f A FEDERAL RESERVE BANK Seaeal
.

J oF MINNEAPOLIS Division

WORKING PAPER
No. 801

Benchmarking Global Optimizers

December 2023

Antoine Arnoud
International Monetary Fund

Fatih Guvenen

University of Minnesota, Federal
Reserve Bank of Minneapolis, and
NBER

Tatjana Kleineberg
World Bank

DOI: https://doi.org/10.21034/wp.801
Keywords: Global optimization; Multistart algorithms; NLopt; Calibration; Estimation; Parallelized optimizer
JEL classification: C61, C63, D58

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

90 Hennepin Avenue, Minneapolis, MN 55401 | minneapolisfed.org/economic-research

https://doi.org/10.21034/wp.801

Benchmarking Global Optimizers”

Antoine Arnoud! Fatih Guvenen' Tatjana Kleineberg?

October 19, 2023

Abstract

We benchmark six global optimization algorithms by comparing their perfor-
mance on challenging multidimensional test functions as well as on a method of
simulated moments estimation of a panel data model of earnings dynamics. Five
of the algorithms are from the popular NLopt open-source library: (i) Controlled
Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evo-
lution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL), (iv) Stochastic
Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy dis-
tribution (ESCH). The sixth algorithm is TikTak, which is a multistart global
optimization algorithm used in some recent economic applications. For complete-
ness, we add three popular local algorithms to the comparison—the Nelder-Mead
downhill simplex algorithm, the Derivative-Free Nonlinear Least Squares (DFNLS)
algorithm, and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algo-
rithm. To give a detailed comparison of algorithms, we use benchmarking tools
recently developed in the optimization literature. We find that the success rate
of many optimizers varies dramatically with the characteristics of each problem
and the computational budget that is available. Overall, TikTak is the strongest
performer both on the test functions and the economic application. The next-best
performing optimizers are StoGo for the test functions and MLSL and ISRES for
the economic application.

JEL Codes: C61, C63, D58.
Keywords: Global optimization, Multistart algorithms, NLopt, Calibration, Es-
timation, Parallelized Optimizer.

*Special thanks to Anthony Smith, Serdar Ozkan, and Fatih Karahan for their collaboration with Fatih Guvenen on
projects that employed earlier versions of TikTak and for making significant contributions to the algorithm; to Michelle
Rendall, Rocio Madera, David Domeij and Chris Busch for collaborations with Guvenen on subsequent projects that used
TikTak; and to Steven Johnson and Egor Malkov for helpful comments. Leo Stanek and Arun Kandanchatha provided
outstanding research assistance, and Arun rewrote parts of the TikTak code as a generic, stand-alone, and user-friendly
program. This project started while Guvenen was a visiting professor in the economics department at Yale University,
whose support and hospitality are gratefully acknowledged. The views expressed herein are those of the authors and do
not represent those of the World Bank or the International Monetary Fund.

fThe International Monetary Fund; aarnoud@imf . org; antoinearnoud.com

tUniversity of Minnesota, FRB of Minneapolis, and NBER; guvenen@umn . edu; fatihguvenen.com

$The World Bank; tkleineberg@worldbank.org; sites.google.com/view/tkleineberg

1 Introduction

We benchmark the performance of six global and three local optimizers by applying
them to several difficult multidimensional optimization problems. We first apply the
algorithms to four test functions—Levi, Griewank, Rastrigin, and Rosenbrock—that are
commonly used in the applied mathematics literature for benchmarking optimizers. We
choose these four functions out of a larger suite of commonly used test functions because

they are known to be particularly challenging to optimize."

The characteristics of the test functions can differ substantially from the calibration
or estimation problems commonly encountered in economics. The test functions are,
for example, continuous and differentiable (despite having many local minima), which is
not necessarily the case in economic applications in which objective functions are often
based on moments that are computed with data that is simulated from the numerical
solution of a complex model. Because of truncation and other approximation errors in
numerical solutions, as well as the economic features of some models (e.g., discrete choice
or binding constraints), the resulting objective function often displays kinks, jaggedness,

deep ridges, flat valleys, and even jumps, posing challenges to optimizers.

We therefore assess the performance of the optimizers in an economic application—a
method of simulated moments (MSM) estimation of a panel data income dynamics model
taken from Busch et al. (2015), which has 297 moments and estimates 7 parameters. This
estimation problem is not among the most complex ones we could have chosen, and this
choice is intentional. Our goal is to show that even a relatively benign optimization prob-

lem commonly encountered in economics can be challenging for many global optimizers.

Five of the six global optimizers are from the NLopt library, which is an open-source
library for nonlinear optimization that contains many state-of-the-art optimization rou-

2

tines.” These five optimizers are (i) Controlled Random Search with local mutation

(CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level
Single-Linkage (MLSL), (iv) Stochastic Global Optimization (StoGo), and (v) Evolu-
tionary Strategy with Cauchy distribution (ESCH).

!Commonly used test function suites include CUTEr (Constrained and Unconstrained Testing En-
vironment, revisited) or COPS (Constrained Optimization Problem Set).

2See Johnson (2018) for an overview of the NLopt library. Further documentation and codes are
available at http://ab-initio.mit.edu/wiki/index.php/NLopt.

3CRS belongs to the group of random search algorithms, ISRES and ESCH are evolution strategy
algorithms, MLSL and TikTak are multistart algorithms, and StoGo uses branch-and-bound techniques
to search for global optima. StoGo uses the derivative of the function in the optimization routine. All
other algorithms are derivative-free.

The sixth global optimizer, named TikTak, was developed by one of us and refined
with coauthors through applications to various estimation/calibration problems in eco-
nomics.” TikTak has been developed specifically for economic applications (medium-
to large-scale structural estimation and calibration problems) and has been improved
over the years as it was applied to a different problem in each paper. TikTak belongs
to the class of multistart algorithms, which conducts local searches from carefully se-
lected points in the parameter space. The algorithm starts with a uniform exploration of
the (parameter) space and uses the information it accumulates to increasingly focus the
search on the most promising region. We consider two variants of TikTak that differ only
in the local optimization routine. “TikTak-nm” uses the Nelder-Mead downhill simplex
algorithm and “TikTak-d” uses the Derivative-Free Nonlinear Least Squares (DFNLS)
algorithm of Zhang et al. (2010). An important advantage of TikTak is that it is fully
parallelizable without requiring special software or coding by the user. In this paper, we

only test its single core performance to be consistent with the remaining optimizers.’

Even in large-scale estimation and calibration problems, it is fairly common for re-
searchers to use a local optimizer alone (not as part of a global algorithm). One would
then restart the local optimizer several times and pick the best objective. While this ap-
proach resembles multistart global algorithms, in practice, the number of restarts can be
fairly small, and there is no systematic procedure for selecting restart points; in fact, it is
not uncommon to do a single restart from the last local optimum. Given the popularity
of these approaches that rely on local optimizers alone, we include three widely used
local algorithms in the benchmarking analysis: the Nelder-Mead and DFNLS algorithms
mentioned above and the DFPMIN optimizer taken from Press et al. (1996), which is

based on a quasi-Newton algorithm.®

One notion that we have used so far without defining it is the “performance” of an

optimizer. There are at least four practical considerations. The first consideration,

4 See Guvenen (2011) for a description of an early version of TikTak. The algorithm was used to
estimate a structural model of consumption-savings choice with Bayesian learning via indirect inference
in Guvenen and Smith (2014) and to estimate an equilibrium model of marriage/divorce, educational
attainment, and labor supply in Guvenen and Rendall (2015), with the method of simulated moments.
TikTak was further used to estimate panel data econometric models of earnings dynamics in Guvenen et
al. (2014), Guvenen et al. (2015), and Busch et al. (2018) (with up to 1,200 moments and 35 parameters
in Guvenen et al. (2015)). In each case, the objective function displayed several challenging features
such as kinks, jumps, ridges, and so on.

5For information about the parallel implementation of TikTak, including information on how its
performance scales with the number of cores, visit https://www.fatihguvenen.com/tiktak

6More precisely, DFPMIN implements the Broyden-Fletcher-Goldfarb-Shanno variant of the
Davidon-Fletcher-Powell minimization algorithm. For details, see Press et al. (1992, Chapter 10.7).

and arguably the most important, is an optimizer’s reliability—or the likelihood that
it will find the global optimum of the problem that a researcher faces. A proxy for
reliability commonly used in the benchmarking literature is the fraction of test problems
for which the optimizer successfully finds the global optimum (its “success rate”). A
second consideration is speed: in practice, researchers have a finite computational budget
that they can afford for a given problem, so what we really want to know is the success
rate of an optimizer for different computational budgets (measured, for example, in
time or number of function evaluations, or FEs). To capture this trade-off we use “data
profiles,” introduced by Moré and Wild (2009), which plot the success rate of an optimizer
as a function of the computational budget. A third consideration is how an optimizer’s
speed compares to other optimizers for given test problems. In particular, we would like
to know the fraction of problems for which a given optimizer is the fastest among all
available optimizers, as well as the fraction of problems for which it is at most two times
(or three, four, and so on) slower than the fastest optimizer of each problem. We capture
this information in “performance profiles” introduced by Dolan and Moré (2002) and
used, for example, in Ali et al. (2005) and Zhang et al. (2010).”

To consider a minimization “successful,” we focus on two different metrics: the dis-
tance between the function values of the returned and true minima or the distance
between the parameter values of the returned and true minima. If the respective dis-
tance is smaller than a given threshold, the minimization is considered a success for that
metric/threshold combination. Clearly, the choice of a threshold involves a judgement
call, so the fourth consideration is how well or poorly an optimizer does when it fails
to attain the specified threshold. As we shall see, some optimizers will technically fail
(sometimes on most problems) but end up coming very close to the threshold, whereas
others stop far away. To analyze such differences, we construct what we refer to as
“deviation profiles.” These are analogous to the data profiles, but instead of the success
rate, they report the average of the distance measure over each algorithm’s unsuccessful

implementations at different computational budgets.

Using these three benchmarking tools, we find that overall, TikTak-d has the strongest
performance on the test functions and the economic application—in terms of reliability

and speed. The second-best optimizer is TikTak-nm, which performs well on the test

"A data profile plots optimizers’ success rates—the fraction of problems the optimizer solves success-
fully—as a function of the computational budget, capturing the trade-off between reliability and speed
for each optimizer. A performance profile compares optimizers by plotting the fraction of successfully-
solved problems for which a given optimizer is at most a times slower than the fastest optimizer for
that problem.

functions and on the income process for most but not all success criteria. TikTak-nm is
less efficient than TikTak-d, as it requires a larger computational budget. The relative
performance of the NLopt algorithms varies across test functions and the economic appli-
cation. StoGo performs best on the test functions.® MLSL and ISRES perform better on
the economic application but are relatively less successful in minimizing the test functions
with ISRES performing poorly on all four test functions and MLSL performing poorly
on two of them. CRS struggles with the same two test functions as MLSL and is less reli-
able on the economic application. ESCH performs less well on the economic application
and the test functions. All local algorithms (which we use only on the test functions)
have low success rates under all success criteria, and their performance does not improve
as computational budgets increase. Among the local algorithms, Nelder-Mead performs
best, followed by DFNLS, and then by DFPMIN.

Parallel Implementation of TikTak All the benchmarking results presented in this
paper are based on running each optimizer on a single CPU core to provide a level playing
field. However, an appealing feature of TikTak is that it has a parallel implementation,
which can be much faster than the single-core version benchmarked here and has some
other desirable features.” Although we do not delve into the details of this parallel
implementation of TikTak, we briefly mention four of its features, which may be of
interest to researchers. First, its performance scales up nearly linearly with the number
of cores available, so the completion time halves as the number of cores is doubled. This
can be seen in Figure (A.1) in Appendix (A), which plots the completion time against
the number of cores used. For large size problems, the parallel version of TikTak can
be up to one or two orders of magnitude faster. Second, using the parallel version does
not require any special software or knowledge of parallel programming (such as MPI,
OpenMP, CUDA, and so on). Third, it is an “asynchronously parallel” implementation,
which means that the number of CPU cores can be increased or reduced during run-time
without any problems. For example, the optimizer can be launched on 4 CPU cores and
several hours or days later, another set of CPU cores (which may not have been available
when the optimizer was first launched) can be added to further speed up the computation.
Similarly, some CPU cores can be “retired” during run-time without problems (except of

course the natural slow down resulting from using fewer cores). The code is written to

8We exclude StoGo from the benchmarking on the economic application because it is the only
optimizer that uses gradient information. The analytical gradient is not available in most economic
applications, and numerically computing the gradient can be difficult and computationally demanding.

9See https://www.fatihguvenen.com/tiktak for more information and a link to the source code for
this parallel implementation.

automatically adjust to the number of available cores in both cases. Fourth, and finally,
the optimizer can be run on CPUs that reside in different machines possibly located in
different physical locations, which could be running different operating systems and/or

10

different compilers of the same language.”” We leave a fuller exploration of TikTak’s

parallel performance for future research.

Related Literature. An active literature in applied mathematics benchmarks global
optimization algorithms using various collections of well-known test problems. For ex-
ample, Mullen (2014) compares the performance of different algorithms—including CRS,
MLSL and StoGo, as well as algorithms based on annealing and particle swarm optimiza-
tion methods—in optimizing 50 objective functions. Ali et al. (2005) test five different
stochastic optimization algorithms on the same suite of 50 test problems. The con-
sidered algorithms are based either on simulated annealing methods (Hit-and-Run and
Hide-and-Seek) or on population sets (Controlled Random Search, Real Coded Genetic
Algorithm and Differential Evolution). Ali et al. (2005) show that the performance of
optimizers depends crucially on the computational budget (i.e., function evaluations, or
FEs). CRS performs better with fewer FEs, whereas other algorithms (such as genetic
algorithms) perform better when more FEs are used. Kaelo and Ali (2006) compare
different versions of the CRS algorithm. They conclude that CRS with local mutation
(CRS-LM) performs best in terms of efficiency (number of FEs) and reliability (success

rates) among all versions of CRS.

Our paper makes the following contributions. First, we benchmark optimizers not
only for a collection of test problems but also for an economic application, which can
help applied economists select the best algorithm to estimate structural economic mod-
els. Second, we benchmark a new global optimization algorithm (TikTak), analyze its
performance, and find that it outperforms most of the other optimizers on test func-
tions and the economic application. Third, we use “deviation profiles” (in addition to
commonly used data and performance profiles) throughout our benchmarking exercise

to document how far away failed implementations are from the true global optimum.

Section 2 describes the TikTak algorithm (it omits the others, since they are already
well known). Section 3 describes the tools that we use to compare the performance of
optimizers. Section 4 provides the benchmarking results for the test functions. Section

5 discusses the results for the economic application. Section 6 concludes.

10Tn the previous applications cited in footnote 4, the algorithm was run in parallel on a few dozen
to several hundred CPUs distributed across servers, clusters, and personal computers located in Zurich,
Minneapolis, New Haven, New York, and Washington DC.

