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Abstract

Social learning plays an important role in models of productivity dispersion and long-
run growth. In economies with a continuum of producers and unbounded productivity
distributions, social learning can sometimes leave long-run growth rates completely in-
determinate. This paper modifies a model in which potential entrants attempt to imitate
randomly selected incumbent firms by introducing an upper bound on how much en-
trants can learn from incumbents. When this upper bound is taken to infinity, a unique
long-run growth rate emerges, even though the economy without upper bound has an
unbounded continuum of balanced growth rates.



1 Introduction

Many models of long-run growth rely on some form of learning from others. In two
relatively recent strands of the literature, productivity levels are widely dispersed and
learning from more productive agents can only happen in random meetings—potential
entrants meeting random incumbent firms in Luttmer [2007], and random meetings be-
tween different producers in Alvarez, Buera and Lucas [2008], Lucas [2009], Lucas and
Moll [2014], and Perla and Tonetti [2014]. Although designed to be tractable and explain
both long-run growth and persistent heterogeneity in productivity, these models have
steady state predictions that are highly indeterminate. Initial productivity distributions
with a thick right tail lead to faster growth than initial productivity distributions with a
thin right tail. And for any positive growth rate, no matter how high, there is an initial
productivity distribution with a sufficiently thick right tail that makes that growth rate
part of a balanced growth path. More dispersion in productivities implies more signifi-
cant social learning opportunities, and this naturally makes faster growth possible. But
intuition suggests that this should be a transitory phenomenon that goes away as the left
tail catches up with the right tail. Instead, somewhat surprisingly, high levels of disper-
sion and growth can persist. It is as if that right tail of the productivity distribution is an
inexhaustible fount of knowledge.

This paper shows that this type of severe dependence on initial conditions can be
viewed as an artefact of an assumption that agents have unbounded capacities to learn
from others. In the case of Luttmer [2007], firms attempting to enter can imitate any
randomly sampled incumbent firm, no matter how productive the incumbent. In the
current paper, potential entrants can only copy incumbents that are not too advanced
relative to the baseline of the least productive firms in the economy. The least productive
firms are exiting all the time, and the assumption is that the productivity of exiting firms
is freely available to every potential entrant. Potential entrants can improve this minimal
level of productivity to the productivity of a randomly sampled incumbent, provided the
improvement is not too large.1

This social learning mechanism introduces a cap on learning by potential entrants. The
type of phenomena that can occur in such an economy turns out to depend in interesting
ways on how tight this cap is. If it is sufficiently tight, the economy may not have a
balanced growth path because the value of attempting entry is too low. Entry is necessary
for balanced growth because low-productivity firms choose exit rather than pay fixed

1In Luttmer [2012], entrants can improve upon exiting firms only by a fixed step, without learning from
the more productive continuing firms. This mechanism cannot be used to investigate the multiplicity asso-
ciated with unbounded social learning.
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continuation costs. A larger cap may make entry possible, but the incentives to enter
need not be monotone in the growth rate of the economy. This introduces the possibility
of high- and low-growth steady states. Also, for still relatively low caps on learning,
the economy may have steady state equilibria in which there is technological regress in
the aggregate, even though individual firm productivities tend to drift upwards. The
reason: the economy has a growing population, and it is hard to replicate a population
of incumbent firms when the opportunities to imitate particularly successful incumbent
firms are limited.

When the cap on learning is large enough, the existence of a balanced growth path is
guaranteed, and the economy will actually grow. Moreover, when the cap on learning
is taken to infinity, the equilibria of economies with a finite cap on learning all converge
to a single balanced growth path. That is, the model produces a definite equilibrium
prediction for long-run growth, one that does not depend on assumptions about initial
conditions established in a distant past. The resulting balanced growth path is one of the
continuum of balanced growth paths that are possible in the economy with no cap on
learning at all. Among all those possible balanced growth paths, it is the one with the
slowest growth rate and with a productivity distribution that has the thinnest right tail.

Solving for and characterizing an endogenously trending distribution of productivi-
ties in an economy in which households and firms make forward-looking decisions can
be hard. What greatly simplifies the analysis in this paper is the fact that, for any candi-
date growth rate, it is possible to analytically solve for the unique de-trended distribution
of productivities. The uniqueness is a consequence of the cap on learning. For any partic-
ular finite cap on learning, the resulting distribution of log productivities below the cap
is the product of a sine function and an exponential function. Above the cap the distri-
bution of log productivities is exponential. In terms of productivity levels, this means
that the distribution above the cap is a Pareto distribution. As the cap becomes large,
the distribution of log productivities converges to the gamma distribution selected from
a continuum of possible equilibrium distributions in Luttmer [2007]. As was pointed out
in Luttmer [2007], this gamma distribution emerges when the social learning mechanism
of the model is initialized with a productivity distribution that has a bounded support.
But that selection argument was incomplete: it did not take into account the general equi-
librium feedback of the out-of-steady state productivity dynamics on household and firm
decision rules.

Related Literature Kortum [1997] generates long-run growth using draws from a fixed
“source distribution” of productivities. The two key elements of the model are: the source
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distribution must be a power law, and the average number of draws must grow exponen-
tially over time. The resulting distribution of de-trended productivities converges to a
Fréchet distribution. In a recent paper, Buera and Oberfield [2020] combine these two key
elements with social learning in a model of global knowledge diffusion and growth.

Emphasizing environments that are consistent with Fréchet productivity distributions,
Buera and Lucas [2018] survey models in which productive agents meet randomly and
learn from each other. In particular, they suggest considering an upper bound on how
much individuals can gain in a random meeting and characterize an approximate so-
lution to the resulting delay-differential equation. Instead of an upper bound, Luttmer
[2007] examined the possibility that what entrants actually learn is a depreciated version
of what randomly sampled incumbents can do. This also leads to a delay-differential
equation, but one that can be solved explicitly. Importantly, such a setback in learning
still generates a continuum of stationary productivity distributions and balanced growth
rates.

Lucas and Moll [2014] give an example that shows how initial conditions become
unimportant when producers can learn not only from each other, but also from an outside
source with a sufficiently thick right tail. Instead, Staley [2011] adds Brownian log pro-
ductivity shocks (that is, an outside source with thin tails) to a version of Alvarez, Buera
and Lucas [2008]. As in Luttmer [2007], this makes it possible to give an explanation for
thick-tailed productivity distributions that goes beyond an assumption about initial con-
ditions or an outside source. The resulting Kolmogorov forward equation also has many
solutions, implying a continuum of possible long-run growth rates. Building on trunca-
tion arguments developed in Brunet and Derrida [1997], Staley [2011] argues that letting a
finite population of agents become large results in growth rates that approach the lowest
of these long-run growth rates from below. In the current paper, the Kolmogorov forward
equation for an economy with a continuum of agents and a cap on learning is very similar
to the differential equations used in the approximations of Brunet and Derrida [1997] and
Staley [2011]. But here the productivity distributions and equilibria obtained for a large
economy with a cap on learning are exact.

Models with a continuum of firms have the practical virtue that they allow for the la-
bor and product market interactions between firms to be competitive or monopolistically
competitive. But they must be viewed as approximations for the bounded productivity
distributions and the imperfectly competitive conditions that rule in the finite economies
we observe. An interesting alternative approach is examined by Benhabib, Perla and
Tonetti [2019], who construct a model with a continuum of firms and productivity growth
rates that follow a Markov switching processes on a finite state space. Such processes au-
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tomatically produce bounded productivity distributions from bounded initial conditions
(see also Le [2014]).

Outline of the Paper The economy with bounded learning is described in Section 2.
The conditions for a balanced growth path are described in Section 3. The upper bound
on learning is taken to infinity in Section 4, and the unique balanced growth path is char-
acterized. In Section 5, this unique limit is related to the continuum of long-run growth
rates that are possible in an economy without an upper bound on learning.

2 The Economy

There is a unit measure of dynastic households. The size of a household is Ht = Heηt,
where η > 0. Dynastic household preferences over consumption flows C = {Ct}t≥0 are
given by the utility function

U(C) =

∫ ∞
0

e−ρtHt ln(Ct/Ht)dt,

where ρ > η. There is a complete set of markets that allows households to trade consump-
tion across time and states of the world. State prices are {e−ρt/(Ct/Ht)}t≥0.

