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We study dynamic optimal taxation in a class of economies with private information. Constrained optimal 
allocations in these environments are complicated and history-dependent. Yet, we show that they can be 
implemented as competitive equilibria in market economies supplemented with simple tax systems. The 
market structure in these economies is similar to that in Bewley (1986): agents supply labor and trade 
risk-free claims to future consumption, subject to a budget constraint and a debt limit. Optimal taxes are 
conditioned only on two observable characteristics- an agent’s accumulated stock of claims, or wealth, 
and her current labour income- and they are not additively separable in these variables. The marginal 
wealth tax is decreasing in labour income and its expected value is generally positive. The marginal la-
bour income tax is decreasing in wealth. 
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1 Introduction

This paper studies optimal taxation in a class of dynamic economies with private information. Specifically,

we consider an environment in which agents’ preferences are defined over consumption and labour, and

each agent receives a privately observed sequence of i.i.d. idiosyncratic shocks. Incentive-compatibility

constraints stemming from private information imply that socially optimal, or “constrained efficient”,

allocations in this environment are complicated and history-dependent. Yet, we show that they can be

implemented as competitive equilibria in market economies supplemented with simple tax systems. The

market structure in these economies is identical to that in Bewley (1986), Huggett (1993) or Aiyagari (1994):

agents can trade current consumption for claims to future consumption, subject to a budget constraint and

a borrowing limit. These claims have a non-contingent pre-tax return. Crucially, taxes are conditioned

upon only two observable characteristics of an agent: current wealth, given by the agent’s accumulated

stock of claims, and current labour income. They do not depend on any other aspect of an agent’s past

history. The model has implications for the optimal taxation of both wealth and labour earnings. It implies

optimal taxes that are non-linear and non-separable in these variables. In particular, the marginal tax on

wealth is negatively correlated with an agent’s labour income, while the marginal labour income tax is

decreasing in wealth.

Most models of dynamic optimal taxation follow the Ramsey approach, in which the set of fiscal

instruments available to the government is exogenously specified1. Linear labour and capital income taxes

are typically included in this set, while lump-sum taxes are ruled out. The exclusion of the latter is justified

by appealing to incentive or administrative constraints, but these are not explicitly modelled. These

exogenous restrictions on fiscal instruments become themselves a source of frictions. The government’s

optimal taxation problem reduces to one of selecting from amongst a limited number of policy instruments

so as to ameliorate these frictions.

The approach we adopt in this paper builds on the optimal non-linear income taxation literature initi-

ated by Mirrlees (1971). This literature emphasises that incentive-compatibility constraints due to private

information give rise to endogenous restrictions on optimal tax policies. It then characterises those tax

functions that induce agents to select the constrained efficient allocation. The resulting optimal non-linear

income taxes reproduce the patterns of wedges - gaps between individual marginal rates of substitution

and transformation - induced by the incentive-compatibility constraints at the optimal allocation. This

1Chari and Kehoe (1999) provide an excellent overview of this literature.
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research has concentrated on static models, leaving the properties of optimal taxes in dynamic economies

with private information largely unexplored2.

We also build on the dynamic contracting literature.3 This literature studies the properties of constrained-

efficient allocations in dynamic economies with private information. However, it limits the analysis to

implementation via direct mechanisms. While such mechanisms can be interpreted as tax systems, they

seem divorced from the actual combination of markets and taxes that are used in practice to allocate re-

sources, at least within modern, industrialised economies.4 In contrast, we consider fiscal implementations

in which agents choose labour supplies and trade claims to future consumption in each period and taxes

are conditioned on the agents’ observable trades.

Although we analyse fiscal implementations, we do rely on a key insight from the dynamic contracting

literature in constructing them. As Green (1987) and others have shown, direct mechanisms are naturally

recursive in promised utilities. Similarly, in our fiscal implementations, equilibrium allocations are recursive

in an agent’s wealth. In the same way that promised utility encodes an agent’s history under the direct

mechanism, wealth encodes an agent’s history in a fiscal implementation. The government is able to

infer from an agent’s wealth the continuation allocation to which she is entitled. Since the tax system is

designed to induce the agent to choose this allocation, it is essential that taxes depend on wealth. Thus,

the informational role of wealth is central in determining how it is taxed.

Despite this parallel between direct mechanisms and fiscal implementations, the existence of the former

does not imply the existence of the latter. Under a direct mechanism, an agent reports her privately

observed shocks to a planner and receives allocations of consumption and labour. By adopting different

reporting strategies she can obtain different allocations. In the market economy, an agent chooses budget-

feasible consumption and labour supply allocations. Since the constrained efficient allocation is incentive-

compatible, it can be implemented if the set of budget-feasible allocations in the market economy equals

the set of allocations available to an agent under the direct mechanism. However, with a simple tax system

restricted to condition on current wealth and labour earnings only, the first set is strictly larger than the

second. Specifically, an agent in the market economy might choose a labour supply that is consistent with

2Brito et al. (1991), da Costa and Werning (2001) and Kocherlakota (2003) apply the Mirrlees approach in a dynamic

setting. Golosov and Tsyvinski (2003) apply a similar strategy to the analysis of disability insurance.
3A selected reference list includes: Green (1987), Phelan & Townsend (1991), Atkeson & Lucas (1992, 1995), and Phelan

(1994).
4They may more closely resemble the arrangements used in simple village economies, see Townsend (1995) or Ligon (1998).
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constrained efficient behaviour given a particular history of shocks, but then allocate her after-tax resources

between consumption and savings in a way that matches constrained efficient behaviour given a different

history of shocks. The tax system cannot verify consistency of the previous period’s labour earnings with

this period’s wealth, nor can it ensure that an agent’s savings are consistent with her labour earnings.

Surprisingly, when agents’ preferences are separable in consumption and labour and when idiosyncratic

shocks are i.i.d., we show that it is possible to design a tax system, conditioned on current wealth and

labor earnings only, that induces agents to choose the constrained efficient allocation.

The binding incentive-compatibility constraints imply that constrained-efficient allocations satisfy a

pattern of wedges between marginal rates of transformation and individual marginal rates of substitution.

The optimal tax function is shaped by this pattern. In particular, marginal tax rates must be such that

the agent’s first order conditions hold at the constrained efficient allocation. However, simply matching

marginal taxes to these wedges does not guarantee that the constrained efficient allocation will be im-

plemented. Inducing agents to choose this allocation in the market economy places more structure on

marginal tax rates.

Constrained efficient allocations in a dynamic setting are characterised by an intertemporal wedge. A

marginal increase in savings at date t exacerbates the incentive problem at t + 1 since it reduces the

correlation between consumption and labor supply in that period. It follows that the cost of a marginal

increase in savings is greater than the marginal utility of forgone current consumption, giving rise to

a gap between the planner’s intertemporal marginal rate of substitution, qt, and the agent’s expected

intertemporal marginal rate of substitution at the constrained-efficient allocation5:

qt < βEt

∙
u0(ct+1)

u0(ct)

¸
.

It is natural to suppose that a positive marginal asset tax is needed to implement this wedge, thus giving

rise to a rationale for the taxation of assets that is often absent from complete information Ramsey models.

However, we show the presence of an intertemporal wedge does not necessarily translate into a positive

expected marginal asset tax.

The agent’s intertemporal Euler equation in our market economy is of the form:

qtu
0(ct) = βEt

∙µ
1− ∂Tt+1

∂b
(bt+1, yt+1)

¶
u0(ct+1)

¸
. (1)

5This result was initially derived by Diamond and Mirrlees (1978) and Rogerson (1985). Golosov, Kocherlakota and

Tsyvinski (2003) provide an extremely general derivation.
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Here, qt represents the price at time t of a claim to period t+1 consumption,6 Tt+1 (bt+1, yt+1) denotes taxes

in period t+ 1 as a function of an agent’s wealth bt+1 and labour income yt+1, and
∂Tt+1
∂b is the marginal

asset tax. An agent’s labour income yt+1 will vary with the idiosyncratic shock at date t + 1. Hence, by

allowing ∂Tt+1
∂b to depend on yt+1 we admit the possibility of a marginal asset tax that is stochastic from

the point of view of an agent selecting bt+1 at time t. The agent’s intertemporal Euler equation can be

rewritten as:

βEt

£
u0(ct+1)

¤
− qtu

0(ct) = β

½
Et

∙
∂Tt+1
∂b

¸
Et

£
u0(ct+1)

¤
+ Covt

∙
∂Tt+1
∂b

, u0(ct+1)

¸¾
≥ 0. (2)

This decomposition illustrates two ways in which the marginal taxation of wealth can generate an in-

tertemporal wedge. The most direct way is to reduce the expected return on savings by having a positive

expected marginal asset tax Et

h
∂Tt+1
∂b

i
> 0. The second way is to set marginal asset taxes such that the

after-tax return on savings covaries positively with consumption, implying Covt
h
∂Tt+1
∂b , u

0(ct+1)
u0(ct)

i
> 0. This

discourages savings in period t by making claims a less effective hedge against period t + 1 consumption

risk. Crucially, (2) shows that there is no presumption that the intertemporal wedge translates into positive

expected marginal asset taxes.

We illustrate with an example that a negative covariance between the marginal asset tax and labor

income is required to implement the constrained-efficient allocation, in order to rule out "joint deviations"

in which agents save too much in period t and work too little in period t + 1. It follows that the tax

function must be non-separable in wealth and current labor income. We then describe how our optimal tax

system guarantees that such deviations are sub-optimal for the agent. In addition, we provide an example

in which, despite a positive intertemporal wedge, the expected marginal asset tax is zero. We show that,

more generally, if the allocation to be implemented at t + 1 prescribes that labor supply should be lower

for agents with higher wealth, the expected marginal asset tax will be positive.

Constrained-efficient allocations in our model also satisfy a lower bound on continuation utilities, as in

Atkeson and Lucas (1995). We implement this constraint with a borrowing limit in the market economy.

The lower bound on continuation utility implies that, in a neighbourhood of this bound, the constrained-

efficient allocation for our dynamic setting will resemble one arising from a static model since there must

be a smaller reliance on continuation utility to provide incentives. This will translate into greater curvature

of the optimal tax function in a neighbourhood of the borrowing limit in the market economy.

6This price equals the planner’s intertemporal marginal rate of substitution in the direct mechanism.
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We explore the steady state properties of the optimal tax system in numerical examples. Our benchmark

parameterisation is consistent with recent calibrations of Bewley economies with endogenous labour supply.