2 Algorithms

The five global algorithms from the NLopt library and the three local algorithms are
widely used in different scientific applications and hence are well known. For brevity, we
omit their descriptions in this section but discuss them in more detail in Appendix B.!!
TikTak is a new algorithm that is not well known, so we describe it in some detail here

as well as in Appendix B.

2.1 The TikTak Algorithm

TikTak belongs to the class of multistart algorithms. A multistart algorithm first
picks a point in the parameter space at which it implements a local optimization until a
local optimum is found. The algorithm then picks the next starting point, implements
another local optimization, and finds a new local optimum. This procedure is repeated
many times. At the end, the algorithm returns the point with the lowest value function
among all local optima as the global optimum. The main distinguishing features among
multistart algorithms are how they choose the next starting point and how they use
the information that is provided by the history of local searches. These algorithms
typically have two stages: (i) a global stage, which selects the starting points for new
local searches, and (ii) a local stage, which implements local searches, by choosing a local

search algorithm and local stopping criteria.

TikTak aims to balance the need for reliability (high success rates) and efficiency
(low computational budgets). To achieve reliability, it is important to search broadly
over the entire parameter space. To achieve reliability and efficiency, it is important to
identify promising regions and to search more intensively in these regions. To search
broadly and uniformly early on, TikTak evaluates the objective function at points in the
parameter space that are drawn from quasi-random variables, which are deterministic
sequences that are designed to cover the parameter space as uniformly as possible.’? In
particular, TikTak uses the Sobol” sequence (Sobol’ (1967)), which has several desirable

properties and is known to perform particularly well in high dimensions."?

HFor TikTak, we use either Nelder-Mead or DFNLS in the local stage (i.e., local searches). For
MLSL, we use either Nelder-Mead or BOBYQA in the local stage. Finally, we implement a “polishing
phase” at the end of all global optimizations, which consists of a final local search with a stringent
convergence criterion. For these polishing searches, we use DFNLS or/and BOBYQA (see Section 3.3).

121t is well known that random numbers drawn from a uniform distribution are not effective ways to
sample a space uniformly, especially in higher dimensions. See Zhigljavsky and Zilinskas (2008) for a
thorough discussion.

13For further details, see, e.g., Liberti and Kucherenko (2005) and Kucherenko and Sytsko (2005).

6

The global stage of TikTak comprises two phases. The first phase is pre-testing,
which consists of drawing and evaluating N Sobol” points and selecting among these the
N*(< N) “seed” points that have the lowest (best) function values. (In practice, N will
be a large number that scales up with the dimensionality of the problem, whereas N*
is much smaller—for example, 1% to 10% of N. These seed points are then sorted in
ascending order, (s1,...,Sn+), with f(s1) <.+ < f(sy+). The remaining Sobol’ points

are discarded, as the space in their immediate vicinity seems less promising.

In the second phase, the algorithm sequentially implements local searches from N*
starting points, denoted (si,...,Sy+). Let z; denote the minimum found by the local
search that started from s;. The starting point for the next local search is chosen as a
convex combination of the next Sobol” seed point, s;;1, and the best minimum found in

the previous j local searches up to that time, denoted Z7 = min(z§, 23, ..., zj):

Sjp1 = (1 —05)s541 + 9j2;7

where 0; € (0,1] is the mixing weight. Early on in the second phase, #; is chosen to be
very small, possibly zero, to allow time for the algorithm to conduct a broad search of
the parameter space. As the algorithm progresses and the information accumulated from
past local searches grows, 6; is gradually increased to concentrate local searches around
the space that includes the best local minima, so that the most promising parts of the
parameter space are explored more and more thoroughly. A useful heuristic is to stop
the algorithm when the absolute difference between the last two different values of Z7
are sufficiently close to each other—in other words, when a new best-local-minimum is
not too different from the previous one. This is the basic idea of the TikTak algorithm;

additional details are in Appendix B.

In the benchmarking analysis, we use four different variants of TikTak, which differ in
the implementation of the local searches. The variants use either the local Nelder-Mead
or the local DFNLS algorithm. Another important decision is the stopping tolerance
of each local search. A high tolerance will lead to shorter, and hence less costly, local
searches but may stop too soon without fully exploring the region it started in. A lower
tolerance implies the opposite trade-off (exhaustive but costly search). To explore these

trade-offs, we consider two tolerance levels, 1072 and 1078, for each local optimization

algorithm.!*1> We refer to these four versions as TikTak-nm3 and TikTak-nm8 when
Nelder-Mead is used in the local stage, and as TikTak-d3 and TikTak-d8 when DFNLS

is used.

3 Measurement Preliminaries

In this section, we discuss in more detail how we define and measure the performance
of an optimizer. We already mentioned two notions of performance: reliability and speed.
The reliability of an algorithm measures the success rate—that is, the percentage of
problems that the algorithm solves successfully. The efficiency (or speed) of an algorithm
measures the computational budget (i.e., the number of function evaluations or FEs) that

the algorithm requires to reach certain success rates.

We now define what it means to solve a problem successfully. The goal of an op-
timization is to find the true global minimum of the objective function. We know the
true global minima for the standard test functions, but not for the objective function
of the economic application. For the economic application, we therefore consider the
“true” minimum to be the point with the lowest function value that is found by any
of the optimizers and with any of the computational budgets that we consider. Let
fs(x) denote the function we wish to minimize in a given problem p € P, x* denote the
(unique) parameter vector at the minimum, and y; = f,(x;) be the minimized function
value. Finally, let X7 _ be the global minimum returned by optimizer (or solver) s and
Uy = f(X;,) be the corresponding function value. We define two different success cri-
teria, one based on discrepancy in function values and the other based on discrepancy
in the parameter vector. Specifically, we say the optimizer s € S solved the problem p
successfully according to the F-val criterion if

*

Yy — sl <7,

where 7 is the desired tolerance we choose. Similarly, the optimizer solves the prob-

lem successfully according to the X-val criterion if the maximum discrepancy across all

140One could conjecture that the ideal approach would start with a high tolerance early in the search
process, when most of the local searches are likely to take place far away from the global optimum, and
then gradually tighten the tolerance as the algorithm progresses and narrows down the search area. We
have not pursued this approach here, but it is implemented in the parallel version of the TikTak code
that we refer to in footnote 5.

15For Nelder-Mead, this stopping criterion corresponds to the distance between the function values
at all points of the simplex that is constructed in the optimization routine (see Press et al. (1996)). For
DFNLS, this stopping criterion corresponds to the smallest radius of the trust-region that is used in the
optimization routine (see Zhang et al. (2010)).

elements of the parameter vector is less than the chosen tolerance:

max|x;, — X, | < 7.

We next describe the data profiles and performance profiles which we use to bench-

mark the performance of optimizers along different dimensions.

3.1 Data Profiles
A data profile (Moré and Wild (2009)) plots the fraction of test problems that are

solved successfully by a given solver (for a given success criterion) for a given compu-
tational budget—that is, for a given number of function evaluations or FEs, v. First
define the performance measure, ¢, > 0, as the number of FEs that optimizer s needs
to solve problem p successfully. Higher values of ¢, ; imply worse performance, and if the
optimizer is not able to solve a problem at any budget, we set ¢, ; = co. Next, define

the “success rate” of the optimizer for a given number of FEs v as

1 .
ds(y) = WSIZG {peP : t,s <},

where |P| denotes the cardinality of the set of all problems considered in the bench-

marking study. To construct the data profile, we then plot each optimizer’s success rates

ds(7y) as a function of ~.

In addition to the success rate, we are also interested in measuring how poorly algo-
rithms perform when they do not satisfy given success criteria; that is, How far away are
failed implementations from the true optimum? To measure this, we define a complemen-
tary tool, which we call “deviation profiles,” that reports the value of discrepancies (e.g.,
\y; —Q;,SD averaged over all failed problems. We compute this measure for different FEs to
measure how deviations evolve along the entire set of considered computational budgets.
This provides information about optimizers’ ability to get into the close neighborhood
of an optimum and about possible difficulties of optimizers in locating the precise global

optimum at different computational budgets.

3.2 Performance Profiles

A performance profile (Dolan and Moré (2002) and Moré and Wild (2009)) provides
a more direct comparison of optimizers with each other. Whereas the data profile shows
how the success rate of a given optimizer varies with computational budgets, a perfor-

mance profile shows how the distribution of performance measures of a given optimizer

9

compares with those of other optimizers. To this end, define the performance ratio for

solver s on problem p as
tys

s = nin {tps : 8 €S}

The denominator is the performance measure for the fastest solver for problem p among
all solvers, so the ratio expresses performance relative to the best available solver. The
ratio naturally has r, ; = 1 for the best/fastest solver and 7, s > 1 for all slower solvers.
For an optimizer who fails to solve problem p at any considered budget, we set 7, ; = c0.
The performance profile of an optimizer s € S measures the fraction of problems for

which r,, s is smaller than or equal to a so that

1
ps(a) = Wsize {peP : rs<a},

where |P| denotes the cardinality of the set of all considered problems P. For example,
ps(1) is the fraction of problems for which optimizer s is the best/fastest optimizer—that
is, s is the optimizer that solves the problem with the smallest number of FEs among
all optimizers considered—and ps(2) is the fraction of problems that solver s solves
successfully for budgets that are at most twice as large as the budget of the fastest
optimizer. More generally, ps(«) is the cumulative distribution function of r, s, showing
the probability that solver s can solve a problem p successfully for budgets that lie within
a factor a of the best solver’s budget for the same problem p. Hence, for a given «, higher

values of ps(a) mean better performance.

3.3 Coding Language and Specifications

NLopt algorithms are programmed in C, with the exception of StoGo, which is pro-
grammed in C++. We use a Fortran wrapper to use the optimizers from NLopt. The
TikTak optimization algorithm is written in Fortran. We used the Gfortran compiler
with no additional optimization flags. The code was run on a Linux cluster at Yale

University.

For all global algorithms, we implement a “polishing” local search as the very last
step of the optimization routine which starts from the best (smallest) minimum that was
found so far by the global algorithm. For the global NLopt algorithms, we use the local
BOBYQA algorithm for the last polishing search. For TikTak, we use the local DFNLS
for the last polishing search. Since the local BOBYQA algorithm seems to perform
better in some application, we further polish the TikTak results with BOBYQA for the

10

FIGURE 1 — Griewank Function

(A) 3-D Plot (B) Contour Map

100 -

80

60

40 -

20

0.
100

economic application (but not for the test functions).'®

4 Benchmarking Results for Standard Test Functions

For the benchmarking analysis, we select four test functions—Griewank, Levi, Rast-
rigin and Rosenbrock—that are among the most challenging ones for global optimization
algorithms (see Ali et al. (2005)). Each function exhibits a combination of challenging
features such as a large number of local minima, deep ridges, or very flat valleys where
algorithms can get stuck. The functions are well defined for any number of dimensions.
Section 4.2 benchmarks performance via data profiles for the 10-dimensional versions of
each test function. Appendix C further reports the data profiles for 2-dimensional test
functions. The performance profiles in Section 4.3 pool the results from the two- and

10-dimensional test functions.

4.1 The Test Functions

The first three test functions display a large number of local minima, whereas the

fourth one, Rosenbrock, is “valley-shaped” with a flat surface near the global minimum.

16The last polishing search is useful, as we sometimes use lower tolerances as stopping criteria in
the local stages (i.e., 1073) to increase the speed of the global algorithm. It is therefore possible that
the global algorithm comes into the close neighborhood of the true minimum, but it might require the
additional polishing search to find the exact minimum.

11

FIGURE 2 — Levi No. 13 Function

(B) Contour Map

(a) 3-D Plot

The Griewank function in n dimensions is

Griewank function.

200. We will focus on the hypercube

—100,100]™. The global minimum is at z

1.

where we use the conventional choice of a

.,0) with function value

(0, ..

[

domain z €

The left panel of Figure 1 plots the Griewank function in two dimensions. Globally,

it has a very clear bowl shape owing to the quadratic first term, so the general location

of the global minimum is hard to miss. However, thanks to the product of cosine terms,

“ripples,” which give rise to a large

the function also exhibits a large number of small

number of local minima spread throughout its domain. These ripples can be seen more

17 Each closed

circle on the map contains at least one local minimum, of which there are many. These

in the right panel, which plots the contour maps of the function.

clearly

challenges are already evident in two dimensions; how the function looks and what further

complications arise in three or more dimensions are impossible to visualize or imagine.

The Levi function has several variants. We use a version called

Levi No. 13 Function.

Levi No. 13 that is commonly used for benchmarking optimizers. In n dimensions, it is

17To make the details visible, we plot the contour map on a smaller domain: z € [—50, 50].

12

(a) 3-D Plot

80
60 -
40 -

20 -

Z2

given by

FIGURE 3 — Rastrigin Function

(B) Contour Map

séoooccauoocé@Q;

j Dx(ox(c Ot

3 © 9 G

®) ©

2—oo om

10 Y ©D©© © <

So@n@ (8%@69 @,,@

,100 ((@%6@) Oo

260 <©“@;)© o o

Box© ‘ OXC

s "ok SECe

0 7 B0 0 100 26 e S

-2 5 25 0 5 5
n—1

f(a) = sin®(3721) + (wn — 1)°[1 + sin®(27mz,)] + > (2 — 1)°[1 + sin®(3724)] + 1,

i=1

and we focus on the domain = € [—10,10]". The global minimum is located at x
(1,...,1) with function value f(1,...,1) = 1.

The left panel of Figure 2 plots the Levi function in two dimensions. Like Griewank,
the Levi function is also globally bowl-shaped, but it has another characteristic feature:
a large number of deep ridges that run along the x5 direction, each ridge showing a
well-defined local minimum. These ridges are (somewhat) visible in the contour map in
the right panel. Because the function value changes sharply from the sides of the ridge
to the bottom, the contour map is dense in colors. The narrow bottom between ridges
can be seen as the vertical white strips, indicating the lower objective values. The larger
white circle in the middle is where the global minimum is located; the function becomes

flatter in that region, further complicating the task of finding the optimum.

Rastrigin Function. The Rastrigin function in n dimensions is defined as

f(z) = An+ Z[zf — Acos(2mz;)] + 1,

i=1

13

where we set A = 10 and focus on the traditional choice of domain x € [—5.12,5.12]".
The global minimum is at z = (0,...,0) with function value f(0,...,0) = 1. Figure 3
plots the function values in two dimensions as well as the contour map. In some ways,
Rastrigin combines the challenging features of the Griewank and Levi functions: like
Griewank, it has a large number of local minima, each of which is buried at the bottom
of a deep bowl (or silo), making it hard to “see” around, similar to Levi’s ridges. As
we shall see, Rastrigin will prove to be an especially challenging test for many of the

optimizers we benchmark.