2.1 Factor Supplies

Everyone can choose to be a worker or an entrepreneur at any point in time. Workers
supply labor and entrepreneurs create opportunities to set up a firm. Individuals differ in
their abilities to do these tasks. Specifically, there is a time-invariant distribution P over
abilities (x, y) ∈ R2

+, where x is the flow of labor services someone can supply, and y is
the Poisson arrival rate at which the same individual can generate opportunities to set
up a new firm. Throughout, it is assumed that the population means of both abilities are
positive and finite. The price of labor services is wt and the value of an opportunity to set
up a new firm is qt, both measured in some arbitrary unit of account. As in Roy [1951], a
type-(x, y) individual chooses an occupation that attains max{wtx, qty}. If P is such that
ties can be ignored, then this implies that the per-capita supply of labor is

L(qt/wt) =

∫
xι {wtx > qty} dP(x, y),
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and that the per-capita flow of entry opportunities is

E(qt/wt) =

∫
yι {wtx < qty} dP(x, y).

The supply of labor is bounded above by the mean of x and weakly decreasing in qt/wt.
The supply of entry opportunities is bounded above by the mean of y and weakly increas-
ing in qt/wt. If everyone is either of a type (x, 0) or of a type a (0, y), then these per-capita
factor supplies are inelastic. On the other hand, if there is a (x̂, ŷ) ∈ R2

++ so that x/y = x̂/ŷ

with P-probability 1, then the per-capita supplies of labor and entry opportunities are
perfectly elastic at qt/wt = x̂/ŷ.

2.2 Differentiated Commodities

Consumption is a composite good that consists of a continuum of differentiated com-
modities of different types. The elasticity of substitution is constant and equal to ε > 1.
The type of a commodity is indexed by a real variable z, and this type can change over
time. Every differentiated commodity is produced by a different firm, using a linear
labor-only technology with unit productivity. At time t, the measure of firms produc-
ing differentiated commodities of a type less than or equal to z is given by N(t, z). Prices
will be such that commodities of the same type are consumed at the same aggregate rate,
denoted by cz,t. Aggregate household consumption can then be defined as

Ct =

(∫
ez/εc

1−1/ε
z,t N(t, dz)

)1/(1−1/ε)

.

The type z of a differentiated commodity is reflected in its utility weight ez/ε. One can
interpret ez/(ε−1) as a measure of quality or productivity.

Given Ct, N(t, ·), and type-z prices pz,t, the demand curves are

cz,t =

(
pz,t
Pt

)−ε
ezCt, Pt =

(∫
ezp1−ε

z,t N(t, dz)

)1/(1−ε)

.

This indicates that ez measures what type does for market size, holding prices fixed. Profit
maximization implies the usual Lerner price,

pz,t =
wt

1− 1/ε
.
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Inserting this into the expression for the price index Pt and writing Nt = N(t,∞) gives

wt
Pt

=

(
1− 1

ε

)(
eZtNt

)1/(ε−1)
, eZt =

1

Nt

∫
ezN(t, dz). (1)

Given the supply of firms, this determines the real wage. The implied variable profits vz,t
and use of labor lz,t are [

vz,t

wtlz,t

]
=

[
1/ε

1− 1/ε

]
ez−Zt × PtCt

Nt

.

So the distribution of variable profits and employment is governed by the distribution of
ez−Zt . It follows that the aggregate amount of variable labor Lt needed to produce Ct is
determined by wtLt = (1 − 1/ε)PtCt. Variable profits in units of labor can therefore be
written as vz,t/wt = ez−Zt(Lt/Nt)/(ε − 1). Average variable profits in units of labor are
(Lt/Nt)/(ε− 1).

2.3 Social Learning, Entry, and Exit

For a particular firm at time t, the type zt of its differentiated commodity evolves accord-
ing to

dzt = θdt+ σdWt,

where θ ∈ (−∞,∞) and σ > 0 are constant parameters common to all firms, and Wt is
a firm-specific standard Brownian motion. These Brownian motions are assumed to be
independent across firms. To remain active, firms must pay a continuation cost of φ > 0

units of labor. Nonpayment results in an immediate and irreversible exit. As will become
clear, the fixed continuation cost implies that there is an exit threshold bt so that only firms
with zt ∈ (bt,∞) choose to continue.

Entry requires both an entry opportunity and learning from incumbents. An entre-
preneur who succeeds in creating an entry opportunity draws a type at random from the
population of continuing firms. If this type is in [bt, bt + ∆], where ∆ > 0 is a parameter,
then the entrepreneur can introduce a new differentiated commodity of that type. Oth-
erwise the entry attempt fails. A natural interpretation is that everyone has access to the
information needed to introduce a commodity with the same quality as the commodities
of exiting firms. Building on that information, the entrepreneur with an entry opportu-
nity can improve its quality to that of a randomly selected incumbent firm, as long as the
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required quality improvement is not too large.2

Entrepreneurs are not needed to operate a firm. The fixed continuation cost of φ units
of labor is enough. Since markets are complete, the value V (t, z) of a firm of type z at time
t is determined by

V (t, z)

Pt
= max

τ
Et

[∫ t+τ

t

e−ρ(s−t) × Ct/Ht

Cs/Hs

(
vzs,s
Ps
− φws

Ps

)
ds

]
,

where zs = z + θ(s − t) + σ(Ws −Wt) for all s ≥ t and τ is a state-contingent exit time.
Conjecture that this leads to V (t, z) = 0 for all z ≤ bt and V (t, z) > 0 for all z > bt, for
some bt to be determined. Only firms with z > bt choose to continue.

An entry opportunity is an opportunity to sample from N(t, ·) and enter with z when-
ever the sampled firm has z ∈ [bt, bt + ∆]. The value of an entry opportunity is therefore

qt =

(∫ ∞
bt

N(t, dz)

)−1 ∫ bt+∆

bt

V (t, z)N(t, dz). (2)

This is the expected market value of a randomly sampled firm, taking into account that
entry attempts above bt + ∆ result in failure. This undirected sampling technology means
that there are weak incentives to enter when ∆ is small. Holding fixed N(t, ·) and V (t, ·),
taking ∆ ↓ 0 eliminates all incentives to attempt to enter.

2.4 Dynamics of the Firm Type Distribution

Restrict attention to situations in which N(t, z) has a density n(t, z). The flow of entry
opportunities is E(qt/wt)Ht. Entry opportunities lead to random draws from a distri-
bution with probability density n(t, z)/Nt on [bt,∞) and zero otherwise. Draws from
(bt + ∆,∞) result in failure to enter. At any z ∈ (bt, bt + ∆), instead, the flow of entrants is
E(qt/wt)Ht × n(t, z)/Nt. Write this flow as αtn(t, z), where

αt = E(qt/wt)Ht/Nt.

This is the attempted entry rate per incumbent firm. With this definition, the Kolmogorov
forward equation for n(t, z) can then stated concisely as

Dtn(t, z) = −θDzn(t, z) +
1

2
σ2Dzzn(t, z) + αtn(t, z),

2An alternative interpretation, outside the formal model presented here, is that only particularly produc-
tive firms find it worthwile to restrict imitation when there is a possibility that the imitator may introduce
a perfect substitute.
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for z ∈ (bt, bt + ∆) and

Dtn(t, z) = −θDzn(t, z) +
1

2
σ2Dzzn(t, z),

for z ∈ (bt + ∆,∞). Immediate exit at bt means that n(t, bt) = 0. For all t ∈ (0,∞), the
density will be differentiable with respect to z at bt + ∆. The density at the initial date is
given. The fact that forward-looking firms can exit instantaneously means that this initial
density acts as an upper bound for n(0, z).

3 Balanced Growth

A balanced growth path is taken to be any competitive equilibrium for this economy in
which (i) per-capita consumption, real wages, and average real variable profits grow at a
common rate, and (ii) the distribution of de-trended firm types is time invariant.

