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Introduction

One of the first applications of the rational expectations
theory of the term structure of interest rates was Frederick Macaulay's
study of rates on call loans and three-month time loans during the
period 1890-1914. Since the time loan rate at a given moment could be
viewed as an average of call loan rates expected over the next three
months, Macaulay reasoned that time rates should lead call rates insofar
as expectations are accurate. In particular, Macaulay asserted that
rates on 90-day time loans should lead rates on call loans by 45 days.
To see what underlies this assertion, let Rm(t) be the rate on m-period
time loans and r(t) be the call rate. Let ;(t+T) be speculators' forecast
of r(t+t) made at time t. According to the expectations theory of the
term structure, we have

1.m

R (t) = }Kf o T(E+DAT .

Assume that call loans are governed by a deterministic stochastic
process and hence are perfectly predictable from observations on their

own past. In particular, assume that

r(t) = cos wt
and

~

r(t+T) = cos w(t+T) .

Substituting into the term structure formula gives

R (t) ifm cos w(t+t)dT
m LA

%; [sin w(t+m) - sin wt] ,




1/

which with the aid of standard trigonometric formulas can be writtem—

m

2

0) Rm(t) = A cos[wt + = w] .

Formula (0) gives the response of m-period time rates to a perfectly

forecastable call rate of cos wt. The time rate is predicted to lead

n

. . . 2
2 units of time, just as Macaulay asserted;—/

the call rate by

In the period 1890-1914, money market rates were characterized
by a pronounced seasonal. Macaulay studied the seasonal components of
time rates and call rates, and found a lead of time rates over call
rates, as predicted, though he claimed that the magnitude of the lead
was only about two-thirds of that predicted by the theory.

While Macaulay's estimate of the theoretical lead of time
rates over call rates is correct for a deterministic stochastic process
(i.e., one perfectly predictable from its own past), most econometricians
agree that economic variables should be modeled as processes containing
indeterministic (imperfectly predictable) elements. For indeterministic
processes Macaulay's theoretical estimate of the lead of the time rate
over the call rate is not a correct one, though it does serve as an
interesting limiting value for the phase shift at frequencies at which
r(t) displays a very sizable buildup of spectral power. This paper
calculates the theoretical lead of time rates over call rates under the
assumption that the call rate is an indeterministic process. This
provides a correct benchmark against which to judge Macaulay's empirical
results.

In performing these calculations it is useful to exploit some
results on the effects of aggregation over time. I have chosen to make

the natural assumption that speculators had data on the call rate at a




much finer interval over time than is given by the monthly data that

were analyzed by Macaulay. I approximate this situation by assuming
that speculators in effect had continuous observations on r(t) over the
past. By positing a suitable continuous time stochastic model for r(t),
it is possible to use the rational expectations theory of the term
structure to deduce the relationship between the continuous time Rm(t)
and r(t) processes. Once this relation (projection) has been deduced, a
formula of Sims can be applied to obtain the corresponding discrete-time
model. Once this discrete-time model is available, the theoretical lead
(spectral phase) of the discrete-time rate over the discrete-time call
rate can be calculated at each frequency.
Rational Expectations with r(t) an Exogenous,
Continuous Time Process

Let Rm(t) be the yield to maturity on an m-period bond and let
r(t) be the call loan rate or the instantaneous rate of interest (also
sometimes called the force of interest). Let Ptr(t+T) be the linear
least squares forecast of r(t+T) based on information available at
time t. (I use Pt to denote ''projection onto the space spanned by

information available at time t.") Then the rational expectations

theory of the term structure asserts
1rm
(1) R (£) = =™ P r(t+1)dT .
m m t

I initially assume that speculators have available a continuous
record r(s), -® < s < t which they use to form the linear least squares
forecast of r(t+T1) based on this record. However, economists like
Macaulay do not have available for analysis the same continuous record.

Instead, to economists observations on Rm(t) and r(t) at only discrete




points in time are available. 1In particular, the economist only has

observations on the series

Il

R = Rm(t'I) t 0, 1, 2, ...

mt

|+
[+

1}

r = r(t-I) t

. 0, +1, +2, ...

where I is the sampling interval, which in the work below will be one
month. My purpose here is to characterize the relationship between the
discrete, sampled (or monthly) data Rmt and r, that will prevail where
(1) is the correct continuous time model.