Rosenbrock Function. The Rosenbrock function in n dimensions is defined as

—

Fle) = 37 (100 — a2 + (1 —)] + 1,

=1

and we focus on the domain = € [—100,100]". The global minimum is at z = (1,...,1)
with function value f(1,...,1) = 1.

Figure 4 plots the function values and contour map. Rosenbrock is different from the
previous functions in that its challenge is not the proliferation of local minima but rather
the flat and long valley that contains the global optimum. The extremely large range of
variation in the function values (from 1 to 10'?) makes it hard to see the shape of this
valley. This is where the contour map becomes useful. To make the contours visible,
we plot it only in the neighborhood of the global optimum, which lies not only on a flat
surface but also one that actually branches off into two near the global optimum. This
would make it easy for an optimizer to take the wrong branch and stop at a nearby point
without finding the optimum. Figure 9 shows a different cut of the function on a log

scale, which further illustrates this point.

4.2 Results: Data and Deviation Profiles

Let us briefly restate the terminology and abbreviations of the algorithms that we
benchmark. The five global optimizers taken from the NLopt library are CRS, ISRES,
ESCH, StoGo, and MLSL. For the local stage of MLSL, we use either Nelder-Mead
or BOBYQA with two different convergence criteria (1073 and 107®) for each version.
We refer to these versions as MLSL-nm3, MLSL-nm8, MLSL-b3, or MLSL-b8. For the
TikTak algorithm, we use either Nelder-Mead or DFNLS in the local stage, and we
again use 1072 and 1078 as different local convergence criteria. We refer to the versions
as TikTak-nm3, TikTak-nm8, TikTak-d3, and TikTak-d8. The three local optimization
routines are the Nelder-Mead simplex algorithm, DFPMIN, and DFNLS.

14

FIGURE 4 — Rosenbrock Function

(A) 3-D Plot (B) Contour Map

Note: The global optimum is marked with the red * marker on the contour map.

Implementation Details and Definition of Success

We implement each minimization from 100 randomly drawn starting points (which
are the same for all algorithms). Each starting point is counted as a different problem
p, so that the set of problems P consists of 100 problems for each test function. We
construct the data profile for each test function and each optimizer by implementing all
minimizations at 30 different computational budgets. We then trace the data profiles by
linearly interpolating between these data points.'® For the 10-dimensional test functions,
we set an upper bound of 100k FEs.!” As mentioned above, we consider two success
criteria based on the distance from either the true function value (F-val success) or the
true parameter values (X-val success). For the test functions, we set the tolerance level for
success at 7 = 1075, We report data and deviation profiles for each optimizer. Deviation
profiles are meaningful only for failed searches, so no values are plotted if an optimizer

reaches a 100% success rate at given levels of FEs. Figures 5, 7, 8, and 10 present the

18We can specify the number of FEs as explicit stopping criteria for the NLopt algorithms but not
for TikTak. For TikTak, we instead increase the number of Sobol’ points that are generated at the
beginning, which increases the number of local searches and the number of FEs. The last “polishing”
local search adds additional FEs to the computational budgets, which can vary across optimizers and
problems p. To plot the data profiles, we therefore compute the average number of FEs for each optimizer
at each stopping criteria across all 100 starting points from which we start each minimization. We then
plot these averages on the x-axis of the data profiles.

9For the two-dimensional test functions, documented in Appendix C, we allow up to 20k FEs.

15

data profiles (top panel) and deviation profiles (bottom) for each test function. The
left and right panels report the results for the F-val and X-val success criteria. This
section documents the results for the 10-dimensional test functions. Appendix C shows

the results for the two-dimensional test functions.
4.2.1 Griewank Function

Figure 5 shows the data and deviation profiles for the Griewank function. TikTak
has the strongest performance under the F-val and X-val success criterion. All four
versions of TikTak have steep data profiles and reach a 100% F-val success rate at low
budgets (460 FEs for -d3, 710 for -d8, 1.3k for -nm3, and 2.6k for -nm8). The algorithm
performs similarly well under the X-val criterion. CRS ranks next but requires higher
computational budgets. CRS reaches a F-val success rate of 89% at 1.3k FEs and nears
100% for budgets above 5.3k FEs. X-val success rates are 0% for budgets below 10k FEs
and fluctuate between 97% and 100% for budgets above 15k FEs.

The performance of StoGo and MLSL is good but requires a closer inspection. The
algorithms attain a 100% F-val success rate at small budgets, requiring between 700
(MLSL-b3), 1.1k (StoGo), and 2.5k FEs (MLSL-nm8). However, the algorithms never
attain X-val success, as X-deviations always exceed the required tolerance level (107°).
The deviation profiles (bottom panel) show that failed implementations of StoGo have
the smallest deviations from the true X-values with values of 10~*7 for all computational
budgets. For MLSL, deviations are larger at smaller budgets and they decrease to 10~*
at large computational budgets (107%° for MLSL-b3). If deviations of this size are
acceptable in a given application, then StoGo and MLSL could rank before CRS, with
StoGo in second, MLSL-b in third, and MLSL-nm in fourth place.

ISRES has a weaker performance, with F-val success rates fluctuating between 85%
and 98% for budgets between 1.3k and 45.3k FEs before reaching 100% for higher bud-
gets. X-val success is very low, with 1% at 80k FEs and 7% at 100k FEs. Deviations
are large for small budgets and fluctuate between 10~2 and 10~° for budgets above 35k
FEs. ESCH’s performance lags behind the other global algorithms. The F-val success
rate oscillates between 79% and 100% for all budgets above 1.3k FEs, and the algorithm
is never successful under the X-val criterion. Deviations among failed implementations

are large and stagnate around 1073 for all budgets above 11k FEs.

The three local algorithms perform similarly under both success criteria. DFNLS
performs better than many global algorithms and reaches F-val and X-val success rates
of 98% at all considered budgets. DFPMIN reaches a success rate of 89% at all budgets.

16

FIGURE 5 — Data and Deviation Profiles: Griewank, 10 Dimensions

(A) Data Profiles

Success criterion: Y deviation Success criterion: X deviation
: :

1 1 —i‘%ﬁ‘y‘w“ peol Ll
0.9 0.9 / e]
0.8 0.8 §
0.7 0.7 b
3
S06 0.6]
805 05F 1
Q
=
(0.4 0.4 b
0.3 0.3
0.2 02} 4
1
0.1 0.1r .'!’
-" ;
0 + L L L) toy - BAS=RTA —AEAr 2o oope B b A A d b dnasasadidi
3 4 5 3 4 5
10 FE Budgetlo 10 10 FE Budget10 10
——CRS -+-ISRES -¢ MLSL-NM3 —=~MLSL-B3 — TIKTAK-NM3 —*TIKTAK-D3 - Nelder-Mead -~ DFNLS
~v+ESCH —=StoGo ~#+MLSL-NM8 -4~ MLSL-B8 -*~TIKTAK-NM8 -#-TIKTAK-D8 ——DFPMIN
(B) Deviation Profiles
o Success criterion: Y deviation . Success criterion: X deviation
10 - - - 10 ey «‘;K - -
* = Gy 0
107 F | 107 3
¥
1L i Et i
2 10 it
w107 F 3 i
° [
£ 102 ¢ ,‘ ! |
§10°¢ : [
= 10°¢ A b 1
o N
8 . gV ¥ 'x
10 1074E a_ R ,AY"*/:» 4
J & Aaasdh 1-::;-:-::"“@::;‘
o
107 ¢ T ne== |
v A
-6 I -6 I I I
10 10
10 10 10° 107 10° 10* 10° 10°
FE Budget FE Budget

—+—ISRES -+-MLSL-B3 TIKTAK-NM8 Nelder-Mead —<DFNLS
~v-StoGo —#-MLSL-B8 ¢-TIKTAK-D8 -4~ DFPMIN

Notes: This figure shows optimizers’ performance in minimizing the Griewank test function in 10 dimensions. The x-axis
(plotted in logs) shows all computational budgets, ranging from 500 to 100k. The left and right panels show the data
profiles under the F-val and X-val criteria, respectively. The bottom panel shows deviation profiles, which document the
average distance between the returned and true minimum among all failed implementations, where failure is based on the
F-val (X-val) criterion in the left (right). For each optimizer, the reported deviation is the average across all problems for
which the optimizer failed at the corresponding computational budget. Therefore, no values are plotted if an optimizer
has a success rate of 100% at a given computational budget. Both axes are plotted in log; scale to improve readability.

17

FIGURE 6 — Levi No.

(A) Values along zo dimension

350

13 Function, Slices

(B) Values along z; dimension

—--x; = 6.65 —--xy = 6.65
—ux; = 6.65 250 —xy = 6.65
300 —ax; = 1 (optimum))| —a5 = 1 (optimum)
250 '
5 !
= =
g 200 g
o 11k 11130 Ss)
— ok i o~
8 P i1 8
2150 F{| B [l 1 8
= i "ui;;,;n =
Bl (e i
| W
1o i (il g
UREEHHE O i
A e e LA RARRIYT ¢
50| VAL
Y
0
-10 5 0 5 10

Although a success rate of 89% may seem high, DFPMIN will not find the global min-
imum from 11% of the considered starting points. Nelder-Mead performs worst among
the local algorithms, with a success rate that stagnates at 77% for budgets above 2k FEs.
Average deviations among failed implementations are very large for all local algorithms
(Panel B). The algorithms’ success rates and deviations among failed implementations
do not improve with larger computational budget. This is due to the local nature of
their search, which can cause them to remain stuck at a local minima that can be far
from the global minimum. The Griewank function provides a best-case scenario for the
local algorithms, which perform worse on the other test functions and in the application

to the estimation problem.
4.2.2 Levi Function

Figure 7 shows the data and deviation profiles for the Levi function. TikTak again
performs best for both criteria, and all versions of TikTak reach success rates of 100%
at low computational budgets. The fastest version is TikTak-d3, which reaches 100% F-
and X-val success at 776 FEs, followed by TikTak-nm3 at 1.5k FEs, TikTak-d8 at 2k
FEs, and -nm8 at 3.5k FEs.

CRS is the second-best-performing algorithm, but it requires higher budgets, reaching
a 17% F-val success rate at 1.4k FEs and a 100% success rate at 5.3k FEs. CRS has the
first X-val success of 5% at 4.3k FEs, which increases to 100% at 10k FEs.

The performance of StoGo is good but requires closer inspection. StoGo reaches an

18

F-val success rate of 100% at 1.2k FEs. It is never successful under the X-val criterion,
but failed implementations come very close to the true X-values with deviations of 10758
for all budgets. To the extent that this is acceptable for a given application, StoGo could
rank in second place—ahead of CRS but behind TikTak. Notice that the performance of
these three optimizers for the Levi function is quite similar to what we saw for Griewank
above. MLSL-b8 ranks next, reaching F-val success rates over 96% at 4.9k FEs. X-val
success rates fluctuate between 2% and 98% for all budgets. For budgets above 50k FEs,
success rates are very low (3%) but deviations from the true X-values are small (around

1075%) among failed implementations.

ISRES needs larger budgets, reaching a 100% F-val success rate only at 40.5k FEs.
X-val success increases slowly, reaching 20% at 60k and 96% at 85k FEs. Deviations
from the true X-values among failed implementations remain around 107%/107° for the
highest budgets. The remaining algorithms (MLSL-b3, MLSL-nm, and ESCH) never
obtain X-val success and struggle to come close to the true X-parameters in case of
failure. Among these, MLSL-b3 performs best, reaching 100% F-val success at 4.3k
FEs and coming closest to the true X-parameters, with deviations of 10745(107%%) for
budgets above 35k (85k) FEs. Notice, though, that 85k is more than 100 times the budget
required by TikTak-d3 to reach the same success rate. ESCH and the MLSL-nm versions
reach 100% F-val success at larger budgets (11k FEs for ESCH, 20k FEs for MLSL-nm3,
95k FEs for MLSL-nm8), and they never come close to the true X-parameters, with

deviations remaining at 1073 to 1072,

The three local algorithms perform poorly under both success criteria. Nelder-Mead
stagnates with a 32% F-val and X-val success rate at 19.5k FEs. DFNLS reaches a 16%
F-val and X-val success rate at 1.5-2k FEs. DFPMIN never exceeds a success rate of

2%. Failed implementation remain very far from the true parameters at all budgets.
4.2.3 Rastrigin Function

The Rastrigin function has many deeply buried local minima, which make it more
challenging for optimizers than the previous two functions. Four of the optimizers reach
an F-val success rate of 100% at 10k FEs, two others achieve success rates between
10% and 30%, and the remaining six have success rates below 2%. StoGo has the best
performance (Figure 8), as it reaches F-val and X-val success rates of 100% at 1.1k
FEs (which is the lowest budget that we consider). TikTak-d3 ranks second, reaching
100% F-val and X-val success rates at 3.8k FEs.? It is closely followed by TikTak-d8,

20At lower budgets, TikTak-d3 reaches F-val and X-val success rates between 83% and 99% for
budgets between 1.2k and 3k FEs.

19

FIGURE 7 — Data and Deviation Profiles: Levi, 10 Dimensions

(A) Data Profiles

Success criterion: X deviation
.

Success criterion: Y deviation
1} 1p_* o X
7
0.9F 1 09¢ .
i
0.8 1 08f I
I
0.7F 107+ i
g i
< L 4 L 4
S 06 0.6 i
© f
osp 1 05- .
2 i
5 i
P04+ 1 04r [
1
03F 1 03} i
1
02+ 1 02r / 4
° noq
0.1 7 g ;N :’ ‘| : 7
. e
of I = = %
10 107 10 10
FE Budget FE Budget
——CRS -+-ISRES —#-St0Go —<¢ TIKTAK-NM3 -»~TIKTAK-NM8 —+TIKTAK-D3 ~# TIKTAK-D8 - Nelder-Mead ——DFPMIN --o-~DFNLS
(B) Deviation Profiles
4 Success criterion: Y deviation . Success criterion: X deviation
l O T T T 10 T
—
10°F 3
| 02 [o s e sssncesd *
10" 1
®
S 0L]
é 10 | 0.2 L]
= *
S
=] 3L 1
q;) 10_2 [] 10
[a]
104k , J
1074 1 i
] 107 1
‘\\.,_\N >
6 ‘ 6
10 10
10° 10 10° 10* 10° 10°
FE Budget

FE Budget

‘—*—ISRES -+-StoGo —=—MLSL-B3 —<MLSL-B§ -*-TIKTAK-NM8 —xTIKTAK-D8 -*-Nelder-Mead DFPMIN —0—DFNLS‘

Notes: This figure excludes certain algorithms (ESCH and all 4 MLSL versions -nm3, -nm8, -b3, and -b8) for readability.
The performance of these algorithms fluctuates substantially across different budgets of function evaluations, making the
figure hard to read. We include the figures with the full set of algorithms in Appendix C.2. This figure shows optimizers’
performance in minimizing the Levi test function in 10 dimensions. See the notes to Figure 5 for other details about the

construction of these figures.