3.1 Minimal Requirements

Because wtLt = (1 − 1/ε)PtCt, any equilibrium in which real wages and per-capita con-
sumption grow at a common constant rate must have a constant Lt/Ht. Average variable
profits in units of labor are (Lt/Nt)/(ε− 1). If these are also constant, then Nt/Ht must be
constant as well. The equilibrium solution for real wages (1) then implies[

Lt
Ht

,
Nt

Ht

]
=

[
L

H
,
N

H

]
, Zt = Z + (θ − µ)t,

for some L/H , N/H , and µ to be determined. The equilibrium variable µ is the drift of
zt−Zt for the typical firm. At the same time,−µ measures the aggregate growth over and
above θ that comes from replacing exiting firms by new firms that are more productive.
From (1), the resulting real wages and per-capita consumption can be written in the form[

wt
Pt
,
Ct
Ht

]
=

[
w

P
,
C

H

]
eκt, κ =

θ − µ+ η

ε− 1
,

with levels related via

w

P
=

(
1− 1

ε

)(
eZN

)1/(ε−1)
,

C

H
=
(
eZN

)1/(ε−1) × L

H
.
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Improvements in the firm type distribution and gains from variety both contribute to the
growth rate κ of real wages and per-capita consumption.

3.2 The Value Function

These basic features of a balanced growth path are enough to fully characterize firm val-
ues and exit decisions. To see this, recall that vz,t/wt = ez−Zt(Lt/Nt)/(ε − 1) and use the
fact that Ct/Ht and wt/Pt grow at a common rate to write

V (t, z)

Pt
=
φwt
Pt
×max

τ
Et

[∫ t+τ

t

e−ρ(s−t)
(

ezs−ZsL

(ε− 1)φN
− 1

)
ds

]
,

where zs−Zs = z−Zt+µ(s−t)+σ(Ws−Wt) for all s ≥ t. This is now a textbook stopping
problem (Dixit and Pindyck [1994]). A calculation given in Luttmer [2007] shows that

V (t, z)

Pt
=
φwt
Pt
× U (y) , ey =

ez−ZtL

(ε− 1)φN
, (3)

where U(y) = 0 for all y at or below some exit threshold a, and

U(y) =
1

ρ

ξ

1 + ξ

(
ey−a − 1− 1− e−ξ(y−a)

ξ

)
, (4)

for all y > a. The exit threshold a is determined by

ea =
ξ

1 + ξ

(
1− 1

ρ

(
µ+

1

2
σ2

))
, ξ =

µ

σ2
+

√( µ
σ2

)2

+
ρ

σ2/2
. (5)

Observe that U(·) only depends on µ and exogenous parameters. Lemma 1 describes the
most important properties of U(·). The proof is in Appendix A.

Lemma 1 The value function (4)-(5) is well defined if and only if µ + 1
2
σ2 < ρ. Given this

restriction, it has the following properties:

(i) The value function is strictly increasing and unbounded in y > a.

(ii) The exit threshold is strictly decreasing in µ, limµ→−∞ a = 0, and limµ↑ρ−σ2/2 a = −∞.

(iii) For any u ∈ (0,∞) or y ∈ (−∞,∞),

lim
µ→−∞

U(a+ u) = 0, lim
µ↑ρ−σ2/2

U(a+ u) ∈ (0,∞), lim
µ↑ρ−σ2/2

U(y) =∞,

and U(a+ u) is increasing in µ.
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An immediate implication of the characterization (3)-(5) of V (t, z) is that the time-t exit
threshold for firm of type z must be bt = b+ (θ − µ)t, where b solves

ea =
eb−ZL

(ε− 1)φN
. (6)

In other words, the gap Zt − bt = Z − b must be constant over time.

3.3 Imposing Stationarity

Now conjecture that, for appropriate initial conditions, there is an equilibrium in which
not just Zt − bt but the entire cross-sectional distribution of z − bt is time invariant. That
is, conjecture that for some probability density f(·),

n(t, z) = Ntf(z − bt),

for all t and all z ≥ bt. Given f(·), the definition (1) of Zt implies a consistency condition

eZ−b =

∫ ∞
0

euf(u)du. (7)

And the value qt/wt of an entry opportunity, defined in (2), becomes

qt
wt

= φ

∫ ∆

0

U (a+ u) f(u)du. (8)

It follows that qt/wt = q/w, and so the per-capita factor supplies E(qt/wt) and L(qt/wt)

are constant over time. Since Nt/Ht is constant, this means that the arrival rate of entry
opportunities is also constant over time, at some level αt = α. The definition of αt gives

N

H
=

1

α
× E

( q
w

)
. (9)

This can be viewed as a steady state supply of firms.
Recall that µ is the drift of zt − bt. The Kolmogorov forward equation for n(t, z) there-

fore reduces to
ηf(u) = −µDf(u) +

1

2
σ2D2f(u) + αf(u), (10)

for u ∈ (0,∆) and

ηf(u) = −µDf(u) +
1

2
σ2D2f(u), (11)

for u ∈ (∆,∞). The boundary conditions are f(0) = 0 together with continuity and
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differentiability at ∆. The definition of f(·) requires it to be a probability density on (0,∞).

3.3.1 An Accounting Identity

With these boundary conditions, integrating the differential equation (10)-(11) over (0,∞)

yields

α

∫ ∆

0

f(u)du = η +
1

2
σ2Df(0).

Since the exit rate is given by 1
2
σ2Df(0), this result confirms a basic accounting condition:

net of exit, the successful entry rate must be just enough to supply the new firms needed
for the number of firms to grow at the population growth rate η. This condition would
fail if f(·) were not differentiable at ∆.3

3.4 Clearing the Labor Market

The employment size of firms scales with eu = ez−b. The relation (6) between the thresh-
olds a and b together with the consistency condition (7) for Z − b imply that the labor
market clearing condition L (q/w)H = φN + L can be written as

N

H
=

1

φ

L (q/w)

1 + (ε− 1)
∫∞

0
ea+uf(u)du

. (12)

The right-hand side is simply the ratio of the per-capita supply of labor over the amount
of labor used by an average firm, including the fixed cost. The resulting N/H can be
viewed as the steady state demand for firms, complementing the supply (9).

3.5 Solving the Kolmogorov Forward Equation

Any stationary density f(·) must satisfy the Kolmogorov forward equation (10)-(11). This
equation is parameterized by µ and α, and both µ and α are endogenous variables in this
economy. The key fact is that, for any µ ∈ (−∞,∞), there is precisely one attempted
entry rate α > 0 for which it is possible to construct a stationary density. So α and f(·) are
pinned down jointly as a function of µ. As described further in Section 5, this key fact is
wrong when ∆ =∞.

To show this, hold fixed some µ ∈ (−∞,∞). The two pieces (10) and (11) of the
Kolmogorov forward equation each define a characteristic equation. On (0,∆), a solution

3If f(·) has a concave kink at ∆, then positing an additional flow of entrants at ∆ can restore a version
of this accounting identity, as in Luttmer [2012].
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of the type e−χz implies χ ∈ {χ−, χ+}, where

χ± = − µ

σ2
±
√( µ

σ2

)2

− α− η
σ2/2

. (13)

On (∆,∞), a solution of the form e−ζz gives ζ ∈ {ζ−, ζ+} and

ζ± = − µ

σ2
±
√( µ

σ2

)2

+
η

σ2/2
. (14)

Observe that η > 0 implies ζ− < 0 < ζ+, irrespective of the sign of µ. Since f(u) → 0 as
u→∞, this forces f(u) ∝ e−ζ+u on (∆,∞), with a scale to be determined.

But the roots (13) may be real or complex, depending on the magnitude of the at-
tempted entry rate α. Suppose that α is large enough so that the roots χ± are, in fact,
complex. To streamline the calculations, let ψ = Re(χ+) and ω = Im(χ+), so that

ψ = − µ

σ2
, ω =

√
α− η
σ2/2

− ψ2. (15)

Any linear combination of e−χ+u and e−χ−u is a solution to the differential equation (10)
on (0,∆). Requiring these linear combinations to be real forces solutions to be of the form
f(u) = [A cos(ωu) +B sin(ωu)] e−ψu, for real coefficients A and B. Imposing the boundary
condition f(0) = 0 implies A = 0. Imposing continuity at u = ∆ then implies a solution
of the form

f(u) = B

{
sin(ωu)e−ψu, u ∈ [0,∆],

sin(ω∆)e−ψ∆e−ζ+(u−∆), u ∈ [∆,∞).
(16)

Taking B > 0, this solution will be positive on (0,∆) if and only if ω∆ ∈ (0, π). Impos-
ing differentiability at u = ∆ gives ω cos(ω∆)e−ψ∆ − ψ sin(ω∆)e−ψ∆ = −ζ+ sin(ω∆)e−ψ∆.