We find that the optimal tax system displays a strong dependence of marginal asset and marginal income

taxes on wealth, as well as a high curvature of optimal tax function in the neighbourhood of the borrowing

limit. The optimal marginal labour income tax is high at low wealth and decreasing in wealth. Recent

contributions to the static optimal non-linear income taxation literature, such as Diamond (1998) and

Saez (2001), find that optimal marginal income taxes are high at low income levels and decreasing in

income. This result is interpreted as being consistent with the rapid phasing out of social benefits at low

incomes, but is sensitive to assumptions on preferences and the shock distribution. In contrast, the negative

dependence of marginal income taxes on wealth in our model is robust to alternative parameterisations.

This feature is particularly marked in the neighbourhood of the borrowing limit, where there is a need to

provide insurance to agents who are restricted in their ability to smooth consumption intertemporally via

asset markets. On the other hand, we also find the dependence of marginal labor income taxes on labour

to be sensitive to parameters.

For all our computed examples, the intertemporal wedge is small away from the borrowing limit. It is

less than 1% over most of the wealth range, but close to this limit it rises steeply to a peak of 16% in our

benchmark parameterisation. The marginal asset tax is very close to zero for wealth levels away from the

borrowing limit. The expected marginal asset tax is small, it equals approximately 2% at the borrowing

limit and falls steadily with wealth. The covariance between the marginal asset tax and the marginal

utility of consumption also falls with wealth, but it is much larger close to the limit and declines steeply as

wealth increases. This covariance plays the major role in generating the intertemporal wedge only when

this wedge is large. The small computed value of the intertemporal wedge does not imply that taxation of

asset income is small in our economy. The equilibrium net rate of return on assets is approximately 10%

in our computed examples, implying that the corresponding marginal tax on asset income is equal to our

marginal asset tax augmented by a factor of 10.

Our paper is closely related to Kocherlakota (2003). He also derives a tax system that implements

constrained-optimal allocations in an environment similar to ours. His analysis allows for persistent idio-

syncratic shocks. Kocherlakota’s tax system is not recursive and does not exploit the information conveyed

by an agent’s asset position. Instead, it conditions taxes on agents’ entire history of labour earnings. Thus,

his tax system, while more general, is also much more complex than ours. Interestingly, Kocherlakota’s
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optimal tax system always implies a zero expected marginal asset tax. As we discuss in the body of the

paper, results on marginal asset taxes are sensitive to the way in which the tax system uses information

on the agents’ past history.

The remainder of the paper proceeds as follows. In section 2, we state the planner’s problem for

economies of arbitrary finite length. We provide a recursive formulation for the planner’s problem that is

closely related to those in Atkeson and Lucas (1992, 1995). In section 3, we prove our main implementation

result for an economy with two periods and then extend the proof to economies of arbitrary finite length.

Section 4 studies the optimal pattern of wedges that characterise constrained-efficient allocations. In this

section we begin to discuss the relationship between wedges and taxes in a dynamic setting. Section 5

provides a series of examples that analyze this relationship in a two-period setting. In section 6, we extend

our implementation results to economies of infinite length. We present a numerical analysis of the optimal

tax system in the steady state of an infinite period economy in section 7. In this section, we also compare

our optimal tax system with the findings of the static optimal non-linear income taxation literature. Section

8 concludes.

2 The planner’s problem in a finite period economy

In this section, we formally describe the planner’s problem in a finite period economy. The economy is

inhabited by a continuum of agents. These agents have preferences over stochastic sequences {ct, yt}Tt=0 of
consumption ct ∈ R+ and labour yt ∈ Y :≡ [0, y] of the form:

E

"
TX
t=0

βt[u(ct) + θtv(yt)]

#
. (3)

We assume that u : R+ → U ⊂ R and v : Y → V ⊂ R are continuously differentiable, strictly concave
and, respectively, strictly increasing and strictly decreasing functions. The variable θt ∈ Θ ⊂ R denotes
an idiosyncratic preference shock. We assume that Θ is a compact set and that the preference shocks

are distributed independently over time and across agents with probability distribution π.7 We define a

t-period history to be θt = (θ0, ..., θt) ∈ Θt+1 and denote the corresponding probability distribution by

7The distribution function π also describes the cross sectional distribution of θt at each t, which amounts to assuming that

the law of large numbers holds across agents. As is well known, the law of large numbers may not apply if the underlying

index space is a Borel measure. We implicitly rely on the construction of Judd (1985) to resolve this issue.
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πt. We assume that the idiosyncratic shocks are privately observed by agents. The term θtv(yt) denotes

the disutility from labour at time t. Preference shocks alter the disutility of labour and the marginal rate

of substitution between consumption and labour. They may, for example, be interpreted as short-lived

shocks to health. We will focus on this interpretation and also assume that the production technology

converts one unit of labour into one unit of output. The preference shock formulation that we adopt can

easily be mapped into one in which agents receive privately observed productivity shocks that perturb

their individual marginal rates of transformation of labour into output.

Each agent is identified with a number w0 which represents the agent’s initial entitlement to expected

lifetime utility, or initial utility promise. Let Ψ0 denote the distribution over initial promises and let

W0 ⊆ R denote its support. It is convenient to state the planner’s problem in terms of utility, rather

than resource, variables. Given W0, define a utility allocation to be a sequence of functions z = {ut, vt}Tt=0
with ut : W0 ×Θt+1 → U and vt : W0 ×Θt+1 → V. Here ut and vt give the utility obtained by an agent

from consumption and labour at date t as a function of that agent’s utility promise and shock history. An

individual utility allocation for an agent with initial promise w0 will be denoted z (w0)
8. Let C : U → R+

denote the inverse of u and Y : V → Y the inverse of v. An individual utility allocation can be mapped
into a consumption-labour allocation using the functions C and Y . Denote an agent’s continuation utility

from the individual utility allocation z(w0) at date s by:

Us(z(w0), θ
s) = E

"
TX
t=s

βt−s[ut(w0, θ
t) + θtvt(w0, θ

t)]|θs
#

s = 0, . . . , T

with UT+1

¡
z (w0) , θ

T+1
¢
≡ 0. Let Unat

s :≡ supϕ∈U ,ς∈V 1−βT+1−s
1−β [ϕ+Eθς] denote an upper bound for Us.

Having introduced notation, we now state the constraints imposed on the planner’s problem. First we

require that the planner delivers w0 to those entitled to w0. Formally, the planner must choose a utility

allocation z that satisfies the promise keeping condition, for all w0 ∈W0
9

w0 = U0(z(w0)). (4)

Second since agents privately observe their histories of shocks, we require that the planner selects an

incentive-compatible utility allocation. We define a reporting strategy δ to be a sequence of functions

8The strict concavity of the problem ensures that it is optimal for a planner to treat all agents with the same utility promise

identically. Hence, there is no loss of generality in assuming that agents with the same promise receive the same allocation.
9We will assume throughout that for each w0 ∈W0, there exists a utility allocation z such that w0 = U0(z).
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{δt}Tt=0 with δt : Θt → Θ. We interpret δt as mapping an agent’s history of shocks into a report concerning
her current shock. Let z(w0; δ) denote the composition of the individual utility allocation z(w0) and the

reporting strategy δ. This is also an individual utility allocation. Let δ∗ = {δ∗t }Tt=0 denote the truthful
reporting strategy, where for all t, θt, δ∗t (θ

t−1, θt) = θt. We invoke the Revelation Principle and, without

loss of generality, require that utility allocations induce agents to be truthful10. Thus, we restrict the

planner to choose utility allocations z that satisfy the incentive compatibility condition, for all w0 ∈W0

∀δ : U0(z(w0; δ∗)) ≥ U0(z(w0; δ)). (5)

We will say that a utility allocation z = {ut, vt}Tt=0 is temporarily incentive-compatible if for all w0

∀t, θt−1, θ, θ0, ut(w0, θ
t−1, θ) + θvt(w0, θ

t−1, θ) + βUt+1(z(w0), θ
t−1, θ) (6)

≥ ut(w0, θ
t−1, θ0) + θvt(w0, θ

t−1, θ0) + βUt+1(z(w0), θ
t−1, θ0).

The latter constraints imply that after each history of shocks, an agent is better off truthfully reporting

her shock, rather than lying and being truthful thereafter. (5) clearly implies (6) and, in a finite period

setting, the reverse implication is also true. We will require that the planner chooses utility allocations

satisfying the more tractable constraints in (6).

Finally, the planner will be mandated to keep the continuation utilities of agents above an exogenous

lower bound, U t+1 < U
nat
t+1 at each date. Thus, utility allocations must satisfy, for all w0 ∈W0,

∀t ∈ {0, . . . , T − 1}, θt, Ut+1(z(w0)|θt) ≥ U t+1. (7)

Define Wt = [U t+1,∞)∩ Range(Ut) to be the set of possible expected period t payoffs for an agent,

and let {Gt}Tt=0 denote a sequence of exogenous planner consumption levels. The planner’s cost objective
is given by:

D(z; {Gt}Tt=0 ,Ψ0) = max
t∈{0,...,T}

⎧⎪⎨⎪⎩
Z

w0∈W0

Z
θt∈Θt+1

£
C(ut(w0, θ

t))− Y (vt(w0, θ
t))
¤
dπtdΨ0 +Gt

⎫⎪⎬⎪⎭ . (8)

The planner minimises this cost objective subject to the promise keeping, incentive-compatibility and

utility bound constraints:

C({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) = inf
z
D(z; {Gt}Tt=0 ,Ψ0) (9)

subject to: ∀w0, (4), (6) and (7).
10We assume throughout that the planner can commit to implementing a particular report contingent utility allocation.
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If z∗ = {u∗t , v∗t }Tt=0 attains the infimum in (9) then we will call z∗ a constrained efficient allocation (at

({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0)). We say that a triple ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) is consistent with resource
clearing if there exists a constrained efficient allocation at ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) that satisfies, for
t ∈ {0, . . . T}, Z

w0∈W0

Z
θt∈Θt+1

£
C(ut(w0, θ

t))− Y (vt(w0, θ
t))
¤
dπtdΨ0 +Gt = 0.

We now briefly summarise some well known results about problem (9). In this problem, a single

planner allocates resources across a population of agents. Following Atkeson and Lucas (1992), (9) can

be formulated as a collection of component planning problems. In each of these a component planner is

responsible for allocating resources only to those agents with a specific initial utility promise of w0. Each

component planner delivers w0, respecting incentive compatibility and the lower bound on continuation

utilities, at minimal cost, where cost is computed using a sequence of intertemporal prices {qt}T−1t=0 ∈ RT
+. qt

may be interpreted as the social shadow price of period t+1 consumption in terms of period t consumption.11

Formally, the component planners solve:

B0(w0) = inf
{u0t,v0t}Tt=0

TX
t=0

Qt

Z
θt∈Θt+1

£
C(u0t(θ

t))− Y (v0t(θ
t))
¤
dπt (10)

subject to : (4), (6) and (7),

where Q0 = 1 and, for t ≥ 1, Qt :≡
t−1Y
s=0

qt. These planners can be thought of as trading claims to future

consumption amongst themselves at the price qt in period t. Lemma 1 links this component planning

formulation to problem (9).