20

which has lower success rates at low budgets but also reaches 100% around 6.5k FEs.
ESCH arguably ranks fourth, with F-val success rates fluctuating between 10% and 99%
for budgets of 2k-30k FEs before reaching 100% for all larger budgets. ESCH’s X-val
success rate fluctuates substantially and is zero for most computational budgets. Failed
implementations have deviations from the true X-parameters around 10~° for budgets
above 5k FEs (bottom right figure). TikTak-nm ranks next, as both versions perform
poorly for small computational budgets. Tiktak-nm3 reaches F-val and X-val success
rates above 94% only at budgets above 65k FEs, and Tiktak-nm8 reaches only 83% F-
val and X-val success at 100k FEs. Deviations from the true values are large among

failed implementations even for large computational budgets.

The remaining optimizers—CRS, ISRES, MLSL, and the local algorithms Nelder-
Mead, DFNLS, and DFPMIN—perform poorly. They have no F-val or X-val success
for the computational budgets that we consider, and failed implementations have large

deviations from the true F- and X-values.
4.2.4 Rosenbrock Function

Rosenbrock provides the toughest test to optimizers. Even the best optimizers require
large computational budgets to find the global optimum (cf. Figure 10). TikTak-d
performs the best, reaching an F-val and X-val success rate of 100% at 12k FEs for -d3
and at 20k FEs for -d8. TikTak-nm8 follows closely, with 100% F-val success at 23k FEs.
X-val success for these budgets lies between 99-100%, and failed implementations (i.e., the
1%) come very close to the true X-parameters, with deviations around 1075%. TikTak-
nm3 requires larger budgets for full success: F-val and X-val success rates fluctuate
between 9% and 99% for budgets below 55k FEs before settling at 100% at 62k FEs.

Failed implementations have larger deviations from the true values.

StoGo and MLSL all achieve a 100% F-val success rate-sometimes at lower budgets
than TikTak-but they are never successful under the X-val criterion and struggle to
come close to the true X-parameters. StoGo reaches 100% F-val success already at 6k
FEs but deviations from X-values never improve below 1072, Both versions of MLSL-b
reach 100% F-val success around 25-27k FEs, but they struggle to come close to the true
X-parameters for any budgets: for MLSL-b8, average deviations remain around 10~ for
budgets above 30k FEs, and for MLSL-b3, they stagnate around 10733, The MLSL-nm
versions require larger budgets and perform worst. For MLSL-nm3, the F-val success
rate spikes to 100% at 12k FEs but then drops again to 0% for larger budgets with very
small deviations of 1075 for all failed implementations at budgets above 12k FEs. X-

val deviations stay large with values around 1072 for all budgets. MLSL-nm8 achieves

21

FIGURE 8 — Rastrigin Function, 10 Dimensions: Data and Deviation Profiles

(A) Data Profiles

Success criterion: Y deviation Success criterion: X deviation
:

1 " el e
T

0.9
0.8
0.7
o]
&£ 0.6
v
805
Q
=
© (0.4
0.3
0.2
0.1
0 3 4 5 3 4 5
10 FE Budget!? 10 10 FE Budget!? 10
——CRS -+-ISRES -¢ MLSL-NM3 ~<~MLSL-B3 —<TIKTAK-NM3 —TIKTAK-D3 > Nelder-Mead -~ DFNLS
~v+ESCH —=-StoGo -¢-MLSL-NM8 -4 MLSL-B8 -*TIKTAK-NMS8 - TIKTAK-D8 ——DFPMIN
(B) Deviation Profiles
) Success criterion: Y deviation . Success criterion: X deviation
10 —tetpbens 10 ‘ ‘ ‘
100k -]
0L 1
10 R ¥
107 1
)
2
5 102k]
5107 |
ks 103k |
>
Q
[a}
4| il
10
10°4F]
V..
;. 107 ¢ v ,
-6 ‘ ‘ -6 . . H
10 10
10° 10° 10* 10° 100 10 10° 10* 10° 10°
FE Budget FE Budget

——ISRES -+-MLSL-B3 -¢ TIKTAK-NM8 Nelder-Mead —<-DFNLS
~v-StoGo —=-MLSL-B8 - TIKTAK-D§ -4 DFPMIN

Notes: This figure shows optimizers’ performance in minimizing the Rastrigin test function in 10 dimensions. See the
notes to Figure 5 for other details about the construction of these figures.

22

FIGURE 9 — Rosenbrock Function, Different Perspectives, Log Scale

(B) Log Scale: Two Ridges Merge into One Near the

(A) Log Scale: Two Subtle Ridges Global Minimum
10°
10°F
. ‘g il
7 o
\-%I/{/////I/ E ’
N~ E
%wL
ga
5 101 L
30
50 o 0 10 2 10°F
100 39 20 -15 10 5 0 5 10 15

100% F-val success at 70k FEs, and X-val deviations are very large for most budgets and
stagnate around 10~%?2 for budgets above 70k FEs.

The remaining global algorithms-CRS, ESCH, and ISRES—never reach 100% success
rates, and the deviations of failed implementations are large enough that their results are
not reliable for any of the considered budgets. Among these algorithms, CRS performs
best, reaching 86-96% F-val (X-val) success rates at 20k (30k) FEs. ESCH and ISRES
have F-val success rates that fluctuate substantially for all budgets (for ESCH, 52-84%
for budgets above 20k FEs; for ISRES, 65-77% for budgets above 60k), and they never
achieve X-val success. Failed implementations have large average deviations from the

true parameters which makes the results unreliable.

The local algorithms perform poorly under both criteria. Nelder-Mead stagnates at
20k FEs, with F-val and X-val success rates of 50%. DFNLS never exceeds a success
rate of 12%. DFPMIN is never successful. Deviations from the true parameter values

are large for all budgets.

Overall, Rosenbrock presents interesting challenges not present in previous test func-
tions, consistent with its reputation as a very challenging function to optimize. Despite
the lack of many local optima and the apparent lack of deep ridges and ripples, it turned
out to be harder to locate the global optimum. The global optimum located on a flat
valley and the branching off from the objective surface are features that economists

commonly face in real-world applications.

23

F1GURE 10 — Data and Deviation Profiles: Rosenbrock, 10 Dimensions

(A) Data Profiles

Success criterion: Y deviation Success criterion: X deviation
1k ot 1k g A N0
1
0.9+ b 09+ b
0.8 i 08f]
> ’*“ i
LA N
0.7¢ AP 071
o / .
So06f Y 1 06f 1
2 7
go5t i 1 05¢ 1
3 i
5 i
A 04+ 1 04r 1
03r b 03r b
02y 1 02r]
0.1 Alo,.0<o<oeaoeoeoed"§' 0.1 !
0 & 0 o
10° 10° 10°
FE Budget FE Budget
[-+-ISRES —=StoGo = MLSL-B3 - MLSL-B8 ~*~TIKTAK-NM8 -#-TIKTAK-D8 - Nelder-Mead ——DFPMIN -o-DFNLS]
(B) Deviation Profiles
0 Success criterion: Y deviation . Success criterion: X deviation
10 T T T 10 T T T
108]
10 1
)
< 1 10%: 1
8
g
=10 20]
= 10
a
100k
104F]
1072 F 1
F
-4 I I . -6 | . x xx % dxx X
10 10
10° 10* 10° 10 10° 10* 10° 10°
FE Budget FE Budget

‘-""ISRES —=StoGo MLSL-B3 -4 MLSL-B8 ~»~TIKTAK-NMS -#-TIKTAK-D8 Nelder-Mead ——DFPMIN "-0-"DFNLS‘

Notes: This figure shows optimizers’ performance in minimizing the Rosenbrock test function in 10 dimensions. See
the notes to Figure 5 for other details about the construction of these figures. This figure excludes certain algorithms
(CRS, ESCH, MLSL-nm3, MLSL-nm8&, TikTak-nm3, and Tiktak-d3) for readability. The performance of these algorithms
fluctuates substantially across different budgets of function evaluations, making the figure hard to read. We include the
figures with the full set of algorithms in Appendix C.3.

24

4.3 Results: Performance Profiles

We now turn to performance profiles, which give a complementary (and more direct)
perspective on how optimizers compare with the best performer in each problem. The set
of problems P consists of the four test functions and we pool the results from the two- and
10-dimensional test functions. We again start each problem from 100 randomly selected
starting points, yielding a total of 800 problems. To trace the performance profiles, we
use implementations of each minimization p € P at 30 different computational budgets.

We saw in the previous section that success rates do not always increase monotonically

with higher computational budgets.?!

We therefore compute the performance profiles
for two different notions of success. In the first case, if an optimizer solves a problem
successfully (say, under the F-val criterion) for budget level v, we automatically define it
to be successful at all higher budgets. We call this definition the “first success” criterion.
The second case is more demanding: it defines success at a given budget v only if the
optimizer solves the problem successfully at v and all higher budgets considered. We
refer to this as the “permanent success” criterion. We report the performance profiles

with both definitions.
4.3.1 Results

Figure 11 plots the performance profiles for the F-val (top) and X-val (bottom) suc-
cess criteria, each requiring either first success (left) or permanent success (right). The
performance profiles confirm the success of TikTak-d that we have seen in the previous
section: the four versions of TikTak share the top four places in the figures. Among the
four versions, TikTak-d3 ranks at the top at all levels of a for both first success criteria.
TikTak-d3 has the highest probability of being the fastest algorithm for a randomly cho-
sen problem, a(1), which averages about 0.5 across all four panels. For the first success
criterion (left panel), it is never more than three times slower than the fastest optimizer
for any problem (p(3) = 100%). For the permanent-F-val criterion, it has the strongest
performance for a < 4 before it is passed by StoGo. TikTak-d3 has only a 9% (6%)
chance of being 5 (10) times or more slower than the best algorithm. For the permanent-
X-val criterion, TikTak-d3 performs best at small budgets, but TikTak-d8 takes over for
a > 6 (the interpretation being that the chances for the -d8 version to be more than 5
times slower than the best optimizer are lower than the chances for the -d3 version). We
therefore rank TikTak-d8 second, Tiktak-nm3 third, and TikTak-nm8 fourth.

21This can happen because optimization routines use different strategies depending on the total
budget that is allowed.

25

FIGURE 11 — Performance Profiles (All Test Functions in 2 and 10 Dimensions)

(A) Success: F-val Criterion

First Success Permanent Success

AR AkR

0.8+ _K,**”*‘#A— é—o—<+----+-:--..- g
0.7F przes szgeaoeoof
’ A
0.6/ o z*"‘“‘*""""' |
§ v
<051 4
041 1
0.3F
0.2 [iifsd 7
0.1f4 1
oL
0 5 10 15 20 25 30 0 5 10 15 20 25 30
« (multiples of lowest successful budget) « (multiples of lowest successful budget)

——CRS -+-ISRES - ¢-MLSL-NM3 MLSL-B3 —¢~TIKTAK-NM3 —+—TIKTAK-D3 Nelder-Mead o+ DFNLS
~¥-ESCH —8-StoGo -+~ MLSL-NM8 - 4-MLSL-B8 --*-TIKTAK-NMS --#-TIKTAK-D8 ——DFPMIN

(B) Success: X-val Criterion

First Success Permanent Success

T T T T T
1k 4

PR GO S e S S S S S S S
t.»t-'*”" ol 'Y

S 1
0.1 -0 st YT Stk k A.AFX-AA“ 8804 3
0o 09 G99
0 0090 00000 9-¢ 000 0" ‘ ‘ 0 oG b iy g B 5K L RGN
0 5 10 15 20 25 30 5 10 15 20 25 30
« (multiples of lowest successful budget) « (multiples of lowest successful budget)

——CRS -+-ISRES - ¢-MLSL-NM3 MLSL-B3 —¢~TIKTAK-NM3 —+—-TIKTAK-D3 Nelder-Mead -+ DFNLS
- ESCH —&-StoGo -#-MLSL-NMS - 4-MLSL-B8 --*-TIKTAK-NMS8 --#-TIKTAK-D8 —+—DFPMIN

Notes: The figure plots the cumulative distribution function of p(«), which approximates (for large P) the probability
that an optimizer is within « factor of the best optimizer for a randomly chosen problem. P consists of the four test
functions (Levi, Griewank, Rastrigin, Rosenbrock), each in 2 and 10 dimensions, and each minimization starting from 100
randomly chosen starting points. Panel A uses the F-val success criterion, requiring either first success (left graph) or
permanent success (right graph). Panel B uses the X-val success criterion, again requiring either first success (left graph)
or permanent success (right graph).

All NLopt algorithms have a lower X-val performance than TikTak, while the com-
parison of F-val performance varies more across algorithms and success criteria. It is

hard to rank the NLopt algorithms because their performance profiles cross each other

26

and vary across success criteria. StoGo may be the best-performing NLopt algorithm
across the various criteria. The previous section shows that the failed implementations
of StoGo have very small deviations from the true X-parameters, so its performance
profiles might understate its performance. Judging by the F-val criterion (top panels), a
few optimizers clearly do better in best-case scenarios (i.e., for a < 5). StoGo reaches a
88% (98%) probability of being within a factor of 5 of the fastest optimizer for the first
(permanent) F-value success. For the first (permanent) X-val criteria, these numbers are

47% (40%).
CRS may rank next with a 68% probability for first F-value success and a 37% prob-

ability for permanent F-value success. CRS performs worse than StoGo at low budgets
but surpasses StoGo at o = 11 for first X-val success and at o = 22 for permanent-X-

val-success.

Arguably, MSLS-b follows next in the ranking, and performance is very similar for
-b3 and -b8. MLSL-b has a 62-64% probability of being within a factor of 5 of the
fastest optimizer for first F-val-success and 52-58% for permanent F-val-success. For X-
val success, these numbers are 25-27% for first success and 8-9% for permanent success.
The performance stagnates at larger budgets, and MLSL-b solves at most 39% (13%)
of problems successfully for first (permanent) X-val success even at budgets that are 30

times larger than the budget of the best optimizer.
The remaining algorithms-ESCH, MLSL-nm, and ISRES-perform worse: their per-

formance is more volatile, and they require larger budgets. ESCH performs relatively
well for the F-val criterion, reaching 79% (38%) probability for first (permanent) F-val
success at budgets 5 times larger than the fastest optimizer’s budget. ESCH’s perfor-
mance is very poor under the permanent X-val criterion, for which the algorithm never
solves more than 4% of problems successfully, even at budgets that are 30 times larger
than the fastest optimizer. This indicates that the optimizer does not provide reliable
results, even at larger budgets. MLSL-nm ranks next as it performs worse than ESCH
for both F-val-criteria and for the first-X-val criterion; however, it performs better than
ESCH for the permanent-X-val success criterion. ISRES arguably performs worst among
the global optimizers, with particularly low performance under the permanent success
criterion, for which the optimizer solves only 1% of problems successfully under the X-
val criterion, and only 34% under the F-val criterion even when allowing for budgets 30

times larger than the fastest optimizer.

