) = (l-a)v(L) + iv (L )

L +

an equation that can be used to solve for v(L) as a function of d(L) and

a. Once v(L) has been determined, the solution for pt can be written

Pt = v(L)Et = v(L)d(L) mt

This method of solution was used by John F. Muth.

It will turn out that the E 's are fundamental for p, i.e.,
they are the one-step ahead prediction errors. This rationalizes the
prediction formulas to be used.

**
"Rational Expectations and the Theory of Price Movement,"

Econometrica, 1961.
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Let us now consider the supply-demand example of section

where xt is now a covariance stationary, indeterministic random process

with mean zero and moving average representation

xt = d(L)Et

Our system is naturally modified to become

Ct = -Pt >O

Yt t-1Pt + xt >0

It = (Ptt+l - t ) >0

Y = C + I - I
t t t t-1

where Yt is production, Ct demand for consumption, and It holdings of

inventories. Substituting the first three equations into the third gives

(65) (Y+a)Pt-1p + (+)pt = P p + apt-1 - x

Taking projections of both sides against information available at time

(t-l) gives

aPt- t+l (Y++2a)Pt-1 t + aPt-1t-1 t-1xt

or

-1 (B -1 +B)P p P + 2>0
tl t 1 t- t-1 +
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Multiplying by B gives

(1 - B + B2) p =- P x

t-1 t a t-1 t-1

(66) (1 - AB)(1 - 1 B)P = xa t-1 t-1 t-l

where AI<1i satisfies A + = . Notice that
1

1 1 1 1 1
1 1 1-AB 1 1(1-AB)(1-- B) A ~ - - -- Ba a

To insure covariance stationarity of the solution, we need to insist

that all lag distributions are square summable. Therefore we substitute

-i
1 -AB

S -1  , which gives
1 - B 1-B

1 ( 1

(1-AB)(1- B) A-' 1-AB

+ 1 B-1

a 1-B-

Multiplying both sides by (1-AB) gives

1-XB _ (1-AB)B-1
1 1 1 1

(1-AB) (1- - B) A- ( - -)(1- B-)

Operating on both sides of (66) with the preceding operator gives

(1-B)P P P x
t-1 t 1 ca t-1 t-1

A-

-1
(1-AB)B 1

1  -1 a t-lxt
(-)(1-B

Assume that the set conditioning Ptixt includes xt_1 . Then we have

(1-AB)Ptx t = Pt-1xt - Pt-1xt = Pt_l(xt-Axt_1 ) = Pt-l(-L)x t .

Substituting this into the above equation gives
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A 1 1 1 1 P(1-XB)P tP = x P(- - L)-Bt- t a t-1 a 1 - t-xt '

which is a solution for Pt-1p . This solution suggests that the solution

for pt is given by

1 A 1 A 1_Xp I x + ( l I
Pt t-1 a 1 t-1 a 1 -1P(l-L)xtAh A- -l-AB

which can be rearranged to read

(67) Pt - Apt = -a hiPt( xt-1 = to Xt+ii=O

That (67) is a solution can be verified by direct substitution into (65).

We can reduce (67) further by eliminating Ptxt+i via the Wiener-Kolmo-

gorov formula to get

-a i d(L) 1

Pt - Apt_ = a 1xt t- a 0 L i 
+ d(L) t

j1fd(L)S -1 d(L d(L) t
1-L +

Fourier Analysis of Data

To motivate further the interpretation of the spectrum as a

decomposition of variance by frequency, suppose that we have T obser-

vations on Yt, t=l, 2, ... , T. Suppose for convenience that Y is an even

number (assuming that it is odd would require some minor modifications in

some of the formulas that follow). We consider computing the following

regression of yt on sine and cosine functions of angular frequency w.=2rj/T

where j=O, 1, ... , T/2:
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T/2. T/2-1~

(68) yt = (wk)COS Wkt + I $(wk)sin Wkt
k=O k=l

where wk=2Tk/T. There are T observations and T dependent variables in

this regression, which means that the regression will fit perfectly

provided that the regressors are linearly independent, as they are.

Indeed, the regressors are pairwise orthogonal. Thus, recall that

ix -iA
cos a = (e +e )/2

sin A = (e -e )/2i.

Now use these equalities to write

T 27r 2'r k 2i rk

(69) cosT t[cos -- t+isin t]
t=l

T i g2-  t 2_ t i 2 k t
1 T T T

= 2-(e +e )(e )
t=l

i2n(j+k)T i2n'l +k)t i2 (k-j)T 1 i2r(k-j)t
1 T T 1 T T

=-eI e + - ee
2 2e Tt=0 t=0

-- 2r (j+k) 2(k-j) .12. 2 (k-j)
S kT 1-e i  1 T l-e

2 12n +k) 2 _2nk-)

1-e 1-e

1
0<k j <-T

S2n(+k)1 i2 +k) i2(j+k)
lT -e 1 1

-e (j + 0T, < k = j < T
T

l-e

1k = j = 0, T

r



- 87 -

i2 (j+k) I0 (because e = 1) 0 < k < - T

=T 0 < k = j <1T

1
T k=j =0, 2 -T

Equating the real and imaginary parts, respectively, of the first line

in this equation with the last gives

1
0 0<k# j <-T

'2(70) X cos t cos t = r 0 < k = 3 < I 1t=l
1

T k= j = O, 2T

T 2i 2nk
cos - t sin -- t = 0

t=l

1
k, j = 0, 1, ... 2 T

A similar argument shows that

T 2  k
Ssin 2 -t sin -- t

t= T Tt=1

Taken together, equalities (70),

in (68) are mutually orthogonal.

(72) gives

0

= 1 T
2

0

1
0 < k # < 1 T

3-- 2

0 < k= j < 1 T

2

k = j = O, -T.
3

(71), and (72) show that the regressors

Notice that setting j=0 in (70) and

T T
2n rk 2nk

cos T t = 0 =  sin T t, k=l, 2, ... , T/2.
t=1 t=l

Where the regressors are mutually orthogonal, as they are in

(68), the least squares estimator of the multiple regression coefficients

is identical with the vector of simple least squares regression coefficients.

These are given by

and

(71)

(72)

_ ___ __
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T

SYt c o s Wkt
t-ia(wk) T k =0, 1, ... , T/2

T 2

1 cos wkt
t=l

T

I yt s in wkt
B(wk) = T k = 1, 2, ... , T/2-1

k T 2
I sin2wkt

t=l

Using (70), (71), and (72), the above can be simplified to

T

c(w/) t=10 T

1Tt

awT/2) =T kyt(-1)

a(w k ) ~~YtCOs Wkt, k = 1, 2, ... , T/2-1
t=1

^ 2T

(wk) = t I ytsin wkt ,  k = 1, 2, ... , T/2-1.
t=1

Since 68 ) represents a regression of T observations on y against T

orthogonal independent variables (which guarantees that the X'X matrix

of the linear statistical model is of full rank), we know that the

regression fits the data exactly, i.e., it gives a perfect fit. So what

we have achieved is a decomposition of yt{t=l, ..., T} into a weighted

2k
sum of sine and cosine terms of angular frequencies wk T, k-O, ... ,

T/2. The least squares regression coefficients a(wk) and B(wk) give a

measure of how important the various frequencies are in composing the

series yt. To make this more precise, notice that from (68), the sample

variance of the y's can be written
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T

T Yt 2 T
1T t=1 1 2
--T T t )  ( y t 

-
( w ) )

t=l t=1l

= T/2-1 2 T 2 T/2-1 T 2
_ - a(wk) cos (Wkt) + B(wk)2  sin (wkt)

k=1 t=1 k=l t=1

^ 2T 2
+ a(wT/2) 2  cos (wT/2t)},

t=1l

which follows by virtue of the orthogonality of sines and cosines of

T

different frequencies. From our earlier calculations of cos wkt

T t=l

and r sin 2 wkt, the above equation becomes
t=l

1 T lt 2 1 T/2-1^2  ^2
(73) T (y T {T/2 [a (wk)+ B (Wk)]

t=l k=l

^2 1 T/2-1 ^2 +^2 ^ 2+ Ta (wT/2 ) } 2 [ ( wk)+ (wk)l+ a (wT/2)
k=l1

2
Thus, the term 1/2[a (wk)+ 2(Wk)] measures the contribution of sine and

cosine terms of frequency wk to the sample variance of y. Equation (73)

is an example of Parseval's relation.

