WP-73

AN INQUIRY INTO THE CONDITIONS
UNDER WHICH A SINGLE ENDOWMENT
TRUST FUND WILL PROVIDE PERPETUAL
FUNDING FOR AN EXPENSE
STREAM GROWING AT A COMPOUND
ANNUAL RATE

By Preston Miller Ron Kaatz

Research Department Federal Reserve Bank of Minneapolis January 26, 1970

THE PROBLEM

A single contribution trust fund is to be established. Determine the minimum combination of endowment and rate of return required to provide a specified annual income stream. The annual income must be sufficient to cover the fund managers fee and a given annual expense stream which grows at a constant annual rate. The fund and expense stream last forever (in perpetuity).

NOTATION

t = time, measured in years

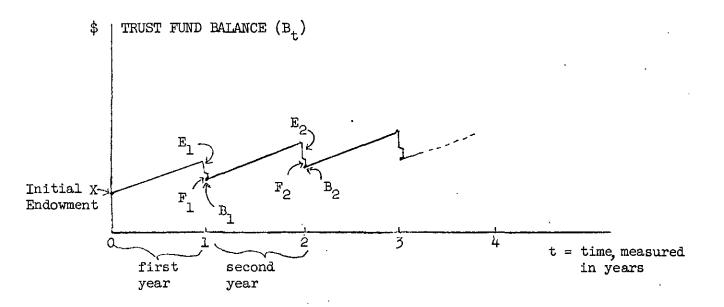
x = endowment made at t = 0

 $r \equiv annual rate of return earned by the fund$

f = percentage rate used to determine fund managers fee

 $F_{t} \equiv management$ fee due at the end of the tth year

 E_{γ} \equiv expense amount due at the end of the first year


 $E_{t} \equiv \text{expense amount due at the end of the t}^{th} \text{ year}$

i = annual rate of growth of the expense stream

 B_t = balance in the trust fund at the end of the t^{th} year, after paying the expense amount (E_t) and management fee (F_t)

FURTHER DESCRIPTION OF THE PROBLEM

Graphically we're dealing with a world that looks like this . . .

At t=0 (the beginning of the first year) an initial endowment of X dollars is provided. At the end of the first year the fund has earned income and capital appreciation at the rate of r%. The first year expense amount (E₁ dollars) and management fee (F₁ dollars) are paid leaving a fund balance of B₁ dollars. The second year begins (with balance \$B₁). Income and appreciation accrue at r% during the year and at t=2 the annual expense (\$E₂) and the management fee (\$F₂) are paid leaving a balance of \$B₂. The process is repeated year after year. One of two outcomes will occur:

Outcome A: Income and appreciation of the fund are adequate to cover the expense stream and management fee in perpetuity.

Outcome B: The rate of return and/or the endowment is not adequate and eventually the fund balance will deplete to zero.

The expense fund grows at an annual rate of i% . . .

$$E_{t} = E_{1} (1 + i)^{(t-1)}$$

The management fee is f% of the sum of the balance at the beginning of the year plus income and appreciation earned during the year . . .

$$F_{t} = f (B_{t-1} + r_{B_{t-1}})$$

SOLUTION

Given particular values for the management fee rate (f), the annual growth rate of the expense stream (i) and the beginning expense amount (E_1) , two conditions must be satisfied in order to bring about outcome A (i.e. provide perpetual funding for the expense stream).

The two conditions are:

1.
$$r > \frac{f + i}{1 - f}$$

2. $X \ge \frac{E_1}{(1 + r)(1 - f) - (1 + i)}$

The tables on the following pages provide minimum combinations of rate of return and endowment required to provide perpetual funding.

 $[\]frac{1}{2}$ /Proof of these conditions is given in Appendix A

^{2/}The computer program use to derive the tables is given in Appendix B.

FUND MANAGERS FEE RATE = 0.2%

	_	· .		· ·					
		Annual Rate of Growth of Expense Stream (i%)							
		6%	7%	8%	9%	10%	11%		
	5%								
	6%					· ·			
Annual	7%	127.23							
Rate of Return	8%	56.05	127.55]				
of the Fund (r%)	9%	35.95	56.12	127.88					
rulia (1%)	10%	26.46	35.97	56.18	128.21				
	11%	20.93	26.47	36.00	56.24	128.53			
	12%	17.31	20.94	26.48	36.02	56.31	128.87		
	13%	14.76	17.32	20.95	26.50	36.05	56.37		
	14%	12.87	14.77	17.33	20.96	26.51	36.08		
,	15%	11.40	12.87	14.77	17.33	20.96	26.53		