I assume that the call rate r(t) is governed by the linear

stochastic differential equation

(2) o +b_ "l L4 by) T(t) = &(t)

where D = d/dt denotes mean-square stochastic differentiation and where
€(t) is a continuous time white noise with intensity (scale) parameter

2 . , . . .
0%, It is convenient to write equation (2) in the form

(3) (al + D)(oc2 +D) ... (an + D) r(t) = £(t)

where the aj's are the negatives of the roots of the characteristic

polynomial

x + b X + ... + blx + bO =0 .

For r(t) to be a stationary stochastic process, it is necessary that the
real part of each aj be positive. The solution of the stochastic

differential equation (3) is a stochastic process r(t) that is (n-1)

3/

times mean square differentiable—

byﬁf

and whose spectral density is given




o

(4) Sr(w) =

.

n
1 (u? + Wz)

j=1
Where (3) is the stochastic process governing r(t), we seek
the linear least squares predictor of r(t+T) based on current and past

r(t)'s. To motivate our expression for this predictor, write (3) for

(t+T1):
(5) (al + D)(a2 +D) ... (an + D)r(t+1) = E(t+T) .

Now since &(t) is a white noise process, it obeys 0 = Pt[g(t+T)]
(2 PIE(t+T) |x (s), s < t]). Noting that projection is a linear operator

A

and writing r(t+T) = Ptr(t+T) then permits us to write

(6) (al + D)(cx2 + D) ... (an + D);(t+T) =0,

~

which is a deterministic differential equation in r(t+T) that we solve
subject to the natural boundary conditions supplied by the record r(s),

s < t. In particular, the boundary conditions are

;(t) = r(t)
) Dr(t) = Dr(t)
pr(t) = D¥ Lr(e)

By the (n-1) times mean square differentiability of the process, the

random variables r(t), Dr(t), ..., Dn_lr(t) are known from the record

r(s), s < t. The solution of the deterministic boundary value problem

(6), (7), is (see Whittle [ 1)

~ -, T ak + D
(8) r(e+r) =[ } ., e I 1 <&“"a“> r(t) ,
j=17 -

kA \ k]




which gives the linear least squares projection of r(t+t) on r(s), s <t
as a linear combination of values of r(t) and its first (n-1) time
derivatives evaluated at time t. Equation (13) is a version of a classic
formula for continuous time prediction due to Wiener.

Performing the integration indicated in (1), we combine (8)

and (1) to arrive at

191 ~om Yt D
(9) R(6) =2 [ = @-e ) 15— |er®
j=17j k#3\ k 3
which can be written compactly as
n-1
k
(10) R(t)=<2 hD)r(t)
m k
k=0
where the hk's are determined by matching the coefficients on powers of
Dk in (9) and (10). The frequency response function of Rm to r is given
by
n-1 Kk
h(w) = ) h (i w)
k
=0
(11)
1 n 1 —djm dk + iw
TR SR DI el
j=1 ] k#3 \ k]

The spectrum of Rm(t) is linked to the spectrum of r(t) by
s.) = [ne) % s_(w
R T :

The discrete data studied by Macaulay were monthly averages.
Such data can be thought of as being formed by the two-step procedure of
first taking a moving average of the original continuous time data, and
then second sampling the resulting continuous time monthly average
series once a month. The continuous time moving average processes are

defined by




. 1/2
RO(t) = f-l/z R (t+1)dT
1/2

= f—l/Z b1/2(T) Rm(t+T)dT

1/2
ri(t) = f—1/2 r(t+1)dT

1/2
_ b (Dr(t+T)dT
=1y 12
{1 1/2 <t <1/2
where b (1) =
1/2 0 !TI <1/2

Using (*) to denote convolution, we can write the above compactly as

a
Rm(t) b * Rm(t)

1/2

r2(t) by /p * T(t)

. . . a .
The spectrum of the continuous time moving average process r (t) is

given by
. W 2
a sin 3
(12) Sr(W) = - Sr(W)
2
-
where - = H _iWTdT
W -1/2 ©
2

is the Fourier transform of the "unit box" bl/z(r).
The spectrum of the process that is formed by sampling ra(t) at unit

intervals is given by '"folding" si(w):

(13) s2(w) = Fls>(w)]

o

) sf_f (w+27k)
k==




where F[ ] is the folding operator defined by
(14) FIEw)] = ) fi(w+2'nk) .
k==
Taking moving averages on both sides of (10), we have that the
continuous-time R;(t) is related to ra(t) by (10) with Rm and r replaced
by unit averaged versions of themselves:
a ncl k). a
(15) RO(t) = ) hD ]ri(er) .
m k
k=0
Equation (15) describes the relationship between the continuous time
process R;(t) and ra(t). By applying a formula due to Sims, we can use
(15) to derive the implied model linking the discrete time, sampled

processes R;t and r:. These sampled processes are defined by

a

a
R =R (t) t=0,+1, +2, ...
ri = ra(t) t=0,+1, +2, ...