An equivalent but more compact version of the preceding

decomposition is provided by the exponential Fourier series representation:

T{2 1-i21 t
(74) yt = Yje T t=1, 1, ... , T

which provides an exact representation of yt, t-1, ... , T. We assert

that the Yh's are given by

2h
+i2--T t

(75) Yh - ISTtYte
tZl

This can be verified by substituting (74) into the above equality to get
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T/2 T i 2r(h-j) t
1 T

h - j Z e
h T=-T 2+1 t=l

But

T for j=h
T -T

e = lei 2T (h-j)
t=1 ii e 2h- = -0 for j#h

e-e 
T

Thus, we verify that

T i 2 7rht
1 T
Tty ye = Yh

t=1

The list of the Yh-Y(wh) by frequency is called the finite Fourier

transform of yt, t=1, ... , T. To match this up with our earlier work

write

T T
1T 2rht 1 T 2ht

Yh y ot T + T t Tsin ht
t= l t=l

= ah + i8 h

where

1T 2nht
S= - y cos
h t_ t T

t=1

and

1 T 2ht
h = T ytsin T

Substituting

h = h+ i h

into (74) and writing

I
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cos - t - i sin - tT T

for

T

and noting that yh=Y-h so that h=a-h' h-Sh , gives

T/2

S= Y +  J(cos 2r t- -i sin t)
j=1

T/2-1

+ a J(cos t

j=l1

T/2

j=1

-i sin t)T

(cos 2Tt- i sin (T t)T T

T/2-1
-i ~ (co. t

j=1

T/2-1

yt =  
0 

+ 2 1 a.cos

j=1 J
(76)

") + i sin (2 ))

2'rjt 2rjT/2
T T/2 T

T/2-1
+ 2 , n2ni t

j= T

Comparing a. and 8 in (76) with our earlier least squares estimates, we

have

a0 = a(w 0 )

1 ^

ak = (k),

aT/2 = a(WT/2)

k = 1, 2, ... , T/2-1
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Bk = (Wk)

Thus, the real and imaginary parts of YhVah+ih are (apart from a scalar

for k=l, ... , T/2-1) the regression coefficients in (68).

A "natural" measure of the importance of the cosine and sine

waves of frequency wk in composing yt is the squared amplitude of

Yk-Y(wk)

y(Wk)y(Wk) =y(wk)1
2

= (a(wk)+i8(wk)) ((wk)-iS(wk) )

a2 
2+ 2

- C (wk ) + a (Wk).

The higher is this quantity, the larger are the weights placed on the

sine and cosine of frequency wk in (51) in making up yt. The quantity

y(w k ) J2 is called the periodogram ordinate at frequency wk, and turns

out to provide a basis for estimating the spectrum at wk . The rela-

tionship between the spectrum and the periodogram ordinates 2+ 2

provides one illuminating way of depicting the spectrum as a decompo-

sition of variance by frequency.

To establish the relationship between the periodogram ordinates

and the spectrum and cross spectrum, suppose that we have observations on

two jointly covariance stationary stochastic processes y and x for

t = -T+1, -T+2, ... , -1, 0, i, ... , T . Assume that yt and x t have zero

means. Then we compute the Fourier transforms
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x(wk) = 1

1
x(wk 2T

1

y(wk 2T

T
-iwktZ xte

t =-T+1

T
t Ye-iwkt

t=-T+1

wk
Wk = , k=0, 1, ... , T .

Consider now the cross-periodogram ordinates defined by

S T
2T y(wk)x*(wn) = 2T

t=-T+1

T

y x e-iwkt eiwn
s=-T+1 s

Letting s=t-T so that T=t-s, we have

2T y(wk)x (wn )

T

1 +
t=-T+l

T

t=-T+1

t+T-1

T=t-T

t+T-1

T=t-T

ytx t -ikt
t t-T

txt-eiwnT ei(wk-wn)t

Yt~ -

Taking expected values, we have

E2 Ty(wk)x* (wn)(77)

T

Se-i(wk-Wn)t
t=-T+l

t+T-1

T=t-T

-iwTC (T)
yx

For b>a, b and a integers, we have

sin X(b-a+l)/2
sin (A/2)

ei(b+a)/2
k e i j

j=a b- a +1

This is obvious for X=0. For X#O, we have

eiwn (t-T)

X=0
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b ia i(b+i)
iAj _ e - ee -e

j=a 1 - e

ik(a+b+l)/2 -i (b-a+1)/2 ik(b-a+l)/2
e (e - e )

1- -i1 +1-
e 2 e - e 2

i(a+b)/2 sin (\(b-a+l)/2)
e

sin (2)

Therefore, for Wk=Wn, we have

(78)

T

S ei(wn-k)t = 2T
t=-T+l

For Wk#w n , we have

T
r ei(wn-wk)t ei(wn-wk)/ 2

e = -T
t=-T+l

sin (w -wk)T
n k

which is bounded in absolute value by 1/sin n -k
(2 j

for all T.

tuting (78) and (79) into (77) and taking the limit as T goes to infinity,

we have

£--
-iwkT

e iwkC (T)yx

E2Ty(wk)x*(w n ) =
k n

WkWn

E2Ty(wk)x"(wk)

e

g e 1XK)

yx
Sb

(79)

(80)

Substi-

or

Wk:Wn

Wkw
k n

r
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In other words, for large

the cross spectrum, while

orthogonal if Wk n .

For the special

enough T, E2Ty(wk)x*(w k ) approaches closely to

the ordinapes y(w k ) and x*(wh) are asymptotically

case in which xt yt, the above results show

that as T-} ,

E2Tx(wk)x* (w)-

gx(e - i wk )

0

This shows that the periodogram ordinates 2TIx(wk) 1
2 are asymptotically

unbiased estimators of the spectrum at frequency wk . Let us denote the

periodogram ordinate by

IT(wk) E 2TIx(wk)1 2

By using (80) and performing a few additional calculations,

the following properties of the periodogram ordinates could be established.

Assume that {xt}obeys the normal probability law. Then we have that for

k not equal to zero or T,

21 r (wk)

gx(e-iwk)

is distributed asymptoticaLly as chi square with two degrees of freedom.

For k equal to zero or T,

IT(Wk)

gx(e-iwk)
x

See Koopmans, pp. 260-265.

wk=wn

WkW n
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is distributed asymptotically as chi square with one degree of freedom.

Since a chi-square variate with r degrees of freedom has mean r and

variance 2r, it follows that (asymptotically)

EIT(wk) = gx(e-iwk)

(81) var I T (wk) = (gx ( e k)) 2  k#0,T

var IT(wk) = 2(gx(e-ik)) 2  k=0,T

Further, it can be shown as an implication of (80) that periodogram

ordinates are asymptotically independent, so that I(w k ) is asymptotically

independent of I(wh) for wk#wh.

From (81) we see that the (asymptotic) variance of the period-

ogram ordinates does not depend on T, and in particular does not decrease

with increases in sample size T. Therefore, though IT(Wk) is an (asymp-

totically) unbiased estimator of gx(e ), it is not consistent; i.e.

-iwk
there is no tendency for the variance of IT(wk) around gx(e ) to

decrease as T-+o. This is the reason that raw periodogram ordinates

I(wk) are regarded as noisy estimates of the spectrum.

In applied work, the spectrum and cross-spectrum are estimated

by first calculating the periodogram and cross-periodogram ordinates.

Then the assumption is adopted that the population spectrum and cross-

spectrum are "smooth" functions of w. (To make these assumptions appro-

ximately correct, the data are typically filtered to give series with

approximately locally flat spectra and cross-spectra.) Then the spectrum

and cross-spectrum are estimated by taking some sort of moving average
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of periodogram ordinates across frequencies. Since the periodogram

ordinates are asymptotically orthogonal, this averaging reduces the

sampling variability of the resulting estimates. In effect, different

spectral estimators differ only in the form of the moving average they

apply.

