
 

 

WORKING PAPER 
No. 778 
 
 
 
 

Priors and the Slope of the Phillips Curve 
 
 
March 2021 
 
 
 
 
 
 
 
Callum Jones 
Board of Governors of the           
Federal Reserve System 
 
Mariano Kulish 
University of Sydney 
 
Juan Pablo Nicolini 
Federal Reserve Bank of Minneapolis 
and Universidad Di Tella 

 

 
 
 
DOI: https://doi.org/10.21034/wp.778  
Keywords: Slope of the Phillips curve; Priors; Bayesian estimation; State-level data 
JEL classification: E52, E58 
 
The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of 
Minneapolis or the Federal Reserve System. 

https://doi.org/10.21034/wp.778


Priors and the Slope of the Phillips Curve*

Callum Jones† Mariano Kulish‡ Juan Pablo Nicolini§

March, 2021

Abstract

The slope of the Phillips curve in New Keynesian models is difficult to estimate using
aggregate data. We show that in a Bayesian estimation, the priors placed on the parameters
governing nominal rigidities significantly influence posterior estimates and thus inferences
about the importance of nominal rigidities. Conversely, we show that priors play a negli-
gible role in a New Keynesian model estimated using state-level data. An estimation with
state-level data exploits a relatively large panel dataset and removes the influence of en-
dogenous monetary policy.
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1 Introduction

The slope of the Phillips curve in New Keynesian models is notoriously difficult to estimate.

For example, Ireland (2004) estimates a New Keynesian model by maximum likelihood but cal-

ibrates the price adjustment cost parameter after attempts that led to implausible large nominal

rigidities. Along the same line, Schorfheide (2008) states that “the identification of the Phillips

curve coefficients is tenuous and no consensus about its slope and the importance of lagged

inflation has emerged from the empirical studies.”

This problem of identification may be one of the reasons why the Bayesian approach to

estimation became widespread in the DSGE literature. In part, through the use of priors, re-

searchers were able to bring information from other sources. For example, in the case of the

slope of the Phillips curve, researchers typically pointed to data on the frequency of price ad-

justment when setting priors on the Calvo parameters. But in part, priors add curvature to the

posterior along dimensions where the likelihood may be very flat. So while the Bayesian ap-

proach has provided a constructive way to move forward in estimating DSGE models, issues

of identification become blurred in practice. A natural way to partially address this problem is

to explore the results’ sensitivity of the results to the assumed priors. This exploration is the

purpose of this paper.

We follow the approach of Del Negro and Schorfheide (2008) to quantitatively assess the

impact of priors on inferences of the Phillips curve slopes. They show that medium-scale

New Keynesian models estimated on post-1982 US aggregate data cannot discriminate between

models that differ in the quantitative importance of nominal rigidities. As a result, they argue

priors play a crucial role.

Our contribution is to estimate the same model, but using state-level data, and show that,

in contrast, priors on nominal rigidities have a negligible impact on posterior inferences. A

main advantage of using state-level data–as we argue in a companion paper, Fitzgerald et al.

(2020)–is that when monetary policy is endogenous, relying on aggregate data to uncover the

slope of the Phillips curve can be problematic. Relying on deviations of state-level data from the

aggregate, however, circumvents the problem that arises with endogenous monetary policy.1 A

second advantage is that the panel nature of the state-level data brings in more observations.

We structure our analysis in two main steps. In our first step, which we call the direct effect of

1With an estimated structural model, Fitzgerald et al. (2020) find that estimates of the slope of Phillips curve,
which are found to be unstable when estimated based on aggregate data, are found to be stable when estimated
based on state-level data for the United States.
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priors, we explore how the posterior distributions of the Calvo parameters depend on the priors

assumed for those parameters. However, this is not the only way in which priors can affect the

posterior distributions of the Calvo parameters. In our second step, which we call the indirect

effect of priors, we study how the posterior distributions of the Calvo parameters depend on the

priors assumed for the policy parameters and for the parameters governing the distribution of

the shocks, while keeping the priors on the Calvo parameters fixed. In considering this effect,

using state-level data has another advantage. The reason is that the model, in deviations from

the aggregate, can be estimated independently of the policy rule, so there is no need to take a

stand on the priors regarding the policy rule parameters.

Our main findings are these. In studying the direct effect, we show that, in line with the re-

sults in Del Negro and Schorfheide (2008), the posterior distributions for the Calvo parameters

are very sensitive to their assumed prior. In contrast, the posteriors of the same parameters es-

timated using state-level data are robust to the assumed priors. In studying the indirect effect,

we find that with aggregate data, priors over the policy rule parameters and for the parameters

governing the shocks matter in general for posterior inferences on the Calvo parameters. There

are, however, differences in the results when we compare a small-scale with a medium-scale

model. With state-level data, there is no indirect effect from priors on policy parameters, since

the Calvo parameters can be estimated separately, so those priors are inconsequential. The

state-level estimates are robust to changing priors on the parameters governing the shocks.

State-level data help in identification in two non-mutually-exclusive ways: First, since they

use state-level variation to estimate the Calvo parameters, the parameters can be estimated with

any interaction with endogenous policy removed. Second, they bring in more information,

allowing the likelihood to dominate the prior in posterior inferences.

In the next section, we discuss the model and our empirical strategy. Section 3 presents the

results. Section 4 then sets up a simple example that analytically shows why moving to a state-

level model helps estimate the slope of the Phillips curve. The simple example shows that priors

are potentially very powerful in models that are not identified in a frequentist sense. Priors

can be thought to select among the infinitely many solutions. But the example also shows how

inferences of the slope of the Phillips curve are intertwined with the policy rule parameters in an

aggregate level model. The analytical results help interpret our findings with the quantitative

estimated models. The example is not meant to be an exhaustive analysis of identification of

forward looking structural models. For further analysis of identification in structural models,

see Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011) and Müller (2012).

3



2 Estimation of a Small-Scale New Keynesian Model

In this section, we estimate a small-scale New Keynesian model both using aggregate and

state-level data and for three alternative specifications for the priors. In doing so, we study

the robustness of our estimates to the priors used and, more importantly, how this robustness

depends on the type of data used for estimation.

The model we estimate in this section is a variation of the standard three-equation New

Keynesian model. We adapt that model to a series of geographically separated units in which

local shocks can move local pricing and employment decisions that are different than those for

the country as a whole. To do so, we do need to extend that basic popular model to allow

for tradable and non-tradable goods. This is the only deviation from the standard textbook

example of the New Keynesian model with price and wage frictions. We explain the model in

detail below.

2.1 The Model

We use the model described in Fitzgerald et al. (2020). The economy consists of a continuum

of ex ante identical islands that together form a monetary union and trade with one another.

Consumers on each island derive utility from the consumption of a final good and from leisure:

max E0

∞

∑
t=0

βt(s)
[

log(ct(s))−
ηt(s)
1 + ν

nt(s)1+ν

]
,

where s indexes the island, ct(s) is consumption, nt(s) is labor supplied, βt(s) is a preference

shock, and ηt(s) is a labor disutility shock. Both shocks follow AR(1) processes:

log βt(s) = (1− ρβ) log β + ρβ log βt−1(s) + σβε
β
t (s)

log ηt(s) = (1− ρη) log η + ρη log ηt−1(s) + σηε
η
t (s).

The production technology is as follows. The final good yt(s) is assembled using inputs of

non-traded goods yN
t (s) and traded goods yM

t (s, j) imported from island j:

yt(s) =

(
ω

1
σ yN

t (s)
σ−1

σ + (1−ω)
1
σ

(∫ 1

0
yM

t (s, j)
κ−1

κ dj
) κ

κ−1
σ−1

σ

) σ
σ−1

,

where ω determines the share of non-traded goods, σ is the elasticity of substitution between

non-traded and traded goods, and κ is the elasticity of substitution across varieties of traded
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goods. Letting pN
t (s) and pM

t (s) denote the inputs’ corresponding prices, we see that the price

of the final good on an island is

pt(s) =

(
ωpN

t (s)
1−σ + (1−ω)

(∫ 1

0
pM

t (j)1−κdj
) 1−σ

1−κ

) 1
1−σ

.

Non-traded goods and traded export goods yX
t (s) on each island are CES composites of

varieties k of differentiated intermediate inputs with an elasticity of substitution ϑ:

yN
t (s) =

(∫ 1

0
yN

t (s, k)
ϑ−1

ϑ dk
) ϑ

ϑ−1

yX
t (s) =

(∫ 1

0
yX

t (s, k)
ϑ−1

ϑ dk
) ϑ

ϑ−1

.

The production of the varieties of non-traded goods and the varieties of traded exports on

each island is linear in labor:

yN
t (s, k) = zN

t (s)n
N
t (s, k)

yX
t (s, k) = zX

t (s)n
X
t (s, k),

where zN
t (s) and zX

t (s) are productivity shocks that follow AR(1) processes:

log zN
t (s) = (1− ρN

z ) log zN + ρN
z log zN

t−1(s) + σN
z εN

z,t(s)

log zX
t (s) = (1− ρX

z ) log zX + ρX
z log zX

t−1(s) + σX
z εX

z,t(s).

Nominal frictions affect this economy in a standard way. Individual producers of tradable

and non-tradable intermediate goods are subject to Calvo price adjustment frictions parame-

terized by λp, the probability that a firm cannot reset its price in a given period. The evolution

of non-tradable prices thus evolves according to

p̂N
t (s) = λp p̂N

t−1(s) + (1− λp) p̂N?
t (s),

where variables with hats denote their log-deviation from steady-state and p̂N?
t (s) is the opti-

mal price that firms set in the case they are able to adjust prices. This optimal price is forward

looking and solves

p̂N?
t (s) = βλpEt p̂N?

t+1(s) + (1− βλp)(ŵt(s)− ẑN
t (s)),
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where ŵt(s) is nominal wages. These two equations yield the price Phillips curve for non-

tradable goods:

π̂N
t (s) = βEtπ̂

N
t+1(s) +

(1− βλp)(1− λp)

λp

(
ŵt(s)− p̂N

t (s)− ẑN
t (s)

)
,

so that the slope of the price Phillips curve in non-tradable inflation is (1−βλp)(1−λp)
λp

. An analo-

gous argument applies to the slope of the Phillips curve in tradable inflation.

Labor is immobile across states and is aggregated using a CES aggregator with an elasticity

of substitution across labor varieties of ψ. Individual households supply differentiated varieties

of labor that are subject to Calvo wage adjustment frictions parameterized by λw, the probabil-

ity that a labor variety cannot reset its wage in a given period. The evolution of wages evolves

according to

ŵt(s) = λwŵt−1(s) + (1− λw)ŵ?
t (s),

where ŵ?
t (s) is the optimal wage that unions set in the case they are able to adjust wages, which

evolves according to

ŵ?
t (s) = βλwEtŵ?

t+1(s) +
(1− λwβ)

(1 + ψν)
(−µ̂t(s) + ψνŵt(s) + log ηt(s)− log η + νn̂t(s)) ,

where µ̂t is the shadow value of wealth.

Applying the same logic used in deriving the price inflation Phillips curve to this optimal

wage setting equation, we can derive the following wage inflation Phillips curve:

π̂w
t = βEtπ̂

w
t+1 +

(1− βλw)(1− λw)

λw

1
(1 + ψν)

(−µ̂t(s)− ŵt(s) + log ηt(s)− log η + νn̂t(s)) .

Notice that under this specification, the slope of the wage inflation Phillips curve is propor-

tional to (1−βλw)(1−λw)
λw

, the analogous term to the price Phillips curve. This term highlights the

non-linear relationship between the Calvo parameters that we estimate and the slopes of the

corresponding Phillips curves. This non-linearity implies that a 0.05 difference in the Calvo

parameter implies much larger changes in the corresponding slope when the Calvo parameter

is 0.90 than when it is 0.60, values that we estimate below.