. . . a .
Sims's formula implies that Rmt has a representation

co

a _ a
Roe = ! Brfex ™ %
k==
where E etri_k = 0 for all t and k, and where
™
_ 1 +iwk
Hk = Zﬂ”f—n H(w)e dw .

The frequency response function H(w) is given by Sims's formula

a
s (w)
(16) H(w) = F|h(w) — .

S: (w)

Writing H(w) in polar form

H(w) = G@)el® ™




gives us a formula for the phase lead 6(w) in radians, which is the
counterpart for our indeterministic model of the phase shift calculated

by Macaulay.
Estimation

Given observations on the discrete time, monthly averaged
data, we propose to estimate the parameters 0., ..., Gh of the underlying
continuous time process. The spectral density of the monthly average,
discrete time data is related to these parameters by

a 9 sin %— 2 1
(17) Sr(w) = O°F

2, 2
%’ I (o, +w)
j=1

The following frequency-domain procedure is asymptotically equivalent to

maximum likelihood estimation.éj First, define the Fourier transform of

a
LI t=1, ..., T as

r(w,) =
J)
AN
for WB T >
The periodogram I(wi) is defined as

1(w) = Ir(wj>|2

We choose O ooy Gn to minimize the criterion (see Hannan [ 1)

l)
T-1 I(w.)

. ———1'— ’
Lo a
j=0 Sr(wj)

holding 02 fixed.

That is, with respect to @ an we minimize

10t




2m,
where wj =7 > j=0,1, ..., T.

=

Sample Empirical Results

Figures 1 and 2 show graphs of the spectra of monthly average
call rate and time rate over the period 1890-1913, calculated using a
Parzen window and a maximum lag of 48. Figure 3 shows the phase statistic
between the call rate and time rate (a negative phase means that the
time rate leads the call rate). At the seasonal frequency w = .52 (the
12-month periodicity) the phase indicates that the time rate leads the
call rate by only .13/.52 * 1/4 months, which is much smaller than the
1 1/2-month lead predicted by Macaulay's calculations. It is also less
than the lead of about one month that Macaulay had actually estimated
empirically. This last discrepancy could be explained either by the
"window bias'" in our Parzen estimator (which in effect averages across
the periodogram, thereby including a bias) or else by some defect in
Macaulay's procedure. I wouldn't venture to guess which at this point.

For the period 1890-1913, T estimated the parameters of a
thirteen-order differential equation using the method of the previous
section. (Actually only twelve parameters were estimated, a single real
root of o, = .5108 was imposed in order to prewhiten the series). In

1

place of the periodogram ordinates that appear in the minimization
T-1 I(w.)
. S_(w,
j=0 r(J)

density reported above, this in order to economize on computations.

criterion , we actually used the estimates of the spectral




Experimentation with the alternative procedure that actually uses the
periodogram ordinates showed that these two procedures gave very similar
parameter estimates, as one would expect.

Our parameter estimates were as follows:

Real Part Imaginary Part

o = .5108000000 0.0000000000
o, = .0000000238 0.3879150461
oy = .0000000238 -0.3879150461
@, = .0000000355 1.2048578216
= .0000000355 -1.2048578216

= .0000000203 1.9119125566

= .0000000203 -1.9119125566

= .0000000091 2.4637453220

= .0000000091 -2.4637453220

= .0000000001 3.1087259138

= .0000000001 -3.1087259138

= .0000000001 2.8673912625
al3 = .0000000001 -2.8673912625

Figure 5 reports the gain and phase discrete time H(w) function
implied by these estimates in conjunction with formula (16). Here a
positive phase means that the time rate leadsé/ (excuse the break with
the convention used in our earlier empirical results, an accident of
the order in which the series were entered in a computer program). The
phase is approximately linear with slope very nearly the value of
1.5 months that is predicted by Macaulay's deterministic calculations.
Notice that neither the phase nor the gain resembles the configuration

displayed by our empirical phase and gain diagrams.




Figure 6 graphs the discrete time H

X distributed lag coefficients.
Notice that the lag distribution is two-sided, though most of the weight
is placed on current and the first three past values. It is interesting
that the phase statistic is approximately linear despite this not being
a fixed delay system.