FUND MANAGERS FEE RATE = 0.3%

	ļ	Annual Rate of Growth of Expense Stream (i%)							
·.		6%	7%	8%	9%	10%	11%		
	5%								
	6%								
Annual	7%_	147.28					,		
Rate of Return	8%	59.67	147.93						
of the	9%	37.41	59.77	148.59					
Fund (r%)	10%	27.25	37.45	59.88	149.25				
·	11%	21.43	27.27	37.50	59.99	149.93			
•	12%	17.66	21.44	27.29	37.54	60.10	150.60		
	13%	15.01	17.66	21.45	27.31	37.58	60.20		
	14%	13.06	15.02	17.67	21.47	27.34	37.62		
•	15%	11.55	13.06	15.03	17.68	21.48	27.36		

FUND MANAGERS FÉE RATE = 0.4%

4		· · · · · · · · · · · · · · · · · · ·		·			·		
		Annual Rate of Growth of Expense Stream (i%)							
	į	6%	7%	8%	9%	10%	11%		
	5%	., .		·			·		
	6%								
Annual	7%	174.83	·						
Rate of Return	8%	63.78	176.06		:				
of the	9%	39.00	63.94	177.30					
Fund (r%)	10%	28.09	39.06	64.10	178.57				
	11%	21.95	28.12	39.12	64.27	179.86			
	12%	18.01	21.97	28.15	39.18	64.43	181.16		
	13%	15.27	18.02	21.99	28.18	39.25	64.60		
İ	14%	13,26	15.28	18.04	22.01	28.22	39.31		
	15%	11.71	13.26	15.29	18.05	22.03	28.25		

TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS FEE RATE = 0.5%

	·	<u>'.</u>	Annual Rate	e of Growth	of Expense	Stream (i%	,)
		6%	7%	8%	9%	10%	11%
	5%	· ·				\ <u></u>	
	6%						
Annual Rate of Return of the Fund (r%)	7%	215.05	·				
	8%	68.49	217.39				
	9%	40.73	68.73	219.78			
	10%	28.99	40.82	68.97	222.22		
	11%	22.50	29.03	40.90	69.20	224.72	
	12%	18,38	22 52	29.07	40.98	69.44	. 227.27
	1 3%		18.40	22.55	29.11	41.07	69.69
•	14%	13.46	15.55	18.42	22.57	29.15	41.15
	15%	11.87	13:47	15.56	18.43	22.60	29.20

FUND MANAGERS FEE RATE = 0.6%

•		Annual Rate of Growth of Expense Stream (1%)							
•		6%	7%	8%	9%	10%	11%		
	5%	74 Y							
·	6%			L					
Annual	7%	279.33							
Rate of	8%	73.96	284.09						
Return of the Fund (r%)	9%	42.63	74.29	289.02					
	10%	29.94	42.74	74.63	294.12		,		
	11%	23.07	29.99	42.84	74.96	299.40			
	12%	18.77	23.14	30.05	42.96	75.30	304.88		
	1 3%	15.82	18.79	23.14	30.10	43.07	75.64		
.]	1 4%	13.67	15.83	18.81	23.17	30.16	43.18		
Ì	15%	12.03	13.68	15.85	18.83	23.20	30.21		

۲ _{ها اله} ۲

APPENDIX A

THE MATHEMATICS

The Process

(P-2)
$$E_{t}=E_{1}(1+i)^{t-1}$$
 $t=1,2,...$

(P-3)
$$B_t = B_{t-1}(1+r)(1-f)-E_t$$
 $t=1,2,...$

Conditions on the Variables and Parameters

$$(C-1)$$
 $t=0,1,2,3,...$

$$(C-4)$$
 $0 \le E_1 \le \infty$

Theorem 1: Given $(P-1), \ldots, (P-3)$ and $(C-1), \ldots, (C-6)$ the fund balance at the end of the t^{th} year is...

$$B_{t} = X[(1+r)(1-f)]^{t} - E_{1}\sum_{k=1}^{t} [(1+r)(1-f)]^{(t-k)}(1+i)^{(k-1)}$$

for t=1,2,...

Proof (by induction):

- A. By (P-1), (P-3), and inspection it is true for t=1
- B. Assume it is true for t=M.