At the aggregate level, monetary policy is set using a Taylor rule when the ZLB does not

bind. The nominal interest rate it responds to its lag with weight αi; deviations of inflation πt

from target π̄ with weight απ; deviations of output yt from the flexible-price level of output yF
t

with weight αy; and the growth rate of the output gap with weight αx:

1 + it = (1 + it−1)
αi

[
(1 + ī)

(πt

π̄

)απ
(

yt

yF
t

)αy]1−αr
(

yt

yt−1
/

yF
t

yF
t−1

)αx

exp(εi
t).
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When the zero lower bound binds, the nominal interest rate equals zero.

Finally, at the aggregate level, in addition to shocks to the interest rate rule εi
t, we also include

shocks to the aggregate price Phillips curve (via standard markup shocks), which follow an

AR(1) process:

log ξt = (1− ρξ) log ξ + ρξ log ξt−1 + σξε
ξ
t .

2.2 Estimation Strategy

Method. To capture the period of zero nominal interest rates, we use a piecewise linear ap-

proximation as proposed in Jones (2017); Kulish, Morley and Robinson (2017); and (n.d.).

Under this approximation, the reduced form solution of our model has a time-varying VAR

representation:

xt = Jt + Qtxt−1 + Gtεt,

where xt collects the state and aggregate endogenous variables and εt collects the state and

aggregate shocks. The time-varying coefficient matrices Jt, Qt, and Gt, arise because of the

non-linearities induced by the ZLB.

Following Jones, Midrigan and Philippon (2018), we separate the state-level variables from

the aggregate variables. We decompose the vector of variables for each island s, expressed in

log-deviations from the steady state as xt(s), into a component due to state s’s dependence

on its own history xt−1(s) and its own shocks εt(s) and a component encoding the state-level

dependence on aggregate variables:

xt(s) = Qxt−1(s) + Gεt(s)︸ ︷︷ ︸
state-level component

+ J̃t + Q̃tx∗t−1 + G̃tε
∗
t︸ ︷︷ ︸

aggregate component

. (1)

The coefficient matrices that appear in the aggregate component, J̃t, Q̃t, and G̃t, are time varying

because of the non-linearities induced by the ZLB. The vector x∗t , which contains the aggregate

variables, evolves as

x∗t = J∗t + Q∗t x∗t−1 + G∗t ε∗t . (2)

Here, ε∗t are the aggregate shocks.

Next, let x̄∗t =
∫

xt(s)ds denote the economy-wide average of the island-level variables. The

vector x̄∗t is a subset of the set of aggregate variables x∗t (which can include the nominal interest

rate, for example). Given this structure of our model, the deviation of island-level variables
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from their economy-wide averages, x̂t(s) = xt(s) − x̄∗t , is a time-invariant function of island-

level variables alone:

x̂t(s) = Qx̂t−1(s) + Gεt(s), (3)

where we use the assumption that island-level shocks have zero mean in the aggregate; that is,∫
εt(s)ds = 0. We make explicit also that a key assumption we make in (1) in order to arrive at

(3) is that the parameters across states are the same (that is, that the coefficient matrices Q and

G for the state-level components are not state specific).

The use of deviations of state-level observables from aggregates in estimation removes state-

level outcomes’ dependence on aggregate variables, so that the nominal interest rate drops out

from the reduced form. Equation (3) therefore circumvents the problem of having to rely on

aggregate data to estimate the Phillips curve in the presence of endogenous and possibly time-

varying policy at the aggregate level, as discussed in detail in Fitzgerald et al. (2020).2

Practically, the use of equations (2) and (3) to estimate the model involves first expressing

each state’s observable variable as a deviation from its aggregate counterpart by subtracting

time effects for each year and each variable. It also involves subtracting a state-specific fixed

effect and time trend for each observable, since in the model, all islands are ex ante identical.

We estimate the model using state-level data, following the strategy just described. With the

purpose of comparing results, we also estimate the model using aggregate data. In doing so,

we jointly estimate the structural parameters and the policy rule.

In all cases, we use Bayesian methods to estimate the model’s structural parameters. To

construct the posterior distribution, as the island-level shocks in (3) are independent and do

not affect aggregate outcomes, we can write the likelihood of the model as the product of each

individual state’s likelihood, computed from (3). When we estimate the model using aggre-

gate data, we use equation (2) to compute the aggregate likelihood. Additional details on the

likelihood function construction are provided in the Appendix.

Calibrated and Estimated Parameters. We calibrate a subset of parameters to the same values

as in Jones, Midrigan and Philippon (2018). The discount factor is chosen to match an annual

real interest rate of 2%. The elasticity of substitution of labor varieties, ψ, is calibrated to a

value of 21, as in Christiano, Eichenbaum and Evans (2005). The inverse labor supply elasticity

2Another advantage of representation (3) is that we can overcome the curse of dimensionality associated with
all 51 states’ dependence on the time-varying aggregate structure, which would otherwise make our estimation
with state-level data computationally infeasible.
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ν is set to 2. At the state level, we follow the trade literature in setting the parameters govern-

ing the tradable and non-tradable sectors. The Appendix contains all details of the calibrated

parameters.

The remaining parameters of the model are estimated. We reiterate that in our estimations

using state-level data, there is no need to estimate the parameters of the Taylor rule. This is

because in our estimation strategy, the nominal interest rate drops out in equation (3).

We thus estimate the following parameters at the aggregate level: those governing price

stickiness λp; wage stickiness λw; the persistences and standard deviations of the aggregate

shocks; and the parameters of the monetary policy rule αi, απ, αy, and αx. At the state level, we

estimate λp, λw, and the persistences and standard deviations of the state-level shocks.

Data For our benchmark exercise, we use United States data for the period 1977-2017. The

year 1977 is the first one for which we have state-level data. We can therefore use the same pe-

riod in both the aggregate data and the state-level data estimations, so any potential difference

between the two cannot be attributed to the time period.3

We use aggregate data on employment, output, wages, inflation, and the Fed Funds rate.4 To

pin down expectations of the nominal interest rate during the ZLB period, we use the sequence

of expected lower bound durations between 2009 and 2015 from the Blue Chip Financial Fore-

casts survey (for 2009 to 2010) and the New York Federal Reserve’s Survey of Primary Dealers

(for 2011 to 2015) (see Kulish, Morley and Robinson, 2017). At the state level, we use a panel

of employment, nominal output, wages, and inflation in the cross section of 51 US states. The

state-level data form an unbalanced mixed-frequency panel, as most variables are observed for

all states at an annual frequency but inflation is observed at a biannual frequency for about half

of the states.

In the Appendix, we show the results are similar when a sample size starting in 1966 is

used, which is the first year of the sample used to estimate the medium-scale model in the

next section. That is also the first year of the sample typically used in estimating medium-scale

models, like the one we analyze below. Our benchmark period includes the building up and

bursting of the financial crisis, plus the ensuing years of policy at its effective zero bound. In the

Appendix, we present the results if one ends the sample in 2004 or if we allow for credit shocks,

which, as documented in Mian and Sufi (2011), had a substantial heterogeneous impact across

3For a thorough analysis of the stability of the Calvo parameters over time, see Fitzgerald et al. (2020).
4See Appendix E for details of data availability and how we construct our series.
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US regions. As we show there, the overall effects are barely changed by these modifications.

3 Results

3.1 Using Aggregate Data

We study the results using aggregate data and separate our discussion into two parts. First,

we examine the direct effect of changing the priors for the Calvo parameters on the Calvo

estimates; second, we discuss the indirect effect of changing the priors for the other parameters

on the Calvo estimates.

3.1.1 The Direct Effect

In Table 1, we show the results using aggregate data. We use three different priors. In all cases,

we center the prior for both Calvo parameters at 0.5. We then allow for different confidence on

that value. In the top panel of the table, we show the results when using a uniform distribution

on the interval [0,1]. The panel in the middle shows the results when using a beta distribu-

tion with mean and standard deviation (0.5, 0.1), which is the specification used in Smets and

Wouters (2007) (SW). Finally, the bottom panel reports results when using a tighter beta distri-

bution with mean and standard deviation (0.5, 0.05).

Figure 1 shows the posterior distributions for the two Calvo parameters for each of the three

specifications. The results, consistent with the ones reported in Del Negro and Schorfheide

(2008), are quite striking: as the confidence in the prior centered on 0.5 weakens, the posterior

moves closer to the upper bound of the parameter, for both the Calvo price and Calvo wage

parameters.

The implications regarding the corresponding slopes of the Phillips curve are also large.

These are reported in Table 1. Moving from the SW priors – a beta distribution with parameters

(0.5, 0.1), as depicted in the middle panel of Table 1 – to uniform priors reduces the slope of the

price Phillips curve by two-thirds and the slope of the wage Phillips curve by half.

3.1.2 The Indirect Effect

Precision of Priors. In describing the direct effect, we estimated the model assuming the same

priors as SW for the policy rule parameters and for the moments of the distributions governing

10



Table 1: Estimated Parameters and Slopes, Aggregate Data, 1977 to 2017

Calvo Estimates Phillips Curve Slopes?

Mode 5% 95% Mode 5% 95%

Uniform Distribution Priors, U(0, 1)

Prices (λp) 0.94 0.92 0.98 0.003 0.001 0.009
Wages (λw) 0.88 0.84 0.91 0.017 0.009 0.030

Beta Distribution Priors, Beta(0.5, 0.1)

Prices (λp) 0.90 0.88 0.93 0.010 0.006 0.019
Wages (λw) 0.85 0.81 0.88 0.027 0.017 0.046

Beta Distribution Priors, Beta(0.5, 0.05)

Prices (λp) 0.84 0.81 0.86 0.032 0.023 0.047
Wages (λw) 0.78 0.75 0.81 0.065 0.046 0.089

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

Figure 1: Posterior Distributions, Calvo Parameters, Aggregate Data, 1977 to 2017
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Table 2: Estimated Parameters across Non-Calvo Priors, Aggregate Data, 1977 to 2017

SW Priors on All Uniform on TR Only Uniform on All Else

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Parameter Estimates

λp 0.90 0.88 0.93 0.90 0.87 0.93 0.90 0.87 0.92
λw 0.85 0.81 0.88 0.85 0.81 0.88 0.76 0.71 0.84
αi 0.81 0.77 0.84 0.83 0.77 0.87 0.84 0.78 0.88
αp 1.61 1.47 1.79 2.07 1.71 2.61 2.20 1.84 2.99
αx 0.28 0.24 0.33 0.42 0.34 0.55 0.41 0.33 0.54
αy 0.12 0.10 0.17 0.12 0.07 0.19 0.13 0.09 0.21

Phillips Curve Slopes?

Prices 0.012 0.006 0.017 0.012 0.006 0.020 0.012 0.007 0.020
Wages 0.027 0.017 0.046 0.027 0.017 0.046 0.077 0.031 0.120

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

the shocks.5 We now compare those results with the ones in which we maintain the priors on

the Calvo parameters from SW, but we set uniform priors for the policy rule parameters and

the moments of the distributions of the shocks.6

The results are reported in Table 2. The first column presents the results for the Calvo pa-

rameters as well as for the policy rule parameters when using SW priors for all. The second

column’s results correspond to the estimation when using uniform priors on the Taylor rule pa-

rameters only, while the third column reports the case in which uniform priors are used for the

Taylor rule parameters as well as for the parameters governing the distribution of the shocks.

For the Calvo price parameter, there is remarkably little indirect effect: the mode of the

posterior is the same, independently of the priors used for the policy parameters or for the mo-

ments of the shocks. However, there are important differences for the Calvo wage parameter.