Together with ζ+ = ψ +
√
ψ2 + η/(σ2/2), this implies the following restriction on ω,

− cos(ω∆)

sin(ω∆)/(ω∆)
= ∆

√
ψ2 +

η

σ2/2
. (17)

As a function of ω, the left-hand side of (17) increases monotonically from −1 to ∞ on
the domain [0, π/∆), crossing zero at π/(2∆). So there will be precisely one value of
ω ∈ (0, π/∆) for which the density (16) is positive throughout (0,∞) and differentiable at
∆. Observe that this ω is in (π/(2∆), π/∆), is increasing in ψ2, decreasing in ∆, and that
ω∆ ∈ (π/2, π) is increasing in ∆.
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Using sin(ωu)e−ψu =
(
e−(ψ−iω)u − e−(ψ+iω)u

)
/(2i) to integrate (16) shows that the cu-

mulative distribution must be of the form

F (u) = B


ω−[ω cos(ωu)+ψ sin(ωu)]e−ψu

ω2+ψ2 , u ∈ [0,∆],
ω−[ω cos(ω∆)+ψ sin(ω∆)]e−ψ∆

ω2+ψ2 + sin(ω∆)e−ψ∆
(

1−e−ζ+(u−∆)

ζ+

)
, u ∈ [∆,∞).

(18)

The normalizing constant 1/B is therefore

1

B
=
ω − [ω cos(ω∆) + ψ sin(ω∆)] e−ψ∆

ω2 + ψ2 +
sin(ω∆)e−ψ∆

ζ+

. (19)

Given the ω implied by (17), inverting (15) says that the attempted entry rate must be

α = η +
1

2
σ2
(
ω2 + ψ2

)
. (20)

So the requirement that the stationary density must be differentiable at ∆ pins down both
the density f(·) and the attempted entry rate α. Since ω is decreasing in ∆, so is α. The
larger the range of types that potential entrants can imitate, the fewer entry attempts are
needed for stationarity. Observe that ω and α only depend on µ via ψ2, and so the sign of
µ does not affect ω or α. Since the right-hand side of (17) is increasing in ψ2, both ω and α
are increasing in ψ2.

The sign of µ does very much affect the shape of the stationary distribution. For ex-
ample, it becomes concentrated at 0 as µ→ −∞, and certainly not as µ→∞. On (∆,∞),
the distribution of eu−∆ is a standard Pareto distribution with a tail index ζ+. Along any
balanced growth path, this tail index must satisfy ζ+ > 1, or else the mean of eu, and
hence aggregate employment, will not be finite. This implies an upper bound on µ. These
results can be summarized as follows.

Proposition 1 Given some µ ∈ (−∞,∞) and any ∆ ∈ (0,∞), the Kolmogorov forward equa-
tion (10)-(11) has a solution if and only if the attempted entry rate α satisfies (17) and (20),
where ψ = −µ/σ2. The solution is given by (16) and (19), where ω is determined by (17) and

ζ+ = ψ +
√
ψ2 + η/(σ2/2). The attempted entry rate is strictly increasing in µ2, and µ2 → ∞

implies α→∞. The mean of eu is finite if and only if µ satisfies η > µ+ σ2/2. It converges to 1

as µ→ −∞.

The construction (15)-(20) takes as given that the characteristic roots χ± are complex. Ap-
pendix B shows that real χ± lead to limz↑∆ Df(z) > limz↓∆ Df(z), violating the need for
differentiability at ∆. A somewhat intricate calculation (available upon request) of the
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derivative of F (u) with respect to ∆ shows that an increase in ∆ causes F (·) to shift to the
right, in the sense of first-order stochastic dominance. A larger range of types that poten-
tial entrants can imitate pulls the stationary distribution away from the exit threshold.

3.6 The Equations for Balanced Growth

Equating the supply (9) and demand (12) for N/H gives the market clearing condition

E (q/w)

L (q/w)
=

α/φ

1 + (ε− 1)
∫∞

0
ea+uf(u)du

. (21)

By definition, the relative price q/w must also satisfy

q

w
= φ

∫ ∆

0

U (a+ u) f(u)du. (22)

The left-hand sides of (21)-(22) are functions only of q/w, and the right-hand sides are
functions only of µ, via the value function U(·) and the implied exit threshold a defined
in (4)-(5), and via the stationary density f(·) and the associated attempted entry rate α
defined in (16)-(20). It is clear that one can immediately eliminate q/w and reduce (21)-
(22) to a single equilibrium condition in µ.

Given a solution for µ and the implied α, f(·) and U(·), the number of firms per capita
N/H can be inferred from either the supply curve (9) or the demand curve (12). The
economy is on a balanced growth path if there is an exit threshold b for which the initial
type density satisfies n(0, z)/H = (N/H)f(z − b). The economy has a unique balanced
growth path if and only if the equations (21)-(22) have precisely one solution for µ. The
possibilities can be illustrated using two polar case assumptions about the relative factor
supplies E(·)/L (·).

3.6.1 The Perfectly Elastic Case

If there is no heterogeneity in abilities, then the relative supply E (q/w) /L (q/w) of entre-
preneurial services and labor is perfectly elastic at some q/w that is implied by abilities.
In equilibrium, everyone must be indifferent between supplying entrepreneurial services
and supplying labor, and the equilibrium condition for µ is simply (22). The factor sup-
plies will adjust to match (21). This will be a proper balanced growth path only if the
mean of eu is finite, which corresponds to η > µ+ 1

2
σ2. Figure 1 shows the right-hand side

of (22) for µ up to this bound. In this example, η < σ2/2, and so µ can only be negative.
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Since ρ > η, the value function is well defined and bounded above on [0,∆] for all µ
that satisfy η > µ + 1

2
σ2. The right-hand side of (22) therefore has a finite upper bound.

If the relative price q/w implied by abilities is greater than this upper bound, then (22)
will have no solution. Hence there will be no balanced growth path. This has nothing
to do with the possibility of finding a stationary density f(·) that solves the Kolmogorov
forward equation. That can be done for any ∆ ∈ (0,∞), and it will imply a certain amount
of entry. The problem is that the value of the most profitable firm that can be imitated is
U(a+∆), and this can be made arbitrarily small by taking ∆ small. With a perfectly elastic
E(·)/L (·), this shuts down the entry needed for stationarity.

As Figure 1 illustrates, the right-hand side of (22) need not to be monotone in µ, and so
multiple balanced growth paths are also possible. By Lemma 1, it is true that an increase
in µ does always raise U(a+ u) for any given u ∈ [0,∆]. But more rapid firm growth also
reduces the probability of sampling a firm in [0,∆]. This makes entry attempts fail more
often, which tends to lower the value of attempting entry. In Figure 1, this second effect
dominates when µ is close to its upper bound.
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FIGURE 1 The value of attempting entry
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3.6.2 The Perfectly Inelastic Case

Alternatively, if every individual can do only one thing, then the aggregate factor supplies
are given. The condition that determines µ is then (21). This condition depends on the
value function only via its exit threshold a. With µ determined by (21), the relative price
q/w follows from (22). The condition (21) is shown in Figure 2 for various ∆. The ranking
across ∆ of this equilibrium condition is explained by the fact that α is decreasing in ∆,
together with the fact that an increase in ∆ moves F (·) to the right in the sense of first-
order stochastic dominance.