Then by assumption...

$$B_{M} = X [(1+r)(1-f)]^{M} - E_{1} \sum_{k=1}^{M} [(1+r)(1-f)]^{(M-k)} (1+i)^{(k-1)}$$

by (P-3)

$$B_{M+1} = B_M(1+r)(1-f) - E_{M+1}$$

by (P-2)

$$B_{M+1} = B_M(1+r)(1-f)-E_1(1+i)^M$$

by the induction assumption...

$$B_{M+1} = X[(1+r)(1-f)]^{M}(1+r)(1-f) - E_{1}(1+r)(1-f) \sum_{k=1}^{M} [(1+r)(1-f)]^{(M-k)}(1+i)^{(k-1)}$$

$$-E_{1}(1+i)^{M}$$

$$B_{M+1} = X[(1+r)(1-f)]^{M+1} - E_1 \begin{cases} M \\ \Sigma \\ k=1 \end{cases} [(1+r)(1-f)]^{(M+1)-k} (1+i)^{[k-1]} \\ + (1+i)^{M} = X[(1+r)(1-f)]^{M+1} - E_1 \begin{cases} M+1 \\ \Sigma \\ (1+r)(1-f) \end{cases} [(1+r)(1-f)]^{(M+1-k)} \\ (1+i)^{k-1} - [(1+r)(1-f)]^{(1+i)} + (1+i)^{M} \end{cases}$$

$$B_{M+1} = X[(1+r)(1-f)]^{M+1} - E_{1} \sum_{k=1}^{M+1} [(1+r)(1-f)]^{[(M+1)-k]} (1+i)^{[k-1]} \quad q.e.d.$$

Theorem 2: Outcome A will occur if and only if $B_t > 0$ $V_t = 1, 2, ...$

Proof:

1. Necessary. Outcome A asserts
$$B_t$$
 (1+r)(1-f) $\geq E_{t+1}$ $\forall_{t=1,2,...}$

Where O≤E_{t+1}

by (C-4) and (P-2)

0≤f<1

by (C-3)

0≤r

by (C-2)

if
$$B_t = 0$$
 then $B_{t+1} = -E_t < 0$

So Outcome A \Rightarrow B_t>O t=1,2,...

2. Sufficient.

to show that

$$\mathbb{B}_{p} > 0 \forall p = \mathbb{B}_{q} (1+r)(1-f) \ge \mathbb{E}_{q+1} \quad \forall q$$

is equivalent to showing

 $B_q(1+r)(1-f) \le E_{q+1}$ for some $q \Rightarrow B_p \le 0$ for some p.

from (P-3)

$$B_{q+1} = B_q(1+r)(1-f) - E_{q+1}$$
therefore $B_q(1+r)(1-f) < E_{q+1} \Rightarrow B_{q+1} < 0$ q.e.d

By rearranging the equation of Theorem 1

$$B_{t} = \left[(1+r)(1-f) \right]^{t} \left[X - \frac{E_{1}}{1+i} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} \right]$$

Theorem 3: Let the vector $\langle f, E_1, i \rangle$ have Domain £ given by (C-3), (C-4), (C-5).

For any
$$D = \langle f, E_1, i \rangle \in \mathcal{L}$$

$$B_{t} > 0 \quad \forall_{t=1,2,3,...} \Leftrightarrow \begin{cases} r > \frac{f+i}{1-f} & \text{Condition 1} \\ \text{and} & \text{E}_{1} \\ X \geq \frac{1}{(1+r)(1-f)-(1+i)} & \text{Condition 2} \end{cases}$$

Proof:

Necessary A)
$$\frac{1+i}{(1+r)(1-f)} > 0$$
 by (C-2), (C-3), (C-5)

Given Des., $B_t > 0 \quad \forall_+=1,2,...\Rightarrow$

B)
$$X > \frac{E_1}{1+i} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k \quad \forall_t=1,2,...$$

A, B, and $(C-6) \Rightarrow$

C)
$$\lim_{t \to \infty} \sum_{k=1}^{t} \frac{1+i}{(1+r)(1-f)}^{k} < \infty$$

$$C \Leftrightarrow -1 < \frac{1+i}{(1+r)(1-f)} < 1$$

. since A holds by assumption,

$$C \Rightarrow \frac{1+i}{(1+r)(1-f)} < 1$$

or equivalently $r > \frac{f+i}{1-f}$ Condition 1

Condition
$$1 \Rightarrow \lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} = \frac{1+i}{(1+r)(1-f)-(1+i)}$$

Since this series is strictly monotonically increasing, it follows that the limit of the series is its least upper bound:

$$\forall_{t=1,2,3}, \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} < \frac{1+i}{(1+r)(1-f)-(1+i)}$$

and
$$\forall y, y < \frac{1+i}{(1+r)(1-f)-(1+i)} \Rightarrow \exists t * \geq 1 \ni$$

$$\forall_{t} \geq t* \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} > y$$

Note: $\{B_t > 0 \mid \forall_{t=1,2,...} \Rightarrow \text{Condition 1}\}$ has been shown for any X