The performance rankings of local algorithms are similar under all four success cri-
teria: Nelder-Mead comes first, followed by DFNLS and then DFPMIN in last place.

27

This ordering is not surprising in light of the extensive experience researchers had with
these three algorithms over the years; the same ranking has typically emerged in real-life
applications. Nelder-Mead does better than some of the NLopt algorithms, although
its performance is a long way from the TikTak algorithm.?” An additional weakness of
the local algorithms is that deviations from the true parameters are very large for failed
implementations (cf. Section 4.2), which makes it risky to rely on them in challenging

optimization problems.

4.4 Taking Stock

Having examined the data and deviation profiles for each (10-dimensional) test func-
tion and the performance profiles for the entire set of problems (two- and 10-dimensional
functions), we can now summarize the overall performance of each optimizer. To sum-
marize our findings, Table I provides a broad ranking of the optimizers for each test

function.

The different variants of the TikTak algorithm perform best across all criteria, with
TikTak-d3 ranking at the top more than any other variant. TikTak-nm is typically
in second place, slightly held back by the slower performance of Nelder-Mead in the
local search stage. That said, Nelder-Mead has high reliability as a local algorithm, so
in complex and higher-dimensional problems, it can be prudent to use Nelder-Mead in
some of the local searches of TikTak. (This is also consistent with the experience the
authors report in the papers listed in footnote 4.) The only exception to TikTak’s top

performance is Rastrigin for which StoGo is the clear top performer.

Among NLopt algorithms, one can make a case for StoGo, MLSL, and CRS. CRS
performs well on relatively easier problems, such as the Griewank and Levi functions, but
performs poorly on harder ones, such as Rastrigin and Rosenbrock. MLSL and StoGo are
slower on easier problems and can fail to achieve the strict tolerance levels that we impose,
but they do better in hard problems. When they “fail,” they typically come quite close
to the true parameter values. For example, StoGo is the fastest algorithm for Rastrigin
(three times faster than the fastest TikTak version) and does well for Rosenbrock for
budgets above 6k FEs, whereas CRS fails completely for Rastrigin and fluctuates between
86% and 96% success rates on Rosenbrock. When CRS fails, parameter values are far
from the true values. This is an important drawback because an algorithm that cannot

attain a (close to) 100% success rate is a risky choice in real-life applications, as increasing

22Nelder-Mead performs better in the two-dimensional than in the 10-dimensional test functions,
which boosts Nelder-Mead’s performance in the performance profiles.

28

TABLE I — Ranking Optimizers by Performance for Each Test Function

Griewank Levi Rastrigin Rosenbrock
Successful Algorithms
Rank
1 TikTak-d3/d8 TikTak-d3 StoGo TikTak-d3
2 TikTak-nm3/nm8 TikTak-nm3 TikTak-d3/d8 TikTak-d8
3 CRS TikTak-d8 ESCH TikTak-nm8
4 StoGo TikTak-nm8 TikTak-nm3/nm8 TikTak-nm3
5 MLSL-b3/-b8 CRS StoGo*
6 MLSL-nm3/-nm8 StoGo MLSL*
7 DFNLS MLSL-b8
Unsuccessful Algorithms (Unranked)
ISRES ISRES CRS CRS
ESCH MLSL MLSL-nm/-b ISRES
DFPMIN ESCH ISRES ESCH
Nelder-Mead All Locals All Locals All Locals

Note: The ranking in the table summarizes our comparison of the performance of optimizers in Section 4.2. Some judgement
calls were necessarily applied in cases in which optimizers’ performance was close or overlapped. *For Rosenbrock, StoGo
and MLSL have success only under the Y-val criterion. Neither optimizer achieves X-val success and stagnates around
values slightly below 104,

the computational budget does not get closer to the true minimum. MLSL performs

similarly to StoGo but fails Rastrigin completely.
ESCH and ISRES have lower overall performance. ESCH has high F-val success rates

(80%—-100%) for all test functions; however, the algorithm is almost never successful for X-
val, with the exception of some inconsistent success for Rastrigin. Failed implementations
have small deviations from the true parameters for Griewank, Levi, and Rastrigin, but
larger deviations for Rosenbrock. ISRES has low X-val success for Griewank and Levi and
no success for Rastrigin and Rosenbrock. Failed implementations have large deviations,
especially for Rastrigin and Rosenbrock. In addition, success rates of ISRES (as well as
ESCH and MLSL) fluctuate substantially across computational budgets for several test

functions.

Local algorithms can reach higher success rates than some of the global algorithms,
but they all stagnate below 100% success, even when the computational budget is in-

creased (with the minor exception of Nelder-Mead for Griewank). As just discussed,

29

algorithms that cannot reach a 100% success rate at any budget are not reliable for
solving complex optimization problems. Another weakness is that the failed implemen-
tations of local algorithms return values far away from the true global minima—possibly
because they remain stuck at a local minima. Global algorithms oftentimes do better
in this dimension, with failed implementations stopping in a closer neighborhood of the

true minima.

5 Benchmarking: An Economic Application

We now turn to an economic application to benchmark these global optimizers.
A very common use of optimization algorithms in economics is in structural estima-
tion/calibration, in which an objective function based on some distance measure between
model and data moments is minimized by the choice of model parameters. The specific
example we study in this section is a panel-data estimation of a stochastic process for
labor income, taken from Busch et al. (2015), who study the business-cycle variation in
higher-order labor income risk. We choose this particular economic application because
it involves the minimization of a nonlinear and relatively high-dimensional function with
seven parameters that shares many features and challenges that are common to eco-
nomic applications. We first briefly describe the income process that is estimated and

then present the benchmarking results.

5.1 A Stochastic Process for Individual Labor Income

Let y; = log Y, denote the log labor income of an individual at time ¢, which evolves

as follows:

Y = 2 + 0y (1)
2 = 21 + G, (2)

where 6; is an i.i.d. transitory shock drawn from a Gaussian distribution, N (g, 0g), and
[t is chosen so that E (69) = 1. The permanent shock (; to the process z; is drawn from
a distribution whose properties vary over the business cycle, modeled as a mixture of

three normal distributions:

N (par,,01) with probability p
G~ N(pa,02) with probability ps (3)
N (p3¢,03) with probability ps,

30

with Z?:1 pj = 1. The business-cycle variation in the means is captured by introducing
an indicator for the aggregate economy z; (which can be GDP growth, the unemployment

rate, and so on), which gets transmitted to the means by a factor ¢. More specifically,

e =t
Moy = [+ po — o1y
fae = [l + pi3 — Qx4

where f[i; is normalized so that E(e) = 1 for all . The business cycle is captured
by x; = —(log Ggggl), and GDP growth serves as an empirical measure of aggregate

fluctuations.?® Following Busch et al., we impose py = ps, and oy = 03, leaving seven

parameters to be estimated:

0= (09,p1,/i2,u3,01,027¢) .

The parameters are estimated using a method of simulated moments (MSM) es-
timator that minimizes the distance between 297 data moments and their simulated
counterparts. We take the data moments from Busch et al. (2015), who compute them
from panel data on individual-level earnings in Sweden.?* To construct the corresponding
model moments, we simulate 10 panels, each containing the income histories of 10,000
individuals. The simulated moments are computed for each panel and then averaged
over the 10 panels. The objective function is the sum of squared distances between the
data and model moments. The distance measure is the percentage difference, with a
small scale adjustment to avoid moments with very small absolute values dominating
the objective function; see Busch et al. (2015) for further details.

One particular challenge posed by this objective function is that a large number of
moments depend on the percentiles of a distribution. Because a percentile corresponds
to data from a single individual, when a finite number of individuals are simulated,
these percentiles are not continuous in the underlying parameters of the model. This
introduces jaggedness into the objective function, which often cannot be seen with the

naked eye but can quickly make the job of optimizers much harder.

ZNote that log GDP changes are standardized in the estimation.

24Key moments include the 10th, 50th, and 90th percentiles of the distribution of earnings changes
over one, three, and five years during the 1979-2010 period, as well as the age profile of the cross-sectional
variance of log income between ages 25 and 60.

31

5.2 Results

In this analysis, we consider only the global algorithms. We do not use StoGo, as
it requires the gradient of the objective function, which does not have an analytical
expression and is costly to compute numerically. For all algorithms, we start the global
minimization at 10 randomly selected starting points (the same points for all algorithms),
which provide us with the set of problems P. We consider computational budgets up to
50k FEs.?® The success tolerance, 7, is set to 1072, which is a sufficiently tight tolerance
that the variation in parameter values within this neighborhood of the minimum is small
as judged by their potential economic effects. Unlike with the test functions, the true
global minimum is unknown. As is often done in the benchmarking literature, we take
the smallest objective as the minimum value found by any optimizer and across all
budgets. This smallest minimum was found by ISRES and is equal to f(z) = 3.4416.

The corresponding parameter values are shown in Table C.1 in Appendix D.

To get a rough idea about how the objective function varies with each of the seven
parameter values, note that Figure D.8 in Appendix D plots the one-dimensional slices of
the objective surface by varying each of the seven parameters over its entire domain while
fixing the remaining six parameters at their optimum.?® There are a few takeaways from
this figure. For six of the seven parameters (except x7), the minimum objective value lies
close to the bound of each parameter value. For four of the parameters, (z1,x3, 5, zs),
the objective appears very flat near the boundary where the optimum lies. To get a
clearer picture, Figure D.9 zooms in to the immediate neighborhood of the minimum
for each parameter. The local view looks much different. It becomes clear that the
optima for xy, x3, and x5 are clearly interior, whereas for x4, it is very close to the
boundary. Furthermore, the objective is quite jagged in the x3 and x4 directions near
the optimum, suggesting that optimizers can get trapped in a local optimum nearby and

stop prematurely.
Data and Deviation Profiles

Figure 12 plots the data and deviation profiles. The data profiles show more fluctua-

tions in success rates, indicating that the optimizers struggle more with this application

25For the NLopt algorithms, we implement minimizations at 14 different computational budgets using
the number of FEs as explicit stopping criteria. For TikTak, we generate different numbers of Sobol’
points to implement minimizations at different computational budgets.

26Visualizing an objective function through these slices is informative, but it is nowhere near a
complete description of the objective function, so it must be used with care.

32

FIGURE 12 — Data and Deviation Profiles for the Income Process Estimation

(A) Data Profiles

Success Criterion: Y deviation . Success Criterion: X deviation
by - - P S - ———

1 i “op—= \\ e Ak
S -7 P2
091 » —F 1
i
i
i i

Success Rate
j=)
i
;

04t ,
/
0.3+ ‘ b
1
i
0.2+ !
0.1+
Bl
10° 10"
FE Budget FE Budget
[#—CRS ~¥~ESCH -+-ISRES —— MLSL-NM3 —+ MLSL-NM8 ~&~MLSL-B3 —< MLSL-B8 -4~ TIKTAK-NM3 — TIKTAK-NM8 %~ TIKTAK-D3 —#—TIKTAK-D8

(B) Deviation Profiles

Success Criterion: X deviation

Success Criterion: Y deviation 0
X 10 .
1007 1
\
— y
g i
2 }
voor
& i
S A -1
g10'r Vi 7 10
= Vo
B ¥ 0
] 1
A t*
0.... \\
(< {cd Q0000 N\,
N
™,
\o
3 AN
*
2 \\/‘\' 2
1 1
0 3 4 0 3 4
10 10 10 10
FE Budget FE Budget
MLSL-NM8 ~©~MLSL-B3 <~ MLSL-B8 -~ TIKTAK-NM3 — TIKTAK-NMS8 -*-TIKTAK-D3 —#~TIKTAK-D8§

‘—*—CRS +v+ESCH -+-ISRES —$—MLSL-NM3

Notes: The x-axis (plotted in logs) shows computational budgets ranging from 1k to 70k FEs. See the notes to Figure 5

for other details about the construction of these figures.

33

than with the test functions. It is hard to clearly rank the algorithms, as their perfor-

mance varies across available budgets and success criteria.

TikTak-d is arguably the best algorithm (-d3 and -d8), reaching a 100% F-val success
rate at all computational budgets. TikTak-d comes very close to the true X-parameters
for all implementations above 4.5k FEs with deviations around 107! among failed im-
plementations. X-val success rates, which require deviations of at most 1072, fluctuate
between 40% to 100% across all budgets (except a one-time drop to 0% at 43k FEs).
TikTak-d8 performs similarly and comes as close to the true parameter values as the -d3
version, indicating that the additional FEs used by the tighter local tolerance seem to

increase the computational budget without clear benefits.

For applications in which small deviations around 10~ are acceptable, MLSL-nm3
and MLSL-b3 also perform well, reaching F-val success rates close to 100% at 2.5k FEs
for MLSL-nm3 and at 10k FEs for MLSL-b3. They never obtain X-val success, but they
come close to the true X-parameters, with deviations of 1071 for budgets above 5.5k
FEs for MLSL-nm3 and above 10k FEs for MLSL-b3.

MLSL-nm8 and ISRES are good optimizers at high computational budgets but they
perform poorly for low budgets. MLSL-nm8 obtains 100% F-val and X-val success rates
for budgets above 20k FEs, and ISRES obtains them for budgets above 31k FEs. For
lower budgets, both algorithms have low (ISRES) or widely fluctuating (MLSL-nm8)
success rates, and failed implementations have large deviations from the true parameters,

making the algorithms less reliable and risky to use at lower budgets.

The other algorithms—CRS, TikTak-nm, MLSL-b8, and ESCH-perform less reliably.
CRS and TikTak-nm both perform well under the F-val criteria, and they achieve some
X-val success, but failed implementations have large deviations (around 10~!%) from true
X-parameters for all budgets. CRS reaches 80% X-val success rates at budgets above
4.5k FEs. X-val success rates for TikTak-nm fluctuate between 10% and 60% across
all budgets. This implies that a substantial fraction of the implementations return X-
values that are far from the global minimum even at the largest possible budgets, which
question the reliability of the algorithms. MLSL-b8 reaches 100% F-val success at 21k
FEs, never reaches X-val success, and has large deviations from the true X-parameters,
which fluctuate between 1072 and 10~ for all computational budgets. ESCH ranks
last and has poor performance across all criteria, with success rates close to zero and

large deviations among failed implementations.

34

FIGURE 13 — Performance Profiles for the Income Process Estimation

(A) Success: F-val Criterion

First Success Permanent Success
! AA‘;AAAALAAAALAAAA
4444004 b

T T
S 1 F e ettt
W

1 Rl i

0.9 09r
0.8 0.81 b
0.7 0.7r b
06 0.6F .

S

205 0.5F .