In contrast to the perfectly elastic case, this economy always has a balanced growth
path, provided that there is a positive measure of entrepreneurs. This is because the
right-hand side of (21), while not necessarily monotone, varies throughout (0,∞). To
check this, observe that, by Proposition 1, µ → −∞ sends the attempted entry rate α to
infinity and shrinks the mean of eu down to 1. Using part (ii) of Lemma 1 as well, the
mean of ea+u converges to 1. So the right-hand side of (21) can be made arbitrarily large.
On the other hand, taking µ + 1

2
σ2 ↑ η sends the mean of ea+u to infinity and produces a

positive limit for α. This means that the right-hand side of (21) can be made small.
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FIGURE 2 Relative factor demands

It is easy, though, to construct examples of economies with more than one balanced
growth path. Specifically, take η > σ2/2, so that ζ+ > 1 is consistent with positive values
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of µ. By taking ε−1 > 0 to be very small, one can ensure that the right-hand side of (21) is
dominated by the properties of α, except when µ+ 1

2
σ2 gets very close to its upper bound

η. And α only depends on µ2, making the right-hand side of (21) non-monotonic in µ. In
Figure 2, η = 0.02, σ = 0.1, ε = 1.01, and the ∆ = 1 case shows an example with three
distinct equilibria.

As Figure 2 shows, two of these equilibria have µ > 0, and so the trend θ − µ of the
aggregate type index ln(Zt) is below the drift θ that governs the types of individual firms.
In particular, there could be aggregate technological regress even if the types of individual
firms drift upwards. In view of the constraint η > µ+ 1

2
σ2, this is a possibility only because

there is population growth. To understand what is happening, consider that population
growth implies a need to expand the population of firms over time. Although entrants
are more productive than exiting firms, replicating the entire incumbent population of
firms is inherently difficult because entrants are in [bt, bt+∆] while incumbents are spread
throughout [bt,∞).4

4 Balanced Growth When ∆ <∞ is Large

The possibilities of non-existence, multiplicity, and technical regress disappear when the
range of incumbents who can be imitated becomes large. A first step in showing this is to
understand how the attempted entry rate α and the stationary density f(·) depend on ∆.

4.1 The Attempted Entry Rate

Fix any ψ = −µ/σ2 and observe that ∆→∞ increases the right-hand side of (17) without
bound. This implies that ω∆ ↑ π and ω ↓ 0, both monotonically, as ∆→∞. It then follows
from (20) that the attempted entry rate α converges from above to α = η + 1

2
σ2ψ2.

4.2 The Limiting Distribution

The attempted entry rate converges to a well-defined limit that is linear in ψ2. The distrib-
ution F (u), on the other hand, only converges to a proper distribution when ψ is positive.
To see this, note that F (u) on [0,∆] can be written as

F (u) =
ωB

ω2 + ψ2

(
1−

(
cos(ωu) + ψu× sin(ωu)

ωu

)
e−ψu

)
,

4These same considerations also apply when there is no population growth but firms are sometimes
randomly forced to exit.
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and that the formula (19) for the normalizing constant can be restated as

ω2 + ψ2

ωB
= 1−

(
cos(ω∆) + ψ × sin(ω∆)

ω

)
e−ψ∆ +

ω2 + ψ2

ζ+

sin(ω∆)

ω
× e−ψ∆

= 1 +

1− ψ√
ψ2 + η

σ2/2

+
ω2 + ψ2

ψ +
√
ψ2 + η

σ2/2

1√
ψ2 + η

σ2/2

 |cos(ω∆)| e−ψ∆.

The second equality uses the equilibrium condition (17) for ω∆ ∈ (π/2, π) to replace
sin(ω∆)/ω, as well as the formula (14) for ζ+. Given that ω∆ → π as ∆ → ∞, it is now
easy to see that ωB/(ω2 + ψ2) → 0 if ψ < 0, and that ωB/(ω2 + ψ2) → 1 if ψ > 0. In any
case, the fact that ω ↓ 0 as ∆→∞ implies

lim
∆→∞

(
1−

(
cos(ωu) + ψu× sin(ωu)

ωu

)
e−ψu

)
= 1− (1 + ψu) e−ψu

for any fixed u ∈ (0,∞). Only if ψ > 0 does this produce a proper limiting distribution, a
gamma distribution with density f(u) = ψ2ue−ψu. If ψ < 0 instead, then ωB/(ω2+ψ2)→ 0

means that all probability escapes to infinity. Appendix C shows this is also true when
ψ = 0. Together, these observations deliver the first part of the following lemma.

Lemma 2 The stationary distribution function converges to

lim
∆→∞

F (u) =

{
0, ψ ∈ (−∞, 0],

1− (1 + ψu)e−ψu, ψ ∈ (0,∞),

for any u ∈ [0,∞). Define G(∆) =
∫ ∆

0
euf(u)du and let Ψ = {ψ : ψ ≤ 1 ≤ ζ+}. Then

lim
∆→∞

G(∆) =

 ∞, ψ ∈ (−∞, 1],(
ψ
ψ−1

)2

, ψ ∈ (1,∞),

and there is a positive constant k so that infψ∈ΨG(∆) ≥ k∆2 for all ∆ large enough. The at-
tempted entry rate converges to α = η + 1

2
σ2ψ2 as ∆ becomes large.

The properties of the truncated mean G(∆), which is a key determinant of the incentives
to enter, are proved in Appendix C. Observe that this truncated mean explodes when
ψ ≤ 0, even though all probability escapes to infinity in that case. For ψ > 0, the limit of
the truncated mean is simply the mean of eu under the limiting distribution.

For all finite ∆, the right tail index of the distribution F (u) is given by ζ+ = ψ +
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√
ψ2 + η/(σ2/2). Here we learn that the large-∆ limiting distribution, as long as it is a

proper distribution, has a tail index ψ. So the tail index is discontinuous at ∆ =∞. Since
ψ > 0 implies ζ+ > 2ψ, every proper limiting distribution has a distinctly thicker right tail
than the finite-∆ distributions with the same ψ > 0. This is reflected in the gap between
the asymptotes ψ > 1 and ζ+ > 1 shown in Figure 2. This gap corresponds to ψ ∈ Ψ, or
−1

2
σ2 ≤ µ + 1

2
σ2 ≤ η in terms of µ. On the interior of Ψ, the finite-∆ tail index ζ+ is large

enough for aggregate employment to be finite, while the large-∆ limit implies infinite
aggregate employment.

4.3 When ∆ is Large Enough

Lemma 2 can be used to rule out, for all large enough ∆, the possible non-existence of a
balanced growth path shown in Figure 1 and the possibility that µ > 0 shown in Figure 2.

For example, consider the perfectly elastic case shown in Figure 1, with relative sup-
plies of managerial and labor services perfectly elastic at some q/w ∈ (0,∞). At ψ = 1,
Lemma 2 implies that the value of attempting entry grows without bound as ∆→∞. Fix
any ∆ large enough so that the value of attempting entry exceeds q/w at ψ = 1. Lemma
1 says that letting ψ → ∞ implies U(a + ∆) ↓ 0, and hence, that the value of attempting
entry converges to zero as ψ → ∞. The value of entry is continuous in ψ, and so it must
cross the threshold q/w at least once for some ψ > 1. Proposition 2 covers smooth factor
supply curves.

Proposition 2 Assume the relative factor supply curve E(·)/L(·) is continuous. For all ∆ large
enough, finite-∆ economies must have at least one equilibrium ψ∆, and any equilibrium must have
ψ∆ > 1.

To prove existence, start again with ψ = 1. Lemma 2 then implies that the mean of eu

grows without bound as ∆→∞. And the attempted entry rate converges to a finite and
positive limit. Therefore, one can choose ∆ large enough to ensure that the right-hand
side of (21) is arbitrarily close to zero. On the other hand, Lemmas 1 and 2 imply that
q/w becomes large when ψ = 1 and ∆ → ∞. The fact that E(q/w)/L(q/w) is weakly
increasing then implies that the left-hand side of (21) will be positive and bounded away
from 0 as ∆ → ∞. So it is possible to choose ∆ large enough so that the left-hand side of
(21) dominates the right-hand side at ψ = 1. For any such ∆, take ψ →∞. Lemma 1 says
that U(a+ ∆)→ 0 in that case, and so it must be that q/w → 0 as ψ →∞. This minimizes
E(q/w)/L(q/w). But the attempted entry rate α goes to∞ as ψ →∞ and the mean of ea+u

converges to 1. So then the right-hand side of (21) will grow without bound as ψ → ∞.
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The continuity of the relative factor supplies implies that there will be a ψ > 1 where (21)
holds with equality.