In all, these results indicate that the deterministic calculations
of phase made by Macaulay seem to provide a quite good approximation to

our continuous time indeterministic calculations, if not to the actual

date. That this is so surprised me.
Rational Expectations with Endogenous Call Rate

The preceding calculations proceed on the assumption that the
call rate r(t) in continuous time is a process that is strictly econo-
metrically exogenous with respect to the m period rate Rm(t). That is,
linear least squares forecasts of r(t) based on current and past r(s)
and Rm(s) are posited to depend only on the available record on r(s), so
that Rm(s), s < t, is assumed not to aid in predicting r. Here that
restrictive assumption is relaxed, as I take up the general case in
which past observations on Rm do help predict r.

I assume that the continuous time vector process (r(t), Rm(t))

is generated by the stochastic differential equation system
(18) DZ(t) = AZ(t) + Bu(t)

where




1.
1st (n+1)St
column column
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Here ul(t) and uz(t) are mutually orthogonal white noises that are
i = - > PR
assumed to satisfy Pt_sul(t) Pt—su2(t) 0 for all s 0. Writing out

(18) we have the pair of stochastic differential equations

Dnr(t) = alr(t) + a2Dr(t) + ...+ anDn‘lr(t)

n—
+a R (t)+...+a,D lRm(t) +b

9 (t) + b12u2(t)

11%1

D'R_(£) = e;r(t) + cDr(t) + ... + an“‘lr(t)

c R () + ...+ cann—lRm(t) + by u (£) + byou, ()

u
2171
The white noise vector u(t) is assumed to have 2n x 2n "intensity'" matrix V.

From the vector z(t) we can recover r(t) and Rm(t) according

to
r(t) = f z(t)
(1x2n)
R (t) = d z(t)
n (1x2n)
where f=11 0 ... 0

d=(0 0...010...)
t st
(n+1) column .

The solution of the vector stochastic differential equation
(18) can be written

+T

t
z(t+1) = eATz(t) + f . eA(t+T—S) Bu(s)ds
© n
where eA = z AT Since P, u(t+s) = 0
n=0 ™ t

for s > 0, we have

(19) Z(t+1) = P 2(t4T) = AT ()
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Thus, our formula for the linear least squares predictors of

Rm(t+T) and r(t+T) are

(20) ﬁm(t+r) = d T2 ()

;(t+T) = f eATz(t) .

Let A = P!\P--l where M is a diagonal matrix of the eigenvalues of A and

the columns of P are the eigenvectors of A. Then (20) can be written

1

. re
R (t+7) = d Pe ()

At -
r(t+t) = £ Pe P a(t) .

These formulae are extensions of (9) and express the optimal T-ahead
predictor as a linear combination of (mean-square) derivatives of Rm(t)
and of r(t) of orders from zero to (n-1). For the univariate problem
analyzed in (9), the eigenvalues in A would equal the roots of the
characteristic polynomial, the aj's, that appear in (9). Under the

rational expectations theory of the term structure, we want

1 n
R () == [ r(t+n)dr
or
(21) R (6) = £-12 [ eATarlace)
m m 0 e Z .

From (20) we have that for s > 0

A(T+s)z(t_s)

(22) Pt—s Rm(t+T) = de

But from (21) we also have

m
1 AT As
P _SRm(t+T) f[m fO e drtle z(t-s)

t

m

(23) = ] fo AT 41, (k-g)

=l
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Comparing (22) and (23), we see that the rational expectations theory of
the term structure imposes the following restrictions across rows of

Az
1 M A(T+s) As
(24) f-afoe at = de"° s >0 .

It is instructive to consider the following algorithm for

synthesizing an A matrix that satisfies the restriction (24). Given a
. th . th . .
fixed n = row of A, the algorithm calculates the 2n ~ row that satisfies
(24).
. . . th th

First, f£ill in the n row of A and set the 2n row equal to

a row of zeroes. Call this initial A matrix Ao.
A
Second, form a matrix e 1 by setting all of its rows except
A

the Znth equal to the corresponding rows of e ~, and setting the Znth

row according to

A n A _(t+1)
dee L = f[l_f 0 dt ] .
n 0
Ay Ay
Once e is available, Al can be calculated as A1 = log e =~ where
© n
(25) log eA = 2 l(I—eA) .
n=1 "

Then iterate on the second step until the algorithm converges.
Convergence is assured if the eigenvalues of A have negative real parts.
Actually, there is no need to calculate the sum in (25).
. . A s .
Instead, assuming that the eigenvalues of e are distinct, we can write
A
e as

A

e = PAP"l

where the columns of P are the eigenvectors of eA and A is a diagonal

. R . A
matrix consisting of the eigenvalues of e . Then we have
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log Ao log A pL

where log A is the diagonal matrix consisting of natural logarithms of
the corresponding elements of A. This last equation follows from
noting that

n
- (I-eA)

1
Il ~18
=

log eA

I
~1
|

-1.n
= (I-PAP )

) %»P(I—A)HP'l

n=1

p] -t
n=1

P log A P—1 .