04 041
03 03 4
02 02+
0.1 ; 0.1+ /;" 1
% SRS 20 25 30 % EARE MR MRS M MM

o (multiples of lowest successful budget) o (multiples of lowest successful budget)
——CRS -+-ISRES MLSL-NMS8 MLSL-B8 ——TIKTAK-NM8 —+TIKTAK-D8
~¥+ESCH —6—MLSL-NM3 ~e~MLSL-B3 -4-TIKTAK-NM3 -#-TIKTAK-D3
(B) Success: X-val Criterion
First Success Permanent Success

: i ‘ : ‘ 1
091 b
0.8 ———a—t—t—t—t—t—p——
0.7+ l,*-+-+-+-+++—l'l .

06 flkekkkk ek gk
0.5F
0.4 % ¢ ALAANAAAS

ook £ 1

i

03F

g

i
L AoBiA-pbe bbb bbb eddids
0.2 4

o (multiples of lowest successful budget) o (multiples of lowest successful budget)

——CRS -+-ISRES MLSL-NM8 MLSL-B8 ——TIKTAK-NMS8 —#+TIKTAK-D8
~w-ESCH —¢—MLSL-NM3 -e-MLSL-B3 -4-TIKTAK-NM3 - TIKTAK-D3

Notes: The figure plots the cumulative distribution function of p(«), which approximates (for large P) the probability
that an optimizer is within « factor of the best optimizer for a randomly chosen problem. Here, P consists of the income
estimation problem from 10 randomly selected starting points. See notes to Figure 11 for other details.

Performance Profiles

Figure 13 shows the performance profiles. The fast performance of TikTak versions
is also seen here. The performance profiles of both TikTak-d versions rank very high,
with the exception of the permanent X-val success criterion for which CRS, MLSL-nm8

and ISRES rank higher for larger computational budgets (see bottom right panel). One

35

point to keep in mind is that performance profiles rely uniquely on success rates, so they
do not capture the nuances of optimizers that technically fail our success criteria but
come very close to the true parameter values, as we have seen for TikTak-nm and MLSL,
among others. This creates higher performance profiles for some optimizers, such as CRS
or ESCH, even though we have seen in the data profiles and deviation profiles that their
failed implementations tend to have large deviations from the true parameters, which

make their performance less reliable.

6 Conclusion

In this paper, we have benchmarked the performance of six global and three local algo-
rithms in optimizing difficult objective functions. In particular, we compare optimizers’
performance in terms of reliability (success rates) and efficiency (required computational
budgets). We use the algorithms to optimize a small suite of multidimensional test
functions that are commonly used to benchmark algorithms in the applied mathemat-
ics literature. We are particularly interested in understanding optimizers’ performance
in typical economic applications, so we use the same optimizers to solve an estimation
exercise that is common in economics. We consider the global optimizers CRS, ISRES,
ESCH, StoGo, MLSL, and TikTak—with several variants for MLSL and TikTak—and
the local algorithms Nelder-Mead, DFPMIN, and DFNLS.

We find that TikTak-d has the strongest performance for the test functions and the
economic application, in terms of reliability and efficiency. The second-best optimizer is
TikTak-nm, which performs well on the test functions and on the economic application
for most but not all success criteria. TikTak-nm is less efficient than TikTak-d, as it

requires larger computational budgets to solve problems successfully.

The relative performance of the NLopt algorithms varies across different test functions
and the economic application. StoGo is arguably the best NLopt algorithm for test
functions, but we have not included it in the economic application since the algorithm
requires the gradient of the objective function which is unknown in the application.
The MLSL versions (except -b8) and ISRES perform better in solving the economic
application. However, ISRES performs poorly on all four test functions and MLSL
performs poorly on two of them (Rastrigin and Rosenbrock). The performances of CRS
and MLSL-b8 are a step behind: they perform poorly on two test functions (Rastrigin
and Rosenbrock) and in the economic application in which they do not come close enough
to the true X-parameters. ESCH’s performance is the weakest among the algorithms in

the test functions and the economic application. In research applications, we should

36

expect a global optimization algorithm to find the true global optimum reliably, even if
this requires a large computational budget. CRS, MLSL-b8, and ESCH fail this test too
often in our application, which raises questions about their suitability for the complex

and high-dimensional problems found in economics.

Local algorithms display an unreliable performance, with low success rates, large
deviations in failed implementations, and stagnant performance that does not improve
with higher computational budgets (especially for DFPMIN and DFNLS). Although this
result should not be surprising given that they are not designed for global optimization,
these local optimizers are widely used for that purpose in real-life applications. Our

analysis strongly cautions against that practice.

References

Ali, Montaz, Charoenchai Khompatraporn, and Zelda B. Zabinsky, “A Numerical
Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization
Test Problems,” Journal of Global Optimization, 2005, 31, 635—-672.

Busch, Christopher, David Domeij, Fatih Guvenen, and Rocio Madeira, “Higher-
Order Income Risk and Social Insurance Policy Over the Business Cycle,” Working Paper,
University of Minnesota 2015.

_, —, —,and _ , “Asymmetric Business Cycle Risk and Government Policy,” Working
Paper, University of Minnesota 2018.

Dolan, Elizabeth D. and Jorge Moré, “Benchmarking Optimization Software with Perfor-
mance Profiles,” Mathematical Programming, 2002, 91 (2), 201-213.

Ghebrebrhan, Michael, Peter Bermel, Yehuda Avniel, John D Joannopoulos, and
Steven G Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Optics
express, 2009, 17 (9), 7505-7518.

Guvenen, Fatih, “Macroeconomics with Heterogeneity: A Practical Guide,” Federal Reserve
Bank of Richmond Economic Quarterly, 2011, 97 (3), 255-326.

_ and Anthony A Smith, “Inferring Labor Income Risk and Partial Insurance from Eco-
nomic Choices,” Econometrica, November 2014, 82 (6), 2085-2129.

_ and Michelle Rendall, “Emancipation Through Education: A Macroeconomic Analysis,”
Review of Economic Dynamics, 2015, 18 (4), 931-956.

_ , Fatih Karahan, Serdar Ozkan, and Jae Song, “What Do Data on Millions of U.S.
Workers Say About Labor Income Risk?,” Working Paper 20913, National Bureau of Eco-
nomic Research 2015.

_ , Serdar Ozkan, and Jae Song, “The Nature of Countercyclical Income Risk,” Journal of
Political Economy, 2014, 122 (3), 621-660.

37

Johnson, Steven G., “The NLopt nonlinear-optimization package,” http://ab-initio.mit.
edu/nlopt 2018.

Kaelo, P. and M. M. Ali, “Some variants of the controlled random search algorithm for global
optimization,” Journal of Optimization Theory and Applications, 2006, 130 (2), 253-264.
Kucherenko, Sergei and Yury Sytsko, “Application of Deterministic Low-Discrepancy Se-
quences in Global Optimization,” Computational Optimization and Applications, 2005, 30,

297-318.

Liberti, Leo and Sergei Kucherenko, “Comparison of Deterministic and Stochastic Ap-
proaches to Global Optimization,” International Transactions in Operations Research, 2005,
12, 263-285.

Madsen, Kaj, Serguei Zertchaninov, and Antanas Zilinskas, “Global Optimization using
Branch-and-Bound,” Submitted to Global Optimization, 1998.

Moré, Jorge J. and Stefan M. Wild, “Benchmarking Derivative-Free Optimization Algo-
rithms,” SIAM Journal on Optimization, 2009, 20 (1), 172-191.

Mullen, Katharine M., “Continuous Global Optimization in R,” Journal of Statistical Soft-
ware, 2014, 60 (6), 1-45.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in Fortran 77: The Art of Scientific Computation, 2nd ed., New York:
Cambridge Univ Press, 1992.

Press, William H, Saul A Teukolsky, William T Vetterling, and Brian P Flannery,
Numerical recipes in Fortran 90, Vol. 2, Cambridge university press Cambridge, 1996.

Price, Wyn L., “A controlled random search procedure for global optimisation,” The Computer
Journal, 1977, 20 (4), 367-370.

Rinnooy Kan, Alexander and G. T. Timmer, “Stochastic Global Optimization Methods,
Part I, Clustering Methods,” Mathematic Programming, 1987, 39 (27-56).

_ and _ , “Stochastic Global Optimization Methods, Part II, Multilevel Methods,” Mathematic
Programming, 1987, 39 (57-78).

Runarsson, Thomas P. and Xin Yao, “Stochastic ranking for constrained evolutionary
optimization,” IEEE Transactions on evolutionary computation, 2000, 4 (3), 284-294.

Runarsson, Thomas Philip and Xin Yao, “Search biases in constrained evolutionary opti-
mization,” IEEE Transactions on Systems, Man, and Cybernetics, Part C' (Applications and
Reviews), 2005, 35 (2), 233-243.

Silva-Santos, Carlos Henrique, Marcos Sergio Goncalves, and Hugo Enrique
Hernandez-Figueroa, “Designing novel photonic devices by bio-inspired computing,” IEEFE
Photonics Technology Letters, 2010, 22 (15), 1177-1179.

_, _, and _ , “Evolutionary Strategy Algorithm in a Complex Photonic Coupler Device
Optimization,” IEEE Latin America Transactions, 2018, 16 (2), 613—619.

Sobol’, Ilya M., “On the Distribution of Points in a Cube and the Approximate Evaluation

38

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

of Integrals,” Computational Mathematics and Mathematical Physics, 1967, 7 (86-112).
Zhang, Hongchao, Andrew R. Conn, and Katya Scheinberg, “A Derivative-Free Algo-
rithm for Least-Squares Minimization,” STAM Journal on Optimization, 2010, 20 (6), 3555—
3576.
Zhigljavsky, Anatly and Antanas Zilinskas, Stochastic Global Optimization Springer Op-
timization and Its Applications, New York, NY: Springer, 2008.

39

ONLINE APPENDIX

40

FIGURE A.1 — Parallel Implementation of TikTak Scales Up Almost Linearly with Num-
ber of CPU Cores

TikTak Parallel Scaling Performance with # of Cores

% 28 -@-Data .
:’0 - - Linear fit

2 16k - Objective > 1.01 Single-core run| |
=l

=

2

$ 8 Slope of linear fit: --0.976 .
@

8

Ea |
=

g

g 2r i
=

=

S

5 1 f
= ..

g 065 e
o L L L L L L

1 2 4 8 16 32 64
Number of CPU Cores (log scale)

Note: See https://www.fatihguvenen.com/tiktak for more details and a link to the source code.

A Parallel Performance of TikTak
B Appendix: Detailed Description of Algorithms

This section provides a description of the global optimization algorithms used in the paper.

B.1 Controlled Random Search with Local Mutation (CRS2-
LM)

Controlled Random Search (CRS) algorithms were first introduced by Price (1977). An
advantage of these algorithms is that they do not require much knowledge about the properties
(e.g., differentiability) of the objective function that is minimized. The basic CRS algorithm has
been modified and improved over time in several ways. More details on all variants of CRS can
be found in Kaelo and Ali (2006). We will now describe the basic CRS algorithm and a variant
of CRS with local mutation (CRS2-LM). CRS2-LM was developed and benchmarked by Kaelo
and Ali (2006), who find that CRS2-LM performs better than all other CRS variants. In this
paper, we therefore use the CRS2-LM algorithm from the NLopt library in our benchmarking
exercise.

The basic CRS Algorithm The CRS algorithm (Price (1977)) is a direct search technique.
Convergence results are based purely on heuristics. Given a bounded n-dimensional objective
space X, the algorithm progresses as follows to minimize an objective function on this search
space:

41

1. Initialize. Generate N uniformly distributed random points from the search space X and
store them in an array S.

2. Rank the N points in S from best () to worst (z,,), where the best point is associated
with the smallest function value f(xy).

3. Generate trial points Z:

(a) Randomly select n + 1 points x1, x9, ..., £p4+1 With replacements from S.

(b) Randomly select one vertex of the simplex (say, z,,+1) as a pole and reflect it through
the centroid of the remaining points in the simplex to obtain the trial point Z:

n

.1
—

(c) If Z lies outside of the bounds (Z ¢ X), return to Step 3 (a).

(d) If the new trial point is worse than the worst point (f(Z) > f(zy)), return to Step
3 (a).

4. Update S. If this step is reached, then the new trial point & must be better than the
worst point; that is, f(x,) > f(Z). Therefore, x,, is replaced by Z. The algorithm then
returns to Step 2.

5. Repeat Steps 2 to 4 until a stopping rule is met. Usually, stopping criteria are based on
the distance between the best and worst points (e.g., f(xy) — f(zp) < 7).

Given this basic structure, several modifications aimed at improving the selection of trial points
by suggesting changes to Step 3. Kaelo and Ali (2006) develop a new version of CRS, which
is referred to as CRS2 with local mutation (CRS2-LM). CRS2-LM modifies Step 3(a) (i.e., the
way in which the algorithm selects the n + 1 points that form the simplex) and Step 3(b) (i.e.,
the rules for finding new trial points Z) of the basic CRS algorithm. We will now describe the
CRS2-LM algorithm in more detail as we use this version of CRS in our benchmarking exercise.

The CRS2-LM Algorithm (Based on NLopt) The CRS2-LM algorithm changes the
method of generating the n+1 points that form the simplex. Now, the algorithm generates only
n points randomly and always uses the smallest function value in S as the (n+ 1)-st point. The
second change affects the rules for updating and discarding unsuccessful trial points. Recall
that the basic CRS algorithm discards a new trial point Z if its function value f(Z) is not better
than the current worst point in the sample S. In the CRS2-LM version, the unsuccessful trial
point Z is not discarded but is instead used to obtain another trial point y by coordinate-wise
reflecting & through the current best point . The CRS2-LM algorithm can be summarized by
the following steps:

1. Initialize as in basic CRS.

2. Rank points as in basic CRS.

42

3. Generate trial points z:

(a) Randomly select n points xa, 29, ..., £p+1 With replacements from the search space
X. Let xp = x1.

(b) Obtain the next trial point Z as in CRS given the n + 1 simplex vertices selected in
3 (a).

(c) If Z lies outside of the bounds (Z ¢), return to Step 3(a).
>

(d) If the new trial point is worse than the worst point (f(Z)
4; otherwise, go to Step 5.

f(zw)), then go to Step

4. Local mutation of Z:

(a) Generate another trial point g using the “unsuccessful” trial point & and the best
point x by coordinate-wise reflecting & through the current best point x; according
to the following equation:

Ui = (1 4+ wi)xp — widy,

where ¢ denotes the i-th coordinate of each point and w; is a random number in
[0,1] drawn for each 3.

(b) If f(g) > f(zw), then no replacement is done and the algorithm returns to Step 3.

5. Update S. If this step is reached from Step 3, the new trial point Z is better than the worst
point (e.g., f(xy) > f(Z)). Therefore, x,, is replaced by Z. If this step is reached from
Step 4, the new trial point ¢ is better than the worst point (f(zy) > f(7)). Therefore,
Ty 1s replaced by 7 instead. The algorithm then returns to Step 2.