The Cramer Representation

We have seen that the spectrum of x t represents an orthogonal

decomposition by frequency of the variance of x t . Suppose we select a

set of points 0=w<w2<...<wn+l= . We then form Bi(L) to satisfy

1 wE[-w i+l-wi] n[wiw+1]
-iw

Bi(e ) =

0 wi[-wi+1 ,-Wi] [wi', Wi+ 1 ]

Define xit = Bi(L)x t . Then we have that

n

xt= xi
t i= I it

where Exitxjs=0 for i#j and all s and t. So for any finite n, we are

able to decompose xt by frequency into n orthogonal processes, where the

spectrum of xit equals the spectrum of x t wherever the spectrum of xit

is not zero.

This section in effect addresses the question: what happens

See Koopmans and T. W. Anderson.

This section is optional. It follows the treatment in
Papoulis [pp. 468-472].
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when we drive n to infinity in the above construction? It is perhaps

natural to conjecture that xt can be represented in a form

+iwt
x t = f e dF(w)

where F(w) is a stochastic process with certain strong orthogonality

properties inherited from those of the xit's. This conjecture is correct

and is the intuition underlying the Cramer representation possessed by

all covariance stationary stochastic processes.

Let {x t t=-} be a covariance stationary stochastic process with

mean zero. It would be tempting to try to compute the Fourier transform

of the {x t } process according to

(82) f(w) = xte-iwt

t=-00

and thereby obtain a new stochastic process f(w); that is, essentially

(82) would be used to define f(w) for each realization of {x }t t = -m

thereby creating a probability distribution on f(w)'s, which are thus

random functions defined on [-T,n]. Unfortunately, however, the right

side of (82) is not in general well defined. Fundamentally, this is

because realizations of a covariance stationary stochastic process {x t }

need not in general be square summable (i.e. satisfy Ixt 2<O), so
t=-C0

that there is no guarantee that the infinite sum on the right side of

(82) is well defined.

However, the "generalized Fourier transform" of the stochastic

process x t is well defined. In particular, let us define a stochastic

process G(w), w[-r,r] as follows. We set G(-r)=0 and for rr wl>w- 2-
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we define

0 e-iwlt - iw2t
(83) G(w 1 ) - G(w 2 ) = e Y- e x

t2 -it t
t=-00

The complex-valued random process G(w) thus defined is called the "gener-

alized Fourier transform" of the stochastic process xt; G(w) is a stochastic

process or "random function" defined on w in [-ir,r], because it is a

function of the stochastic process {xt}. The distribution of G(w) is

00
traced out as the sequence {xt}t=m varies from realization to realization.

The generalized Fourier transform of the x process is well defined even

where the right side of (82) is not well defined. To indicate why, set

wl=W+E and w2=w-e to obtain

00itE -itE

(83') G(w+c) - G(w-c) = -iwt e x
t=- iet t

00

= -iwt 2 sin ct
t tt=-00

Thus G(w+E) - G(w-E) is the ordinary Fourier transform of x t multiplied

2 sin et
by t . The function 2 sin Et/t goes to zero rapidly as Itl -*0

2 sin Et
Heuristically, this permits t -x t to satisfy the square summability

condition necessary for the Fourier transform to be well defined even

where {xt) fails to be square summable. This is what underlies the fact

(which we won't prove) that the generalized Fourier transform G(w) is

well defined, i.e. the infinite sum on the right side of (83) converges

in mean square.

Now divide both sides of (83') by 2E,E>0, to obtain
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(84) G(w+E) - G(w-) = e-iwt sinct .
2E Et t

G(w+E) - G(w-) sin eSo is the ordinary Fourier transform of sin
2E Et t

sin etThe function Et is plotted in Figure 7. From l'Hospital's rule
Et

we have that

lim sin et lim £ cos et
t-+O Et t-~O E

The fact that tsint0 as It0a is what makes the infinite sum on the
Et

right side of (84) well defined.

We now formally apply the inversion formula to (84) to obtain

sin Et 1 liwt G(w+E) - G(w-E) dw
Et t 2r 2E

-it

Letting E-O, the left side approaches xt, which we write as

x eiw dG(w)
t 2r

which is the Cramgr representation for the process xt.

The "integral" on the right is defined as follows as a "mean square limit."

Let Pn be a "partition" of the interval [-r,rr], i.e. Pn is a collection of

points w.,i=l,...,n
1

n = 1'2'["""'W n

where - w 1<W2 <...<w = . Let the "norm" of fhe partition be A;

A = max (wi-wi 1 )

i=2,...,n

L
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Let {Pn } be a sequence of partitions with An- O as n-m. For each n letn n=2

6. be points satisfying Wil<i<w. . Then it can be shown that

lim 1 n 6it
(86) n Ext - e (G(w) - G(wi-))1 2  0 ,

i=l

i.e. the sequence of approximating sums - eiit(G(wi) - G(w ))
2i=1

converges to x t in the mean square sense that the variance of the difference

between x t and the approximating sum approaches zero. The notation

1 +iwt

2 e dG(w)

is intended to denote the mean square limit of the sequence of approximating

sums in (86).

Equation (85) is the "spectral representation" or Cramer repre-

sentation for the stochastic process {xt}. The random function G(w) is

intimately related to the spectrum, as we shall now show.

To interpret G(w), let us return to a version of the "band pass"

system we considered above. In particular, let

-iw) 2r w <w<w
(87) h (e ) =

w1 2 0 w[w 2 ,wl]

The distributed lag weights h (j) corresponding to (87) are, from the
W1W2

inversion formula, given by

w
2 1 . . iwlj iw2j

(88) h 2n /  el wj dw =
w1w2(j) 2n ij

w 2
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With {xt) as the input to the system with these distributed lag weights,

the output Ywlw2(t) is given by

0 iwlj iw2j
2(t)= e - e

Yww(t) j ij xt-j

Adopting the change of variable T=t-j so that j=t-T, we have

0 iwl(t-T) _ iw2(t-T)

Yww(t) e xS T=-0 i(t-T) T

For t=0 we therefore have

-m iwlT _ -iw 2 T

(89) y l( 0
) =L e - e x

w1w 2 T-1iT T

E G(wl) - G(w 2)

where the last equality is a repetition of the definition (83). Thus,

the increment G(wl) - G(w 2 ) in G(w) has the following interpretation: it

is the random variable Ywlw2(0) that is derived by applying the "bandpass"

filter h (j) to the xt process and evaluating the resulting stochastic

process at time t=0.

The interpretation (89) is useful in establishing the properties

of the random process G(w). The first property is:

If wl>W2, then

E{IG(w 2 ) - G(wl) 12 = 2 w 1 x(e-iw) .

w 2

To prove this, consider applying the bandpass fltr h 1 (j) defined by
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(88) to the xt process. From (35) we then know that the spectrum of the

output

2 -iw
-iw -iw) 2  (27) gx (e ), w 2<w<w 1gx(e ) h (e-iw) 22

where g(e ) is the spectrum of x The[w2'n the variance of

where gx(e ) is the spectrum of x. Then the variance of ylw(t),

which equals the variance of Ywlw2(0) by covariance stationarity, equals

E{ylW(0)2  --- gx(e iw)dw

2

But from (89) we have

E{y w1w2(0) 2} = E{tG(w1 ) - G(w2)12}

The second property of G(w) is that it is a process with "ortho-

gonal increments." That is, let >rwl >2w3w > >_-w Form the two bandpass

systems with frequency response functions

-iw 2 w2<W<W1
h (e =

1 w2  0, w¢[w 2,w I]

-iw 27 w4 <w<w 3
h (e ) =

3w4 0 0, wV[w4 ,w 3

With xt as the input to the systems with filters described by (88), we

obtain outputs y lw2 (t) and z 34(t). From (22), it follows that their

Notice that the output is a complex-valued stochastic process,
which is why its spectrum is not symmetric about zero.
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cross-spectral density is given by

-iw -iw +iw -iw
gyz(e ) = h 1 2 (e-i)h 3 4 (e+iw gx(e-iw

= 0

Therefore, the y and z processes are orthogonal at all lags. In particular

we have (applying (89))

E{y ww2(0)z3w*(O)} = E{[G(wl) - G(w )][G (w 3 ) - G (w4)]} = 0

Thus, G(w) is a process with orthogonal increments.