The mode of the posterior goes down from 0.85 to 0.76.7 However, this is the case only when the

5For the policy rule parameters, SW use the following: for αi, a beta distribution centered on 0.75 with a stan-
dard deviation of 0.1; for απ , a normal distribution centered on 1.5 with a standard deviation of 0.125; for αx, a
normal distribution centered on 0.125 with a standard deviation of 0.05; and for αy, a normal distribution centered
on 0.125 with a standard deviation of 0.05. For the autoregressive shock processes, SW use beta distributions cen-
tered on 0.5 with a standard deviation of 0.2 for the persistences, and an inverse gamma distribution with a mean
of 0.1 and a standard deviation of 2.0 for the standard deviations of the shocks.

6For details, see the Online Appendix.
7Due to the very non-linear relationship between the Calvo parameter and the slope of the corresponding
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Table 3: Estimated Parameters across Non-Calvo Prior Means, Aggregate Data, 1977 to 2017

Baseline SW Priors αp Centered at 5

Mode 5% 95% Mode 5% 95%

λp 0.90 0.88 0.93 0.90 0.88 0.93
λw 0.85 0.81 0.88 0.84 0.81 0.89
αi 0.81 0.77 0.84 0.94 0.93 0.95
αp 1.61 1.47 1.79 4.89 4.71 5.12
αx 0.28 0.24 0.33 0.36 0.32 0.41
αy 0.12 0.10 0.17 0.19 0.11 0.25

αy Centered at 1 αx Centered at 1

Mode 5% 95% Mode 5% 95%

λp 0.90 0.88 0.93 0.90 0.87 0.92
λw 0.86 0.83 0.90 0.86 0.83 0.89
αi 0.97 0.96 0.98 0.70 0.62 0.79
αp 1.56 1.35 1.76 1.67 1.50 1.87
αx 0.35 0.30 0.39 0.94 0.86 1.02
αy 0.96 0.87 1.04 0.09 0.05 0.15

confidence on the priors of the moments of the shocks is relaxed. Allowing for uniform priors

on the policy parameters does not change the estimated value, in spite the fact that the values

for the policy parameter do change somewhat. Note also that the estimated policy parameters

barely change when using uniform distributions for the moments governing the shocks - only

αp changes, but by a very small magnitude relative to the case in which uniform priors were

used for the policy parameters. This implies that the relevant changes are not the variation of

the policy parameters. The next analysis, in which we change the mean value for the priors of

the policy parameters, confirms this notion.

Mean of Priors. We now repeat the estimation, but we change the mean of the prior of the

coefficients of the Taylor rule that govern the response of the policy rate to inflation, the output

gap, and the growth of output. In all cases, we use the same priors as SW, with the same

precision, but we center the parameter on alternative values. The results are reported in Table

3. The upper left panel reproduces the results of estimating the model with SW priors, as

reported in Table 2 above. The other panels show the results when we change, one at a time,

Phillips curve when the λ′s are close to their extreme points, this apparently small difference in the λ’s translate
into very large differences in the slopes. For a detailed discussion of this see Fitzgerald et al. (2020).
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the means of the prior of αp from 1.5 to 5, αy from 0.125 to 1, and αx from 0.125 to 1. As can be

seen from the table, the change in the prior does have a substantial effect on the estimated value

for the corresponding parameter. However, it has very little impact on the estimated value for

the other policy parameters. And, more remarkably, there is barely any effect on the posterior

distribution of the Calvo parameters.

3.1.3 Discussion of Results Using Aggregate Data

Overall, we see the results of this subsection as consistent with the notion, documented in

the literature, that estimates of small-scale New Keynesian models deliver very high degrees

of price and wage rigidities. Obviously, tight priors around lower values do deliver lower

posteriors, but, as becomes clear in using uniform priors, the data prefer quite strong price

rigidities.

The results of the indirect effect strongly reinforce that notion: the data so strongly prefer

high price and wage rigidity that varying the priors on policy parameters does not change the

conclusion. This is the case when we allow for less precise priors, but also, and quite strongly,

when we center the priors of the policy parameters at different values.

An important exception appears once we allow for less precise priors on the parameters

governing the law of motion for the shocks, in which case we estimate substantially lower

rigidity in wages.

3.2 Using State-Level Data

The results are quite the opposite when we use state-level data to identify the Calvo parameters.

As we did before, we analyze the direct effect separately from the indirect effect.

3.2.1 The Direct Effect

We estimated the model using state-level data for the same three alternative priors for the Calvo

parameter–namely, a beta distribution with mean and standard deviation (0.5, 0.1), as is stan-

dard in the literature; a beta distribution with mean and standard deviation (0.5, 0.05); and a

uniform distribution on the unit interval [0, 1]. In all three cases, we used beta priors for the

moments governing the distributions of the shocks, as is customary in the literature. Recall that

in this case, we do not need to jointly estimate the parameters of the policy rule.
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The results show a notable robustness of the posterior distribution with respect to the as-

sumed priors. Table 4 reports the mode and the 5% and 95% percentiles, for each case. The

three posterior distributions for the two Calvo parameters are reported in Figure 2. As is clear

from the table, the results are totally insensitive with respect to the priors. We quite consis-

tently estimate the Calvo price parameter to be around 0.6 and the Calvo wage parameter to be

around 0.4. The corresponding values for the slopes of the Phillips curves are presented in the

three right columns of Table 4.

3.2.2 The Indirect Effect

We now repeat the estimation, but we assume uniform distributions for the moments of the

variance-covariance matrix of the structural shocks. The results are reported in Table 5. The

first panel of the table reproduces the results using SW priors for all parameters. The second

panel shows the effect of using uniform priors for the variances, and the third panel the results

of using uniform priors for the variances and the persistence parameters. As the table makes

clear, the effect of alternative priors on the estimated values is quite small. These differences

translate into very minor differences in the slopes of the Phillips curves, which remain around

0.3 for prices and lie between 0.8 and 1.0 for wages.

3.3 The Role of Priors in a Medium-Scale New Keynesian Model

In this subsection, we explore the role of priors for both the direct and the indirect effect in

estimating a medium-scale model like the one developed in Smets and Wouters (2007) (SW).

The equations of the model are provided in Appendix F.

This model uses data that are not available at the state level, so we provide estimates using

aggregate data only. As we cannot compare them with state-level data estimation, we use 1966

as the starting year of the sample, as in SW. We discuss both the direct and the indirect effect.

3.3.1 The Direct Effect

In Table 6, we show the results for the three different priors we used before. In Figure 3, we

plot the posterior distributions for the two Calvo parameters for each of the three specifications.

The results are similar to the ones obtained with the small-scale model: as the confidence in the

center of the prior weakens, the posterior moves closer to the upper bound of the parameter,

for both the Calvo price and Calvo wage parameters.
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Table 4: Estimated Parameters and Slopes, State-Level Data, 1977 to 2017

Calvo Estimates Phillips Curve Slopes?

Mode 5% 95% Mode 5% 95%

Uniform Distribution Priors, U(0, 1)

Prices (λp) 0.59 0.57 0.60 0.29 0.27 0.33
Wages (λw) 0.41 0.39 0.42 0.87 0.79 0.97

Beta Distribution Priors, Beta(0.5, 0.1)

Prices (λp) 0.59 0.57 0.60 0.30 0.27 0.33
Wages (λw) 0.41 0.39 0.43 0.85 0.77 0.96

Beta Distribution Priors, Beta(0.5, 0.05)

Prices (λp) 0.59 0.57 0.60 0.30 0.27 0.34
Wages (λw) 0.41 0.39 0.43 0.86 0.75 0.94

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

Figure 2: Posterior Distributions, Calvo Parameters, State Data, 1977 to 2017
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Table 5: Estimated Parameters across Non-Calvo Priors, State Data, 1977 to 2017

SW Priors on All Uniform on Variances Uniform on All Else

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Estimates

λp 0.59 0.57 0.60 0.59 0.57 0.60 0.57 0.55 0.58
λw 0.41 0.39 0.43 0.42 0.40 0.44 0.38 0.36 0.39

Phillips Curve Slopes?

Prices 0.295 0.272 0.331 0.294 0.267 0.324 0.330 0.301 0.370
Wages 0.850 0.768 0.956 0.785 0.719 0.897 1.006 0.940 1.112

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

The estimated Calvo parameters are a just a few points lower than those for the small-scale

model. The dependence of the posteriors on the priors is notably similar. As it was the case

for the small scale model, the estimated values are substantially higher than the ones obtained

with state-level data.

3.3.2 The Indirect Effect

Precision of Priors. As we before, we compare the benchmark estimation in which all priors

are set as in SW with the case in which we maintain the priors on the Calvo parameters as in

SW, but set uniform priors for the policy rule parameters and the moments of the distributions

of the shocks.

The results of the estimation when using SW priors are presented in the first column of Table

6. In the second column, we report the results when using the same SW priors for the Calvo

parameters and for the moments governing the distribution of shocks, but using uniform priors

for the policy rule parameters. Finally, the third column reports estimates using SW priors on

the Calvo parameters, while using uniform priors for the parameters of the Taylor rule and

for the moments governing the evolution of the shocks. Interestingly enough, the estimated

values for both Calvo parameters are remarkably robust to this indirect effect. There are some

variations on the estimated values for the Calvo parameter, but the differences are very small

in all cases, even though the estimated values for the policy parameters do vary quite a bit in

some cases.

17



Table 6: Estimated Parameters, Aggregate Data, Medium-Scale Model, 1966 to 2017

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Direct Effect, across Priors on Calvos

Uniform Beta(0.5,0.1) Beta(0.5,0.05)

λp 0.91 0.88 0.93 0.88 0.85 0.91 0.80 0.77 0.84
λw 0.87 0.81 0.92 0.83 0.77 0.87 0.76 0.71 0.79
αi 0.78 0.59 0.90 0.75 0.59 0.89 0.74 0.58 0.90
αp 1.55 1.40 1.71 1.61 1.45 1.78 1.79 1.61 1.94
αx 0.23 0.19 0.28 0.23 0.18 0.27 0.19 0.15 0.23
αy 0.11 0.08 0.14 0.12 0.09 0.14 0.12 0.10 0.15

Direct Effect, Phillips Curve Slopes?

Prices 0.009 0.006 0.017 0.017 0.009 0.027 0.051 0.031 0.070
Wages 0.020 0.007 0.046 0.036 0.020 0.070 0.077 0.057 0.120

Indirect Effect, across Priors on Other Parameters

SW Priors on All Uniform on TR Only Uniform on All Else

λp 0.88 0.85 0.91 0.87 0.84 0.90 0.88 0.83 0.91
λw 0.83 0.77 0.87 0.81 0.77 0.86 0.82 0.77 0.86
αi 0.75 0.59 0.89 0.40 0.05 0.92 0.43 0.04 0.83
αp 1.61 1.45 1.78 1.86 1.57 2.19 1.91 1.65 2.26
αx 0.23 0.18 0.27 0.27 0.22 0.33 0.27 0.22 0.33
αy 0.12 0.09 0.14 0.13 0.10 0.17 0.12 0.10 0.16

Indirect Effect, Phillips Curve Slopes?

Prices 0.017 0.009 0.027 0.020 0.012 0.031 0.017 0.009 0.036
Wages 0.036 0.020 0.070 0.046 0.023 0.070 0.040 0.023 0.070

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.
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Figure 3: Posterior Distributions, Aggregate Data, Medium-Scale Model, 1966 to 2017

Mean of Priors. As a final exercise, we study the robustness of the estimated posterior distri-

butions of the Calvo parameters when we change the mean of the priors of the policy parame-

ters. As we did in the case of the small scale model, we change, one at a time, the mean of the

prior of αp from 1.5 to 5, that of αy from 0.125 to 1, and that of αx from 0.125 to 1.