6. Repeat Steps 2 to 5 until a stopping rule is met. Usually, stopping criteria are based on
the distance between the best and worst points, (e.g., f(zy) — f(xp) < 7).

In our implementation, we use N = 10(n + 1).

B.2 Improved Stochastic Ranking Evolution Strategy (ISRES)

Both ISRES and ESCH (see below) are Evolution Strategy (ES) algorithms. ES algorithms
are based on the evolution of a population (set of individuals) along generations. The population
is composed of two distinct groups: p parents and A offspring. During each generation, the
population size changes from p to g + A individuals. After the selection, the population again
reduces to p individuals. ES algorithms differ in the way in which offspring are generated and
in the selection of surviving individuals.

The Improved Stochastic Ranking Evolution Strategy (ISRES), developed in Runarsson
and Yao (2000, 2005), proposes a novel approach to balance objective and penalty functions
stochastically and to rank candidate solutions to the minimization accordingly. The new ranking
strategy is tested in Runarsson and Yao (2000) on a suite of 13 benchmark problems using a
(1, A) evolution strategy. The authors furthermore point out that the new constraint-handling

43

technique (which is based on the stochastic ranking scheme) can be used in any evolutionary
algorithm and is not limited to the evolution strategy. The evolution strategy in the NLopt
application is based on a combination of a mutation rule (with a log-normal step-size update and
exponential smoothing) and differential variation (a Nelder-Mead-like update rule). Overall, the
authors find that using the suitable ranking method improves the performance of the algorithm
significantly. The main advantage of the ISRES algorithm is therefore the constraint handling.
ISRES supports arbitrary nonlinear inequality and equality constraints, in addition to bound
constraints, and it performs well in problems with nonlinear constraints (shown in Runarsson

and Yao (2000)).
B.2.1 Basic Evolution Strategy ((u, \)—ES Algorithm)
The basic (u, A\)—ES algorithm can be summarized by the following steps:

1. Initialize. Generate X individuals (2, 0}), where 2 are uniformly distributed random

points from the search space X, and o}; = (z; — x;)/v/n , where z; and z; are the lower
and upper bounds of the search space.

2. Rank the X\ points that were generated from best (zp) to worst (x,,) where the best
point is associated with the smallest function value f(zp). Keep the best p individuals

(a:i, Ui),i S {1, R ,M}.
3. Replication. A new population of A individuals is reconstituted by mutation of the p

individuals (x;, 0;) using a non-isotropic mutative self-adaptation rule:

a;w- = Orank(k),j exp(7'N(0,1) + 7N;(0,1)),k = {1,..., A}, rank(k) = mod(k — 1,) + 1

T) = Trank(k) T 0. N(0,1)

O}, 4 Orank(k) + (0}, = Trank(k)) (exponential smoothing)

4. Repeat Steps 2 to 4 until a stopping rule is met.

B.2.2 Improved Stochastic Ranking Evolution Strategy (ISRES)

Runarsson and Yao (2005) point out that the search by the (u, A\)—ES is biased toward a grid
aligned with the coordinate system. To address this issue, the authors introduce a modification
to the algorithm (differential variation) that can be thought of as a variation of the Nelder-Mead
method. More specifically, Runarsson and Yao (2005) modify Step 3 by subdividing it into two
sub-steps. A specific mutation is performed on each of the y — 1 best parents according to the
following equation:

i = x; +y(xp — wit1),i € {1,..., p— 1}

The search direction is now determined by the best individual and the individual ranked just
below the parent being replicated (index i+ 1). The step length is controlled by the parameter
~. For these trials, the parent mean step size o; is copied unmodified.

The new algorithm can be described as follows:

44

1. Initialize. Generate A individuals (2}, o}), where / is uniformly distributed random points

from the search space X, and o}; = (7; — x;)/v/n , where z; and z; are the lower and
upper bounds of the search space.

2. Rank the A points that were generated from best (x3) to worst (z,), where the best
point is associated with the smallest function value f(z). Keep the best p individuals

(a:i, O'Z'),i S {1, .. ,/L}.

3. Replication. A new population of A individuals is reconstituted by mutation of the pu
individuals (x;,0;). There are two types of mutations:

(a) Differential variation. For the u — 1 first individuals, the strategy parameter is kept
unchanged, and the new individual coordinates are a combination of two parents x;
and x;+1 and the best point so far zy:

2} = @i+ y(xp — i) € (L. p— 1},

(b) Standard mutation. For the remaining individuals (z},0}) for k € p,..., A, the
strategy parameter o and the point x; are mutated, according to a non-isotropic
mutative self-adaptation rule:

O—;i),j = Orank(k),j exp(T'N(O, 1)+TNJ(07 1))7 k= {M? R)‘}7 rank’(k) = mOd(k_la M)+1

1’2 = Trank(k) + O—Z:N(Oa 1)
oL = ki) T ooy, — Trank(k)) (exponential smoothing).

4. Repeat Step 2 and 3 until a stopping rule is met.

We use the following values for the parameters of the algorithm: A = 20(n + 1),A\/u = 1/7,

7=1/y/2yn,7 =1/v2n, and a = 0.2,7 = 0.85.
B.3 Evolutionary Strategy with Cauchy Distribution (ESCH)

ESCH (Evolutionary Strategy Algorithm with Cauchy Distribution) is an evolutionary al-
gorithm developed by Silva-Santos et al. (2010, 2018). ESCH is based on an u + A-evolution
strategy algorithm. The algorithm creates an initial population that is then iteratively recom-
bined according to a single point recombination, and individuals undergo mutations generated
by a Cauchy distribution. At each generation, the best u individuals are selected from the entire
population (u + A individuals).

The ESCH algorithm can be summarized by the following steps:

1. Initialize. Generate u individuals z;, where z; is randomly generated according to a
Cauchy distribution in the search space X. These are the parents P.

2. Crossover replication. Generate X offspring. For each offspring & in {1,..., A}, randomly
choose two parents from P: p; and ps. Randomly choose an index jipreshoig in {1,...,n}.

45

The first j components are copied from parent 1, and the remaining n — j components
are copied from parent 2 so that

Tk = p1j,J € {1, ..., Jthreshold}

Trj = P2irJ € {Jthreshold +1,...,n}.

3. Mutations. Create M mutations. For each mutation, randomly draw an individual among
the A — p offspring; call the individual ig. Randomly draw a dimension from the param-
eter space (j € {1,...,n}). Replace the component z;,; with a draw from a Cauchy
distribution.

4. Selection. Rank the entire population (u parents and A offspring) and select the best u
individuals.

5. Repeat Steps 2 to 4 until a stopping rule is met.

We use the following values for the parameters of the algorithm: p = 40, A = 60, and M =
60 x n/10.

B.4 Multi-Level Single-Linkage (MLSL)

MLSL is a multistart algorithm that starts several local optimizations from a sequence of
starting points that can be generated either with a pseudo-random number or with a Sobol’
low-discrepancy sequence. The algorithm is proposed by Rinnooy Kan and Timmer (1987a,b).
The NLopt version that we are using in this paper relies on Sobol’s low-discrepancy sequence,
which has been shown to improve convergence rates as Sobol’ sequences cover the search space
more efficiently (Kucherenko and Sytsko (2005)). The NLopt library allows specifying different
local search algorithms, and we use the Nelder-Mead simplex algorithm. In addition, MLSL
has a "clustering" heuristic that prevents the algorithm from performing repeated searches that
are likely to converge to identical local optima. MLSL has been found to be very effective when
used with a fast gradient-based local search algorithm on smooth problems (Ghebrebrhan et
al. (2009)). It is not obvious, however, that this performance carries over to non-smooth global
optimization problems in economics.

The MLSL algorithm proceeds along the following steps:
1. Draw N elements (from the Sobol’ sequence) from the search space X and add them to
S (initially empty).

2. Rank the elements in S according to their function values. Select the best 7||S|| values
and store them in S.

3. For every point z in S:

(a) Implement a local search starting from z, unless z is a local minimum previously
found (i.e., unless z is already in X*), or if there is another point z; in S such that
f(z;) < f(x) and ||z — z;|| < r. If one of these conditions is met, skip this step.

(b) Add the minimum found by the local search to X*.

46

4. Repeat Steps 1 to 4 until a stopping rule is met. Select the best element from X*.

We use the following parameter values for the algorithm: N =4 and v = 0.3.

B.5 Stochastic Global Optimization (StoGo)

StoGo was developed by Madsen et al. (1998), and it uses a branch-and-bound technique.
The algorithm proceeds by dividing the search space into smaller hyper-rectangles. Within
these areas the algorithm then implements local optimizations, which use a gradient-based
local search algorithm. A potential drawback of this algorithm is therefore that the function
needs to be differentiable, since the local search algorithm is gradient based.

The main steps of the algorithm are as follows:

1. Initialization. Initialize C' = X, where C is the set of candidate boxes (hyper-rectangles).
Initialize G = (), which represents the set of garbage boxes.

2. Rank boxes B in C according to the minimum function value among all points in B
computed during iteration. Store the best box from C in B and remove it from C (i.e.,
B as the smallest known function value).

3. Randomly draw a set S of N points in B . Evaluate f(z) for x € S. Start local search
from each point in S using the Dogleg method (gradients are estimated using forward
differences):

(a) If all local searches end up out of the box B, remove B from C, and add B to
garbage set G.

(b) If all local searches converge to the same point (local minimum) z*, add z* to C.
Remove B from C, and add B to garbage set G.

(c) Else (lower bound reduction), there are several local minima found in B:

i. Estimate the lowest point in B, [b(B) using

Ib(B) = iréi]gl {f(xmin) — mazGrad - ||z — Tpminl|},
where Z,,in is the smallest known function value in B. maxzGrad is the maxi-
mum value of the gradient, which is estimated at each point generated by the
local searches.

ii. If Ib(B) > fbound, remove B from C, and add B to garbage set G.

iii. Else: subdivide. Compute the centroid of two best local minima in C and the
dimension-wise dispersion from the local minima in C to the centroid. Select
the dimension with the highest dispersion. Split B in two boxes along this
dimension at the centroid. By construction of the centroid, each subdivision
contains at least one of the local minima. Put these two boxes in candidate set

C.

4. Repeat Steps 2 to 3 until C' does not contain any boxes (only singletons).

47

5. Remove an arbitrary box from garbage set G and store it in B. Create two subsets Bj
and Bj from B in the following way:

(a) If B has no known local minimum, split B in two along the longest dimension. Add
Bj and By to C.

(b) If B has exactly one known local minimum z*, split B in two along the dimension
for which x* is farther away from boundary of B. Add By and Bs to C.

(c) If B has several known local minima, compute the centroid of two best local minima
in C and the dimension-wise dispersion from the local minima in C to the centroid.
Select the dimension with the highest dispersion. Split B in two boxes along this
dimension at the centroid. By construction of the centroid, each subdivision contains
at least one of the local minima. Put these two boxes in candidate set C .

6. Repeat Step 5 until garbage set G is empty.

7. Repeat Steps 2 to 6 until a stopping rule is met.

B.6 TikTak

In this section, we summarize the main steps of TikTak as it is used in this paper. For an
overview of this version of TikTak, see also Section 2. A more general description of the TikTak
algorithm is available in Guvenen (2011).

e Step 0. Initialization:

1. Determine bounds for each parameter.
2. Generate a sequence of Sobol’ points with length N.

3. Evaluate the function value at each of these N Sobol’ points. Keep the set of N*
Sobol’ points?’ that have the lowest function values, and order them in descending
order, as s1,...,Sn+, with f(s1) < -+ < f(sn+).

4. Set the global iteration number to i = 1.
e Step 1. Global stage:

1. Select the i*" value (vector) in the Sobol’ sequence: s;.

2. If i > 1, read the function value (and corresponding parameter vector) of the smallest
recorded local minimum from the “wisdom.dat” text file. Denote the lowest function
value found so far (as of iteration i — 1) as f/% and the corresponding parameter

vector as pé"_wl .

3. Generate a starting point (i.e., initial guess) S; for the local search by using the
convex combination of the Sobol’ point s; and the parameter value péo_“{ that gen-
erated the best local minimum found so far: S; = (1 — 6;)s; + 9p£°j‘{. The weight

parameter 0; € [0, 0] with § < 1 increases with 7.%%

2TIn this paper, we use N* = 0.1 x N.
28In this paper, we use the following function to increase the weight parameter: 6; =

min {max[o.L (i/N*)/ 2},0.995} .

48

e Step 2: Local stage:

— Select a local optimizer (in this paper, we use either Nelder-Mead and DFNLS) and
implement a local search at the identified starting point S; until a local minimum
is found.

— Select a stopping criterion for the local search algorithm (in this paper, we use
tolerances of either 1073 or 107® as convergence criteria).

— Open the wisdom.dat file and record the local minimum (function value and pa-
rameters).

e Step 3. Stopping rule:

B.7

— Repeat Steps 1 and 2 until local searches are completed from starting points that
use each of the N* Sobol’ points.

— Return the point with the lowest function value from wisdom.dat as global mini-
mum.

Gradients of Test Functions

Griewank Function The gradient of the Griewank function is equal to

n

ol =2 T oos ()| sin (V) -

j=1,j#i

Levi Function The gradient of the Levi function is equal to

\7i

67 cos(3mx1) sin(3mz1) + 2(x1 — 1)(1 + sin?(37x2))
= 2(x; — 1)(1 + sin?(3mwiy1)) + 2(xi—1 — 1)267 sin(37z;) cos(3mx;) fori ¢ {1,n} | .
2(zn — 1)(1 +sin?(272y,)) + (zn — 1)247 cos(27zy,) sin(2wxy) + (xn—1 — 1)267 cos(3wxy,) (372

Rastrigin Function The gradient of the Rastrigin function is equal to

of

o0x;

- = 2m; + 207 sin(2mz;).

Rosenbrock Function The gradient of the Rosenbrock function is equal to

—400z1 (19 — 22) — 2(1 — 1)

Vf=| 200(x; — 22 ;) — 400z;(xit1 — 23) — 2(1 — ;) for i ¢ {1,n}

C

C.1

200(x, — 22 _)?
Appendix: Additional Results on Data and Devia-
tion Profiles

Complete Results for Levi and Rosenbrock Test Functions
in 10 Dimensions

In this section, we provide the complete data and deviation profiles for the Levi and Rosen-
brock test functions in ten dimensions. The corresponding figures that we presented in the main
text (Figures 7 and 10) excluded selected algorithms for readability.