Finally we have, since Ext=0, applying (89)

Se-iwlt -iw2t
E{G(wl) - G(w 2 )} = e - e Ex = 0

t=-00

Collecting these properties, we have

(a) If r->w 2>w,

E{ G(w I ) - G(w2)12} = 2n 1 gx(eiw)dw
w 2

(b) If rW>W2 3>w 4>-7r,

E{[G(wl) - G(w 2 )][G (w3) - G (w)]} = 0 .

(c) E[G(wl) - G(w2)] = 0

In summary, the Cramer representation theorem assures us that

for every covariance stationary stochastic process {xt t= with mean zero,

there exists a related complex-valued stochastic process G(w), wE[-,w]

such that
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1 fe+iwtdG(w)
t 2

It is properties (a) and (b) of the stochastic process G(w) that motivate

the interpretation of the spectrum as representing an orthogonal decompo-

sition by frequency of the variance of x .
t

Vector Stochastic Difference Equations

Let x t be an (nxl) - vector wide-sense stationary stochastic

process that is governed by the matrix difference equation

(91) C(L)xt = tt t

where Et is now an (nxl)-vector of white noises with means of

contemporaneous covariance matrix Este t V, an (nxn) matrix.

Ett-s =0(nxn) for all s#0. In (91), C(L) is an (nxn) matrix

order) polynomials in the lag operator L:

C(L) =

C11 (L)

Cnl(L)

C12 (L) ... Cln(L)

C (L)nn

zero and

We assume

of (finite

where each Cij(L) is a finite order polynomial in the lag operator.

We assume that the matrix C(L) has an inverse under convolution

C(L) -1B(L); C(L) is defined as the matrix which satisfies

C(L)"-C(L) I (nxn)

-lwhere I(nxn) is the (nxn) identity matrix. If it exists, C(L) can be

found as follows. Evaluate the matrix z transform C(z) at z=e-iwfound as follows. Evaluate the matrix z transform C(z) at z=e to get
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-iw
c(e ).

-4w .f . Finally,
Then invert C(e ), frequency by frequency, to get C(e-i . Finally,

-1 n
the matrix coefficients C(L) =B(L)=_I BJLj  B being an (nxn) matrix,

j ' J

can be found from the inversion formula

1 n -iw -e iwj
B - fC(ei e dw,

-iT

where by integrating a matrix we mean to denote element-by-element

integration.

The solution of (91) is found by premultiplying (91) by B(L)

to obtain

(92) x t = B(L)E t .

The vector stochastic difference equation

C(L)x t = t ,

is said to be an autoregressive representation for the vector process

xt . The solution

x t = B(L)e t

is said to be a vector moving average representation for the process x t .

The cross spectral density matrix of the (nxl) x t process (which has the

cross spectrum between the ith and jth components of x in the (i,j)th

position) is given by

-iw -iw +iw(93) g (e ) = B(e )VB(e ) '

where ' denotes transposition. Formula (92) is analogous to the univariate

equation (35), and can be derived by comparable methods. Alternatively,

I _
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one can proceed by using the methods of Section ___, and taking the

Fourier transform of (92) to get

x(w) = B(e iw)E(W).

Multiplying each side by Tx(w)' gives

Tx(w)x(w)' = B(e )TE ()E (W)'B(iw)

Taking expected values, and noting that ET(w)E(w)' =V then gives equation

(93).

Equation (9>) is very compact formula for calculating the

cross spectra of the (nxl) xt process as a function of the fundamental

parameters, the covariance matrix V and the coefficients in C(L) (or

B(L)). Equation (91) is quite a general representation and is flexible

enough to incorporate exogenous variables and serially correlated noises.

In equation (91), a variable xit is said to be exogenous if

Ci (L)=0 for all j not equal to i. This means that the row of equation

(91) corresponding to xit becomes

Cii(L)xit = Eit,

so that xit is governed by only its own past interacting with the random

shock it. In this sense, the evolution of xit is not affected by

interactions with other variables in x t . This is not to say, however,

that xit is uncorrelated with other components of xt, since qt can be

correlated contemporaneously with other E's (that is, V need not be

diagonal). The definition of exogeneity given here turns out to be

precisely the one used by econometricians in a time series context (see

Section below).
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Serially correlated errors can be incorporated by suitably

redefining the errors as components of x t , and then modeling them as

exogenous processes that affect but aren't affected by other components

of xt.

An Example

As an example, consider the following system of stochastic

difference equations:

Pt - tPt- = .2(yt-yt) + Et

= .75n t + .25k ttt

(Phillips curve)

(capacity output equation)

kt - kt-= .05(yt-l-kt-1 ) - .5(rt-1-(tt-l-t-1)) + 2t

(Investment schedule)

tPt- 1 = 1.5 pt-1 - .5pt-2

(formation of price expectations)

mt- Pt = Yt - 10rt

Yt - kt = -6.0(rt-(t+ pt-p)) + u3tt t t t+l t t 3t

mt = .75mt-1 + 3t

u3t = .75 u3t-1 + E4t

(LM schedule)

(IS schedule)

(exogenous money supply process)

(process for IS curve shock)

(a detrending device)

yt

nt = 0
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The (el' E2' E3' E4 ) process is serially uncorrelated with contemporaneous

covariance matrix

.0001 0 0 0

0 .000049 0 0
V =

0 0 .01 0

0 0 0 .09

Have yt is the log of real GNP, pt the log of the GNP deflator, kt the

log of the capital stock, mt the log of the money supply, n t the log of

the labor supply, tPt-1 the public's expectation of pt formed as of time

(t-l), and rt the level of the interest rate. The system is essentially

a stochastic version of the dynamic Keynesian model that we analyzed

earlier. To induce stationarity in the processes, we have set nt=0,

which has the effect of requiring that our calculations be regarded as

recording the spectral densities of the variates expressed as deviations

from trends.

Table 1 plots the spectral densities of several variables,

while Tables 2 and 3 record various coherence and gain or amplitude of

cross spectrum which were calculated using the formulas of the preceding

section.

Notice that the spectral density of real GNP has a peak in the

vicinity of a 38 period cycle, which with quarterly data would amount to

about a nine year cycle, about the length of NBER major cycles.

The model generates a "Gibson paradox," which is to say there

is high coherence between the price level and the interest rate at low

frequencies.

Notice that the gain of the log of real GNP against the log of

money is zero at zero frequency, while the gain of the log of price
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against the log of money is unity at zero frequency. As we saw earlier,

the gain at zero frequency equals the sum of the distributed lag weights,

so that these results are consistent with the "classical" long-run

character of the present model. In the long run, prices respond pro-

portionately to the money supply while real GNP shows no long-run reponse.

For use of these techniques to analyze actual estimated

econometric models, the reader is directed to Howrey [ ] and Chow [ ].

A Compact Notation

It is always possible to write an mth order difference equation

in terms of a vector first order system. For example, consider the

bivariate system

xl,t+l = alxl,t + ... + amxl,t-m+l + am+1x2,t

+ a 2mx 2 ,t-m+1 + El,t+l

(94)

x2,t+l 1l,t + .. + mxl,t-m+1  m+lx2,t

+ 62mX2,t-m+l + c2,t+l

where (El,t+l' e 2 ,t+l) are two serially uncorrelated white noise processes.

Equations (57) can be written as

(95) xt+1 
= Axt + wt+l

where

I
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am+l

0

al

1

S1

0

0

* (m+l)st row

xt+l

Xl,t+l

xl, t

xl,t-m+2

x2,t+l

x2,t

x2,t-m+2

l,t+l

0

0

0

£2,t+l

0

0

0

th(m+l) row

The solution of the vector difference equation (95) can be written

(96) xt+ T = A x(t) + E(t+T) + A(t+T-l) + ... + AT-le(t+l)

Since ES(t+T)x(t)' = 02mx2 m  for all T 1- ,

multiplying the solution (96) through by x(t)' and taking expected

... amm

... 0

a2

0

0 ... O

m+l .. 2m

1 0...0

0...0 1 0

t(m+1)st column

0 1

a2 ...