The results are reported in Table 7. In this case, the effect is larger than the one in the small-

scale model, particularly so in setting a higher value for the response of the interest rate to

inflation, αp. Now, the range of estimates for the price stickiness parameter goes from 0.73 to

0.90, while the one for wages goes from 0.64 to 0.83. These ranges imply substantial differences

in the slopes of the corresponding Phillips curves. As in the case of the small scale model, the

estimated values of the policy parameters are quite robust to changes in priors in the other

policy parameters. This indicates that the cross derivatives of the likelihood functions among

policy parameters are quite small. We conjecture that this is the consequence of a likelihood

function that is quite flat over the values of the policy parameters, indicating difficulties in

identifying the structural parameters of the policy rule. We leave a full quantitative analysis of

the likelihood functions for further research.

4 Intuition from Analytical Results

The previous section established two key results regarding inferences of the Calvo parameters:

(i) direct effects are strong for the aggregate model but quite weak for the state-level model;

19



Table 7: Estimated Parameters across Non-Calvo Priors, Medium-Scale Model, 1966 to 2017

Baseline SW Priors αp Centered at 5

Mode 5% 95% Mode 5% 95%

λp 0.88 0.85 0.91 0.73 0.70 0.77
λw 0.83 0.77 0.87 0.71 0.64 0.76
αi 0.75 0.59 0.89 0.75 0.58 0.89
αp 1.61 1.45 1.78 5.02 4.87 5.20
αx 0.23 0.18 0.27 0.29 0.24 0.35
αy 0.12 0.09 0.14 0.22 0.15 0.28

αy Centered at 1 αx Centered at 1

Mode 5% 95% Mode 5% 95%

λp 0.89 0.87 0.91 0.90 0.88 0.93
λw 0.80 0.74 0.85 0.86 0.81 0.90
αi 0.77 0.59 0.89 0.78 0.59 0.89
αp 1.40 1.22 1.60 1.62 1.39 1.78
αx 0.26 0.20 0.31 0.80 0.72 0.88
αy 1.00 0.93 1.08 0.24 0.19 0.30

and (ii) indirect effects of policy rule parameters are quantitatively relevant for the aggregate

model in some cases, but irrelevant for the state-level model overall. Why is this so? Because

the empirical model is solved numerically, explicit analytical expressions between the structural

parameters, priors, and the data are not available. Here we consider a model that, because of its

simplicity, allows us to explore analytically two key results that resemble the patterns observed

in the larger estimated model.

We first take the simplest version of an New Keynesian model we can think of to illustrate

how inferences of the slope of the Phillips curve are intertwined with monetary policy rule

parameters when relying on aggregate data. We then show how relying on a state-level model

written in terms of deviations from the aggregate can disentangle inferences of κ from monetary

policy. The aggregate model is given by

xt = −(it −Etπt+1) + Etxt+1 + εx
t (4)

πt = βEtπt+1 + κxt + επ
t (5)

it = φπt, (6)

where xt is the output gap, it is the nominal interest rate, and πt is inflation. The shocks εx
t and

επ
t are iid with mean 0 and standard deviation σx and σπ, respectively. The slope of the Phillips
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curve is κ, and the monetary policy response to inflation is φ. Thus, the structural model has

four structural parameters, {φ, κ, σx, σπ}.
One could consider different cases, such as one with an intertemporal elasticity of substitu-

tion different from 1, or one with a monetary policy rule that responds to the output gap and

has a monetary policy shock. But we deliberately abstract from these cases, because it is hard

to get clean analytical expressions to highlight the role of priors. We consider a case in which

the structural parameters are not identified in the aggregate case–consistent with the findings

of Komunjer and Ng (2011) and Iskrev (2010) in larger models–but are just identified at the

state-level. In the discussion that follows, moving to a state-level model sharpens identification

of the Phillips curve slope, consistent with our findings above. This is not to say, however, that

other situations may not be possible in practice.

Substituting (6) in (4) gives a 2× 2 system in terms of yt = (xt, πt)′, which, in the form of a

general linear rational expectations model, is

A0yt = A1yt−1 + B0Etyt+1 + D0εt. (7)

In our case, A1 = 0 and D0 = I, so by undetermined coefficients, the solution to (7) is given by

yt = A−1
0 εt. (8)

In this case, (
xt
πt

)
=

1
1 + κφ

(
1 −φ
κ 1

)(
εx

t
επ

t

)
. (9)

Equation (8) implies that Etxt+1 = Etπt+1 = 0 for all t. Hence, the structural equations in (7)

collapse to the SVAR below:

A0yt = εt.

Let the variance-covariance matrix of the structural shocks, εt, be the diagonal matrix, Σ. As-

suming yt is observed, one can estimate the variance-covariance matrix of the reduced form

shocks, A−1
0 εt, given by

Ω = A−1
0 Σ(A−1

0 )′. (10)

Equation (10) maps the structural parameters to the reduced form variance-covariance matrix.

From estimation of the reduced form VAR, one obtains an estimate of the variance-covariance

matrix–that is, an estimate of the variance of xt, the variance of πt, and the covariance between

them. These estimates are denoted by Vx, Vπ, and Cx,π respectively. Equation (10) implies the
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system below:

Vx =
σ2

x
(1 + κφ) 2 +

φ2σ2
π

(1 + κφ) 2 (11)

Cx,π =
κσ2

x
(1 + κφ) 2 −

φσ2
π

(1 + κφ) 2 (12)

Vπ =
κ2σ2

x
(1 + κφ) 2 +

σ2
π

(1 + κφ) 2 . (13)

Notice that in the aggregate model, inferences of the slope of the Phillips curve, κ, will be inter-

twined with inferences of the monetary policy rule parameter, φ. Notice also that the equations

above map three reduced form moments into the four structural parameters of interest, κ, φ,

σx, and σπ. Equation (10) has infinitely many solutions: the structural parameters are not iden-

tified. Just as in standard VAR analysis, one requires some restriction (or some prior) on the

structural parameters to achieve identification (or to select one solution).

The analysis up to this point has relied on an estimated reduced form VAR. In practice, of

course, Bayesian estimation of structural models relies on the log posterior, P , which is the

sum of the log-likelihood, L, and the prior, p. So we now discuss direct and indirect effects

on κ in these terms. Collecting the observed data in Y = {xt, πt}T
t=1, we can show that the

log-likelihood is

L(Y|κ, φ, σx, σπ) = −T ln(2π)− T
[

ln
(

σxσπ

1 + κφ

)]
− 1

2

T

∑
t=1

[(
πt − κxt

σπ

)2

+

(
φπt + xt

σx

)2
]

,

and the log posterior, in turn, is given by

P(κ, φ, σx, σπ|Y) = L(Y|κ, φ, σx, σπ) + p(κ, φ, σx, σπ), (14)

where p(κ, φ, σx, σπ) stands for the priors on the structural parameters, which are taken to be

independent.

The partial derivatives of L with respect to the four parameters are

Lκ = T
[

φ

(1 + κφ)

]
+

T

∑
t=1

(
πt − κxt

σπ

)
xt

σπ
(15)

Lφ = T
[

κ

(1 + κφ)

]
−

T

∑
t=1

(
φπt + xt

σx

)
πt

σx
(16)

Lσπ = T
[

1
σπ

]
−

T

∑
t=1

(
πt − κxt

σπ

)2 1
σπ

(17)

Lσx = T
[

1
σx

]
−

T

∑
t=1

(
φπt + xt

σx

)2 1
σx

. (18)
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The maximum of the log-likelihood function is attained when those four partial derivatives are

set equal to zero. In the Appendix, we show that given any sample Y = {xt, πt}T
t=1, if the vector

(κ̃, φ̃, σ̃x, σ̃π) satisfies the first three equations, then it satisfies the fourth. This is another way of

stating that the system is not identified. All these functions are continuous and differentiable,

so this means that there exists a differentiable function

S(κ, φ, σx, σπ) = 0,

such that the solutions of the system above are given by the solution to this equation.

Once we chose priors, the maximum of the likelihood function is attained when those four

partial derivatives are set equal to the negative of the partial derivative of the prior with respect

to the corresponding parameter; that is,

Lκ = −pκ

Lφ = −pφ

Lσπ = −pσπ

Lσx = −pσx .

It follows that as long as the prior is not a trivial function of the parameters, so that the partial

derivatives of the prior are non-trivial functions of its arguments, the system of necessary con-

ditions for a maximum of the posterior will identify, in general, a unique local solution. Thus,

the choice of a prior can be thought of as way of selecting a solution (or a subset of them) among

the infinitely many ones that satisfy S(κ, φ, σx, σπ) = 0.

To see how priors on the monetary policy rule parameter affect inferences of the slope of

the Phillips curve, κ, it is useful to consider the case of uniform priors on κ, σx, and σπ with a

dogmatic prior on φ, equivalent to calibrating φ. Assuming we are evaluating the posterior at

the interior of the support of the priors, uniform priors imply the derivatives of the priors are

zero, so the system of partial derivatives of the posterior is the same as the partial derivatives of

the likelihood. Thus, the solutions to the partial derivatives are the intersection of the solutions

of S(κ, φ, σx, σπ) = 0 and the support of the priors.

When φ is calibrated, the system is identified. The three equations that solve for (κ, σx, σπ)

are the partial derivatives with respect to κ, σπ, and σx. The first-order conditions are (15), (17),

and (18). Equations (15) and (17) determine κ and σπ, while (18) determines σx. One can show

that the solution for κ satisfies

κ =
Cx,π + φVπ

Vx + Cx,πφ
, (19)
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which reveals the determinants of the indirect effect–that is, how inferences about κ are deter-

mined by the moments of the data, Vx, Vπ, and Cx,π, as well as the prior on φ. Indeed, in this

case, changing the mean of the dogmatic prior on φ affects posterior inferences on κ as given by

∂κ

∂φ
=

VπVx

(Vx + Cx,πφ)2

[
1−

C2
x,π

VπVx

]
.

Moving to a state-level model, however, disentangles inferences of κ from φ. To see this,

assume, following McLeay and Tenreyro (2020), that there are n regions and that aggregate

inflation and the aggregate output gap are just weighted averages of inflation and the output

gap in each of the n regions; that is,

πt =
n

∑
s=1

α(s)πt(s), (20)

and

xt =
n

∑
s=1

α(s)xt(s), (21)

with ∑n
s=1 α(s) = 1. In state s, the regional output gap and regional inflation follow the equa-

tions below:

xt(s) = −(it −Etπt+1(s)) + Etxt+1(s) + εx
t (s) (22)

πt(s) = βEtπt+1(s) + κxt(s) + επ
t (s). (23)

Define deviations from the aggregate as π̂t(s) = πt(s) − ∑n
s=1 α(s)πt(s) and x̂t(s) = xt(s) −

∑n
s=1 α(s)xt(s), and subtract aggregate equations from (23) and (22) to obtain

x̂t(s) = Etπ̂t+1(s) + Et x̂t+1(s) + ε̂x
t (s) (24)

π̂t(s) = βEtπ̂t+1(s) + κx̂t(s) + ε̂π
t (s). (25)

By undetermined coefficients, the solution is given by A−1
0 , which in this case reads(

x̂t(s)
π̂t(s)

)
=

(
1 0
κ 1

)(
ε̂x

t (s)
ε̂π

t (s)

)
. (26)

For the state-level model, the system of equations implied by (10) is

Vx(s) = σ̂2
x (27)

Cx,π(s) = κσ̂2
x (28)

Vπ(s) = κ2σ̂2
x + σ̂2

π. (29)
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Now, at the state level, there are three equations for the three structural parameters of interest,

κ, σ̂x, and σ̂π. As a result, the parameters, including κ, can be pinned down uniquely from

the state-level moments. As monetary policy is common across states, relying on deviations

of state level data from the aggregate makes inferences of κ independent of monetary policy.