To rule out equilibria with ψ ≤ 1, recall that any finite-∆ equilibrium must have ζ+ >

1. So it suffices to rule out equilibria with ψ ∈ Ψ = {ψ : ψ ≤ 1 ≤ ζ+}. From Lemma
2, the mean of ea+u is larger than eak∆2 for all ψ ∈ Ψ and all ∆ large enough. And
Lemma 1 ensures that ea is bounded away from zero on Ψ. The right-hand side of (21)
will therefore be small throughout Ψ when ∆ is large. Lemmas 1 and 2 also imply that
the value of attempting entry is larger than (−1 + k∆2ξ/(1 + ξ))/ρ for all ψ ∈ Ψ and all ∆

large enough. The left-hand side of (21), taking into account (22), will therefore be larger
than the right-hand side for all ψ ∈ Ψ and all ∆ large enough.

4.4 The Limiting Equations for Balanced Growth

For every ψ > 1, Lemma 2 implies that the right-hand sides of the equilibrium conditions
(21) and (22) converge, as ∆ → ∞, to limiting values that can be calculated using α =

η + 1
2
σ2ψ2, f(u) = ψ2ue−uψ, and ∆ = ∞ on the right-hand side of (22). For ψ ≤ 1, the

means of eu and U(a + u) are infinite, and this implies that (21) must be violated. These
limiting equilibrium conditions are easy to characterize and the non-monotonicities that
appear in Figures 1 and 2 are no longer possible.

Proposition 3 Consider the equilibrium conditions (21)-(22) with ψ > 1, α = η + 1
2
σ2ψ2,

f(u) = ψ2ue−ψu, and ∆ = ∞. The right-hand side of (21) is strictly increasing in ψ ∈ (1,∞)

and maps onto (0,∞). The right-hand side of (22) is strictly decreasing in ψ ∈ (1,∞) and maps
onto (0,∞). When the relative factor supply curve E(·)/L(·) is continuous, this implies a unique
balanced growth path, denoted by ψ∞ ∈ (1,∞).

The mean of eu is (ψ/(ψ− 1))2, which is decreasing in ψ > 1 and grows without bound as
ψ ↓ 1. It is intuitive that the means of ea+u and U(a+ u) are also decreasing in ψ = −µ/σ2

and explode as ψ ↓ 1. The proof is in Appendix D. The fundamental comparative static
implied by Proposition 3 is that an increase in E(·)/L(·) raises ψ and therefore increases
θ − µ = θ + ψσ2, the overall rate of technical progress in this economy. Individual firm
revenues and employment grow more slowly, leading to more churn that is made possible
by more entry, and this moves the distribution of firm types to the right at a faster pace.

Using the pointwise convergence of the equilibrium conditions (21)-(22), together with
the fact that the limiting equilibrium conditions are monotone, it is easy to see that the
unique equilibrium ψ∞ obtained in Proposition 3 can be approached with equilibria ψ∆ of
a sequence of finite-∆ economies. Proposition 4 makes the stronger claim that all finite-∆

20



equilibria converge to ψ∞.

Proposition 4 Assume the relative factor supply curves E(·)/L(·) are continuous and letE∆ ⊂
{ψ : ζ+ > 1} be the set of equilibria for the ∆ economy. Then supψ∈E∆

|ψ − ψ∞| converges to
zero as ∆ becomes large.

The main part of the proof is showing that, when ∆ is large enough, the equilibria ψ∆ > 1

for finite-∆ economies are bounded and bounded away from 1. The key steps are given
in Appendix E.

5 Miraculous Growth in the ∆ =∞ Economy

A solution to the large-∆ limit of the balanced growth conditions (21)-(22) also defines
a balanced growth path for the ∆ = ∞ economy, in which entrants can imitate any in-
cumbent firm. But in the ∆ = ∞ economy, there is, for each possible µ, a continuum of
attempted entry rates and associated stationary densities. This means that there is a con-
tinuum of balanced growth paths. In fact, any high enough growth rate θ − µ = θ + ψσ2

is consistent with balanced growth.
To see this, begin by observing that the Kolmogorov forward equation in the ∆ = ∞

economy is just (10) on the domain (0,∞). This equation is solved by linear combinations
of e−χ−u and e−χ+u, with χ− and χ+ defined in (13). If (α−η)/(σ2/2) > ψ2, then χ− and χ+

are complex conjugates, and from the construction of f(u) on [0,∆] for ∆ < ∞ we know
that this can only produce a positive density on a bounded interval. On the other hand,
if (α − η)/(σ2/2) ≤ ψ2 and α ∈ [0, η], then χ− ≤ 0 ≤ χ+. This makes it impossible to have
a linear combination of e−χ−u and e−χ+u that converges to 0 at both u = 0 and u = ∞.
This leaves attempted entry rates in the half-open interval 0 < (α − η)/(σ2/2) ≤ ψ2.This
is a non-empty interval only if ψ 6= 0. If ψ < 0, then χ− ≤ χ+ < 0, which implies that
linear combinations of e−χ−u and e−χ+u are not integrable on (0,∞). So ψ > 0 is the only
possibility that remains. Take (α − η)/(σ2/2) < ψ2 so that χ+ and χ− are distinct. Then
requiring f(u) to be a probability density and imposing f(0) = 0 gives

f(u) =
χ+χ−
χ+ − χ−

×
(
e−χ−u − e−χ+u

)
, (23)

for all u ∈ [0,∞). Letting (α − η)/(σ2/2) ↑ ψ2 yields χ± → ψ, and hence f(u) = ψ2ue−ψu.5

This is exactly the ∆→∞ limit obtained for an economy in which entrants can only copy

5The differential equation (10) is solved by e−ψu and ue−ψu when α = η + 1
2σ

2ψ2.
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from [0,∆]. The right tail index of (23) is χ− = ψ −
√
ψ2 − (α− η)/(σ2/2), and χ− > 1 is

needed to ensure that aggregate employment and the incentives to enter are finite. This
condition shrinks the set of feasible α and ψ to

1 < ψ, 2ψ − 1 <
α− η
σ2/2

≤ ψ2. (24)

This implies a continuum of possible attempted entry rates α, displayed in Figure 3.
In other words, for the same ψ, there are many stationary distributions, sustained by

different levels of entry. The remaining conditions for a balanced growth path are (21)-
(22), as before. By Proposition 3, there is a unique balanced growth path if we impose the
condition (α − η)/(σ2/2) = ψ2. Relaxing this condition to (24) generates a continuum of
solutions to the two balanced growth conditions (21)-(22).

1
1
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2 /2
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RHS > LHS

RHS = 0

RHS = LHS

2ψ­1ψ2

RHS < LHS

∆→∞

FIGURE 3 Constructing solutions to (21) with α < η + 1
2
σ2ψ2

For example, consider the economy with inelastic factor supplies, so that solutions to (21)
alone define balanced growth paths. To see how the right-hand side of (21) depends on α
and ψ separately, subject only to the inequalities (24), note that (23) implies

∫ ∞
0

euf(u)du =
χ+χ−(

χ+ − 1
) (
χ− − 1

) =

α−η
σ2/2

α−η
σ2/2
− (2ψ − 1)

.
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First, observe that this integral is decreasing in α. That is, the mean of eu is low for
stationary distributions sustained by high levels of entry. It follows that the right-hand
side of (21) is increasing in α on the domain (24). Next, consider ψ and note that this
integral reduces to (ψ/(ψ − 1))2 at the boundary (α − η)/(σ2/2) = ψ2. And (ψ/(ψ − 1))2

is decreasing in ψ > 1. But here, holding fixed α, the mean of eu is increasing in ψ on
the domain (24), with an asymptote: the mean of eu grows without bound as 2ψ − 1

approaches (α − η)/(σ2/2) from below.6 Moreover, the mean of ea+u is also increasing in
ψ, because part (ii) of Lemma 1 says that ea is increasing in ψ. The right-hand side of (21)
is therefore decreasing in ψ, holding fixed α.