0

0

0

m

0

0

... 
am... 2m

.. o. 0
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values gives the matrix Yule-Walker equation

Ex xt' = ATExtx t '  T > 1

or

(97) Cx(r) = ACx(0) T > 1

where C x()=Ex(t+T)x(t)'. As before, we have the result that the

covariogram (this time the matrix covariogram) obeys the deterministic

part of the difference equation with initial conditions given by the

lagged covariances that are in Cx(0).

Using the compact notation (95), it is straightforward to show

that the cross spectral density matrix of the vector x process is given

by

(98) x(e i w ) = (eiW-_A)-1V(le-iw-A , )-

where V=Eete t ', and where it is assumed that the process is stationary,

which requires that the eigenvalues of A have absolute values less than

unity.

Assuming that the eigenvalues of A are distinct, it is possible

to represent A in the form

-i
A = PAP-1

where the columns of P are the eigenvectors of A while A is the diagonal

matrix whose diagonal entries are the eigenvalues of A. Then we have

A= PAP-

so that the solution (97) can be written
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C () = PA P- C (0).x x

This expression shows how the eigenvalues of A govern the behavior of

the solution. It also illustrates how increasing the number of variables

in the system or increasing the number of lags in any particular equa-

tion, increases the order of the A matrix, and thereby contributes to

the potential for generating complicating covariograms. Reference to

this point can be used to show, for example, that while a one-variable,

first-order difference equation can't deliver a covariogram with damped

oscillations of period greater than two periods (the periodicity if the

single root is negative), a multivariate, first-order (i.e., single lag)

system can have complex roots and may, therefore, generate oscillatory

covariograms.

Optimal Prediction: Compact Notation

Using the fact that et in (95) is a serially uncorrelated

vector process, it is straightforward to deduce from (96) that the

projection of xt+ against x t is given by

(99) P[xt+r xt ] = A t .

This is a compact formula for linear-least squares predictors of a

vector governed by a finite order stochastic difference equation.

Solution Concepts

We have now encountered two concepts of a solution for a

system of stochastic difference equations. The first concept, one that

agrees with the concept of the solution of a nonstochastic difference

equation, is given in compact, form by equation (92): for a given

___
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sample path of t's, the particular sample path of xt's that solves (91)

is called the solution. This concept takes the sample path of the

random variable t (often called a "realization" of the Et process) as

given, and proceeds to solve the difference equation as if 
it were a

nonstochastic one with a forcing function given by the particular sample

path for the Et's.

The second definition of a solution views the input to the

solution as being (characteristics of) the probability distribution of

the exogenous variables and random disturbances, while the output is

(characteristics of) the probability distribution of the endogenous

variables. In our case, we are concerned with the first and second

moments of the variables in question. This solution concept is summarized

compactly in our equation (93),

gxx(e ) = B(e )VB(eiw ),

in which the cross-spectral density matrix of the (nxl) stochastic

process xt is determined as a function of V, the contemporaneous 
covari-

ance matrix of the E's, and the coeffficients that are impounded in

-iw -iw
B(e - i w ). Of course, the cross spectral density matrix gxx(e ) deter-

mines all of the covariograms that we're interested in.

It is this second solution concept which determines the

moments of the endogenous variables in terms of the moments of the

"input" variables that underlies the theory of macroeconometric policy

evaluation.
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The Relationship between Granger-Wiener
Causality and Econometric Exogeneity

Let t be a bivariate, jointly covariance stationary stochastic
Yt

process. Suppose that t is a strictly linearly indeterministic process

Yt

with mean zero. Under these conditions, the bivariate version of Wold's

theorem states that there exists a moving average representation of the

(x t ,y t ) process

x t  c (L) c22(L) t I
21 22

Yt c (L) c (L) u t

where cij(L) = cLk are square summable polynomials in the lag operator
k=0 k

L that are one-sided in nonnegative powers of L; E and u are serially
t t

uncorrelated processes with Eu es=0 for all t,s; EE 2=a2, Eu2=u2; and
s t t u

where the one-step ahead prediction errors are given by

xt Pxtxt-l''"'Yt-l''.. ] = co£Et + c1 2  t x "t-'

21 22
= t + c u t , i.e. E and u are "jointly fundamental for x and y."

Wold's theorem establishes the sense in which a vector moving average is

a general representation for an indeterministic covariance stationary vector

process. The theorem can be proved by pursuing the same kind of projection

arguments used in proving the univariate version of the theorem. Below,

we will show how to construct a Wold representation from knowledge of the

covariograms of x and y and their cross-covariogram.

We now make the further assumption that the (x t y t ) process has
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an autoregressive representation. In particular, think of constructing

a sequence of projections

(100) x xt- 1  x an
tn t-1 t-n xt= Fn + ... + F n  + n I

Yt Yt-1 yt-n ayt

where F 1 n,...,Fnn are (2x2) matrices of least squares coefficients and

we have the orthgonality conditions

Sxt-j 0 0
E n n

yt-j t ax t 0 0

for j=1,...,n. We assume that as n m, the F.n's converge to F. for each

j. This is the assumption that (xtYt) possesses an autoregressive repre-

sentation and is stronger than the conditions required for (xt,Yt ) to have

a vector moving average representation. We can write the autoregressive

representation for (xt,Yt) as

xt 0 t-j axt
= F. +

Yt j l t- 1 a ytj

=F(L) , F(L) = F.L j -

Yt-1 ayt j=1 3

where the random variables (axt,ayt) obey the least squares orthogonality

conditions

E t-j [a at ] = :

for all j-l. The random variables (axtayt) are the one-step-ahead errorsx'yt
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in predicting (xt,yt) from all past values of x and y.

Now consider obtaining the following representation for the

(xt,Yt ) process:

(101)

A(L) ]t t
y ut

or

2
(AO-A1L- A 2 L ... )

where A. is a (2x2) matrix

triangular and

Sxt] t

for each j, where A0 is chosen to be lower

t

tJ

are pairwise orthogonal processes (at all lags) that are serially uncorrelated.

Can we be sure that such a representation can be arrived at, in particular

one with A0 being lower triangular and e and u being orthogonal processes?

__



- 118 -

The answer is in general yes, as the following argument suggests.

Think of projecting x t against all lagged x's and lagged y's. This

gives the first row of A(L) and gives a least squares residual process

s that is by construction orthogonal to all lagged y's and all lagged

x's. Next project yt against current and lagged x's and all lagged y's.

This gives the second row of A(L) and delivers a disturbance process u t

that is by construction orthogonal to current and lagged x's and lagged

y's. This procedure produces an A0 that is lower triangular as required.

Further, notice that since Et is orthogonal to all lagged x's and y's,

and since the representation (101) that we have achieved permits lagged

E's and u's to be expressed as linear combinations of lagged x's and

y's, it follows that Et is orthogonal to lagged u's and E's. A similar

argument shows that ut is orthogonal to lagged u's and E's. Finally,

since by construction ut is orthogonal to current and lagged x's and

lagged y's, and since £t is by definition a linear combination of

We have remarked earlier that the vector moving average

representation of a vector process z t in terms of the vector noise n t

z = C(L)n , where the

components of n aretwhite noises that are mutually orthogonal at all lags,

is a very general representation. An autoregressive representation for

z t can be obtained by inverting the preceding equation to get

A(L)zt = nt
-L i

where A(L)=C(L) , which is to say

A(e - i w ) = C(e-iW) -

for each w between -n and r. The autoregressive representation exists

provided that C(e - w) is invertible at each frequency between -n and i.
This condition is a restriction but is one that can usually be assumed

in applied work. (For an example of a C(e ) that violates the condi-

tion, consider the univariate example C(e- W)=1l-e-i -- the transform of
the first difference operator (1-L)--which equals zero at w=0 and so is
not invertible there.)
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current and lagged x's and lagged y's, it follows that ut and Et are

orthogonal contemporaneously.