Consequently, priors have no indirect effect on policy parameters on posterior inferences of κ.

The log-likelihood for state-level data of state s is given by

L(Ŷ(s)|κ, σ̂x, σ̂π) = −T(s) ln(2π)− T(s) [ln(σ̂xσ̂π)]−
1
2

T(s)

∑
t=1

[(
π̂t(s)− κx̂t(s)

σ̂π

)2

+

(
x̂t(s)

σ̂x

)2
]

.

In considering the whole economy, the log-likelihood of the state-level model is simply the sum

over all states–that is, ∑s L(s). So moving from the aggregate model to the state-level model

changes the role of priors with respect to inferences of κ in two non-mutually-exclusive ways.

First, inferences on κ are disentangled from those of the monetary policy rule; econometrically,

it reduces the number of structural parameters to estimate and, in doing so, has the potential to

sharpen identification. In this simple example, it does. Second, increasing the number of obser-

vations reduces the impact that priors exert on the posterior. These observations are consistent

with our empirical findings. In Section 2, we found that inferences of nominal rigidities with

aggregate models are quite sensitive to changes in the prior mean of the Calvo parameters as

well as to changes in the prior mean of the policy rule parameters, but inferences of nominal

rigidities were found to be quite robust to such changes in the state-level model.

5 Discussion and Conclusions

Estimating the slope of the Phillips curve in New Keynesian models has proven to be difficult

and spurred the use of Bayesian methods. We have explored how the choice of priors over

the estimated parameters can influence the estimated slope of the Phillips curve. Our main

innovation is to use state-level variation to estimate the Calvo parameters and compare the

estimation performance with the standard strategy of using aggregate data.

When we use aggregate data, directly changing the prior on the Calvo price and wage ad-

justment parameters that govern the slope of the Phillips curve leads to very different posterior

estimates of the Calvo parameters, in line with previous work. This implies very different in-

ferences about the stickiness of prices and wages. Furthermore, we show that the priors on the

other parameters of the model indirectly influence the final posterior estimate of the price and

wage Calvo parameters in some cases.
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Table 8: Posterior Distributions, Medium-Scale Model, 1966 to 2017

Estimated Calibrated

Mode 5% 95% Mode 5% 95%

λp 0.88 0.85 0.91 - - -
λw 0.83 0.77 0.87 - - -
αi 0.75 0.59 0.89 0.76 0.57 0.89
αp 1.61 1.45 1.78 1.96 1.81 2.12
αx 0.23 0.18 0.27 0.13 0.10 0.19
αy 0.12 0.09 0.14 0.05 0.04 0.08

In contrast, the estimates obtained using state-level data are notably robust to priors over

the Calvo parameters. Furthermore, the indirect effect of priors specified on other parameters

is also not important. This reflects the usefulness of state-level data for identification in two key

ways: first, by first removing the role of endogenous monetary policy, and second, by the use

of more data by exploiting the full panel of US states.

Our estimates of the Calvo parameters obtained using state-level data are not only substan-

tially more robust to priors than the ones obtained using aggregate data. They also imply less

rigid prices and even less rigid wages, in line with micro-level studies of price rigidities.

It is crucial to accurately estimate the price and wage stickiness parameters. Different values

of these parameters can lead to different inferences about the drivers of business cycles in New

Keynesian models, directly affecting the model’s implications for optimal policy.

We use our results above to illustrate this point. To do so, we compare the unconditional

variance decompositions in two versions of the SW model. In the first, we estimate the Calvo

wage and price parameters using aggregate data. In the second, we calibrate both Calvo param-

eters to the values obtained in the state-level estimation and estimate the remaining parameters,

again using aggregate data (the parameter values are given in Table 8).

The variance decompositions in Table 9 show, for instance, that the wage markup shock

becomes much more important in driving fluctuations in real and nominal variables, while the

discount factor preference shock becomes less important. A full analysis of the implications for

policy that our estimates using state-level data have is beyond the scope of this paper. We see

the results of Table 9, however, as an encouraging indicator of the relevance of such an analysis.
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Table 9: Unconditional Variance Decomposition, %

Variable

Shock
Prod Pref Gov Inve Policy Price MU Wage MU

Estimated Calvo Price and Wage Parameters

Consumption 7 68 2 4 11 3 5
Investment 2 8 0 88 1 1 0
Output 10 35 9 36 5 3 1
Hours 4 24 15 15 3 3 35
Inflation 1 1 0 0 0 29 68
Wages 1 5 0 2 1 12 79
Policy Rate 4 34 0 8 9 7 37

Calibrated Calvo Price and Wage Parameters

Consumption 12 19 0 3 4 2 60
Investment 1 2 0 93 0 1 4
Output 15 14 7 25 3 2 34
Hours 4 0 0 1 0 1 93
Inflation 1 9 0 9 2 4 75
Wages 10 9 0 4 2 15 61
Policy Rate 1 18 0 19 3 2 57

Difference, Estimated Calvos to Calibrated Calvos

Consumption 5 −48 −1 −1 −7 −1 55
Investment −1 −7 0 5 −1 −0 4
Output 4 −22 −2 −11 −2 −1 33
Hours −0 −24 −15 −14 −3 −2 58
Inflation −0 8 0 9 2 −25 7
Wages 8 4 0 2 2 2 −18
Policy Rate −3 −16 0 10 −7 −5 20
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Appendix

A Results Starting in 1966

We start by describing results in the small-scale model estimated on aggregate data starting

in 1966 (in our baseline, the estimation starts instead in 1977). Table A.1 gives the estimates

from 1966 to 2017 across priors on the Calvo parameters, quantifying the direct effect over this

period. Table A.2 gives the estimates over priors on the other model parameters, quantifying

the indirect effect.

B Results up to 2004

We next explore the robustness of our results to changing the final period of the estimation to

2004, the same period in Smets and Wouters (2007). Table B.3 gives the results on the direct

effect of changing priors over this sample when the small-scale model is estimated using ag-

gregate data. Table B.4 shows the indirect effect using aggregate data. Table B.5 gives the direct

effect when state-level data are used on a 1977 to 2004 sample, and Table B.6 gives estimates on

the indirect effect using state-level data.

C Changing Mean of Priors

In these robustness exercises, we change the mean of the priors on the Taylor rule parameters

without changing their standard deviations. Additional results for the SW model are shown in

Table C.9.

D Full Description of the Model

The model description follows Jones, Midrigan and Philippon (2018). We describe the model

with the full operative credit channel. But we note that without this credit channel and the trad-

able production structure, the model would reduce to the familiar three-equation New Keyne-

sian model.
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Table A.1: Estimated Parameters and Slopes, Aggregate Data, 1966 to 2017

Calvo Estimates Phillips Curve Slopes?

Mode 5% 95% Mode 5% 95%

Uniform Distribution Priors, U(0, 1)

Prices (λp) 0.92 0.89 0.94 0.008 0.004 0.013
Wages (λw) 0.91 0.87 0.95 0.006 0.003 0.021

Beta Distribution Priors, Beta(0.5, 0.1)

Prices (λp) 0.90 0.88 0.92 0.012 0.008 0.018
Wages (λw) 0.86 0.83 0.90 0.022 0.012 0.034

Beta Distribution Priors, Beta(0.5, 0.05)

Prices (λp) 0.85 0.82 0.87 0.029 0.021 0.041
Wages (λw) 0.80 0.76 0.83 0.051 0.037 0.074

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

Table A.2: Estimated Parameters Across Non-Calvo Priors, Aggregate Data, 1966 to 2017

SW Priors on All Uniform on TR Only Uniform on All Else

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Parameter Estimates

λp 0.90 0.88 0.92 0.90 0.87 0.92 0.89 0.87 0.92
λw 0.86 0.83 0.90 0.88 0.84 0.90 0.82 0.76 0.87
αi 0.82 0.79 0.86 0.85 0.79 0.90 0.82 0.79 0.86
αp 1.56 1.42 1.74 1.97 1.63 2.85 1.62 1.44 1.77
αx 0.32 0.29 0.37 0.47 0.40 0.61 0.32 0.28 0.37
αy 0.14 0.11 0.18 0.14 0.09 0.23 0.14 0.11 0.19

Phillips Curve Slopes?

Prices 0.012 0.008 0.018 0.012 0.008 0.019 0.013 0.008 0.020
Wages 0.022 0.012 0.034 0.018 0.011 0.032 0.040 0.020 0.080

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.
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Table B.3: Estimated Parameters and Slopes, Aggregate Data, 1977 to 2004

Calvo Estimates Phillips Curve Slopes?

Mode 5% 95% Mode 5% 95%

Uniform Distribution Priors, U(0, 1)

Prices (λp) 0.98 0.94 1.00 0.000 0.000 0.004
Wages (λw) 0.95 0.90 0.96 0.003 0.002 0.012

Beta Distribution Priors, Beta(0.5, 0.1)

Prices (λp) 0.91 0.87 0.94 0.008 0.005 0.020
Wages (λw) 0.88 0.85 0.92 0.013 0.008 0.029

Beta Distribution Priors, Beta(0.5, 0.05)

Prices (λp) 0.80 0.76 0.83 0.053 0.035 0.080
Wages (λw) 0.79 0.76 0.83 0.053 0.038 0.078

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

Table B.4: Estimated Parameters across Non-Calvo Priors, Aggregate Data, 1977 to 2004

SW Priors on All Uniform on TR Only Uniform on All Else

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Parameter Estimates

λp 0.91 0.87 0.94 0.91 0.87 0.94 0.90 0.87 0.94
λw 0.88 0.85 0.92 0.88 0.85 0.92 0.72 0.59 0.80
αi 0.91 0.85 0.93 0.91 0.85 0.93 0.94 0.90 0.95
αp 3.44 2.58 5.36 3.44 2.58 5.36 6.50 4.22 7.34
αx 0.45 0.37 0.59 0.45 0.37 0.59 0.44 0.36 0.60
αy 0.53 0.28 0.82 0.53 0.28 0.82 0.73 0.58 1.30

Phillips Curve Slopes?

Prices 0.009 0.004 0.020 0.009 0.004 0.020 0.012 0.004 0.020
Wages 0.017 0.007 0.027 0.017 0.007 0.027 0.110 0.051 0.287

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.
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Table B.5: Estimated Parameters and Slopes, State-Level Data, 1977 to 2004

Calvo Estimates Phillips Curve Slopes?

Mode 5% 95% Mode 5% 95%

Uniform Distribution Priors, U(0, 1)

Prices (λp) 0.52 0.50 0.55 0.44 0.37 0.50
Wages (λw) 0.30 0.28 0.32 1.65 1.41 1.81

Beta Distribution Priors, Beta(0.5, 0.1)

Prices (λp) 0.54 0.50 0.56 0.40 0.36 0.49
Wages (λw) 0.31 0.29 0.33 1.54 1.35 1.75

Beta Distribution Priors, Beta(0.5, 0.05)

Prices (λp) 0.53 0.51 0.56 0.40 0.35 0.48
Wages (λw) 0.32 0.30 0.34 1.43 1.25 1.65

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.

Table B.6: Estimated Parameters across Non-Calvo Priors, State Data, 1977 to 2004

SW Priors on All Uniform on All Else

Mode 5% 95% Mode 5% 95%

Calvo Estimates

λp 0.53 0.50 0.55 0.55 0.53 0.57
λw 0.31 0.29 0.33 0.39 0.37 0.41

Phillips Curve Slopes?