Lemma 1 Fix ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0). Suppose there exists a utility allocation z and a sequence of

intertemporal prices {qt}T−1t=0 such that:

1. for all t,
R

w0∈W0

R
θt∈Θt+1

£
C(ut(w0, θ

t))− Y (vt(w0, θ
t))
¤
dπtdΨ0 +Gt = 0 and

11 In Albanesi and Sleet (2004) we show that if Ψ0 is consistent with resource clearing, then the associated constrained

efficient allocation also solves a “primal problem” in which the planner maximises a Pareto-weighted aggregate of agent

utilities subject to a resource constraint, incentive-compatibility and utility bound constraints. Conversely, any allocation that

solves such a primal problem is also the solution to a dual problem (9) with an appropriately set utility promise distribution

Ψ0. Moreover, this Ψ0 is consistent with resource clearing. In the primal problem qt is the shadow price of consumption at

date t+ 1 in terms of consumption at date t.
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2. for all w0, z(w0) solves the corresponding component planning problem (10).

Then, z is constrained efficient at ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) and ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) is con-
sistent with resource clearing.

Proof: See Atkeson and Lucas (1992). ¥

The component planning problem (10) is recursive in the agent’s utility promise. We reformulate it

to take advantage of this recursivity. We then re-express Conditions 1 and 2 of Lemma 1 as equilibrium

conditions for a recursive component planner economy. This recursive formulation is a convenient first step

towards obtaining our main implementation result.

Fix a triple ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) and, hence, the sequence {Wt}Tt=0. Define a utility allocation rule
to be a collection of functions ζ = {{ϕt, ςt, ωt+1}T−1t=0 , ϕT , ςT} with ϕt :Wt ×Θ→ U , ςt :Wt ×Θ→ V and
ωt+1 : Wt × Θ → Wt+1. The functions ϕt(wt, θt), ςt(wt, θt)) and ωt+1(wt, θt) represent, respectively, the

utility from current consumption, labour supply, and the period t+ 1 utility promise assigned to an agent

with current utility promise wt and shock θt. A utility allocation rule recursively induces a utility allocation

as follows. Given ζ and an initial utility promise w0 ∈ W0, define wt+1(w0, θ
t) = ωt+1(wt(w0, θ

t−1), θt),

then for all t, w0 and θt−1 set ut(w0, θt) = ϕt(wt(w0, θ
t−1), θt) and vt(w0, θ

t) = ςt(wt(w0, θ
t−1), θt). Thus,

the utility allocation rule uses utility promises to summarise past information. We denote with z(ζ, w0)

the individual utility allocation induced by ζ from w0.

In the recursive formulation of (10), the component planner’s problem in period t ∈ {0, . . . , T − 1} is:

Bt(wt) = inf
ϕ:Θ→U ,ς:Θ→V
ω:Θ→Wt+1

Z
Θ
[C(ϕ(θ))− Y (ς(θ)) + qtBt+1(ω(θ))]dπ (11)

subject to the temporary incentive-compatibility constraint:

∀θ, θ0 : ϕ(θ) + θς(θ) + βω(θ) ≥ ϕ(θ0) + θς(θ0) + βω(θ0), (12)

and the promise-keeping constraint:

wt =

Z
Θ
[ϕ(θ) + θς(θ) + βω(θ)]dπ. (13)

In the terminal period T , the component planner solves:

BT (wT ) = inf
ϕ:Θ→U
ς:Θ→V

Z
Θ
[C(ϕ(θ))− Y (ς(θ))]dπ (14)
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subject to the temporary incentive-compatibility constraint:

∀θ, θ0 : ϕ(θ) + θς(θ) ≥ ϕ(θ0) + θς(θ0), (15)

and the promise-keeping constraint:

wT =

Z
Θ
[ϕ(θ) + θς(θ)]dπ. (16)

The solution to problems (11) and (14) defines a utility allocation rule, ζ∗. By a standard argument

z(ζ∗, w0) attains the infimum in (10). The following pair of lemmas provide some basic characterisation of

this sequence of value functions {Bt}Tt=0 and of ζ∗.

Lemma 2 Each Bt, t ∈ {0, . . . , T}, is increasing and strictly convex.

Proof: See Appendix. ¥

Lemma 3 1. There exists a utility allocation rule ζ∗ = {{ϕ∗t , ς∗t , ω∗t+1}T−1t=0 , ϕ
∗
T , ς

∗
T} that solves the recur-

sive component planner’s problem. Specifically, for each t, wt ∈Wt, the functions {ϕ∗t (wt, ·), ς∗t (wt, ·),
ω∗t+1(wt, ·)} attain the infima in (11); for each wT ∈WT , the functions {ϕ∗T (wT , ·), ς∗T (wT , ·)} attain
the infima in (14).

2. Each function ϕ∗t (wt, ·), ς∗t (wt, ·), ω∗t+1(wt, ·) is monotone.

3. For each t, there exist functions {c∗t , y∗t , B∗t+1} such that for all w ∈Wt and Θ,

y∗t (Bt(w), θ) = Y (ς∗t (w, θ)) (17)

c∗t (Bt(w), θ) = C(ϕ∗t (w, θ))

B∗t+1(Bt(w), θ) = Bt+1(ω
∗
t+1(w, θ)).

Proof: See Appendix. ¥

The final part of Lemma 3 re-expresses the optimal labour supply, consumption and component plan-

ner’s continuation cost, in the recursive component planner problem, as functions of the component plan-

ner’s cost and the shock. We will call the sequence α∗ = {{y∗t , c∗t , B∗t+1}T−1t=0 , y
∗
T , c

∗
T} a resource alloca-

tion rule. It uses planner costs, rather than utility promises, to summarise the past. We also define

Y∗t : Bt(Wt)⇒ Y by
Y∗t (b) :≡ {y : y = y∗t (b,eθ) some eθ ∈ Θ} ⊆ Y. (18)
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Y∗t (b) is the set of labour supplies available to an agent with utility promise B−1t (b) at date t under ζ∗.

The optimal promise functions {ω∗t+1}T−1t=0 and the distribution Ψ0 induce a sequence of cross sectional

utility promise distributions Ψt+1 according to:

∀S ∈ B(Wt+1) : Ψt+1(S) =

Z
1{ω∗t+1(w,θ)∈S}dπdΨt,

where B(Wt+1) denotes the Borel subsets of Wt+1. Additionally, ζ∗ and {Ψt}Tt=0 imply a sequence of
aggregate resource costs for t = 0, . . . , T :Z

Wt

Z
Θ

[C(ϕ∗t (w, θ))− Y (ς∗t (w, θ))] dπdΨt +Gt.

Define a component planner economy, denoted ECP ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0), to be a continuum of

component planners, an initial cross sectional distribution of utility promises Ψ0, a sequence of continuation

utility bounds {U t+1}T−1t=0 , a sequence of markets for one period ahead claims to consumption between

periods 0 and T−1, and a sequence of government consumptions {Gt}Tt=0. We use our recursive formulation
of the component planning problems to define an equilibrium for this economy.

Definition 1 A sequence of intertemporal prices {qt}T−1t=0 , a utility allocation rule ζ
∗ = {{ϕ∗t , ς∗t , ω∗t+1}T−1t=0 ,

ϕ∗T , ς
∗
T}, cost functions {Bt}Tt=0, with Bt :Wt → R, and a sequence of cross sectional distributions of utility

promises {Ψt}Tt=1 are an equilibrium of ECP ({U t+1}T−1t=0 , {Gt}Tt=0 , Ψ0) if:

1. {Bt}T−1t=0 satisfy (11) and BT satisfies (14);

2. {ϕ∗t , ς∗t , ω∗t+1} attain the infima in the problems (11). {ϕ∗T , ς∗T } attain the infima in the problems (14);

3. ∀t, S ∈ B(Wt+1), Ψt+1(S) =
R
1{ω∗t+1(w,θ)∈S}dπdΨt;

4. ∀t, Gt +
R
[C(ϕ∗t (w, θ))− Y (ς∗t (w, θ))] dπdΨt = 0.

Conditions 1 to 4 of this definition restate the conditions of Lemma 1 in terms of a recursive component

planner economy. It follows that if ζ∗ is an equilibrium utility allocation rule for a component planner

economy ECP ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0) then the utility allocation that it induces is constrained efficient at
({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0). We will call such a ζ∗ a constrained efficient utility allocation rule. By Lemma
3, a constrained efficient utility allocation rule ζ∗ can be equivalently expressed as a resource allocation

rule α∗. We will call the latter a constrained efficient resource allocation rule.

13



3 Implementation

We now show that a component planner equilibrium, and, hence, the associated constrained efficient

allocation, can be obtained as part of a competitive equilibrium in a market economy with taxes and

borrowing constraints. Agents are endowed with an initial stock of non-contingent claims b0. They enter

each period t with claims bt, they work yt, pay taxes and, in periods t ≤ T − 1, they allocate their
after-tax income between consumption ct and purchases of claims bt+1. In the terminal period T , they

simply consume all after-tax income. All market trades undertaken by an agent are publicly observable.

A government is exogenously assigned the sequence of spending levels {Gt}Tt=0 and administers the tax
system, {Tt}Tt=0, that supplements this trading arrangement. The tax system conditions an agent’s tax

payment in each period only on her current labour income yt and her current stock of claims bt and not on

any other aspect of her past history. Thus, it is simple. We show that such a simple tax system implements

the constrained-efficient allocation.

Formally, a market economy with taxes and borrowing limits, denoted EME({bt+1}T−1t=0 ,Λ0, {Gt}Tt=0 ,
{Tt}Tt=0), is a sequence of markets for one period ahead claims to consumption that open at each date
t ≤ T −1, a sequence of borrowing limits {bt+1}T−1t=0 , an initial cross sectional distribution of claim holdings

Λ0, a sequence of government spending levels {Gt}Tt=0, and a sequence of tax functions {Tt}
T
t=0 , with

Tt : Bt × Y → R, where for t > 0, Bt ≡ [bt,∞) and B0 denotes the support of Λ0. We define a market
allocation rule to be a sequence of functions ba = {{bct, byt,bbt+1}T−1t=0 ,bcT , byT}, with bct : Bt × Θ → R+,byt : Bt × Θ → Y, and bbt+1 : Bt × Θ → Bt+1. The functions bct(bt, θt), byt(bt, θt) and bbt+1(bt, θt) represent,
respectively, consumption, labour supply, and savings at time t of an agent with current wealth bbt and
shock θt. A competitive equilibrium of the market economy EME({bt+1}T−1t=0 , Λ0, {Gt}Tt=0 , {Tt}

T
t=0) is

defined as follows.