. . . A . e e
Similarly, there is no need to calculate e via an infinite

sum. Instead, write

A =prpt

where N are the eigenvalues of A and the columns of P are the eigenvectors

of A. Then

A =
eA = Pe P 1 .
| This formula is useful in calculating the right-hand side of (21) as

oAt

1 -1
£ . P[S fo e dt]p T .

In particular, to use our algorithm we need to calculate




n

0

/

o AT -
eA(T+l)dT _ fo Pe ( +l)P ldT

A

= P{l_ [e)\i(n-}-l) - exi]}P_l .
i

The Discrete-Time Model When the
Call Rate is Econometrically Endogenous

Since the solution of the stochastic differential equation (2)
is

T
eA(t+1’—s)

t+
z(t+1) = eATz(t) + jt Bu(s)ds

where E u(s) . z(s-v) = 0 for all v > 0, we have that

C (D) = Ea(t+D)z(t)" = ATEz(D)z (1)
or
26) ¢ (0 =ec (0,

so that the covariogram matrix CX(T) obeys the systematic part of the
matrix differential equation (18) with initial condition given by

CZ(O). It can be shown that CZ(O) is the solution of the equation
27) 0= ACZ(O) + CZ(O)A' + BVB'

where V is the "intensity'" matrix of the vector white noise u(t). (See
Kwakernaak and Sivan, p. 104.)

Writing out CZ(T), we have that
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n-1
Cr(T) Cr,Dr(T) C 9 (t) ... CrR(T) Cr,DR(T) .. C—rD R(T)
r,Dr
C (t) C (1) C (t)
Dr, R -
r,r Dr,Dr Dr,Dn 1R
c (t) = | C (1) C (t)
2 -
z Dr,r Dzr,Dn 1
CRr(T)
CpR,r ()
c __ (1) c 4 (™
p™ I, r p™ 1 p™ IR

where CV y(T) = E[v(t+t)y(t)], and v(t) and y(t) are two scalar stochastic
3
processes.
The spectral density matrix of the vector z process is given

by
(28) Y (w) = (jWI-A) "' BVB' (—jwI-A") T .
Z

The spectral densities of the sampled moving average processes R; and

a . . . .
r, and their cross-spectrum are derived by folding the corresponding

elements of z (w), after multiplying them by |sin (W/Z)/(W/Z)I2 to

z
account for the moving average. In particular, we have
| . owl 2
sin 5
SR(W) =F w SR(W)
2
—
. w2
sin —2'
Sr(w) =F v Sr(w)
2
. W
sin 5
SRr(w) =F - SRr(w)

-
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where SRr(W) is the cross-spectrum of the moving average, sampled data
and SRr(W) is the cross-spectrum between the continuous processes.

Writing SRr(w) in polar form

S (W) = Ty et @)

gives the phase lead 6(w) at each frequency. The parameter 6(w) is the
counterpart for this stochastic model of the theoretical phase stochastic

that Macaulay calculated for the deterministic model.
Estimation

Define the cross-spectral matrix

a a
Sr(w) SrR(w)

S(w) = a a
SRr(W) SR(W)

whose elements obey (24) and (28); also define the periodogram matrix

and
r ) | r @R (w,)
] ] J
I(w,) = * 2
R(w.)r (w. R(w,.
j WOr () RGe) |
T a iw, t 2m,
where R(Wj) = tzl R_.e I vy = _Tl,,

j=0,1, ..., T. Then estimates of the parameters of the continuous time
model (18) under the restrictions (24) can be obtained by minimizing

-1
)