Prices 0.43 0.37 0.50 0.37 0.32 0.42
Wages 1.53 1.36 1.76 0.93 0.85 1.05

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.
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Table B.7: Estimated Parameters, Aggregate Data, Medium-Scale Model, 1966 to 2004

Mode 5% 95% Mode 5% 95% Mode 5% 95%

Direct Effect, across Priors on Calvos

Uniform Beta(0.5,0.1) Beta(0.5,0.05)

λp 0.81 0.73 0.85 0.70 0.63 0.77 0.61 0.56 0.67
λw 0.98 0.81 1.00 0.73 0.65 0.80 0.61 0.56 0.68
αi 0.77 0.56 0.89 0.78 0.56 0.89 0.77 0.59 0.90
αp 1.54 1.39 1.72 1.72 1.57 1.88 1.77 1.63 1.93
αx 0.28 0.24 0.32 0.25 0.21 0.30 0.24 0.19 0.28
αy 0.06 0.05 0.09 0.07 0.05 0.10 0.07 0.05 0.10

Direct Effect, Phillips Curve Slopes?

Prices 0.046 0.027 0.101 0.130 0.070 0.219 0.251 0.164 0.348
Wages 0.001 0.000 0.046 0.101 0.051 0.190 0.251 0.152 0.348

Indirect Effect, across Priors on Other Parameters

SW Priors on All Uniform on TR Only Uniform on All Else

λp 0.70 0.63 0.77 0.68 0.61 0.75 0.67 0.60 0.74
λw 0.73 0.65 0.80 0.70 0.62 0.78 0.72 0.63 0.79
αi 0.78 0.56 0.89 0.19 0.05 0.95 0.37 0.05 0.95
αp 1.72 1.57 1.88 2.14 1.87 2.55 2.15 1.83 2.53
αx 0.25 0.21 0.30 0.35 0.28 0.41 0.34 0.28 0.42
αy 0.07 0.05 0.10 0.09 0.07 0.14 0.10 0.07 0.14

Indirect Effect, Phillips Curve Slopes?

Prices 0.130 0.070 0.219 0.152 0.085 0.251 0.164 0.093 0.269
Wages 0.101 0.051 0.190 0.130 0.063 0.235 0.110 0.057 0.219

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp.
?: Wage Phillips curve slope is (1− βλw)(1− λw)/λw.
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Table C.8: Estimated Parameters across Non-Calvo Priors, Aggregate Data, 1966 to 2017

Baseline SW Priors αp Centered at 5

Mode 5% 95% Mode 5% 95%

λp 0.90 0.88 0.92 0.89 0.87 0.92
λw 0.86 0.83 0.90 0.88 0.84 0.91
αi 0.82 0.79 0.86 0.95 0.93 0.96
αp 1.56 1.42 1.74 4.96 4.78 5.12
αx 0.32 0.29 0.37 0.40 0.36 0.45
αy 0.14 0.11 0.18 0.19 0.14 0.28

αy Centered at 1 αx Centered at 1

Mode 5% 95% Mode 5% 95%

λp 0.90 0.87 0.91 0.89 0.87 0.91
λw 0.88 0.86 0.92 0.89 0.85 0.91
αi 0.97 0.96 0.97 0.74 0.65 0.81
αp 1.62 1.37 1.77 1.65 1.49 1.86
αx 0.36 0.32 0.41 0.94 0.85 1.01
αy 0.96 0.87 1.05 0.10 0.06 0.16

Table C.9: Estimated Parameters across Non-Calvo Priors, Medium-Scale Model, 1966 to 2017

αp Centered at 5, αx at 1 αr at .5, αp at 5, αx/αy at 1 αr at .5, αp at 5, αx/αy at 2

Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.82 0.79 0.86 0.86 0.83 0.88 0.89 0.87 0.91
λw 0.84 0.80 0.88 0.82 0.76 0.86 0.86 0.81 0.89
αi 0.79 0.60 0.90 0.52 0.36 0.65 0.51 0.36 0.65
αp 4.92 4.74 5.15 4.94 4.75 5.16 5.01 4.79 5.20
αx 0.89 0.81 0.96 0.91 0.83 0.98 1.93 1.84 2.01
αy 0.25 0.19 0.31 0.99 0.91 1.07 2.00 1.91 2.08
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D.1 Full Model with Credit Channel

Household Problem The economy consists of a continuum of ex ante identical islands of

measure 1 that belong to a trading bloc in a monetary union. Consumers on each island derive

utility from the consumption of a final good, leisure, and housing. Let s index an individual

island and pt(s) denote the price of the final consumption good. Individual households on

each island belong to labor unions that sell differentiated varieties of labor. We assume perfect

risk-sharing across households belonging to different labor unions on a given island. Labor is

immobile across islands, and the housing stock on each island is in fixed supply. The problem

of a household that belongs to labor union ι is to

max E0

∞

∑
t=0

(
t−1

∏
j=0

β j(s)

)[∫ 1

0
vit(s) log (cit(s))di + ηh

t (s) log (ht(s))−
ηn

t (s)
1 + ν

nt(ι, s)1+ν

]
, (30)

where ht(s) is the amount of housing the household owns, nt(ι, s) is the amount of labor it sup-

plies, and cit(s) is the consumption of an individual member i. The term vit(s) ≥ 1 represents a

taste shifter, an i.i.d random variable drawn from a Pareto distribution:

Pr(vit(s) ≤ v) = F(v) = 1− v−α. (31)

Here, α > 1 determines the amount of uncertainty about v. A lower α implies more uncertainty.

The terms ηh
t (s) and ηn

t (s) affect the preference for housing and the disutility from work, while

βt(s) is the household’s one-period-ahead discount factor. We assume that each of these pref-

erence shifters have an island-specific component and an aggregate component, both of which

follow AR(1) processes with independent Gaussian innovations. The household’s budget con-

straint is

pt(s)xt(s) + et(s)(ht+1(s)− ht(s)) = wt(ι, s)nt(ι, s) + qtlt(s)− bt(s) + (1 + γqt)at(s) + Tt(ι, s),

(32)

where xt(s) are transfers made to individual members in the goods market, et(s) is the price

of housing, wt(ι, s) is the wage rate, and Tt(ι, s) collects the profits households earn from their

ownership of intermediate goods firms, transfers from the government aimed at correcting

the steady state markup distortion, and the transfers stemming from the risk-sharing arrange-

ment.8 We let at(s) denote the amount of coupon payments the household is entitled to receive

in period t, bt(s) denote the amount it must repay, and qt denote the economy-wide price of

8We assume that households on island s exclusively own firms on that particular island.
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the securities described below. Thus, qtat(s) represents the household’s total asset holdings

(savings), while qtbt(s) represents its outstanding debt. We describe a household’s holdings of

the security by recording the amount of coupon payments bt that the household has to make in

period t. Letting lt(s) denote the amount of securities the household sells in period t, we find

that the date t + 1 coupon payments are

bt+1(s) =
∞

∑
i=0

γilt−i(s) = lt(s) + γbt(s). (33)

The household also faces a liquidity constraint that limits the consumption of an individual

member to be below the amount of real balances the member holds:

pt(s)cit(s) ≤ pt(s)xt(s). (34)

The household also faces a borrowing constraint:

qtlt(s) ≤ mt(s)et(s)ht+1(s). (35)

The law of motion for a household’s assets is given by

qtat+1(s) = pt(s)
(

xt(s)−
∫ 1

0
cit(s)di

)
. (36)

There are no barriers to capital flows, so all islands trade securities at a common price qt. The

credit limit mt(s) evolves as the product of an island-specific and aggregate component, both

of which are AR(1) processes with Gaussian disturbances.

At this point, we note that as α → ∞, vit(s) → 1. In this case, there is no idiosyncratic

uncertainty. There is no meaningful role for the liquidity constraints. Moreover, since housing

is separable in the utility function and exogenously fixed, there is no role for credit, and the

economy collapses to the standard three-equation New Keynesian model (see Jones, Midrigan

and Philippon, 2018, for details and a discussion of this point).

Final Goods Producers Final goods producers on island s produce yt(s) units of the final

good using yN
t (s) units of non-tradable goods produced locally and yM

t (s, j) units of tradable

goods produced on island j and imported to island s:

yt(s) =

(
ω

1
σ yN

t (s)
σ−1

σ + (1−ω)
1
σ

(∫ 1

0
yM

t (s, j)
κ−1

κ dj
) κ

κ−1
σ−1

σ

) σ
σ−1

, (37)
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where ω determines the share of non-traded goods, σ is the elasticity of substitution between

traded and non-traded goods, and κ is the elasticity of substitution between varieties of the

traded goods produced on different islands. Letting pN
t (s) and pM

t (s) denote the prices of these

goods on island s, the final goods price on an island is

pt(s) =

(
ωpN

t (s)
1−σ + (1−ω)

(∫ 1

0
pM

t (j)1−κdj
) 1−σ

1−κ

) 1
1−σ

. (38)

The demand for non-tradable intermediate goods produced on an island is

yN
t (s) = ω

(
pN

t (s)
pt(s)

)−σ

yt(s), (39)

while demand for an island’s tradable exports yX
t (s) is an aggregate of what all other islands

purchase:

yX
t (s) = (1−ω)pM

t (s)−κ

(∫ 1

0
pM

t (j)1−κdj
) κ−σ

1−κ
(∫ 1

0
pt(j)σyt(j)dj

)
. (40)

Intermediate Goods Producers Traded and non-traded goods on each island are themselves

CES composites of varieties of differentiated intermediate inputs with an elasticity of substitu-

tion ϑ. The demand for an individual variety k for non-tradable goods (for example) is

yN
t (s, k) =

(
pN

t (s, k)/pN
t (s)

)−ϑ
yN

t (s).

Individual producers of intermediate goods are subject to Calvo price adjustment frictions.

Let λp denote the probability that a firm does not reset its price in a given period. A firm that

resets its price maximizes the present discounted flow of profits weighted by the probability

that the price it chooses at t will still be in effect at any particular date. As was the case earlier,

the production function is linear in labor, but it is now subject to sector-specific productivity

disturbances zN
t (s) and zX

t (s), so that

yj
t(s, k) = zj

t(s)n
j
t(s, k), for j ∈ {N, X} ,

and the unit cost of production is simply wt(s)/zj
t(s) in both sectors.