To check that he understands this construction, the reader is

invited to verify that it would also be possible to choose A0 to be

upper triangular with a new and generally different error process

t

t

that satisfies the same conditions on second moments that the [u] process

satisfies.

To get (101) in a form that is useful for studying prediction

-1 *problems, premultiply (101) by AO to get

x
-1 t -1 C tA0  A(L) = AO

Yt ut

Notice that (102) is identical with (100) for n=w, so that we

must have

-1
F. = A A.
J 0 j

at  utI :t~ti A-1

Notice that (axt,ayt) are by the orthogonality conditions serially

uncorrelated and uncorrelated with one another at all nonzero lags.
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or

(102xt + A -1

(102) = A [AL A2 L2 + ... ] +A -O

Yt Yt ut

= A H(L) xt + AO1 t

Yt ut

where H(L) = AlL + A2L2 + .... The linear least squares prediction of

x
the t process based on all lagged x's and all lagged y's (call it

t

Pt-y t]) from (102) is then
t- yt

(103) x x  x
Pt- 1  = AOI H(L) = F(L)L t ,

Yt Yt Yt

since by construction

Pt-l = 0

The one-step ahead prediction errors in predicting the [x] process are

given by

A-1 t
0

Thus x-prediction errors and y-prediction errors are contemporaneously

correlated so long as A0 is not diagonal. Notice that since A0 is lower
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-1
triangular, so is A -1, so that Et is the one-step ahead prediction error

in predicting x from past x's and y's, which is what should be expected

given the way the Et process was constructed above.

-1
If A0 A(L) is lower triangular (that is, the matrix coefficient

is lower triangular for each power of L), then given lagged x's, lagged

-1
y's don't help predict current x. That is, if AO A(L) is lower triangular,

-1
and, therefore, so is A0 H(L), then Pt_-xt involves only lagged x's, lagged

y's all bearing zero regression coefficients. In the language of Norbert

Wiener and C.W.J. Granger, y is said to cause x if given past x's, past

-1y's help predict current x. Thus, the lower triangularity of A0  A(L) is

equivalent with y's failing to cause x, in the Wiener-Granger sense.

-1We now claim the following: AO A(L) is lower triangular, if
-i

and only if A(L)-1 is lower triangular. To show this, suppose first that

-i
A0  A(L) is lower triangular. Then note

-1 =A 1 -
S_ A = A(L) AoA

-1 -1But we know that A(L) A0 , being the inverse of AO A(L), is lower

-1
triangular, as is A0 . Noting that the product of two lower triangular

-lmatrices is also lower triangular then proves that A(L) is lower trian-

gular.

To make the argument in terms of ordinary matrices, write

-iw -1 -iw -1 -1
A(e iw)- = A(e ) A0A0

-iw -1and note that A(e ) A is the inverse of the lower triangular matrix
-1 -iw

A0 A(e ) at each frequency and so is lower triangular. It follows that
-iw -lA(e ) is lower triangular (at each frequency) being the product of two

lower triangular matrices. It then follows that

A. = _ A(eiwj)leiwj dw
j 2- -- 71T

is lower triangular for j=0,1,2,....
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-1
Now suppose that A(L) is lower triangular. Since A0 is lower

0
-1triangular, it follows that A0 A(L) is lower triangular. So we have

proved that AO A(L) is lower triangular if and only if A(L)-1 is lower

triangular.

-1This establishes that if A0 -A(L) is lower triangular, then

(101) can be "inverted" to yield the vector moving average representation

(103)C(L) X:

-t 2
where A(L) - 1 = C(L) = CO + C 1 L + C 2L2 + ... , C. being a 2x2 matrix, and

where C(L) is lower triangular. Recall the extensive orthogonality conditions

satisfied by c and u: the E and u processes are orthogonal at all lags,

even contemporaneously. Conversely, suppose that a moving average

Assuming that things have been normalized so that E and
u have unit variances, the spectral density matrix of the (x,y) process
satisfying (66) is, as we have seen,

S(e ) = C(e )IC(e - i w)'

where the prime now denotes both complex conjugation and transposition.
Now let be a (2x2) unitary matrix, i.e., a (2x2) matrix satisfying
UU'--U'U=I where here the ' again denotes complex conjugation and trans-

- iw
position. Then note that S(e ) can also be represented

S(e ) = C(e - i w ) UI U'C(e-iw)'

-iw -iw -iw
S(e ) = [C(e )U]I[C(e )Ul'

S(e ) = D(e-i )ID(e-iW)'
-iw -iwwhere D(e )=C(e )U. Thus, we have produced a new moving average

representation, one with contemporaneously orthogonal disturbances.
This proves that a moving average representation is unique only up to
multiplication by a unitary matrix. Notice that multiplication of C(e - I W )
by U will, in general, destroy the lower triangularity of C(e - W ) ifC originally has this property.
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representation of the lower triangular form (103) exists with e and u
t t

being serially uncorrelated processes with E£ u =0 for all t and s. Then
ts

-I
assuming that C(L)- exists and equals A(L) gives a representation

-1 t t
C(L) =

Yt ut

or

A(L) I: t  t

where A(L) is lower triangular and one-sided on the present and past. It

follows, then, that y fails to Granger-cause x.

We have now established Sims's important theorem 1, which states:

Let (xt,y t ) be a jointly covariance stationary, strictly

indeterministic process with mean zero. Then {yt} fails to

Granger-cause {xt)} if and only if there exists a vector moving

average representation

x CI (L) 0 t

Y C21(L) C (L) u

where at and u t are serially uncorrelated processes with means

zero and EEtus = 0 for all t and s, and where the one-step

ahead prediction errors (xt - P[xtlxt-1,.. Yt...]) and

(Yt - P[Yt xt-l'""Yt-l'...]) are each linear combinations

of E and u .
t t

We are now in a position to state a second theorem of Sims that

characterizes the relationship between the concept of strict econometric
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exogeneity and Granger's concept of causality. Sims's theorem is this:

yt can be expressed as a distributed lag of

current and past x's (with no future x's) with a

disturbance process that is orthogonal to past,

present, and future x's if and only if y does not

Granger cause x.

The condition that y can be expressed as a one-sided distributed lag of

x with disturbance process that is orthogonal at all lags to the x

process is known as the strict econometric exogeneity of x with respect

to y. In applied work it is important to test for this condition, since

the condition is required if various estimators are to have good proper-

ties. It is interesting that engineers have long called a relationship

in which y is a one-sided (on the present and past) distributed lag of x

a "causal" relationship, and that this long-standing use of the word

cause should happen to coincide with the failure of y to cause x in the

Wiener-Granger sense.

First we prove that y's not Granger causing x implies that y

can be expressed as a one-sided distributed lag of x with a disturbance

process orthogonal to x at all lags. The lack of Granger causality from

-l
y to x is equivalent with A0 1A(L) being lower triangular. As we have

seen, this implies that C(L) in (103) is lower triangular, so that

(104) x = C (L)E

21 22
(105) y = C21(L)Et + C2(L)ut

where all polynomials in L involve only nonnegative powers of L.
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Inverting (104) and substituting into (105) gives

= C21 (L)C (L) x +C 2 2 (L)uYt t t

which expresses yt as a one-sided distributed lag of x (no negative

powers of L enter) with a disturbance process u t that is orthogonal to

Et and therefore to xt at all lags. This proves half of the theorem.

To prove the other half, one would start with a one-sided lag

distribution and a moving average representation for x t

yt s h(L)xt + t

xt = a(L)Et

where by hypothesis n is orthogonal to E and therefore to x at all lags.

Then by finding the moving average representation for nt, say

nt = m(L)ut

where Eut =0 for all t,s, one gets the lower triangular vector moving
ts

average representation

yt = h(L)a(L)et + m(L)ut

x t = a(L)et

or

In assuming that has an autoregressive representation,

we have in effect assumed that Cl(L) has an inverse that is one-sided in

nonnegative powers of L.