Definition 2 A sequence of claims prices {bqt}T−1t=0 ∈ RT
+, a market allocation rule ba = {{bct, byt,bbt+1}T−1t=0 ,bcT , byT}, value functions {Vt}Tt=0, with Vt : Bt → R, and a sequence of cross sectional distributions of claim

holdings {Λt+1}T−1t=0 is a competitive equilibrium of the market economy with taxes and borrowing limits

EME({bt+1}T−1t=0 ,Λ0, {Gt}Tt=0 , {Tt}
T
t=0) if:

1. for t ∈ {0, . . . , T − 1}, Vt and Vt+1 satisfy:

Vt(b) = sup
c:Θ→R+,y:Θ→Y,

b0:Θ→Bt+1

Z
[u(c(θ)) + θv(y(θ)) + βVt+1(b

0(θ))]dπ (19)

14



subject to, for each θ, b = c(θ)− y(θ) + Tt(b, y(θ)) + bqtb0(θ); VT satisfies
VT (b) = sup

c:Θ→R+,y:Θ→Y

Z
[u(c(θ)) + θv(y(θ))]dπ (20)

subject to, for each θ, b = c(θ)− y(θ) + TT (b, y(θ));

2. {bct, byt,bbt+1} attain the suprema in the problems (19). {bcT , byT} attain the suprema in (20);
3. ∀S ∈ B(Bt+1), Λt+1(S) =

R
1{bbt+1(b,θ)∈S}dπdΛt;

4. ∀t, Gt +
R
[bct(b, θ)− byt(b, θ)] dπdΛt = 0.

Given an initial wealth b0, an equilibrium market allocation rule induces a utility allocation ẑ(â, b0)

from b0. We formally define an implementation as follows.

Definition 3 Let z∗ be a constrained efficient utility allocation at ({U t+1}T−1t=0 ,Ψ0, {Gt}Tt=0). We say that
z∗ is implemented by a competitive equilibrium in a market economy with taxes and borrowing limits

EME({bt+1}T−1t=0 , Λ0, {Gt}Tt=0 , {Tt}
T
t=0) if:

1. there exists a measurable function f :W0 → R such that for each S ∈ B(R), Λ0(S) = Ψ0(f−1(S));

2. EME({bt+1}T−1t=0 ,Λ0, {Gt}Tt=0 , {Tt}
T
t=0) has a competitive equilibrium ξME = {{qt}T−1t=0 , ba, {Vt}Tt=0,

{Λt+1}T−1t=0 } such that for each w0 ∈W0, ẑ(ba, f(w0)) = z∗(w0).

If z∗ can be implemented by a competitive equilibrium ξME in a market economy EME({bt+1}T−1t=0 , Λ0,

{Gt}Tt=0 , {Tt}
T
t=0), then (EME({bt+1}T−1t=0 ,Λ0, {Gt}Tt=0 , {Tt}

T
t=0), ξ

ME) is said to be a fiscal implemen-

tation of z∗.

The first condition in the definition describes how the initial wealth distribution is set in the market

economy. It requires that an agent’s initial claims in this economy be measurable with respect to the

agent’s initial utility promise in the planner’s problem. Intuitively, measurability implies that initial claim

holdings will reveal the agent’s initial utility promise to the government. The second condition is the

central one. It requires that if an agent is given initial claim holdings of f(w0) in the market economy,

then she will choose the constrained efficient individual utility allocation z∗(w0).
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3.1 Implementation in a two period economy

We now show that constrained efficient utility allocations that are induced by the equilibria of component

planner economies can be implemented in market economies with taxes and borrowing limits. Although our

fiscal implementation result applies to economies of arbitrary finite length, the key insights are most easily

seen in a two period setting, and we will initially focus on this case. Subsequently, we extend our results to

time horizons T > 1. Our approach is constructive. Given a component planner economy equilibrium, we

propose an initial distribution of claims and a candidate equilibrium claims price for the market economy.

We then derive a tax function and debt limits under which agents will be able to afford the constrained

efficient allocation from the component planner economy. The challenge will then lie in showing that the

agents in the market economy do in fact choose this allocation.

Formally, let ξCP = {q, ζ∗, {Bt}1t=0, Ψ1 } denote the equilibrium of a two period component planner

economy ECP (U, {Gt}1t=0 ,Ψ0). The functions that comprise the utility allocation rule ζ∗ are {{ϕ∗t , ς∗t }1t=0, ω∗1}.
We set the candidate equilibrium price in the market economy to be q, as in ξCP , and set f = B0. We

then structure the debt limits and tax system so that in period 0 an agent with wealth B0(w0) can afford

to purchase each of the triples {C(ϕ∗0(w0, θ)), Y (ς∗0(w0, θ)), B1(ω∗1(w0, θ))}, θ ∈ Θ, while, in period 1, an
agent with wealth B1(w1) can afford each pair {C(ϕ∗1(w1, θ)), Y (ς∗1(w1, θ))}, θ ∈ Θ.

Under this arrangement, an agent with utility promise w0 in the component planner economy is endowed

with an initial quantity of claims equal to B0(w0), the cost to a component planner of delivering w0. The

agent can then afford the constrained efficient allocation if she saves an amount equal to the component

planner’s continuation cost. This identification of an agent’s savings with a component planner’s costs

is natural since the latter give the expected discounted net transfers to an agent under the constrained

efficient allocation. It implies that an agent’s wealth will convey information about the agent’s past to the

government. Specifically, if for all w0 and θ, the agent saves B1(ω∗1(w0, θ)), then the government will be able

to infer the agent’s continuation utility promise from B1 and, hence, the continuation allocation to which

the agent is entitled. Since the tax function will be designed to induce agents to choose this allocation, it

will be essential that taxes depend on wealth and this informational role of wealth will crucially influence

how wealth is taxed.

To simplify the notation we use the constrained efficient resource allocation rule, α∗ = {{y∗t , c∗t }1t=0, B∗1}
associated with ζ∗ to describe how the optimal tax system is constructed. In period 1, we set the tax
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functions so that for each b ∈ B1(W1) and y ∈ Y∗1 (b)

T1(b, y) = b+ y − c∗1(b, θ
∗
1 (b, y)), (21)

where θ∗1 (b, y) ∈ {θ : y∗1 (b, θ) = y}. It then follows that an agent with savings b ∈ B1(W1) in the market

economy can afford each of the period 1 allocations potentially available to an agent with period 1 compo-

nent planner cost b under α∗. However, (21) only defines taxes for {b, y} ∈ Graph Y∗1 . To prevent agents
from choosing savings in period 0 outside of B1(W1) = [B1(U),∞), we simply impose the borrowing limit
b = B1(U) and set B1 = B1(W1). For b ∈ B1 and y ∈ Y/Y∗1 (b), we select taxes so that for each θ:

u(c∗1(b, θ)) + θv(y∗1(b, θ)) ≥ u(b+ y − T1(b, y)) + θv(y). (22)

This ensures that no agent would choose such a labour supply. The constrained efficient utility allocation

rule does not prescribe how this should be done, and we have some flexibility in selecting T1(b, ·) over these
labour supplies. The procedure in period 0 is analogous, we set the tax function on Graph Y∗0 so that the
agent can afford the relevant constrained efficient allocations. Specifically, for each b ∈ B0 = B1(W1), we

set

T0(b, y
∗
0(b, θ)) = b+ y∗0(b, θ)− c∗0(b, θ)− qB∗1(b, θ). (23)

As in (22), we set taxes so that y ∈ Y/Y∗0 (b) will not be chosen by an agent with initial wealth b.

Do these tax functions and borrowing limits succeed in implementing the constrained efficient alloca-

tion? To understand why they might fail, it is useful to compare the set of allocations available to an agent

from different reporting strategies under α∗ (or ζ∗) to those available to an agent in the market economy.

Let ZCP (b0) denote the set of resource allocations available to an agent with initial planner cost b0 under

α∗, or, equivalently, initial utility promise B−10 (b0) under ζ∗. Let ZME(b0) be the set of allocations avail-

able to an agent with initial wealth b0 in the market economy. If ZME(b0) = ZCP (b0), then we can rely

on the incentive compatibility of the constrained efficient utility allocation to ensure that this allocation

is implemented. Since the constrained efficient allocation is affordable in the market economy under the

candidate tax system, it follows that ZCP (b0) ⊆ ZME(b0). Deviations to choices outside of Graph Y∗t ,
t = 0, 1 are either ruled out directly by the borrowing limit or rendered undesirable by the tax system, as

discussed above. Hence, we can restrict attention in the market economy to those allocations that remain

within the graphs of Y∗t , t = 0, 1. These allocations comprise the set eZME(b0), where:eZME(b0) :≡ {a = {ct, yt}1t=0 : a ∈ ZME(b0) and for t = 0, 1, {bt, yt} ∈ GraphY∗t
where b1 = b0 + y0 − T (b0, y0)− c0}.
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Even after restricting attention to eZME(b0), there remain allocations available to the agent in the market

economy that are unavailable to her under α∗, so that ZCP (b0) ⊂ eZME(b0). One or more of these may

be preferred to the constrained efficient allocation. These allocations involve an agent selecting a labour

supply y = y∗0(b, θ) that is constrained efficient given the history (b, θ) and a savings level B
∗
1(b

0, y∗0(b
0, θ0))

that is constrained efficient given some alternative history (b0, θ0). Since taxes are conditioned on current

wealth and labour earnings only, the tax system cannot, in period 1, “look back” to the previous period’s

labour earnings and verify consistency with this period’s wealth. Nor in period 0, can it prevent an agent

from choosing a savings level that is inconsistent, from the point of view of α∗, with that period’s labour

supply. Despite this, under the assumptions that an agent’s preferences are separable in consumption and

labour and shocks are i.i.d., our simple tax system works. The allocations in eZME(b0)/ZCP (b0) are all

inferior to the constrained efficient one.

Proposition 1 formally establishes the existence of a fiscal implementation for constrained efficient

allocations. The main step of the proof involves splitting the period 0 problem of an agent in the market

economy, and of a planner in the component planner economy, into two stages. In the market economy,

an agent in the first stage of period 0 selects a labour supply y0 and an after-tax quantity of resources,

x. In the second stage, she allocates these resources between current consumption and savings. In the

component planner economy, the planner first assigns utilities from labour supply, ς0, and interim utility

promises, d. In the second stage of period 0, she allocates d between utility from consumption, ϕ0 and a

continuation utility promise, ω. Figures A1 and A2 in the appendix display timelines for both economies.