For example, a traded intermediate goods firm that resets its price solves

max
pX∗

t (s)

∞

∑
j=0

(
λ

j
p

j−1

∏
i=0

βt+i(s)

)
µt+j(s)

(
pX∗

t (s)− τp
wt+j(s)
zX

t+j(s)

)(
pX∗

t (s)
pX

t+j(s)

)−ϑ

yX
t+j(s), (41)
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where µt+j(s) is the shadow value of wealth of the representative household on island s – that is,

the multiplier on the flow budget constraint (32) – and τp = ϑ−1
ϑ is a tax the government levies

to eliminate the steady state markup distortion. This tax is rebated lump sum to households on

island s. The composite price of traded exports or non-traded goods is then a weighted average

of the prices of individual differentiated intermediates. For example, the price of export goods

is

pX
t (s) =

[
(1− λp)pX∗

t (s)1−ϑ + λp pX
t−1(s)

1−ϑ
] 1

1−ϑ . (42)

Wage Setting We assume that individual households are organized in unions that supply

differentiated varieties of labor. The total amount of labor services available in production is

nt(s) =
(∫ 1

0
nt(ι, s)

ψ−1
ψ dι

) ψ
ψ−1

, (43)

where ψ is the elasticity of substitution between labor varieties. Demand for an individual

union’s labor, given its wage wt(ι, s), is therefore nt(ι, s) = (wt(ι, s)/wt(s))
−ψ nt(s). The prob-

lem of a union that resets its wage is to choose a new wage w∗t (s) to

max
w∗t (s)

∞

∑
j=0

(
λ

j
w

j−1

∏
i=0

βt+i(s)

)
× (44)τwµt+j(s)w∗t (s)

(
w∗t (s)

wt+j(s)

)−ψ

nt+j(s)−
ηn

t+j(s)

1 + ν

( w∗t (s)
wt+j(s)

)−ψ

nt+j(s)

1+ν
 ,

where λw is the probability that a given union leaves its wage unchanged and τw = ψ−1
ψ is a

labor income subsidy aimed at correcting the steady state markup distortion. The composite

wage at which labor services are sold to producers is

wt(s) =
[
(1− λw)w∗t (s)

1−ψ + λwwt−1(s)1−ψ
] 1

1−ψ . (45)

D.2 Monetary Policy

Let yt =
∫ 1

0 pt(s)yt(s)/pt ds be total real output in this economy, where pt =
∫ 1

0 pt(s)ds is the

aggregate price index. Let πt = pt/pt−1 denote the rate of inflation and

1 + it = EtRt+1 (46)
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be the expected nominal return on the long-term security, which we refer to as the “nominal

interest rate.” Aggregation over the pricing choices of individual producers implies, up to a

first-order approximation,

log(πt/π̄) = β̄Et log(πt+1/π̄) +
(1− λp)(1− λp β̄)

λp
(log(wt)− log(zt)) + θt,

where we add an AR(1) disturbance θt to individual firms’ desired markups, β̄ is the steady

state discount factor, and π̄ is the steady-state level of inflation.

We assume that monetary policy is characterized by a Taylor rule when the ZLB does not

bind:

1 + it = (1 + it−1)
αi

[
(1 + ı̄)παπ

t

(
yt

y∗t

)αy]1−αi
(

yt/y∗t
yt−1/y∗t−1

)αx

exp(εi
t),

where εi
t is a monetary policy shock; αi determines the persistence; and απ; αy; and αx determine

the extent to which monetary policy responds to inflation, deviations of output from its flexible

price level y∗t , and the growth rate of the output gap, respectively. We assume that ı̄ is set to a

level that ensures a steady state level of inflation of π̄. When the ZLB binds, then

it = 0.

The interest rate may be at zero either because aggregate shocks cause the ZLB to bind, or be-

cause the Fed commits to keeping it at 0 for a longer time period than implied by the constraint.

We thus implicitly assume that the Fed can manipulate expectations of how the path of interest

rates evolves, as in Eggertsson and Woodford (2003) and Werning (2015). In our estimation, we

use survey data from the New York Federal Reserve to discipline the expected duration of the

zero interest rate regime during the 2009 to 2015 period.

Since we assume that an individual island is of measure zero, monetary policy does not

react to island-specific disturbances. The monetary union is closed, so aggregate savings must

equal aggregate debt: ∫ 1

0
at+1(s)ds =

∫ 1

0
bt+1(s)ds. (47)

D.3 Likelihood of the State Component

We use Bayesian likelihood methods to estimate the parameters of the island economy and the

shocks. We use a panel dataset across states for the state-level estimation, and aggregate data

and the ZLB for the aggregate-level estimation. We formulate the state space of the model so as
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to separate our estimation into a collection of regional components to make it computationally

feasible.

We discuss separately the likelihood function of the state/regional component and then the

likelihood function of the aggregate component.

We use Bayesian methods. We first log-linearize the model. The log-linearized model has

the state space representation

xt = J + Qxt−1 + Gεt (48)

zt = Htxt. (49)

The state vector is xt. The error is distributed εt ∼ N(0, Ω), where Ω is the covariance matrix

of εt. We assume no observation error of the data zt.

Let ϑ denote the vector of parameters to be estimated. Let Z = {zτ}T
τ=1 denote the sequence

of Nz × 1 vectors of observable variables, combined over states. By Bayes’s law, the posterior

P(ϑ | Z) satisfies

P(ϑ | Z) ∝ L(Z | ϑ)×P(ϑ).

With Gaussian errors εt, the likelihood function L(Z | ϑ) is computed using the sequence of

structural matrices and the Kalman filter, described below:

log L(Z | ϑ) = −
(

NzT
2

)
log 2π − 1

2

T

∑
t=1

log det St −
1
2

T

∑
t=1

ỹ>t (St)
−1 ỹt,

where ỹt is the vector of forecast errors and St is its associated covariance matrix.

D.3.1 Kalman Filter

The Kalman filter recursion is given by the following equations. The state of the system is

(x̂t, Pt−1). In the predict step, the structural matrices J, Q, and G are used to compute a forecast

of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = J + Qx̂t

Pt|t−1 = QPt−1Q> + GΩG>. (50)

We update these forecasts with imperfect observations of the state vector. This update step

involves computing forecast errors ỹt and their associated covariance matrix St as

ỹt = zt −Ht x̂t|t−1

St = HtPt|t−1H>t .
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The Kalman gain matrix is given by

Kt = Pt|t−1H>t S−1
t .

With ỹt, St and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix,

Pt = (I −KtHt)Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data. We can show that the stationary P0 has

the expression

vec(P0) = (I−Q⊗Q)−1 vec(GΩG>). (51)

D.3.2 Kalman Smoother

With the estimates of the parameters on a sample up to time period T, the Kalman smoother

gives an estimate of xt|T, or an estimate of the state vector at each point in time given all avail-

able information. With x̂t|t−1, Pt|t−1, Kt, and St in hand from the Kalman filter, the vector xt|T is

computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T,

where the vector rT+1|T = 0 and is updated with the recursion

rt|T = H>t S−1
t

(
zt −Ht x̂t|t−1

)
+ (I −KtHt)

> P>t|t−1rt+1|T.

Finally, to get an estimate of the shocks to each state variable under this model’s shock structure,

denoted by et, we can compute

et = Gεt = Grt|T.

D.3.3 Block Structure

The regional component of the model has a block structure separated by state. For example,

consider two states so that the log-linearized state-space representation is[
x1

t
x2

t

]
=

[
J1

J2

]
+

[
Q1 0
0 Q2

] [
x1

t−1
x2

t−1

]
+

[
G1 0
0 G2

] [
ε1

t
ε2

t

]
.
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Under this block structure, the forecast covariance matrix Pt|t−1 also has a block structure. This

is clear from the expressions (50) and (51).

The block structure is also helpful for computational reasons. The log-likelihood becomes

a weighted sum of state-by-state log-likelihood functions. To show this: because Pt|t−1 has a

block structure, so does St. And because St has a block structure

log det St = log ∏
j

det Sj
t = ∑

j
log det Sj

t.

Also, because St has a block structure, so does its inverse, so that the last term in the log-

likehood can also be separated by state. The log-likelihood is then

log L(Z | ϑ) = ∑
s

log Ls(Z s | ϑ).

D.4 Likelihood of the Aggregate Component

D.4.1 Solution with Zero Lower Bound

The state-space of the model is

xt = Jt + Qtxt−1 + Gtεt

zt = Htxt.

The reduced form matices Jt and Gt are time varying because of the occasionally binding ZLB

(see Kulish et al., 2017), and the observation equation is time varying because the nominal

interest rate becomes unobserved when it is at its bound. A sequence of ZLB durations maps

to a sequence of reduced form matrices.

Let ϑ denote the vector of parameters to be estimated and T denote the vector of ZLB du-

rations that are observed each period. Let Z = {zτ}T
τ=1 denote the sequence of vectors of ob-

servable variables. With Gaussian errors, the likelihood function L(Z , T | ϑ) for the aggregate

component is computed using the sequence of structural matrices associated with the sequence

of ZLB durations, and the Kalman filter:

log L(Z , T | ϑ) = −
(

NzT
2

)
log 2π − 1

2

T

∑
t=1

log det HtStH>t −
1
2

T

∑
t=1

ỹ>t
(

HtStH>t
)−1

ỹt.
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D.4.2 Kalman Filter

The state of the system is (x̂t, Pt−1). In the predict step, the structural matrices Jt, Qt, and Gt

are used to compute a forecast of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = Jt + Qt x̂t

Pt|t−1 = QtPt−1Q>t|t−1 + GtΩG>t .

This formulation differs from the time-invariant Kalman filter used at the state level, because

in the forecast stage, the matrices Jt, Qt and Gt can vary over time. We update these forecasts

with imperfect observations of the state vector. This update step involves computing forecast

errors ỹt and their associated covariance matrix St as

ỹt = zt −Ht x̂t|t−1

St = HtPt|t−1H>t .

The Kalman gain matrix is given by

Kt = Pt|t−1H>t S−1
t .

With ỹt, St, and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix:

Pt = (I −KtHt)Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data.

D.4.3 Kalman Smoother

With the estimates of the parameters and durations in hand at time period T, the Kalman

smoother gives an estimate of xt|T, or an estimate of the state vector at each point in time

given all available information (Hamilton, 1994). With x̂t|t−1, Pt|t−1, Kt and St in hand from

the Kalman filter, the vector xt|T is computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T,
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where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H>t S−1
t

(
zt −Ht x̂t|t−1

)
+ (I −KtHt)

> P>t|t−1rt+1|T.

Finally, to get an estimate of the shocks to each state variable under this model’s shock structure,

denoted by et, we compute

et = Gtεt = Gtrt|T.

D.5 Posterior Sampler

This section describes the sampler used to obtain the posterior distribution of interest. We

compute the likelihood function at the state level and the aggregate level, together with the

prior. The posterior of our full model P(ϑ | T,Z) satisfies

P(ϑ | T,Z) ∝ L(Z , T | ϑ)×P(ϑ).

We use a Markov Chain Monte Carlo procedure to sample from the posterior. It has a single

block, corresponding to the parameters ϑ.9 The sampler at step j is initialized with the last

accepted draw of the structural parameters ϑj−1.

First, start by selecting which parameters to propose new values. For those parameters,

draw a new proposal ϑj from a proposal density centered at ϑj−1 and with thick tails to ensure

sufficient coverage of the parameter space and an acceptance rate of roughly 20% to 25%. The

proposal ϑj is accepted with probability
P(ϑj|T,Z)
P(ϑj−1|T,Z) . If ϑj is accepted, then set ϑj−1 = ϑj.

E Description of Data Used in Structural Estimation

E.1 State Level

We use the MSA-level inflation data, described above, and map the 27 MSA regions into 20

states with the mapping in Table E.10. For states that contain multiple MSA regions (for ex-

ample, Cincinnati and Cleveland are both in Ohio), we select the data of only one of the MSA

regions.

For the other state-level data series, we use state-level data on employment, output, and

compensation. The observed state data are annual. To construct the data, we first take each

9It is worth noting that as in Kulish, Morley and Robinson (2017), in addition to the structural parameters, one
can estimate the expected zero lower bound durations, in which case an additional block is needed in the posterior
sampler.
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Table E.10: MSA to State Mapping

State MSA

AK Anchorage
AZ Phoenix
CA Los Angeles
CO Denver
FL Miami
GA Atlanta
HI Honolulu
IL Chicago
KS Kansas City
MA Tampa
MD Baltimore
MI Detroit
MO St. Louis
NY New York
OH Cincinnati
OR Portland
PA Philadelphia
TX Dallas
WA Seattle
WI Minneapolis

state’s series relative to its initial value; compute the devation of each state’s observation from

the state mean; regress that series on time dummies, weighted by the state’s relative population;

and work with the residuals. We then take out a linear trend from the resulting series for each

subsample studied.

Main Estimations Here, we provide more details on each series.

• Output: We use state-level data on gross domestic product in current dollars. (BEA

SAGDP2S). The data are available for download at the BEA website.

• Employment: We use state-level data on total employment from the BEA annual table

SA4. In our empirical analysis, we scale this measure of employment by each state’s

population.