7
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= C(L)

where C(L) is lower triangular. Assuming that C(L)-1 exists then gives

C(L) - I  =

where C(L)-1 is lower triangular and say equal to A(L). Multiplying the

above equation, which is in the form of (103), through by A0-1 , which is

also lower triangular then gives
xt E

t t

A[I-A(L) = A1
t ut

or

xt  1 
t

[I-A 0 A L-A0 A2-...] = A0 ,

t t

The lower triangularity of the matrices on the left and the orthogonality

properties of c and u establish that in this system y does not Granger

cause x, i.e., y does not help predict x given lagged x's. This proves

the other half of Sims's theorem 2.
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Sims's Application to Money and Income

Economists at the Federal Reserve Bank of St. Louis have

computed estimates of one-sided distributed lag regressions of (the log

of) nominal income (yt) against (the log of) money (mt):

(106) y = h.m + nt j J t-j t
j=0

where Entmt-j=0 for j=0,1,2,.... Those economists recommend that the

h.'s be taken seriously and be regarded as depicting the response of

nominal income to exogenous impulses in the money supply. However, Keynesian

economists have tended not to regard the h.'s as good estimates of the

response pattern (or "dynamic multipliers") of nominal income to money.

Their argument has two parts. First, in the kind of macroeconometric

model the Keynesians have in mind, even were it true that money had been

made to behave exogenously with respect to nominal income, the "final form"

for money income has many additional right-hand-side variables not included

in (106), e.g.

(107) y= vjm + Yw.z.+e

t j=0 j t-3 j=0o J t-J t

where zt is a vector of stochastic processes including government tax and

expenditures parameters and w. is a vector conformable to z ; the error
J t

term E is a stationary stochastic process that obeys the orthogonality

conditions EE m. = EE z = 0 for j=0,+l,±2,....

The strong condition that E must be orthogonal to m and z at

all leads and lags is the requirement that m and z be "strictly economet-
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rically exogenous with respect to y" in relation (107). These orthogonality

conditions characterize (107) as a "final form" relationship. In (107),

the v.'s are the dynamic money multipliers and depict the average response

of yt to a unit impulse in m, holding constant the z's. Applying the law

of iterated projections to (107) we obtain

CO 00

P[y Imtmt1.. jmtj + wkP[zt-k mmtl. ..1
j=0 k=

Let P[zt_klmt,mtl,...] = aimtJ
tk t t- t-j

Then we have

P[Ytlmt,mt_l,...] = v.m + w 1  mt1 m
j=0mt k=O j=o0 kj-J

or

y= (v. + wka c )m + n
t j=0 k=0 k k t-j t

where by the orthogonality principle we have Entmtj=0, j=0,1,2,....

Now (108) is identical with (106) so that the population h.'s of (106)

obey

h = v. + wkak
j k=0 k kJ

Therefore, the h.'s in general don't equal the money multipliers, the v.'s.
3 3

The h.'s are "mongrel" coefficients that do not indicate the typical

average response to y to exogenous inpulses in m, everything else being

held constant. For this reason, Keynesians would argue, estimating

equation (106) is not a good way of estimating the dynamic multipliers,

the v.'s.3
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Now project both sides of (107) against the entire sequence

mtj . to get

(109) y = h.m + wk y m +
t .= 3 t-j k. kj t-j t0 k=0 j=-o

where Et'mt j = 0 for all j and
t t-j

P ztkI{mt.j} = kj m
t-kJt-jJ=-C k- -J

where ykj is a vector of coefficients. We can write (109) as

P fYt{mt } = _ dj.m

cO

where d. = h. + WkYk j:0
J j k kkj

k=

d = k0 kkJ j<0

In general, so long as the processes m t and zt are correlated (as we had

to assume to make the argument that the St. Louis h.'s are mongrel

parameters), the ykj's and therefore the d .'s will not vanish for somej J

j<0. That is because in general future m's will help explain current and

past zt's. Therefore, so long as the wk 's are not zero in the final form

(107), i.e., so long as the z's appear in the final form for yt, the

projection of yt on current and lagged m's is predicted to be two-sided.

Unless mt is strictly exogenous with respect to the vector z
or, equivalently, the vector zt does not Granger-cause mt.
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For this reason, a test of the null hypothesis that the projection of y

on the entire {x} process is one-sided (i.e. it equals the projection of

Yt on current and past x's alone) can be regarded as testing the null

hypothesis that the wk's in (107) are zeroes. But remember that the

contention that the wk's aren't zero is what underlies the Keynesian

objection against interpreting the St. Louis equation's h.'s as estimates

of the dynamic money multipliers. So computing the two-sided projection

(110) yt = 6M. j + t

where Eitmt j = 0 for all j, and testing the null hypothesis that 6. = 0J

for all j<0 provides a means of testing the null hypothesis that the St.

Louis equation is "properly specified"--that is, that it is appropriate

to set the wk's equal to zero.

Using post-World War II U.S. data, Sims estimated (110) and

implemented the preceding test. He found bat he could not reject with

high confidence the hypothesis that future m's bear zero coefficients in

(110). In general, if the Keynesian objection to the St. Louis equation

were correct, in large enough samples one would expect to reject the

hypothesis tested by Sims. Sims's particular statistical results have

provoked much controversy. Since his tests are subject to usual kinds

of type I and type II statistical errors, there is some room for disagreement

about how far his results go in confirming using the St. Louis equation

to estimate money multipliers. Nevertheless, it should be recognized

how much of a contribution Sims made in providing a formal statistical

setting in which one could in principle subject to statistical testing
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the Keynesian claims made against the St. Louis approach. Before Sims's

work, those claims were entirely a priori and, though they had been made

repeatedly, had never been subjected to any empirical tests.

As it happens, the test implemented by Sims is also useful in

discriminating against another hypothesis which has often been advanced

to argue that the St. Louis equation (106) is not a legitimate final form

(i.e. does not have a disturbance that obeys the requirement that it be

orthogonal to past, present, and future m's). The argument is that the

money supply fails to be exogenous in (106) because the monetary authority

has set m via some sort of feedback rule on lagged y's. For example, it

is often asserted that the Federal Reserve "leans against the wind,"

increasing m faster in a recession, more slowly in a boom. If the Fed

behaved this way, it could mean that the projection (106) of y on m partly

reflects this feedback from past y to m as well as the effect of m on y.

Furthermore, such behavior by the Fed would in general lead us to expect

the projection of y on the entire m process to differ from the projection

of y on current and past m's, so that the nt's in (106) would not obey the

restrictions Eftmt-s=0 for all s; i.e. (106) would not be a final form.

Now Sims's theorems assure us that if the projection of yt on

{mt-j j=-m is one-sided on the present and past (as Sims was unable to

reject), then there exists a representation (i.e. a model consistent with

the data) of the form

11
m = C (L)
t t

22
Y = d(L)m + C (L)utt t
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where Eu tEs=O for all t,s, and d(L), C11(L), C22(L) are one-sided on the

present and past. This representation is one in which there is no feedback

from y to m. Thus, Sims's results are consistent with the view that there

was no systematic feedback from y to m in the sample period he studied.

Sims's work on money and income was important because it pro-

vided a valid framework for testing empirically some often-stated objec-

tions to interpreting St. Louis regressions as final form equations.