Proposition 1 Let ξCP = {q, ζ∗,{Bt}1t=0,Ψ1} be an equilibrium of the component planner economy

ECP (U, {Gt}1t=0 ,Ψ0). Then, the associated constrained efficient utility allocation can be implemented by
a competitive equilibrium in a market economy with taxes and borrowing limits.

Proof: We directly construct a two period market economy with taxes and borrowing limits. We

assume a market for claims opens in period 0. We set f = B0 and set Λ0 to satisfy condition (1) in

Definition 3. We set the government spending shocks to {Gt}1t=0, the debt limit to b = B0(U) and B1 to
[b,∞). The (candidate) equilibrium price in the market economy is set to q. The proof will be complete if

we can find taxes that ensure that for each w0, an agent with initial wealth B0(w0) in the market economy

chooses the allocation z(ζ∗, w0), where ζ∗ = {{ϕ∗t , ς∗t }1t=0, ω∗}.
The argument is in three steps that work back from period 1 to period 0. In the first step, a tax function

is found such that an agent with a stock of claims B1(w1) in period 1 will choose the same allocation as
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is awarded to an agent with a utility promise of w1 in the component planner economy. Period 0 is

divided into two stages in both the market and the component planner economy. In the second stage,

the intertemporal allocation of a given quantity of resources between time 0 consumption and claims is

obtained. In the first stage, the labour-resource allocation is determined. The next step of the proof shows

that the agent’s second stage problem in the market economy is the dual of the corresponding second stage

component planner’s problem. In the final step, a tax function is found such that an agent with an initial

stock of claims B0(w0) chooses the same labour and resource pair as would be awarded to an agent with

utility promise w0 in the component planner economy. We give the argument for Θ = [θ, θ] and for ς∗t (w0, ·)
continuous each w0 ∈W0. These assumptions simplify the exposition; neither is essential.

Period 1: A component planner with assigned utility promise w1 ∈W1 solves the problem:

B1(w1) = inf
ϕ:Θ→U ,ς:Θ→V

Z
[C(ϕ(θ))− Y (ς(θ))] dπ, (24)

s.t.

w1 =

Z
[ϕ(θ) + θς(θ)] dπ,

∀θ,eθ ∈ Θ, ϕ(θ) + θς(θ) ≥ ϕ(eθ) + θς(eθ).
Denote the policy functions that attain the infima in the problems (24) by ς∗1 : W1 × Θ → V and ϕ∗1 :

W1 ×Θ→ U . Let y∗1 and c∗1 denote the corresponding constrained efficient resource allocation defined, as

in Lemma 3, by y∗1(B1(w1), θ) = Y (ς∗1(w1, θ)) and c∗1(B1(w1), θ) = C(ϕ∗1(w1, θ)).

Next consider the first period problem of an agent in the market economy confronting a tax function

T1. An agent with wealth b1 ∈ B1 solves:

V1(b1) = sup
c:Θ→R+,y:Θ→Y

Z
[u(c(θ)) + θv(y(θ))] dπ (25)

subject to the budget constraint, for each θ ∈ Θ,

b1 = c(θ)− y(θ) + T1(b1, y(θ)).

Define Y∗1 (b) as in (18) and for b ∈ B1 and y ∈ Y∗1 (b) set T1(b1, y) according to (21). Since Θ = [θ, θ]

and ς∗1(B
−1
1 (b), ·) is continuous, Y∗1 (b) is an interval of the form [y

1
(b), y1(b)] with y

1
(b) = y∗1(b, θ) and

y1(b) = y∗1(b, θ). For y > y1(b1), set T1(b1, y) > T1(b1, y1(b1)) and such that u(b1+y−T1(b1, y)) + θv(y) <

u(b1 + y1(b1) − T1(b1, y1(b1))) + θv(y1(b1)). For example, extend T1(b1, ·) linearly on Y/Y∗1 (b1) by setting
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T1(b1, y) = T1(b1, y1(b1)) + τ1(y − y1(b1)), where τ1 = [u
0(c∗1(b1, y1(b1))) − θv0(y1(b1))]/u

0(c∗1(b1, y1(b1))).

Similarly, for y < y
1
(b1), set T1(b1, y) < T1(b1, y1(b1)) and such that u(b1 + y − T1(b1, y)) + θv(y) <

u(b1 + y
1
(b1) − T1(b1, y1(b1))) + θv(y

1
(b1)). For example, set T1(b1, y) = T1(b1, y1(b1)) + τ1(y − y

1
(b1)),

where τ1 = [u
0(c∗1(b1, y1(b1))) − θv0(y

1
(b1))]/u

0(c∗1(b1, y1(b1))).

Consider an agent in the market economy in period 1 with wealth b1 = B1(w1) and shock θ. Under

(21), if the agent chooses labour y∗1(b1, θ
0) ∈ Y∗1 (b1), she obtains consumption c∗1(b1, θ

0). By construction,

this provides the utility pair (ϕ∗1(w1, θ
0), ς∗1(w1, θ

0)). By choosing different labour levels in Y∗1 (b1), the
agent can obtain the entire set of period 1 report-contingent resource allocations available to an agent

with utility promise w1 in the component planner economy. Incentive compatibility implies that amongst

these, the agent obtains the highest payoff from (c∗1(b1, θ), y
∗
1(b1, θ)). For y ∈ Y/Y∗1 (b1), consider first an

agent choosing y = y1(b1) + δ, δ > 0. By construction, u(b1 + y − T1(b1, y)) + θv(y) < u(b1 + y1(b1) −
T1(b1, y1(b1))) + θv(y1(b1))+(θ−θ)(v(y)−v(y1(b1))) < u(b1+y1(b1) − T1(b1, y1(b1))) + θv(y1(b1)). Thus,

for all y > y1(b1), the agent is better off reducing her labour to y1(b1). By a similar argument the agent

would never choose y < y
1
(b1). It follows that the agent will choose the allocation (c∗1(b1, θ), y

∗
1(b1, θ)) and,

hence, the utility pair (ϕ∗1(w1, θ), ς
∗
1(w1, θ)). Since b1 and θ were arbitrary, it follows that for all b01 ∈ B1

and θ0 ∈ Θ, an agent will choose (c∗1(b01, θ0), y∗1(b01, θ0)) when confronted with the tax function T1. The

agent’s value function in the market economy, V1, defined in (25), then equals B−11 and, hence, is strictly

increasing.

Period 0: We divide the agent’s problem in the market economy into two stages. In the first, the

agent chooses labour y0 and resources x. In the second, she allocates x between current consumption c0

and claims b1. Similarly, the component planner’s problem can be subdivided. In the first stage, the agent

reports her shock and receives a utility from labor, ς0, and an interim utility promise d. In the second stage,

the planner allocates the interim promise between utility from current consumption ϕ0 and a continuation

utility promise w1.

Period 0, second stage: Consider the second stage problem of a component planner with interim

utility promise d ∈ D = {ϕ+ βw : ϕ ∈ U , w ∈W1}:

X(d) = inf
ϕ0∈U ,w1∈W1

C(ϕ0) + qB1(w1) (26)

subject to: d = ϕ0 + βw1. The constraint set for each problem (26) is compact and the objective is

continuous. Hence, it has a solution. Also, X is strictly increasing. Let eϕ∗0 : D → U and eω∗ : D → W1

denote policy functions that attain the infima in the problems (26). Define the corresponding resource
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allocation functions by ec∗0 and eb∗1, where ec∗0(X(d)) = C(eϕ∗0(d)) and eb∗1(X(d)) = B1(eω∗(d)).
Next consider the agent’s second stage problem in the market economy. The agent allocates x ≥ qb

units of resources across current consumption and savings to solve:

D(x) = sup
c0∈R+,b1≥b

u(c0) + βV1(b1)

subject to x = c0 + qb1. The allocation (ec∗0(x),eb∗1(x)) is optimal for the agent in this problem. To see
this suppose that there was some alternative allocation (c0, b0) such that x = c0 + qb0, c0 ∈ R+, b0 ≥ b and

u(c0) + βV1(b
0) > d = X−1(x). Then, since d ∈ D, and u and V1 are continuous and monotone, there

exists an allocation (c+, b+) with c+ ≤ c0 and b+ ≤ b0 with at least one of these inequalities strict such that

u(c+)+βV1(b
+) = d. But then (u(c+), V1(b+)) attains the interim utility promise d and has a cost strictly

less than x. This contradicts the optimality of eϕ∗0 and eω∗ at d for the component planner’s problem.
Period 0, first stage: In this stage, a component planner utility promise w0 ∈W0 solves:

B0(w0) = inf
d:Θ→D,ς:Θ→V

Z
[X(d(θ))− Y (ς(θ))] dπ, (27)

s.t.

w0 =

Z
[X(d(θ)) + θς(θ)] dπ,

∀θ, θ0 ∈ Θ, d(θ) + θς(θ) ≥ d(θ0) + θς(θ0).

Denote the policy functions that attain the infima in these problems by d∗0 : W0 × Θ → D and ς∗0 :

W0 ×Θ→ V. Let y∗0(B0(w0), θ) = Y (ς∗0(w0, θ)) and x∗0(B0(w0), θ) = X(d∗0(w0, θ)).

Next consider the first stage problem of an agent in the market economy with initial wealth b0 ∈ B0,
B0 = B0(W0) under a tax function T0:

V0(b0) = sup
xc:Θ→R+,y:Θ→Y

Z
[D(x(θ)) + θv(y(θ))] dπ (28)

subject to the budget constraint, for each θ ∈ Θ,

b0 = x(θ)− y(θ) + T0(b, y(θ)).

Define Y∗0 (b) as in (18). For each b0 ∈ B0, and θ, set

T0(b0, y(b0, θ)) = b0 + y(b0, θ)− x∗0(b0, θ). (29)
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Since Θ = [θ, θ] and ς∗0(B
−1
0 (b), ·) is continuous, Y∗0 (b) is an interval of the form [y0(b), y0(b)]. For y > y0(b0),

set T0(b0, y) > T0(b0, y0(b0)) and such that D(b0+ y−T0(b0, y)) + θv(y) < D(b0+ y0(b0) − T0(b0, y0(b0)))

+ θv(y0(b0)). Similarly, for y < y
0
(b0), set T0(b0, y) < T0(b0, y0(b0)) and such that D(b0 + y − T0(b0, y))

+ θv(y) < D(b0 + y
0
(b0) − T0(b0, y0(b0))) + θv(y

0
(b0)). Then, the set of budget feasible labour and

resource combinations, (x0, y0), for an agent with initial wealth b0 = B0(w0) and shock θ0 in the market

economy includes those available to an agent with initial promise w0 in the component planner problem.