Since the mean of ea+u moves in opposite directions with α and ψ on the domain
(24), one expects balanced growth paths parameterized by an upward sloping curve ψ →
α, as shown in Figure 3. To construct this curve, start from the equilibrium with (α −
η)/(σ2/2) = ψ2, increase α by some arbitrary amount and increase ψ2 as well so that (α−
η)/(σ2/2) = ψ2 continues to hold. From the ∆→∞ limit equilibrium condition, shown in
Figure 2 and characterized in Proposition 3, we know that this raises the right-hand side
of (21) above the left-hand side. To restore equilibrium while holding α fixed therefore
requires an increase in ψ. The asymptote implies that equilibrium can be restored before
2ψ − 1 reaches (α − η)/(σ2/2) from below. As indicated in Figure 3, lowering α and ψ2

from the equilibrium with (α − η)/(σ2/2) = ψ2 will not work because this lowers the
right-hand side of (21) below the left-hand side, and increasing ψ into the interior of (24)
only makes this discrepancy worse.

In sum, the ∆ = ∞ economy has a continuum of balanced growth paths. The unique
∆ → ∞ limiting equilibrium selects the balanced growth path with the lowest possible
α and ψ. Since the growth rate of aggregate productivity is θ − µ = θ + σ2ψ, this is the
balanced growth path with the lowest steady state growth rate. As Figure 3 shows, there
are also balanced growth paths with arbitrarily high entry and growth rates. No such
miracles are possible when ∆ <∞, no matter how large.

A Proof of Lemma 1

If µ + 1
2
σ2 ≥ ρ, then the value of continuing forever is infinite. For µ + 1

2
σ2 < ρ, the

Bellman equation is solved in Luttmer [2007]. An easy derivative calculation shows that
it is increasing for y > a, and it behaves like a multiple of ey for y large. This proves part

6So the mean of eu is decreasing in the firm employment growth rate µ = −ψσ2 < 0. This unintuitive
comparative static reflects the bootstrap nature of the multiplicity of stationary distributions. Stationarity
with a lower firm growth rate and no change in the attempted entry rate requires a thicker right tail from
which firms can shrink, on average, towards the exit threshold.
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(i). To simplify the calculations for the other parts, recall ψ = −µ/σ2 and write

δ =
ρ

σ2/2
, ξ = −ψ +

√
ψ2 + δ, ea =

ξ

1 + ξ

(
1 +

2ψ − 1

δ

)
. (25)

The expression for ea is positive precisely when µ + 1
2
σ2 < ρ, which corresponds to ψ >

(1− δ)/2. It is easy to see that ξ > 0, ∂ψ/∂ξ < 0, limψ→∞ ξ = 0, and limψ↓(1−δ)/2 ξ = δ. One
can also verify that

∂ea

∂ψ
=

1

δ

−ψ +
√
ψ2 + δ√

ψ2 + δ
> 0. (26)

Letting ψ ↓ (1− δ)/2 gives a→ −∞. Moreover,

lim
ψ→∞

ea = lim
ψ→∞

−ψ +
√
ψ2 + δ

1− ψ +
√
ψ2 + δ

(
1 +

2ψ − 1

δ

)
= lim

ψ→∞

(
−ψ +

√
ψ2 + δ

)
2ψ

δ
= lim

x→∞
2x
(
−x+

√
x2 + 1

)
= lim

x→∞

2x

x+
√
x2 + 1

= 1

So µ→ −∞ implies a ↑ 0. This proves part (ii). Part (iii) follows easily from the properties
of ξ and, in the case of U(y), the fact that a→ −∞ as ψ ↓ (1− δ)/2.

B Proof of Proposition 1

A solution to the Kolmogorov forward equation must be positive, vanish at 0 and∞, and
be continuous and differentiable at ∆. The solution (16)-(20) satisfies these conditions
for an attempted entry rate α that makes χ+ and χ− complex. Suppose instead that the
attempted entry rate α satisfies (α−η)/σ2/2 ≤ ψ so that χ+ and χ− are real. The following
argument shows that such a solution cannot be differentiable at ∆.

Suppose first that α is such that the roots coincide, so that χ+ = χ− = ψ. Then the
differential equation (10) on [0,∆] has the solutions e−ψu and ue−ψu. Imposing f(0) = 0,
f(∞) = 0, and continuity at ∆ forces

f(u) = B

{
ue−ψu, u ∈ [0,∆],

∆e−ψ∆e−ζ+(u−∆), u ∈ [∆,∞).

The slopes of this density are

Df(u) = B

{
(1− ψu)e−ψu, u ∈ [0,∆),

−∆e−ψ∆ζ+e
−ζ+(u−∆), u ∈ (∆,∞).
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Then ζ+ − ψ > 0 implies

lim
u↑∆

Df(u) = (1− ψ∆)e−ψ∆ > −ζ+∆e−ψ∆ = lim
u↓∆

Df(u).

Alternatively, suppose that the roots are distinct, so that χ+ > χ−. Imposing f(0) = 0,
f(∞) = 0, and continuity at ∆ yields

f(u) = B

{
e−χ−u − e−χ+u, u ∈ [0,∆],(
e−χ−∆ − e−χ+∆

)
e−ζ+(u−∆), u ∈ [∆,∞).

This implies

Df(u) = B

{
−χ−e−χ−u + χ+e

−χ+u, u ∈ [0,∆],

−
(
e−χ−∆ − e−χ+∆

)
ζ+e

−ζ+(u−∆), u ∈ [∆,∞).

We want to verify that the following inequality is true,

lim
u↑∆

Df(u) = −χ−e−χ−∆ + χ+e
−χ+∆ > −

(
e−χ−∆ − e−χ+∆

)
ζ+ = lim

u↓∆
Df(u).

This follows because the inequality can also be written as

(ζ+ − χ−)
(
e(χ+−χ−)∆ − 1

)
+ χ+ − χ− > 0,

which is true because ζ+ − χ− > 0 and χ+ − χ− > 0.

C Proof of Lemma 2

For the distribution, only the case ψ = 0 remains. For all u ∈ [0,∆], the density is then
f(u) = B sin(ωu), and hence

F (u) =
1−cos(ωu)

ω
1−cos(ω∆)

ω
+ sin(ω∆)

ζ+

=
1−cos(ωu)

ω2

1−cos(ω∆)
ω2 − 1

ζ+

cos(ω∆)√
η/(σ2/2)

.

The second equality uses the condition (17) that defines ω. That condition also implies
that ω∆ → π and thus ω → 0 as ∆ → ∞. By l’Hôpital, limx→0(1 − cos(x))/x2 =

limx→0 sin(x)/(2x) = 1/2. So the numerator converges, while the denominator goes to
∞ as ∆→∞. So F (u)→ 0 as ∆→∞ for every u ∈ [0,∞).
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For the truncated mean of eu, observe that

G(∆) = B

∫ ∆

0

sin(ωu)e−(ψ−1)udu = B × ω − [ω cos(ω∆) + (ψ − 1) sin(ω∆)] e−(ψ−1)∆

ω2 + (ψ − 1)2
.

Using the solution (19) for B and replacing sin(ω∆)/ω using (17) gives

G(∆) =
ω2 + ψ2

ω2 + (ψ − 1)2

1−
(

1− ψ−1√
ψ2+ η

σ2/2

)
cos(ω∆)e−(ψ−1)∆

1−
(

1− ψ√
ψ2+ η

σ2/2

+ ω2+ψ2(
ψ+
√
ψ2+ η

σ2/2

)√
ψ2+ η

σ2/2

)
cos(ω∆)e−ψ∆

. (27)

If ψ > 1, both e−(ψ−1)∆ and e−ψ∆ converge to zero as ∆ → ∞. Since cos(ω∆) → −1

as ∆ → ∞, this implies G(∆) → (ψ/(ψ − 1))2. If ψ = 1, then the second factor in the
expression for G(∆) goes to 2 because cos(ω∆) → −1 as ∆ → ∞. Then G(∆) → ∞
because the first factor goes to∞ as ω ↓ 0 when ∆→∞. Finally, if ψ ∈ (−∞, 1), then the
first factor converges to (ψ/(ψ− 1))2 ∈ (0,∞) as ∆→∞. But the second factor goes to∞
as ∆→∞ because cos(ω∆)→ −1 and e−(ψ−1)∆ > 1 dominates max{1, e−ψ∆}.