 $B_t > 0 \quad \forall_{t=1,2,...}$ and Condition $1 \Rightarrow$

$$X \ge \frac{E_1}{1+i} \lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k$$

or equivalently

$$X \ge \frac{E_1}{(1+r)(1-f)-(1+i)}$$
 Condition 2

Sufficiency

Suppose
$$r > \frac{f+i}{1-f}$$
 and $X \ge \frac{E_1}{(1+r)(1-f)-(1+i)}$

then (1+r)(1-f)>1,

$$0 < \frac{1+i}{(1+r)(1-f)} < 1,$$

$$\lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} = \frac{1+i}{(1+r)(1-f)-(1+i)}$$

$$\lim_{t \to \infty} \sum_{k=1} \left[\frac{1+t}{(1+r)(1-f)} \right] = \frac{1+t}{(1+r)(1-f)-(1+i)}, \quad \text{and} \quad X \Rightarrow \frac{E_1}{(1+r)(1-f)-(1+i)}$$

$$\therefore B_t = \left[(1+r)(1-f) \right]^t \left[X - \frac{E_1}{1+i} \sum_{k=1}^t \left[\frac{1+i}{(1+r)(1-f)} \right]^k \right] > 0 \quad \forall_{t=1,2,\dots} \quad q.e.d.$$

Corollary

$$B_t > 0$$
 $\forall_{t=1,2,3} \Rightarrow \lim_{t \to \infty} B_t = \infty$

Proof:

$$B_t > 0 \quad \forall_{t=1,2,3,...} \Rightarrow r > \frac{f+i}{1-f} \quad \text{and by Theorem } 3 \times \frac{E_1}{(1+r)(1-f)-(1+i)}$$

Case 1

Suppose
$$r > \frac{f+i}{1-f}$$
, $X > \frac{E_1}{(1+r)(1-f)-(1+i)}$, and let $\Delta = X - \frac{E_1}{(1+r)(1-f)-(1+i)} > 0$,

then
$$\lim_{t\to\infty} B_t = \lim_{t\to\infty} \left[(1+r)(1-f) \right]^t \lim_{t\to\infty} \left[X - \frac{E_1}{1+i} \sum_{k=1}^t \left[\frac{1+i}{(1+r)(1-f)} \right]^k \right] = \infty \cdot \Delta = \infty$$

Case 2

Suppose
$$r > \frac{f+i}{1-f}$$
 and $X = \frac{E_1}{(1+r)(1-f)-(1+i)}$, then

$$B_{t} = (1+r)(1-f)^{t} \left[\frac{E_{1}}{(1+r)(1-f)-(1+i)} - \frac{E_{1}}{1+i} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^{k} \right]$$

$$\frac{B_{t}}{E_{1}} = \frac{\left[(1+r)(1-f)\right]^{t}}{(1+r)(1-f)-(1+i)} - \sum_{k=1}^{t} (1+i)^{k-1} \left[(1+r)(1-f)\right]^{t-k}$$

let b=(1+r)(1-f)

d = (1 + i)

then b>d>1 by (C-5) and Condition 1

$$\frac{B_t}{E_1} = \frac{b_t^t}{b-d} - \sum_{k=1}^t d^{k-1} b^{t-k}$$

$$\frac{B_{t}}{E_{1}} = \frac{b_{t}^{t} - \sum_{k=1}^{t} d^{k-1}b^{t-(k-1)} + \sum_{k=1}^{t} d^{k}b^{t-k}}{b-d}$$

let
$$C = \frac{b-d}{E_1} > 0$$
, then $CB_t = b^t \int_{k=1}^{\infty} 1 - \sum_{k=1}^{t} \left(\frac{d}{b}\right)^{k-1} + \sum_{k=1}^{t} \left(\frac{d}{b}\right)^k$

$$^{CB}_{t} = b^{t} \left[1 + \left(\frac{d}{b} \right)^{t} - 1 \right]$$

$$CB_t = d^t$$

or
$$B_t = \frac{d^t}{C}$$

$$\lim_{t \to \infty} B_t = \lim_{t \to \infty} \frac{d}{c} = \infty . \qquad \text{f. e.d.}$$

```
3 E1=1
5 \text{ FOR H} = 1 \text{ TO } 5
10 F = (H+1)*(.001)
12 PRINT "FEE % =" F
13 WRITE (1,14)
14 FORMAT(11X,".06",7X,".07",7X,".08",7X,
15 FOR Y = 1 TO 11
20 R = .04 + Y*(.01)
25 \text{ FOR Z} = 1 \text{ TO } -6
30 T = .05 + Z * (.01)
35 IF R > (I+F)/(I+F) THEN 45
40 \text{ X(Z)} = 0
42 GO TO 50
45 \times (7) = E1/((1+R)*(1-F)-(1+I))
46 \times (Z) = INT(X(Z)*100 + .5)/100
50 NEXT Z
55 WRITE (1,60) R,X(1),X(2),X(3),X(4),X(5),X(6)
60 FURMAT(F5.2,6(4X,F7.2))
65 NEXT Y
70 PRINT
71 PRINT
72 PRINT
75 NEXT H
```

BO END