By incentive-compatibility, (x∗0(b0, θ), y
∗
0(b0, θ)) is optimal for the agent amongst these. In the market

economy, the agent can also increase her labour above y0(b0) or reduce it below y
0
(b0). However, as in

period 1, allocations obtained in this way are sub-optimal. Let c∗0(b0, θ) = ec∗0(x∗0(b0, θ)) and b∗(b0, θ) =eb∗1(x∗0(b0, θ)).
Combining the previous arguments, an agent who confronts the price q and the tax system {T0, T1},

who is endowed with a stock of claims b0 = B0(w0) and who receives the shock θ will select an initial labor

and resource allocation equal to the allocation (y∗0(b0, θ), x
∗
0(b0, θ)). Next, the agent allocates resources in

each state θ, x∗0(b0, θ), intertemporally between current consumption and claims. Her choices, will coincide

with those made by the component planner: c∗0(b0, θ) and b
∗(b0, θ). Finally, the agent enters period 1, with

wealth b∗(b0, θ), receives the period 1 shock and makes consumption and labour choices that once again

match those of the component planner. Hence, an agent’s optimal policy functions in the market economy

evaluated at an initial wealth b0 = B0(w0) induce the allocation z(ζ∗, w0). ¥

Remark 1: The key step in this proof is the decomposition of the agent’s and the component planner’s

period 0 problem into two stages, where the only link between these stages is the quantity of resources,

x∗0, or interim utility promise, d∗0, that is passed from the first to the second. Step 2 of the proof shows

that although the intertemporal allocation of resources is made by the agent in the market economy, when

given the appropriate quantity of resources, she makes the same choice as the component planner.

The simple decomposition that underlies this argument is disrupted if, given the quantity of resources

x∗0 or the interim utility promise d∗0, the agent’s intertemporal marginal rate of substitution in the second

stage of period 0 depends upon either her labour supply or her preference shock in the first stage. The

first case occurs when preferences are non-separable in labour and consumption, the second when the

preference shock θ is persistent. In both cases, neither x∗0 nor d
∗
0 is a sufficient state variable for the stage

2 intertemporal allocation problem and the decomposition fails. We return to the persistent shock case in

the concluding remarks.
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Remark 2: Our definition of a fiscal implementation requires only that, when given an appropriate

initial endowment of wealth, agents choose the allocations induced by the constrained-efficient utility

allocation rule ζ∗. The tax functions constructed above do more than this. They implement the complete

rule ζ∗. To see the difference, let B∗1 :≡ {b1 ∈ B1 : b1 = B∗1(b0, y0), (b0, y0) ∈ Graph Y∗0} denote the set of
possible period 1 continuation costs for the component planner under ζ∗. Recall that Graph Y∗0 equals all
those initial planner cost and labour supply pairs that occur under ζ∗. The initial distribution of wealths

and the period 0 tax function in our fiscal implementation imply that each agent should select a savings

level b1 ∈ B∗1. The tax system constructed in the above proof induces an agent with savings b1 to choose

the period 1 allocation {c∗1(b1, ·), y∗1(b1, ·)} prescribed by the utility allocation rule ζ∗. It does this at every
b1 ∈ B1 and not just at those in B∗1. This is sufficient for implementation and conveniently pins down T1

for all savings levels. It is also informationally parsimonious since the government does not need to know

B∗1 in period 1.
However, if the government did know B∗1, it could use this information to design an even simpler tax

system. Specifically, if an agent entered period 1 with wealth b1 /∈ B∗1, it would be immediately revealed to
the government that the agent had taken actions inconsistent with the constrained efficient allocation. The

agent could then be penalised in the same way that agents who choose savings levels and labour supplies

outside of Graph Y∗t are penalised by the tax system constructed in the proof. In short, it is not important
what allocation an agent receives if she chooses b1 /∈ B∗1, provided that that allocation discourages her from
choosing such a b1 in the first place. We construct examples along these lines in Section 5.

Remark 3: An immediate implication of (27) and (29) is that, for each b0 = B0(w0):

E[T0(b0, y
∗
0(b0, θ0))|b0] = E[b0 + y∗0(b0, θ0)− x∗0(b0, y

∗
0(b0, θ0))|b0] = 0. (30)

Similarly at date 1, E[T1(b1, y∗1(b1, θ1))|b1] = 0. Thus, the tax system is solely redistributive and raises

no revenue to finance the government spending levels {Gt}1t=0. In our implementation, such spending
is financed via an appropriate setting of the initial distribution of claims. In particular, to extract net

resources from the population of agents, the government must hold claims against them at date 0.

3.2 Implementation in economies of arbitrary finite length.

The argument in Proposition 1 is easily extended to economies of arbitrary finite length. The proof involves

a straightforward iteration on the argument in Proposition 1.
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Proposition 2 Let ξCP be an equilibrium of the component planner economy ECP ({U t+1}T−1t=0 , {Gt}Tt=0 ,Ψ0).
Then, the associated constrained efficient utility allocation can be implemented by a competitive equilib-

rium in a market economy with taxes and borrowing limits.

4 The Optimal Pattern of Wedges

We now obtain the key properties of constrained-efficient allocations. In particular, we characterise their

implications for the pattern of wedges between individual and social marginal rates of substitution and

marginal rates of transformation. These properties are well known in the literature and we proceed heuris-

tically. However, they are an essential precursor to the analysis of optimal tax functions that follows.

For expositional ease, we focus on the case Θ = [θ, θ] and assume that the functions that comprise

the optimal utility allocation rule, ζ∗ = {{ϕ∗t , ς∗t , ω∗t+1}T−1t=0 , ϕ
∗
T , ς

∗
T}, are piecewise differentiable in θ.12 We

assume that π admits a continuous density ρ. As a notational convention, if x : Θ → R is a piecewise

differentiable function, then we denote its derivative at θ by ẋ(θ). Define the function U : Θ→ R by:

U(θ) :≡ ϕ(θ) + θς(θ) + βω(θ). (31)

By standard arguments, for example Salanié (1997), {ϕ, ς, ω} is incentive compatible if and only if:

U̇(θ) = ς(θ) a.e. θ, (32)

ς (θ) non-decreasing in θ. (33)

We formulate the period t ∈ {0, . . . , T − 1} problem of a component planner with utility promise wt as

an optimal control problem.13 To obtain the component planner’s period t Hamiltonian, we use (31) to

replace ϕ with U and we drop the constraint that ς (θ) is non-decreasing14:

Hwt
t (U, ς, ω;χ, λ, φ)(θ) = −χ(U(θ)− wt)ρ(θ)− λ(θ)ς(θ)+

[C(U(θ)− θς(θ)− βω(θ))− Y (ς(θ)) + qtBt+1(ω(θ))] ρ(θ) + φ(θ)(ω(θ)− U t)ρ(θ).

Here χ is the multiplier on the promise-keeping constraint wt =
R θ
θ U(θ)ρ(θ)dθ, λ is the costate variable

associated with the incentive compatibility constraint (32) and φ(θ) is the multiplier on the constraint

12Kahn (1993) provides conditions for an optimal static mechanism to be absolutely continuous.
13The period T problem can be similarly formulated. For brevity we omit it.
14See Salanié (1997) for sufficient conditions to ensure that it is not binding.
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ω(θ) ≥ U t. The component planner’s problem in period t can then be written as:

Bt(wt) = inf
{χ,λ,φ}

sup
{U,ς,ω}

Z
Hwt
t (U, ς, ω;χ, λ, φ)(θ)dθ. (34)

Denote the optimal multipliers by {χ∗t , λ∗t , φ∗t }. The first order conditions from (34) imply a particular

pattern of wedges. We describe this pattern in terms of the constrained efficient resource allocation rule.

the insurance wedge: The first order condition for U(θ) at t, re-expressed in terms of consumption

is:

λ̇
∗
t (wt, θ) = −

∙
χ∗t (wt)−

1

u0(c∗t (bt, θ))

¸
ρ(θ), (35)

where bt = Bt(wt). Thus, if λ̇
∗
t (wt, ·)/ρ(·) is non-constant then an agent’s marginal utility of consumption

is not equated across states and insurance against preference shocks is imperfect. As observed in Lemma 3,

ϕ∗t , and, hence, c
∗
t are monotone in θ. Strict monotonicity stems from the binding incentive-compatibility

constraint.15

the effort wedge: The first order conditions for U(θ) and ς(θ) at t, re-expressed in terms of

consumption and labour imply:

−θv0(y∗t (bt, θ))
u0(c∗t (bt, θ))

= 1 +
λ∗t (wt, θ) v

0(y∗t (bt, θ))

ρ(θ)
, (36)

where bt = Bt(wt). Since the marginal rate of transformation of labour into output is 1, −λ∗t (wt,θ)v
0(y∗t (bt,θ))

ρ(θ)

represents the wedge between this marginal rate of transformation and the agent’s marginal rate of sub-

stitution. When λ∗t (wt, θ) > 0, it is positive.

the intertemporal wedge: Combining the first order conditions for U(θ), ω(θ) and the envelope

condition from the component planner’s first period problem yields the following inverted Euler equation:

1

u0(c∗t (bt, θ))
=

qt
β
Eθ0

∙
1

u0(c∗t+1(B
∗
t+1(bt, θ), θ

0))

¸
+ φ∗t (wt, θ),

where bt = Bt(wt). Assuming that the lower bound on ω∗t+1(wt, θ) does not bind and φ∗t (wt, θ) = 0, we

have, by Jensen’s inequality,

qt ≤ βEt

∙
u0(c∗t+1(B

∗
t+1(bt, θ), θ

0))

u0(c∗t (bt, θ))

¸
. (37)

15The transversality condition on U implies that λ∗t (wt, θ) = λ∗t (wt, θ) = 0. From Lemma 3, c∗t is non-increasing. It follows

that λ̇
∗
t (wt) is non-increasing and if λ∗t (w0, θ) 6= 0 for some θ, then λ̇

∗
t (w0, ·) is non-constant.
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This inequality is strict if u0(c∗t+1(B
∗
t+1(bt, θ), ·)) is non-constant, which is the case in this problem when

the incentive-compatibility constraint binds. Thus, there is a wedge between the social intertemporal

marginal rate of substitution qt and the individual agent’s intertemporal marginal rate of substitution

βEθ0 [u
0(c∗t+1(B

∗
t+1(bt, θ), θ

0))]/u0(c∗t (bt, θ)).