For the compact interval Ψ, a uniform lower bound on G(∆) can be constructed as
follows. The condition (17) for ω implies that |cos(ω∆)| is bounded away from zero for all
∆ ≥ 1. It follows that there are positive constants M and K so that

G(∆) ≥ (π/2)2 + ∆2ψ2

π2 + ∆2(ψ − 1)2

1 +Me(1−ψ)∆

1 +Ke−ψ∆
≥ (π/2)2 + ∆2ψ2

π2 + ∆2(1− ψ)2

Memin{1,1−ψ}∆

1 +K

for all ψ ∈ Ψ and ∆ ≥ 1. The function ex/(π2 + x2) is increasing in x, and hence ψ ≥ 1

implies e(1−ψ)∆/(π2 + ∆2(1− ψ)2) ≥ 1/π2. This implies that G(∆) ≥ (∆/π)2M/(1 +K) for
all ψ ∈ [1/2, 1] ⊂ Ψ. For ψ ∈ Ψ \ [1/2, 1] a multiple of e∆/2 can serve as a lower bound.
Since e∆/2 ≥ ∆2 for all ∆ ≥ 1, this means that there is a constant multiple of ∆2 that
provides a uniform lower bound on G(∆) for all ψ ∈ Ψ and ∆ ≥ 1.

D Proof of Proposition 3

The limiting stationary distribution has a density f(u) = ψ2ue−ψu. For any λ < ψ, this
implies ∫ ∞

0

eλuf(u)du =

(
ψ

ψ − λ

)2

.
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Applying this to λ ∈ {0, 1,−ξ} gives∫ ∞
0

ρU(a+ u)f(u)du =
ξ

1 + ξ

∫ ∞
0

(
eu − 1− 1− e−ξu

ξ

)
ψ2ue−ψudu

=
ξ

1 + ξ

(
ψ

ψ − 1

)2

+
1

1 + ξ

(
ψ

ψ + ξ

)2

− 1.

Recall (25). A laborious derivative calculation yields

∂

∂ψ

∫ ∞
0

ρU(a+ u)f(u)du =
2ψξ

1 + ξ

(
1

(ψ + ξ)3 −
1

(ψ − 1)3

)
+

(ξ + 3ψ − 2)ψ2

(ψ − 1)2 (ψ + ξ)3 ×
∂ξ

∂ψ
.

Since ξ > 0, ψ > 1, and ∂ξ/∂ψ < 0, this is negative.
We also need the slope of∫ ∞

0

ea+uf(u)du = ea
(

ψ

ψ − 1

)2

.

By (26), ea is increasing in ψ. But the mean of eu is not. Another laborious calculation
shows

∂

∂ψ

−ψ +
√
ψ2 + δ

1− ψ +
√
ψ2 + δ

δ + 2ψ − 1

δ

(
ψ

ψ − 1

)2

=

−−ψ +
√
ψ2 + δ

δψ(ψ − 1)

(1 + ψ)ψ + 2δ + 2(ψ − 1)
√
ψ2 + δ√

ψ2 + δ

(
ψ

ψ − 1

)2

Since ψ > 1, this is negative. Also, the mean of ea+u converges to 1 as ψ →∞ because part
(ii) of Lemma 1 says that ea → 1 as ψ →∞. On the other hand, ψ ↓ 1 > (1− δ)/2 implies
that ea has a positive limit as ψ ↓ 1, and so the mean of ea+u diverges.

E Proof of Proposition 4

Proposition 3 already says that finite-∆ equilibria satisfy ψ∆ > 1 for all large enough ∆.
For any ψ ∈ [1,∞) and ∆ ∈ [1,∞), let ω∆ ∈ (π/2, π) and f(·) be as defined in (16)-(19).
The equilibrium condition for the ∆ economy can be restated as s∆(ψ) = d∆(ψ), where

d∆(ψ) =
1

1 + (ε− 1)ea
∫∞

0
euf(u)du

s∆(ψ) =
φ

η + 1
2
σ2
(
ω2 + ψ2

) E(q/w)

L(q/w)
,

q

w
=

1

ρ

ξ

1 + ξ

∫ ∆

0

(
eu − 1− 1− e−ξu

ξ

)
f(u)du.
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Since ψ ≥ 1 implies ζ+ > 1, these functions are well defined, positive, and real-valued
for any ψ ∈ [1,∞) and ∆ ∈ [1,∞). Write s∞(ψ) and d∞(ψ) for the pointwise large-
∆ limits of these functions. These limiting functions satisfy d∞(1) = 0 < s∞(1) and
limψ→∞ s∞(ψ) = 0 < 1/ε = limψ→∞ d∞(ψ). Proposition 3 implies they are monotone.

The truncated and proper mean of eu are related via∫ ∆

0

euf(u)du = G(∆) ≤ G(∆) +
[1− F (∆)]e∆

ζ+ − 1
=

∫ ∞
0

euf(u)du. (28)

Upper and lower bounds for the value of entry are

1

ρ
max

{
0,
ξG(∆)

1 + ξ
− 1

}
≤ q

w
=

1

ρ

ξ

1 + ξ

∫ ∆

0

(
eu − 1− 1− e−ξu

ξ

)
f(u)du ≤ 1

ρ

ξG(∆)

1 + ξ
, (29)

for all ψ ∈ [1,∞) and ∆ ∈ [1,∞). The contribution of the right tail to the mean of eu has
an upper bound given by

[1− F (∆)] e∆ ≤ 1

ψ +
√
ψ2 + η

σ2/2

(π/∆)2 + ψ2√
ψ2 + η

σ2/2

× e−(ψ−1)∆. (30)

The expression (27) for G(∆), together with ω∆ ∈ (π/2, π), implies that there are positive
constants M and K so that for all ψ ∈ [1,∞) and ∆ ∈ [1,∞),

(π/2)2 + ∆2ψ2

π2 + ∆2(ψ − 1)2

1

1 +Me−ψ∆
≤ G(∆) ≤ π2 + ∆2ψ2

(π/2)2 + ∆2(ψ − 1)2
×
(
1 +Ke−(ψ−1)∆

)
. (31)

Consider ψ ∈ [1, ψ∗] for some ψ∗ > 1 close to 1. For all ψ ∈ [1, ψ∗] the lower bound on
G(∆) given in (31) is itself bounded below by 1/(((π/∆)2 +(ψ∗−1)2)(1+M)). This bound
does not depend on ψ and converges to 1/((ψ∗−1)2(1+M)) as ∆ becomes large. This can
be made arbitrarily large by taking ψ∗ − 1 > 0 small. In light of (28) and (29), this means
that it is possible to take ψ∗− 1 > 0 close enough to zero to ensure that supψ∈[1,ψ∗]

d∆(ψ) <

infψ∈[1,ψ∗] s∆(ψ) for all large enough ∆. So there can be no solution to d∆(ψ) = s∆(ψ) on
[1, ψ∗] for any ∆ large enough.

Alternatively, consider ψ ∈ [ψ∗,∞) for some large ψ∗. On this domain, the upper
bound on G(∆) given in (31) converges to (ψ/(ψ − 1))2 ≤ (ψ∗/(ψ∗ − 1))2 as ∆ becomes
large. Since ξ ↓ 0 as ψ → ∞, (29) then implies that there is a large enough ψ∗ that
will ensure that supψ≥ψ∗ s∆(ψ) is close to zero for all large enough ∆. At the same time,
the right-hand side (30) can also be made small throughout [ψ∗,∞) by taking ∆ large
enough. Since ea ↑ 1 as ψ → ∞, this means that there is a ψ∗ large enough to ensure that
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infψ∈[ψ∗,∞) d∆(ψ) is close to d∞(∞) = 1/ε > 0 for all large ∆. So there can be no solution
to d∆(ψ) = s∆(ψ) on [ψ∗,∞) for any ∆ large enough.

These observation imply that the solutions to d∆(ψ) = s∆(ψ) must be in some compact
interval [ψ∗, ψ

∗] ⊂ (1,∞) for all ∆ large enough. On this interval, the bounds (30)-(31)
together with similar bounds for the truncated mean of e−ξu ∈ (0, 1) can be used to prove
the uniform convergence of d∆(ψ) → d∞(ψ) and of s∆(ψ) → s∞(ψ) as ∆ → ∞. This
implies that the solutions to d∆(ψ) = s∆(ψ) have to converge to the unique solution to
d∞(ψ) = s∞(ψ).
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