• Labor Compensation: We use state-level data on compensation of employees from the

BEA annual table SA6N.
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• Wages: To construct our wages series, we divide total labor compensation by the number

of employed individuals, using the two series described above.

• Population: We use state-level data on population from the BEA annual table SA1-3.

E.2 Aggregate Level

At the aggregate level, we use the GDP deflator for inflation, employment, output, wages, the

Fed Funds rates, and ZLB durations from New York Federal Reserve Survey Data. The codes

for each raw data series are as follows:

• Gross Domestic Product: Implicit Price Deflator (GDPDEF);

• Gross Domestic Product: (GDP);

• Cumulated nonfarm business section compensation (PRS85006062) minus employment

growth (PRS85006012) and deflated by the GDP deflator;

• Total employment net of construction, over the civilian noninstitutional population.

Fed Funds rate: the interest rate is the Federal Funds Rate, taken from the Federal Reserve

Economic Database.

ZLB Durations: we follow the approach of Kulish, Morley and Robinson (2017) and use

the ZLB durations extracted from the New York Federal Reserve Survey of Primary Dealers,

conducted eight times a year from 2011Q1 onwards.10 We take the mode of the distribution

implied by these surveys. Before 2011, we use responses from the Blue Chip Financial Forecasts

survey.

F Description of the Smets and Wouters (2007) Model

We list here the linearized equations of the Smets and Wouters (2007) (SW) model. We use the

same notation for variables and parameters as that paper. A full description of the model is

available in SW and its accompanying Appendix.

10See the website here. For example, in the survey conducted on January 18 2011, one of the questions asked was:
“Of the possible outcomes below, please indicate the percent chance you attach to the timing of the first federal
funds target rate increase” (Question 2b). Responses were given in terms of a probability distribution across future
quarters.
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F.1 Sticky Price Economy

Factor prices:

mct = αrt + (1− α)wt − εa,t

rt = wt + lt − ks
t

zt =
1−ψ

ψ rt

Investment:

it =
1

1+β̄γ

(
it−1 + β̄γEtit+1 +

1
γ2φ

qt

)
+ εi,t

qt =
σc(1+λ/γ)

1−λ/γ εb,t +
1−δ

1−δ+Rk Etqt+1 +
Rk

1−δ+Rk Etrt+1 − rt + πt+1

Consumption:

ct = εb,t +
λ/γ

1+λ/γ ct−1 +
1

1+λ/γEtct+1 +
(σc−1)W∗L∗/C∗

σc,(1+λ/γ) (lt −Etlt+1)− 1−λ/γ
σc,(1+λ/γ) (rt −Etπt+1)

Resource constraint:

yt = ctcy + itiy + εg,t + ztzy

Production function:

yt = φp (εa,t + αks
t + (1− α) lt)

ks
t = zt + kt−1

Monetary policy rule:

rt = (1− αi) αpπt + (1− αi) αy

(
yt − y f

t

)
+ αx

(
yt − y f

t −
(

yt−1 − y f
t−1

))
+ αirt−1 + εr,t

Evolution of capital:

kt = (1− ik) kt−1 + ikit + εi,t φ γ2 ik

Price and wage Philips curves:

πt =
1

1+β̄γ ιp

(
β̄γ Etπt+1 + ιp πt−1 + mct

(1−ξp) (1−β̄γ ξp)
ξp

1+(φp−1) εp

)
+ εp,t

wt = w1wt−1 +w2Etwt+1 +w3πt−1 −w4πt +w2Etπt+1 +w5

(
σl lt + 1

1−λ/γ ct − λ/γ
1−λ/γ ct−1 − wt

)
+ εw,t

where w1 = 1
1+β̄γ

, w2 = β̄γ

1+β̄γ
, w3 = ιw

1+β̄γ
, w4 = 1+β̄γ ιw

1+β̄γ
, and w5 =

(1−ξw) (1−β̄γ ξw)
(1+β̄γ) ξw

1
1+(φw−1) εw

.
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F.2 Flexible Price Economy

The corresponding equations defining the flexible price economy are:

εa,t = αr f
t + (1− α)w f

t

r f
t = w f

t + l f
t − k f

t

z f
t = 1−ψ

ψ r f
t

k f
t = z f

t + kp f
t−1

i f
t = 1

1+β̄γ

(
i f
t−1 + β̄γ Eti

f
t+1 +

1
γ2 φ

q f
t

)
+ εi,t

q f
t = 1−δ

1−δ+Rk Etq
f
t+1 +

Rk

1−δ+Rk Etrk f
t+1 − rr f

t +
σc,(1+λ/γ)

1−λ/γ εb,t

c f
t = εb,t +

λ/γ
1+λ/γ c f

t−1 +
1

1+λ/γ Etc
f
t+1 +

(σc−1)W∗L∗/C∗

σc,(1+λ/γ)

(
l f
t −Etl

f
t+1

)
− 1−λ/γ

σc,(1+λ/γ)
rr f

t

y f
t = c f

t cy + i f
t iy + εg,t + z f

t zy

y f
t = φp

(
εa,t + αk f

t + (1− α) l f
t

)
kp, f

t = kp, f
t−1 (1− ik) + i f

t ik + εi,t γ2 φ ik

w f
t = σl l

f
t + 1

1−λ/γ c f
t −

λ/γ
1−λ/γ c f

t−1

F.3 Shocks

εa,t = ρa εa,t−1 + σa ηa,t

εb,t = ρb εb,t−1 + σb ηb,t

εg,t = ρg εg,t−1 + σg ηg,t + ηa,t σa ρga

εi,t = ρi εi,t−1 + σi ηi,t

εr,t = ρr εr,t−1 + σr ηr,t

εp,t = ρp εp,t−1 + ηp,ma,t − µp ηp,ma,t−1

ηp,ma,t = σp ηp,t

εw,t = ρw εw,t−1 + ηw,ma,t − µw ηw,ma,t−1

ηw,ma,t = σw ηw,t
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F.4 Measurement Equations

dyt = γ̄ + yt − yt−1

dct = γ̄ + ct − ct−1

dit = γ̄ + it − it−1

dwt = γ̄ + wt − wt−1

πobs
t = π̄ + πt

robs
t = r̄ + rt

lobs
t = l̄ + lt

G Additional Analytical Results

Proof that the system of first-order conditions to maximize the likelihood function has a contin-

uuum of solutions.

The partial derivatives of the likelihood with respect to the four parameters are

Lκ = T
[

φ

(1 + κφ)

]
+

1
σ2

π

T

∑
t=1

(πt − κxt) xt

Lφ = T
[

κ

(1 + κφ)

]
− 1

σ2
x

T

∑
t=1

(φπt + xt)πt

Lσπ = −T
[

1
σπ

]
+

1
σ3

π

T

∑
t=1

(πt − κxt)
2

Lσx = −T
[

1
σx

]
+

1
σ3

x

T

∑
t=1

(φπt + xt)
2 .

So, if we set them to zero, we have

T
[

φ

(1 + κφ)

]
= −

T

∑
t=1

(
πt − κxt

σπ

)
xt

σπ

T
[

κ

(1 + κφ)

]
=

T

∑
t=1

(
φπt + xt

σx

)
πt

σx

T
[

1
σπ

]
=

T

∑
t=1

(
πt − κxt

σπ

)2 1
σπ

T
[

1
σx

]
=

T

∑
t=1

(
φπt + xt

σx

)2 1
σx

,
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which can be written as

T
[

1
(1 + κφ)

]
= −

T

∑
t=1

(
πt − κxt

σπ

)
xt

φσπ

T
[

1
(1 + κφ)

]
=

T

∑
t=1

(
φπt + xt

σx

)
πt

κσx

T =
T

∑
t=1

(
πt − κxt

σπ

)2

T =
T

∑
t=1

(
φπt + xt

σx

)2

,

or

Tσ2
π = −

T

∑
t=1

(πt − κxt)
xt

φ
(1 + κφ)

Tσ2
x =

T

∑
t=1

(φπt + xt)
πt

κ
(1 + κφ)

Tσ2
π =

T

∑
t=1

(πt − κxt)
2

Tσ2
x =

T

∑
t=1

(φπt + xt)
2 .

The first two imply

Tσ2
π = −

T

∑
t=1

(πt − κxt)
xt

φ
(1 + κφ) = − 1

φ

T

∑
t=1

(
πtxt − κx2

t

)
(1 + κφ)

Tσ2
x =

T

∑
t=1

(φπt + xt)
πt

κ
(1 + κφ) =

1
κ

T

∑
t=1

(
φπ2

t + xtπt

)
(1 + κφ),

or, reversing the sig in the first equation,

Tσ2
π = −

T

∑
t=1

(πt − κxt)
xt

φ
(1 + κφ) =

1
φ

T

∑
t=1

(
κx2

t − πtxt

)
(1 + κφ)

Tσ2
x =

T

∑
t=1

(φπt + xt)
πt

κ
(1 + κφ) =

1
κ

T

∑
t=1

(
φπ2

t + xtπt

)
(1 + κφ).
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Then, reversing the difference in the third equation, we can write the system as

Tσ2
π =

1
φ

T

∑
t=1

(
κx2

t − πtxt

)
(1 + κφ)

Tσ2
x =

1
κ

T

∑
t=1

(
φπ2

t + xtπt

)
(1 + κφ)

Tσ2
π =

T

∑
t=1

(κxt − πt)
2

Tσ2
x =

T

∑
t=1

(φπt + xt)
2 .

We can write them as

σ2
π =

(
κ

1
T

T

∑
t=1

x2
t −

1
T

T

∑
t=1

πtxt

)
(1 + κφ)

φ

σ2
x =

(
φ

1
T

T

∑
t=1

π2
t +

1
T

T

∑
t=1

xtπt

)
(1 + κφ)

κ

σ2
π = κ2 1

T

T

∑
t=1

x2
t +

1
T

T

∑
t=1

π2
t − 2κ

1
T

T

∑
t=1

xtπt

σ2
x = φ2 1

T

T

∑
t=1

π2
t +

1
T

T

∑
t=1

x2
t + 2φ

1
T

T

∑
t=1

πtxt.

Let
1
T

T

∑
t=1

x2
t = Vx,

1
T

T

∑
t=1

π2
t = Vπ and

1
T

T

∑
t=1

πtxt = Cx,π,

so we have

σ2
π = (κVx − Cx,π)

(1 + κφ)

φ

σ2
x = (φVπ + Cx,π)

(1 + κφ)

κ
σ2

π = κ2Vx + Vπ − 2κCx,π

σ2
x = φ2Vπ + Vx + 2φCx,π.

Now, use the first and the third to eliminate σ2
π and obtain

κ2Vx + Vπ − 2κCx,π = (κVx − Cx,π)
(1 + κφ)

φ

σ2
x = (φVπ + Cx,π)

(1 + κφ)

κ
σ2

x = φ2Vπ + Vx + 2φCx,π.
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Then, we manipulate the first equation, replace in the second, and obtain the third.

To see this, write the first equation as

κ2φVx + φVπ − 2φκCx,π = κVx − Cx,π + κ2φVx − κφCx,π,

or

φVπ + Cx,π = κVx + φκCx,π,

or

φVπ
1
κ
+ Cx,π

1
κ
− φCx,π = Vx. (52)

Now, write the second as

σ2
x = φVπ

1
κ
+ φ2Vπ + Cx,π

1
κ
+ φCx,π,

or

σ2
x = φ2Vπ + 2φCx,π + φVπ

1
κ
+ Cx,π

1
κ
− φCx,π.

Using (52) , we obtain

σ2
x = φ2Vπ + 2φCx,π + Vx,

which is the fourth condition. QED
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