The insurance and effort wedges occur in each period, and the resulting implications for optimal non-

linear income taxation are well known from the static public finance literature based on Mirrlees (1971). If

a consumption-labour allocation (c∗t (bt, θ), y
∗
t (bt, θ)) is to be implemented at date t with the tax function

Tt, it must be such that:

(c∗t (bt, θ), y
∗
t (bt, θ)) ∈ arg sup

c,y
u(c) + θv(y) (38)

s.t. c+ Tt(bt, y) = y + bt − qt+1B
∗
t+1(bt, θ).

In particular, if Tt(bt, ·) is differentiable at y∗t (bt, θ):
∂Tt(bt, y

∗
t (bt, θ))

∂y
= −λ

∗
t (wt, θ) v

0(y∗t (bt, θ))

ρ(θ)
,

where bt = Bt(wt) and the marginal income tax at (bt, y∗t (bt, θ)) equals the effort wedge.

The intertemporal wedge was first derived by Diamond and Mirrlees (1978) and Rogerson (1985).

Golosov, Kocherlakota and Tsyvinski (2003) establish that this wedge is present in a very large class of

private information economies. This wedge stems from the adverse effect of savings on incentives. Higher

saving at date t exacerbates the incentive problem at t+1, since it reduces the correlation between an agent’s

consumption and her labour supply in that period. The intertemporal wedge adjusts for this additional

marginal social cost of saving. Just as the effort wedge gives rise to positive marginal labour income taxes,

it is natural to infer that the intertemporal wedge provides a rationale for asset taxation. Specifically,

implementation of the socially optimal intertemporal consumption and savings allocation requires that:

{c∗t (bt, θ), B∗t+1(bt, θ), c∗t+1(B∗t+1(bt, θ), ·)} ∈ arg max
ct,bt+1,ct+1

u(ct) + βEtu(ct+1)

s.t. ct + Tt(bt, y
∗
t (bt, θ)) = y∗t (bt, θ) + bt − qtbt+1,

and ∀θ0, ct+1(θ
0) + Tt+1(bt+1, y

∗
t+1(B

∗
t+1(bt, θ), θ

0)) = y∗t+1(B
∗
t+1(bt, θ), θ

0) + bt+1 − qt+1B
∗
t+2(B

∗
t+1(bt, θ), θ

0).

Hence, assuming that the function Tt+1 is differentiable in its first argument, Tt+1 must be consistent

with the agent’s Euler equation holding at the constrained efficient allocation:

qt = βEt

∙µ
1−

∂Tt+1(B
∗
t+1(bt, θ), y

∗
t+1(B

∗
t+1(bt, θ), θ

0))

∂b

¶
u0(c∗t+1(B

∗
t+1(bt, θ)), θ

0)

u0(c∗t (bt, θ))

¸
. (39)
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A positive intertemporal wedge requires:

0 < Et

∙
∂Tt+1
∂b

u0(c∗t+1)

u0(c∗t )

¸
= Et

∙
∂Tt+1
∂b

¸
Et

∙
u0(c∗t+1)

u0(c∗t )

¸
+Covt

∙
∂Tt+1
∂b

,
u0(c∗t+1)

u0(c∗t )

¸
. (40)

This decomposition of the effect of marginal taxation of wealth on the intertemporal trade-off illustrates

two ways in which asset taxation can generate an intertemporal wedge. The most direct way is to reduce

the expected return on savings with a positive expected marginal asset tax Et

h
∂Tt+1
∂b

i
> 0. The second

way is to set marginal taxes on wealth so that the after-tax return on savings covaries positively with

consumption, generating Covt
h
∂Tt+1
∂b ,

u0(c∗t+1)
u0(c∗t )

i
> 0. This discourages savings in period t by making non-

contingent claims a less effective hedge against period t+ 1 consumption risk. It also boosts incentives in

period t+ 1 by reinforcing the covariance between consumption and labour income. Crucially, (40) shows

that there is no presumption that the intertemporal wedge translates into positive expected marginal asset

taxes. In addition, for the after-tax return on assets to covary with labour earnings and consumption, the

marginal asset tax must be stochastic. Specifically, it must depend on labour earnings in period t + 1,

which are uncertain when the savings choice is made in period t.

We explore these issues in the following section. We present several examples that reveal the respective

roles of the expected and the stochastic components of marginal asset taxation in generating the intertem-

poral wedge. The first example shows that it is essential that marginal asset taxes generate a positive

covariance between after-tax returns on assets and labour earnings. Absent this covariance, an agent could

increase her lifetime utility with a deviation in which she saves more in period t and reduces her labour

supply in all states in period t + 1, relative to the constrained efficient allocation. Moreover, in this first

example, the optimal tax system implies that the expected marginal asset tax is equal to zero. The subse-

quent examples illustrate the link between the dependence of the constrained-efficient labour allocation in

period t+ 1 on wealth and a positive expected marginal asset tax. Lastly, we discuss the role of the lower

bound on continuation utility.

5 Revealing Examples

We now present three examples in order of complexity of the physical environment. As we make the

physical environment more complicated, the information conveyed by an agent’s wealth changes, leading

to corresponding changes in the tax system.

27



5.1 Example 1: Zero Expected Marginal Asset Tax

For our first two examples, we consider a stripped down version of the model in the previous section. To

focus attention on the role of marginal asset taxation, we assume that in period 0 an agent consumes, but

does not work. In period 1, the agent receives a preference shock from Θ = {θ, θ}, θ < θ, chooses a labour

supply from the discrete set Y = {y, y}, y < y and consumes.

Component planner’s problem. The representative component planner faces an equilibrium in-

tertemporal price q and solves the following problem16:

Period 0 B0(w0) = inf{ϕ,ω}C(ϕ) + qB1 (ω)

s.t. w0 = ϕ+ βω
(41)

and
Period 1 B1 (w1) = inf{ϕ,ς}

P
θ∈Θ{C(ϕ(θ))− Y (ς(θ))}π(θ)

s.t. w1 =
P

θ∈Θ{ϕ(θ) + θς(θ)}π(θ)
∀θ, θ0, ϕ(θ) + θς(θ) ≥ ϕ(θ0) + θς(θ0).

Following the notation in previous sections, let ζ∗ = {ϕ∗0, ϕ∗1, ς∗1, ω∗} denote the solution to these problems.
A solution ζ∗ and the value function B1 have the following properties.

Lemma 4 Assume that C 0(0) = 0 and that C 0 is strictly convex.

1. There exist two numbers w1 and w1 with w1 < w1, such that:

(a) for w1 > w1, ς∗(w1, θ) = v(y), for w1 < w1, ς∗1(w1, θ) = v(y).

(b) for w1 > w1, ς
∗(w1, θ) = v(y), for w1 < w1, ς

∗
1(w1, θ) = v(y).

2. B1 is piecewise concave and differentiable except at w1 and w1.

3. ω∗ is increasing in w0. There exist two numbers w0 and w0 with w0 ≤ w0, such that:

(a) for w0 > w0, ω∗(w0) > w1.

(b) for w0 < w0, ω
∗(w0) < w1.

(c) for w0 ∈ (w0,w0), ω∗(w0) ∈ (w1, w1).
16We do not impose a lower bound on continuation utility for this example. We discuss the implications of this bound below.
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In our first example, we specialise this environment further by assuming that the initial distribution

over utility promises is degenerate at bw0 ∈ (w0, w0). Consequently, we treat ϕ∗0 and ω∗ as numbers. The

assumption that bw0 ∈ (w0, w0) ensures that the problem is interesting, since then ς∗1(ω
∗, θ) = v(y) and

ς∗1(ω
∗, θ) = v(y). In this case, standard arguments establish that the incentive-compatibility constraint

binds for the θ type, so that:

ϕ∗1(ω
∗, θ)− ϕ∗1(ω

∗, θ) = θ
£
ς∗1(ω

∗, θ)− ς∗1(ω
∗, θ)

¤
> 0. (42)

Let a∗ = {c∗0, c∗1, y∗1, B∗1} denote the associated constrained efficient resource allocation rule. In this example,
since consumption and the continuation planner cost are identical across agents in period 0 and since

consumption and labour in period 1 differ across agents only to the extent that agents receive different

values of the shock, we supress the dependence of these variables on the current planner cost. Thus, we

let c∗0 = C(ϕ∗0), B
∗
1 = B1(ω

∗), y∗1(θ) = Y (ς∗1(ω
∗, θ)) and c∗1(θ) = C(ϕ∗1(ω

∗, θ)). Using the notation from

Remark 2, B∗1 = {B∗1} and, by assumption, Y∗1 (b∗1) = Y = {y, y}. The first order conditions for ϕ∗0, ϕ∗1, ω∗

and the period 1 envelope condition imply the inverted Euler equation:

1

u0(c∗0)
=

q

β

∙
π(θ)

u0(c∗1(θ))
+

π(θ)

u0(c∗1(θ))

¸
. (43)

Implementation. In the corresponding market economy, agents are endowed with b0 = B0( bw0) claims
in period 0. They allocate this wealth between current consumption c0 and claims b1 that trade at price

q. They do not pay taxes in period 0. In period 1, they receive the preference shock, supply labour, pay

taxes and consume. The tax function is given by T (b1, y1). The agent’s problem is:

V0(b0) = sup{c0,c1,y1,b1} u(c0) + βE [u(c1(θ)) + θv(y1(θ))]

s.t. b0 = c0 + qb1

∀θ : b1 = c1(θ) + T (b1, y1(θ))− y1(θ).

We denote the solution to the agents’ problem in the market economy by: ba = {bc0, bc1, by1, bb1}.
To implement the constrained efficient allocation, the government selects T (b1, y1) to ensure ba = a∗.

Given our setting of the initial wealth levels and the absence of taxation in period 0, to guarantee that the

constrained efficient allocation is affordable, the tax system must satisfy:

T (B∗1 , y
∗
1(θ)) = B∗1 + y∗1 − c∗1(θ). (44)
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Incentive-compatibility of the constrained efficient allocation then immediately guarantees that if the agent

saves B∗1 , she will choose the constrained efficient labour supply:

y ∈ arg max
y∈{y,y}

u(B∗1 − T (B∗1 , y) + y) + θv(y), (45)

y ∈ arg max
y∈{y,y}

u(B∗1 − T (B∗1 , y) + y) + θv(y). (46)

Using (44), the constrained efficient allocation pins down the tax function on B∗1 = {B∗1}. However,
agents in the market economy can choose savings levels in period 0 that are different from B∗1 . Our tax

function must be defined for these as well. Since these savings levels represent and reveal deviations from

constrained efficient behaviour, the tax function must be set so as to discourage them. One way to do this,

following the proof of Proposition 1, is to use the entire constrained efficient allocation rule to set taxes at

all possible period 1 wealth levels. However, as Remark 2 indicates there are other ways to discourage such

savings choices. One simple approach is to use tax functions that are linear in wealth and of the form:

T (b, y) = T0(y) + T1(y)b. (47)

We show in this section that there is a unique tax function, bT (b, y) = bT0(y) + bT1(y)b, within this class
that implements the constrained efficient allocation. Moreover, we also show that all optimal tax functions

differentiable in wealth satisfy ∂T
∂b (B

∗
1 , y) =

bT1(y). Thus, the constrained efficient allocation determines
both the tax level and the marginal asset tax at B∗1 .