-1
Lo tr(I(wj)S(wj) )

which leads to estimates that are asymptotically equivalent to maximum

7/

likelihood estimates (see Hannan )
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Footnotes

l-/Write sin w(t+m) - sin wt =
%{ [elw(t+m) _ e-lw(t+m) _ e1wt + e-lwt]
_ %Z [(elw(t+m) + e—lwt) _ (e—lw(t+m) + eth)]
| vy dw(ed)  —iw(e)
_ 2
= §E~[e (e + e )
vy —dw(tdy) (e
-e (e + e )]
ive  —iwy
_1 Y 2 n
=53 [e e 1.2 cos[wt +-§w]
= 2 sin w = . cos[wt +2 w]
2 2
= A cos[wt + %-w]

where A = 2 sin w & .
2
g-/To convert the phase lead of w %-radians to time units, we
%u The term cos wt peaks at
t=0, while the term A cos[wt + %-w] peaks at t given by wt + %-w = 0 or
m

. . m
5 time units of cos wt over A cos(wt + E-w).

divide it by angular frequency w to get

t = %u Thus, the lead of

3 . . . .
—/A stochastic process x(t) is said to be mean-square continuous

if 1im E{|x(t+€) - x(t)|2} = 0 for all t. A process is mean-square

e >0
continuous if its covariogram is continuous. A stochastic process x'(t)
is its mean-square derivative if

x(t+e) -
€

lim E{[ x(6) _ )% =0

e~>0
for all t. A sufficient condition for a stationary stochastic process
x(t) to have a mean-square derivative is for its covariogram c(T) to be
twice differentiable. A stationary process is n-times mean-square
differentiable if its covariogram is 2n times differentiable. See

Papoulis [ ]. In terms of its spectral density sx(w), a sufficient

condition for a process x to be n times mean-square differentiable is
fee)

2n
< oo
f_m w sx(w) .
4/ th . R .
— If r(t) follows an n order linear stochastic differential
equation, then the discrete-time sampled processing r, follows a mixed

th . st .
n  order autoregressive, (n-1) order moving average process. To see
this, use the method of partial fractions to write sr(w) as
c.
1
n c, n 20, 2a,
= J = J J
5 .(w) = ) )

5oL (o + w?)  §=1 (a? .
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2
a

I (a? + wz) 9 9
j#k J Wo=—a

where ck é

The covariogram of r, being the inverse Fourier transform of S_(w),
then obeys r

n fc, -a, |1
Cr(T) = Z L )e ,T real.

. 2a.,
j=1 j

Sampling cr(T) at the integers gives

n k. IT’
c (1) = ) —1—2 A, , =0,+1, +2, ...
j=1 1-A% J
J
-0, c, k.,
where we have set A, = e J, =4

j 20, 2

j l—Aj

Then the spectral density of the discrete time sampled process r, is
the Fourier transform of the sampled covariogram

n kj
5.(2) = .z -1
j=1 (l—ij)(l-Ajz

)

-iw
where z = e .

Putting the above over a common denominator gives

o -1
) k. T (1-A,z)(1-A,z )
321 3 1fq k k
S_(z) = ] ,
r n _l
I (1-),z)(1-A.z )
j=1 j N

. . . . . . st
which is a rational spectral density, one characteristic of an (n-1)

order moving average, nth order autoregressive process.

E/The a's are only locally identifiable (see Phillips [ ]).
In order to achieve global identification, I have imposed the condition
that the imaginary parts of the a's are bounded by + II. This condition
is sufficient to achieve identification and has the effect of asserting
that peaks in the spectrum on [-II, TI] aren't aliases of peaks at higher
frequencies.

é-/To indicate what our conventions imply about the sign of

phase, let y = Jh(t)x(t-T)dT and set x(t) = 2 cos wt = (e ™Yy |

We then have
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_ fh(T)[eiw(t_T) +fe_iw(t_T)]dT
eiwt fh(T)e—indT + e—iwt fh(T)é+indT

eIWth(w) + e—thh(—w)

<
T
] |

where h(w) = fh(r)e_iWT. Write h(w) = |h(w)|eie(W), then

gy = eth|h(w)Ieie(W) + e—thlh(w)|e-ie(W)

t
_ Ih(w)l(el(Wt+e(w)) + e—i(wt+9(w)))
= |h(w) |cos(wt + 8(w)).
The variable Y, peaks at wt + 6(w) = 0 or t = -8(w)/w. A positive

phase statistic thus indicates that the output Ve leads the input X -
7 . . . A . .
—/Agaln, we are imposing the condition that the imaginary
parts of the eigenvalues of A are between -Il and +II in order to achieve
global identification.
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Figure1 Plot of Estimated Spectrum of Call Rate
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Figure3 Plot of Phase
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Figure5a Gain of Discrete Transfer Function | H(w) | Figure 5b Phase of Discrete Transfer Function
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Figure6 Discrete Distributed Lag Weights
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