Bivariate Prediction Formulas

Continue to assume that (xt,Yt) is a jointly covariance

stationary, strictly indeterministic process with a moving average repre-

sentation

x CI(L) C (L) t E{21 22 = C(L)Y C(L) C (L) u u

where Ec tuS=0 for all t,s, {t,u t} are jointly fundamental for (x ,y ),
-1

and where C(L) exists and is one-sided and convergent in nonnegative

powers of L, so that (xt,yt) has an autoregressive representation

-l ixt EtC(L) j
or

A(L) { = t

where A(L)=C(L) - 1. Paralleling our calculations in the univariate case,
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it is easy to deduce that the projection of (x t+ t+ ) against

call it
Pt

xt+l

Yt+l

, is

p xt+l

t =ytr+1

C(L) t
L + ut

u I

= C(L)J+ A(L)

More generally, we have

P x t + j

yt+j
C(L)

fLj + A(L)L ,

To take an example, let Rn t be the rate of n-period bonds, and

assume that (Rt',Rlt) has moving average representation

(111)
Rnt = a(L)Et + S(L)ut

Rnt e(~t t

n>l

Rlt = Y(L)Et + 6(L)ut

where all lag operators are one-sided on the present and past, and

Rnt t-1Rnt = 00t + ut

R t - PtlRl =y06t + 0ut

The rational expectations theory of the termstructure asserts

x
t

Yt

x

t

ytJ

Assuming that information used to forecast R is confined
to current and past Rl 's and R 's alone. It

It nt

{xt xtt-_ 1 • ,YtYt-1, .. }'
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R = - [R + PR + + P Rnt n t t lt+1 "' t t+n-1

1  [y(L) + y(L) + ... + y(L)l
n L n-l] +  t

1 6(L) 6(L)+ i [6(L) + + ... + ] un L n-l + t

or

(112) R = I [-L-n y(L)]+ E + L 6(L)]+ u
nt n -1 + t n L1 + t

Thus, comparing (111) with (112), it is seen that the rational expectations

theory of the term structure imposes the following restrictions across

the equations of the moving average representation of the (R ntR 1 t) process:
nt' t

1 1-L-n
a(L) =i [ 1 y(L) ]

1-L

-n

1-L

These restrictions embody the content of the theory and are refutable.

Multivariate Prediction Formulas

The results of the last section extend in a natural way to

n-dimensional stochastic processes. In particular, the n-variate version

of Wold's theorem implies that if {yt } is an n-dimensional, jointly

covariance stationary, strictly indeterministic stochastic process with mean

zero, it has a moving average representation
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(113) yt = C(L)Et

where C(L) = C0 + C1 L + ... , C being an (nxn) matrix and the C 'sj J

being "square summable," where Et is an (n+l) vector stochastic process,

where the component Lit's are serially uncorrelated and mutually ortho-

gonal (at all lags), EEitjs = 0 for all t,s where i#j; and the eit's

are "jointly fundamental for yt," i.e. for each i (Yi - (Py it yt-1t-2

is a linear combination of Ejt' j=l,...,n. For the process (113) we have

the prediction formula

E t = {C(L)JFL
Ett - le We C)

where Et(x) Ex t'Yt-_1 ... Where C(L) exists, so that yt has a

vector autoregressive representation, then we also have the formula

EC(L) -1
EtYt+J J C(L) yt- L 

+

Solving Rational Expectations Models

This section summarizes the general method that John F. Muth

used to solve for stochastic processes that satisfy the restrictions

imposed by rational expectations models.

A general linear rational expectations structural model has the

form

(114) AjYtj + BjEYt j + n = 0
j=j j t
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where A. and B. are (nxn) matrices, yt is an (nxl) stochastic process,

and n t is an (nxl)-stochastic process of structural disturbances. Let nt

have a moving average (Wold) representation

(115) t= F.
(115) t j=0 t-j

= F(L)Et

where F. is an (nxn) matrix, Eis E = 0 for i#j and all t and s; and for all i,

EE itis = 0 for all t#s; and where Et is jointly fundamental for qt (i.e.

for i=l,...,n, we have nit - P[pit nt-_1 t2,... ] is a linear combination

of the E. 's, j=1,...,n).
Jt

To find a stochastic process that satisfies the stochastic

difference equation (114), "guess" that the final solution will have the

form

(116) yt = C(L)ct

Then use the prediction formula

P y -. = fC(L) Ett t+j i j + t

Substituting (114) and (115) into (116) we obtain

C*0CO
A.C(L)L j  + B. C(L) + F(L)E = 0

j=0 J t j=1 J L + t t

or

jA()()t j=1 3 t t

L
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or

-1
(117) [A(L)C(L) + [B(L- )C(L)] + F(L)]ct = 0

00 00
J -1 -

where A(L) = A.L , B(L ) = B.L -  . Equation (117) implies the

j=O0 j=1J

following equation:

(118) -A(L)-1{[B(L -)C(L)] + F(L)} = C(L)

which implicitly determines C(L) as a function of the structural parameters

A(L), B(L), and F(L). A natural way to solve (118) would be to iterate

on it; i.e. notice that given A(L), B(L), and F(L), equation (118) maps

one choice of C(L) into another. Start with a guess for C(L) and then

use (118) to get a revised guess and hope that the process converges.

(In general, there is no guarantee that it will.)

Once C(L) in (118) has been determined, we have determined the

stochastic process for yt. We shall utilize this solution method in the

next chapter.

Optimal Filtering Formula

It is convenient to have a formula for the projection of a random

variable yt against current and past values of a covariance stationary,

indeterministic random process xt. We assume that y and x t have means of

zero and are jointly covariance stationary, indeterministic processes.

That is, we seek the h.'s that characterize the one-sided projectionJ
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Co

(119) y = h.x + u
t j j t-j t

where Ex t.u = 0 for all j-0. First, suppose that x has the moving

average representation

co

x t = d(L) t  d(L) = d.L j

j=0

where {ct} is a serially uncorrelated process of innovations in x. As an

intermediate step, think of projecting yt on current and past c's:

(120) y = c.c . + u
t j=O j t-J

where Eutct-j = 0 for all j-0. We assume that xt has both a moving average

and an autoregressive representation, so that it is easy to see that

{xxtt-l...} and {Et-1t_,... } span the same space. For this reason,

u t in (119) equals u t in (120). Since the e's form an orthogonal process,

we have that the 4.'s are the simple least squares coefficients

Eytct E  Eytet-

j 2 2
Ec a

t

2 2
where a = EE . Thus we can write

t

CO

4(L) = .C Lj

j=0

This is the method that Wiener used to derive the formula we
are after. See Whittle, p. 42.
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(121) (L) 1 [ g (L)]2 ye +

where [ ]+ again means "ignore negative powers of L" and (L) is the
YE

cross-covariance generating function

co

gy(L) = E(y E )Lk
k=- t t-k

We can relate gy(L) to the cross-covariance generating function gy(L)

as follows:

yx(Z) = (Etxt-k)zkk t-kk

L (Ey d(L)E )zk

k t t-k

= (Eyt(doct-k + dlE t-k-1 + .. ))zk

=d0k(EytE tk)zk + dl(Eyt t-k-1)zk
k lyktt-k-l)

+ d 2 1(Ey t Ik2)zk
k t t-k-2

Sd0 gy() 1 E + dlz gy(z) + d2 z gye(z) +

-1
d(z )g y(z)

Thus we have

g (z)

yE (z) -
d(z )

Substituting this into (121) we obtain
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() g(L)

Q d(L1)+

So we have

1fg (L)

a d(L ) +

(11922) hg (L)t =  2d(L-1 + d(L) t t

a ld(L ) +so that in (119) we have(L) = 12 1d(L'l) d(L)

The classic application of this formula is due to John F. Muth.

Suppose that income evolves according to

x = y + E

where yt = py t- 1 + ut IP <1

and where ut and at are mutually orthogonal at all lags and serially

uncorrelated. Here x t is measured income while yt is "systematic" or

permanent income. The consumer only "sees" xt,xt-l,... and desires to

estimate systematic income yt by a linear function of xtxt-1t_ .... The

consumer is assumed to know all the relevant moments. This problem can

be solved quickly using formula (122), and the reader is invited to do so.

A more tedious method of solution is adopted in section below.
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Plot of Estimated Spectrum of Call Rate
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Table 2b
Coherence Between p and Various Series

Frequency*

1/38 C/UT
Series

Pt t-1

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

. 1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

.1000E+01

( See Table 1)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

.8575E+00

.7810E+00

.6983E+00

.6686E+00

. 6498E+00

.6336E+00

. 6179 E+00

.6025E+00

.5873E+00

.5729E+00

.5595E+00

.547 9E+00

.5388E+00

.5332E+00

.5326E+00

.5398E+00

. 5593E+00

. 5974E+00
. 6528E+00
.6857 E+00

.1368E+00

.4610E-01

.3880E-01

.3711E-01

.3627E-01

.3563E-01

.3505E-01

.3449E-01

.3393E-01

.3338E-01

.3285E-01

.3235E-01

.3188E-01

.3147E-01

.3110E-01

.3080E-01

.3055E-01

.3038E-01

.3027E-01

.3024E-01
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