49

F1GURE C.2 — Data and Deviation Profiles: Levi, 10 Dimensions

(A) Data Profiles

Success criterion: Y deviation Success criterion: X deviation
T

o
=N

Success Rate

o
'S
T

FE Budget
——CRS -+-ISRES - ¢-MLSL-NM3 MLSL-B3 —<~TIKTAK-NM3 —+—TIKTAK-D3 Nelder-Mead @~ DFNLS
-~ ESCH —*—StoGo ¢~MLSL-NMS8 -4 -MLSL-BS8 ~*~TIKTAK-NM8 -#-TIKTAK-D8 ——DFPMIN

(B) Deviation Profiles

Success criterion: Y deviation Success criterion: X deviation
T T

10* i i 10 i
10%F 5
10°¢ 1
B}
= 10% 1
E ¥ 102]
E]
21072 E
a
4
104 1
104 1
. &-0-00- -
%
o Tox Fro
106 | \ e | | 106
10° 10t 10° 10° 10°
FE Budget FE Budget
g g

——CRS -+-ISRES - ¢ -MLSL-NM3 MLSL-B3 —<-TIKTAK-NM3 —*—TIKTAK-D3 Nelder-Mead o~ DFNLS
~v+ESCH —=—=StoGo ~#MLSL-NMS8 -4 -MLSL-BS§ -*TIKTAK-NMS -#-TIKTAK-D§ ——DFPMIN

Notes: This figure is the same as 7 but showing all algorithms (while ESCH and the 4 MLSL versions were excluded in
the previous figure for readability. This figure shows optimizers’ performance in minimizing the Levi test function in 10
dimensions.

50

FiGURE C.3 — Data and Deviation Profiles: Rosenbrock Function, 10 Dimensions

(A) Data Profiles

Success criterion: Y deviation Success criterion: X deviation
T T

1+ Wk
0.8F 0.8}
i)
Zo.6F 0.6
F04F 04
0.2r 0.2r
: |.0©0-0-0-000000070H
NP [SO i
10° 10° 10* 10
FE Budget FE Budget
——CRS -+-ISRES MLSL-NM3 MLSL-B3 —¢-TIKTAK-NM3 ——TIKTAK-D3 Nelder-Mead -2+ DFNLS
~¥-ESCH —=#=StoGo “*-~MLSL-NM8 -4 -MLSL-B8 %~ TIKTAK-NMS #*-TIKTAK-D8 ——DFPMIN
(B) Deviation Profiles
1010 Success criterion: Y deviation o Success criterion: X deviation
T T T 1 T
10°F 1
W 10°]
= 10°F 1
k= ol]
E 10°F 10
104 1
5 ¥ o
10°F 10 ‘ ‘ X kx5 Er
10? 10 10* 10° 10°
FE Budget FE Budget

——CRS -+-ISRES MLSL-NM3 MLSL-B3 —<-TIKTAK-NM3 —*—TIKTAK-D3 Nelder-Mead ~©~ DFNLS
-+ ESCH —=—=StoGo ~#MLSL-NM8 -4 -MLSL-B8 -*- TIKTAK-NMS8 #TIKTAK-D8 ——DFPMIN

Notes: This figure is the same as 10 but showing all algorithms (while CRS, ESCH, MLSL-nm3, MLSL-
nm8, TikTak-nm3, and Tiktak-d3 were excluded from the previous figure for readability. This figure shows
optimizers’ performance in minimizing the Rosenbrock test function in 10 dimensions.

C.2 Test Functions in 2 Dimensions

In this section, we provide the data and deviation profiles for each test function in two
dimensions. For definitions and explanation of the figures, see Section 4.2. Note that the
performance profiles in Section 4.3 include the two- and ten-dimensional test functions (as part
of the 800 problems that are included in the full set of problems p € P).

51

F1GURE C.4 — Data and Deviation Profiles: Griewank, 2 Dimensions

Panel A: Data Profile by Success Criteria

Success criterion: Y deviation Success criterion: X deviation
T

e el B
/"—‘;’

S

%

<t
‘

+ . 5 i“'vl‘:"

o ‘
10 10° 10* 10 10° 10*
FE Budget FE Budget

——CRS -+-ISRES - ¢ -MLSL-NM3 MLSL-B3 —<-TIKTAK-NM3 —+TIKTAK-D3 Nelder-Mead o~ DFNLS
~¥-ESCH —&-StoGo ~#~MLSL-NMS -4 -MLSL-B8 %~ TIKTAK-NM8 --*- TIKTAK-D8 ——DFPMIN

Panel B: Deviations by Success Criteria

5 Success criterion: Y deviation 5 Success criterion: X deviation

10 T 10 T
2 v
8
g]0—2 L A 4
ks
>
o)
[}

104 & E

=]
1070 ‘ : Lo8L—
10% 10° 10* 10%
FE Budget FE Budget

——CRS -+-ISRES - ¢-MLSL-NM3 MLSL-B3 —¢-TIKTAK-NM3 —*-TIKTAK-D3 Nelder-Mead o~ DFNLS
- ESCH —#=StoGo #*~MLSL-NM8 -4-MLSL-B8 -*~TIKTAK-NM8 #-TIKTAK-D§ —+—DFPMIN

Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the
same way. The only difference is that the test functions here are in two (and not 10) dimensions.

52

F1GURE C.5 — Data and Deviation Profiles: Levi, 2 Dimensions

Panel A: Data Profile by Success Criteria

Success criterion: Y deviation

Success criterion: X deviation
.

n g -t sttt cesioenay st Aol
0.9 i
0.8 B
0.3 B
0.2+ B 0.2+
0.1 b 0.1-
0 ‘ ‘ ol -0 6004 SR DUOOIE i vt
10 10° 10* 10° 10° 10*
FE Budget FE Budget
——CRS -+-ISRES MLSL-NM3 MLSL-B3 —¢-TIKTAK-NM3 —~—TIKTAK-D3 Nelder-Mead o~ DFNLS
-+ ESCH —8-StoGo -#+MLSL-NM8 -4 -MLSL-BS§ %+ TIKTAK-NM8 % TIKTAK-D8 ——DFPMIN
Panel B: Deviations by Success Criteria
5 Success criterion: Y deviation 5 Success criterion: X deviation
10 T 10° T
Bangy
D aom
100¢ 1 10F 3
Pmimteh st
e B S

Deviation (in log)
HN
T

S
S
T

10

10°
FE Budget

10*

10

10
10%

FE Budget

—+—CRS -+-ISRES

MLSL-NM3

MLSL-B3 —¢~TIKTAK-NM3 —*-TIKTAK-D3 Nelder-Mead o~ DFNLS
- ESCH —#-StoGo #*~MLSL-NM8 -4-MLSL-B8 -*-TIKTAK-NM8 #-TIKTAK-D§ —+—DFPMIN

Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the

same way. The only difference is that the test functions here are in two (and not 10) dimensions.

93

F1GURE C.6 — Data and Deviation Profiles: Rastrigin, 2 Dimensions

Panel A: Data Profile by Success Criteria

Success criterion: Y deviation Success criterion: X deviation
.

Arp kit Aot

Success Rate

10*
FE Budget FE Budget
——CRS -+-ISRES MLSL-NM3 MLSL-B3 —<TIKTAK-NM3 —+—TIKTAK-D3 Nelder-Mead o+ DFNLS
-+ ESCH —8-StoGo -#+MLSL-NM8 -4 -MLSL-BS§ %+ TIKTAK-NM8 % TIKTAK-D8 ——DFPMIN

Panel B: Deviations by Success Criteria

Success criterion: Y deviation Success criterion: X deviation
:

101 L
— +, 4%
en + ¥
=) HE
= Lo
g o L
§ 10 v
2 b
5 i
A i
10-4 L 4
R
o \"b/\ LN\ 1076 . .
10° 10* 10% 10° 10*
FE Budget FE Budget

——CRS -+-ISRES MLSL-NM3 MLSL-B3 —¢~TIKTAK-NM3 —*-TIKTAK-D3 Nelder-Mead o~ DFNLS
~¥-ESCH —#-StoGo #*~MLSL-NMS8 -4-MLSL-B8 %~ TIKTAK-NM8 ~*-TIKTAK-D§ —+—DFPMIN

Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the
same way. The only difference is that the test functions here are in two (and not 10) dimensions.

54

F1GURE C.7 — Data and Deviation Profiles: Rosenbrock, 2 Dimensions

Panel A: Data Profile by Success Criteria

Success criterion: Y deviation

" e i
.. i
0.9- 'y Mo 0.9+
0.8F Voo 1 0.8F
v
07F Vool . 07f
£ 1o#
Zo6r 1 - 0.6-
Z i
g 0.5- ¥ - 0.5-
S -
B04F B 0.4
03F - 03
0.2F - 0.2
b
0.1 4 0.11
g 1 P
[— - Da—s - - -
10% 10° 10* 10% 10° 10*
FE Budget FE Budget
——CRS -+-ISRES - ¢ -MLSL-NM3 —&~MLSL-B3 —¢ TIKTAK-NM3 —+TIKTAK-D3 - Nelder-Mead --©- DFENLS
-~ ESCH —8—=StoGo ~#~MLSL-NM8 -4 -MLSL-B8§ ~*~ TIKTAK-NM8 -#- TIKTAK-D8 ——DFPMIN
Panel B: Deviations by Success Criteria
0 Success criterion: Y deviation " Success criterion: X deviation
10 { T 10 T T
102 L
o 10° 8
o D,
= . 10°
H
=
'5 10° 4 107
o
10
107 -y
v v 10
10 10° 10* 10

FE Budget FE Budget
——CRS -+-ISRES MLSL-NM3 MLSL-B3 —-TIKTAK-NM3 —*TIKTAK-D3 Nelder-Mead - DFNLS‘

~¥-ESCH —#-StoGo *~MLSL-NMS8 -4-MLSL-B8 %~ TIKTAK-NM8 #- TIKTAK-D8 —+—DFPMIN

Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are
defined in the same way. The only difference is that the test functions here are in two (and
not 10) dimensions.

95

Economic Application: Slices of the Objective Func-
tion Surface

TABLE C.1 — The True Parameter Values of the Income Process

Generic Parameter Description Results
T o, St. dev. of transitory income shock 0.102687
To D1 Weight of center of { distribution 0.965121
x3 15y Mean of right tail of ¢ distribution 0.170472
x4 143 Mean of left tail of ¢ distribution -0.10
x5 O1¢ St. dev. of center of ¢ distribution 0.09571
Tg O, St. dev. of right tail of distribution 0.005968
T7 [0} Aggregate risk transmission parameter 0.643836

Notes: The parameters are estimated by matching data moments from Sweden. In this
table, we report the parameter values that correspond to the smallest function value (equal
to 3.4416262) that is found by any algorithm in our benchmarking exercise. We consider
this point to be the “true” minimum to define whether minimizations are successful. The
whole income process is pinned down by the seven parameters presented in this table. The
standard deviations of the center and right tail of the distribution are restricted to be
equal, so that o9 ¢ = 03,¢. Furthermore, we restrict the weight of the right and left tail of
the ¢ distribution to be equal and the weights have to sum to 1, so that the knowledge of

p1 implies that ps = p3 = 1_%

56

90

onpeA X yoed 0} Surpuodsoriod Iojowrered oY) 10 1) [QR], 99§ "PUNOJ oN[eA WNWIUIU [RJO[S IIY) Je siojourered
XIS SUTUTRWIDI 9} SUIXY S[IYM SIX® [RIILISA S} U0 UMOTS anfea 1djourered o) Surdrea £q 9oepms 9A1302[(qo o1y Jo 201]s & sq0[d [ourd yoey 990N

sonfea 9z
S0

0

€0

I 60 80 Lo 90

sonea Lz

14\

€0

S0

o 10 0 I 60 80 Lo 90

sonea ¢z
<0

0

sonfea £z
90 S0

sonea &
90 S0

001

1002

90®JING 9A130[q() 911 JO

0sT

sonfea Yz
TO €00 ¥0- S0 90 L0 80 60°
sonea 1z
1 80 L0

60

90 S0 0 €0 14 o

SOOI[S [BUOISUOWI(T-T — & (] HYNDIY

~

or

[

14

91

81

00S

0001

0ost

000

00sT

000

00s€

000t

00Sy

000

o7

“TUNUWIUIW 91T} 97} JO POOYIOQUSIOU 9)RIPOUIIL o[} 0} Ul Pawooz sI jo[d Yoer ‘PUNO] dN[RA WNWIUIW QO[3 IO} je siojowrered XIs
Sururewar oY) SUIXY o[IYM SIX® [RIILIDA d[) U0 UMOYS dnfea Ivjourered o) Surdrea Aq 9orpIns aA1309[qo o) Jo 201]s © sjo[d [pued yoey :S9)0N

sonfea Lz
990 590 90 P90 790 €90 £9°0
- - - - - 981
187°€
887°C
681
6v'c
16+
wt'e
£6v'€
| | | | | vov'e
onfea Y
$00_6r00 100 $800 €00 §I00 T00 SI00 100 000 O o 010 10 600 800 800, FO°IT0T TH0 €107 $T0 S10° 910 LIO 810" 610 TO
887°C
15¢€
6¢
- {¢s°€
6e
r6r'E i
Ho¢
96+
159°€
86°€
I | | | | | . | | | | | | | | | e
san[eA ¢ sonea &x sonfea Iz
81°0 L1°O 91°0 10 €10 o 1o 1 660 860 L60 960 €60 60 o SIro 1o <oro 1o $60°0 €800 800
- - - - - - e - - - - - € - - - - - - v'e
e
t 1s€
6c
18°€
8 Hr
1
S6ve
r 1€
1Ty
s¢ t 1 1ty
L lec 19
08¢
18
t 19
1
153
t 59
HTs
Sige L 'S

uoneLIeA Jdjdureted 10J san[ea uopdun g

U] SUIoo0y :90eJIng 9A1399[q() 9y} JO $9d1[g [eUOISUdWI([-T — 6" (] dYNDI]

o8

	wp801cover
	wp801
	Introduction
	Algorithms
	The TikTak Algorithm

	Measurement Preliminaries
	Data Profiles
	Performance Profiles
	Coding Language and Specifications

	Benchmarking Results for Standard Test Functions
	The Test Functions
	Results: Data and Deviation Profiles
	Griewank Function
	Levi Function
	Rastrigin Function
	Rosenbrock Function

	Results: Performance Profiles
	Results

	Taking Stock

	Benchmarking: An Economic Application
	A Stochastic Process for Individual Labor Income
	Results

	Conclusion
	Parallel Performance of TikTak
	Appendix: Detailed Description of Algorithms
	Controlled Random Search with Local Mutation (CRS2-LM)
	Improved Stochastic Ranking Evolution Strategy (ISRES)
	Basic Evolution Strategy ((,)-ES Algorithm)
	Improved Stochastic Ranking Evolution Strategy (ISRES)

	Evolutionary Strategy with Cauchy Distribution (ESCH)
	Multi-Level Single-Linkage (MLSL)
	Stochastic Global Optimization (StoGo)
	TikTak
	Gradients of Test Functions

	Appendix: Additional Results on Data and Deviation Profiles
	Complete Results for Levi and Rosenbrock Test Functions in 10 Dimensions
	Test Functions in 2 Dimensions

	Economic Application: Slices of the Objective Function Surface