The tax function (47) has four parameters: {T0(y), T1(y)}y∈Y . Equation (44) provides two restric-
tions on these parameters. The agent’s Euler equation must also be satisfied at the constrained efficient

allocation:

qu0(c∗0) = βE
£
(1− T1(y

∗
1))u

0(c∗1)
¤
. (48)

This provides a third restriction. At first sight the restrictions (44), (47) and (48) seem to be sufficient to

determine an optimal tax system. If a tax system satisfies them, then the constrained-efficient allocation

satisfies the agent’s optimality conditions (45), (46) and (48). However, we show that this conclusion is

false. We do so by presenting a tax function that satisfies the conditions (44), (47) and (48) but fails to

implement the constrained efficient allocation. This tax function is the simplest and most natural candidate

for generating the intertemporal wedge: it is separable in wealth and labour supply and the marginal asset

tax does not depend on labor. It fails because it admits a profitable deviation in which the agent saves

more than B∗1 in period 0 and works too little in period 1.
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Lemma 5 a∗ cannot be implemented in a market economy with a tax function of the form T0(y)+T1b. A

labour-contingent marginal asset tax is necessary for implementation.

Proof: Assume instead that a∗ can be implemented with a tax function of the form T0(y) + T1b.

Then, (44) and (48) require that T (b, y) = bT (b, y) :≡ bT0(y) + bT1b, where
bT1 = qu0(c∗0)− βE[u0(c∗1)]

βEu0(c∗1)
, (49)

bT0 ¡y¢ = (1− bT1)B∗1 − c∗1(θ) + y and bT0 (y) = (1− bT1)B∗1 − c∗1(θ) + y. (50)

The binding incentive-compatibility constraint (42) in the component planner’s problem implies that an

agent can obtain a lifetime expected utility equal to that from a∗ by choosing an alternative allocation in

which she saves B∗1 , and selects y and c∗1(θ) in all states in period 1. The binding incentive compatibility

constraint also implies c∗1(θ) < c∗1(θ). It follows that:

qu0(c∗0) = β(1− bT1)E[u0(c∗1)] < β(1− bT1)u0(c∗1(θ)).
Thus, a∗ is dominated by an allocation in which the agent saves B∗1 + ε (for ε > 0 and small) and chooses

y regardless of her shock. But this contradicts the optimality of a∗ for the agent in the market economy.

Thus, the tax function bT fails to implement a∗ and a labour-contingent marginal asset tax is necessary for
implementation. ¥

In Lemmas 6 and 7 we identify and characterise the unique tax function within the class (47) that

does implement the constrained-efficient allocation in the market economy. The crucial property of this

tax function is that the marginal asset tax depends on labour earnings17. In particular, it is set to equate

the marginal value of an extra unit of savings across all states:

qu0(c∗0) = β(1− T1(y))u
0(c∗1(θ)), (51)

qu0(c∗0) = β(1− T1(y))u
0(c∗1(θ)).

Thus, the agent does not find it profitable to increase savings at time 0 irrespective of her choice of labour

at time 1. This marginal asset tax has a negative covariance with consumption and is zero on average.

17This finding is related to Golosov and Tsyvinski (2003), who consider the design of optimal disability insurance. They

show that disability benefits must be made contingent on an age dependent asset level.
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Lemma 6 Assume that all agents have initial wealth b0 = B0( bw0) and that there are no taxes levied in
period 0. Define

T1 (y) = T 1 = 1−
q

β

u0(c∗0)

u0(c∗1(θ))
, (52)

T1(y) = T 1 = 1−
q

β

u0(c∗0)

u0(c∗1(θ))
,

and

T 0 = (1− T 1)B
∗
1 + y − c∗1(θ), (53)

T 0 = (1− T 1)B
∗
1 + y − c∗1(θ).

Then the tax function

T (y, b) = T 0 + T 1b (54)

T (y, b) = T 0 + T 1b

implements the allocation a∗ in a market economy with taxes. Additionally, this is the unique tax function

in the class T (b, y) = T0(y) + T1(y)b that does so.

Proof: See Appendix. ¥

Lemma 7 The tax function (54) satisfies:

1. T 1 > T 1.

2. T 1π(θ) + T 1π(θ) = 0.

Proof: The first condition follows from the definitions of T 1 and T 1 and the fact that c∗1(θ) < c∗1(θ).

For the second condition, combine the definitions of T 1 and T 1 with the component planner’s intertemporal

first order condition (43) to obtain

T 1π(θ) + T 1π(θ) = 1−
q

β
u0(c∗0)

½
π(θ)

u0(c∗1(θ))
+

π(θ)

u0(c∗1(θ))

¾
= 0. ¥

Although the results in Lemmas 6 and 7 have been derived for a linear wealth tax, similar arguments

hold for any tax function differentiable in wealth. Formally, we have the following result.

32



Lemma 8 Assume that all agents have initial wealth b0 = B0( bw0) and that there are no taxes levied in
period 0. Suppose that T (b, y) implements a∗ and that it is differentiable in b, then

∂T

∂b
(B∗1 , y) = T 1 = 1−

q

β

u0(c∗0)

u0(c∗1(θ))
, (55)

∂T

∂b
(B∗1 , y) = T 1 = 1−

q

β

u0(c∗0)

u0(c∗1(θ))
,

and

E

∙
∂T

∂b
(B∗1 , y)

¸
= 0.

The proof is almost identical to that used to obtain the second part of Lemma 6 and Lemma 7 and is

omitted.

5.2 Example 2: More Zero Expected Marginal Asset Taxes

Component planner’s problemWe generalise the previous example to allow for heterogeneity in agents’

initial utility promises. The component planner’s problem the same as in Example 1, except that now

W0 = (w0, w0). This initial heterogeneity in utility promises results in differences in consumption across

agents in the constrained efficient allocation. However, since we restrict attention to w0 ∈ (w0, w0), as
in Example 1, an agent’s period 1 constrained efficient labour allocation does not depend on an agent’s

initial utility promise. Let α∗ = {c∗0, c∗1, y∗1, B∗1} denote the constrained efficient resource allocation rule for
this problem, where these functions are defined as in Lemma 3. For this problem, B∗1 = (B1(w1), B1(w1)),
while Graph Y∗1 = B∗1 ×Y.

ImplementationWe set agents’ initial wealth in the market economy according to: b0(w0) = B0(w0).

Once again this setting of initial wealths, coupled with the absence of taxes in period 0, implies that an

agent with initial wealth b0 must be induced to save B∗1(b0) ∈ B∗1. Affordability of the period 1 allocation
then pins down taxes on Graph Y∗1 according to:

T (b1, y
∗
1(b1, θ)) = b1 + y(b1, θ)− c∗1(b1, θ). (56)

Since B∗1 is a larger set in this example relative to the last, this condition determines the tax function across
a broader range of wealth levels. As before deviations to savings levels outside of B∗1 are inconsistent with
constrained efficient behaviour and such deviations need to be discouraged. Lemma 8 suggests that if T

is differentiable then, in order to rule out joint deviations, it will need to satisfy the state-by-state Euler
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equations (55) at each b1 ∈ B∗1. We now show that the planner’s optimality conditions directly imply that
T satisfies (55) on B∗1.

Since W0 = (w0, w0), the constrained efficient labor allocation does not depend on promised utility.

It then follows from the component planner’s period 1 incentive and promise keeping constraints that

w1 = ϕ∗1(w1, θ) +K(θ) = ϕ∗1(w1, θ) +K(θ), for w1 ∈W∗
1 = (w1, w1), where K(θ) and K(θ) are constants

that do not depend on w1. Thus, ∂ϕ∗1(w1, θ)/∂w1 = 1 for each θ on W∗
1 . Substituting B1(w1) for b1 in

(56), totally differentiating with respect to w1 and using c∗1 (B1(w1), θ) = C (ϕ∗1 (w1, θ)), it follows that

∂T

∂b
(B1(w1), y) = 1−C 0(ϕ∗1(w1, θ))

1

B01(w1)
, (57)

for w1 ∈ (w1, w1). Then, using the component planner’s period 0 first order condition, we have:

C 0(ϕ∗1(ω
∗(w0), θ))

1

B01(ω
∗(w0))

=
q

β

u0(c∗0(b0))

u0(c∗1(B
∗
1(b0), θ))

. (58)

Combining (57) and (58) for θ = θ, and applying identical reasoning to θ = θ, we have:

qu0(c∗0(b0)) = β

µ
1− ∂T

∂b
(B∗1(b0), y)

¶
u0(c∗1(B

∗
1(b0), y)), (59)

qu0(c∗0(b0)) = β

µ
1− ∂T

∂b
(B∗1(b0), y)

¶
u0(c∗1(B

∗
1(b0), y)).

Thus, the state-by-state Euler equations hold for w0 ∈ (w0, w0). It follows that the expected marginal
asset tax, Eθ[

∂T (b1,y∗1(b1,θ))
∂b ], ∀b1 ∈ B∗1, is zero. The argument is identical to the proof of Lemma 6.

This example provides an illustration of the more general result obtained in the proof of Proposition 1.

Simply setting taxes so that agents are induced to choose the constrained efficient consumption and labour

allocation given their wealth level at time 1 is enough to rule out joint labour and savings deviations. Here,

this implies that the Euler equation holds state by state at the appropriate wealth level, leading to a zero

expected marginal asset tax. This example, however, is special in that the first period constrained efficient

labour allocation does not depend on the agent’s continuation utility promise. Equivalently, in the market

economy, the agent’s labour supply in each θ state is independent of b1 ∈ B∗1. More generally, this is not
true. Agent’s with different period 1 utility promises or wealth levels will be entitled to different labour

supply allocations. In the next example, we show that when this happens the expected marginal asset tax

will not be zero.
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5.3 Example 3: Positive Expected Marginal Asset Taxes

We extend the previous example to a continuous support for the preference shock in period 1, so that

Θ ∈ [θ, θ]. We assume that π admits a strictly positive density ρ. This extension implies that the

constrained efficient labour allocation in period 1 varies across agents with different initial promised utilities.

The initial period of the component planner’s problem is as before. In period 1, the component planner

solves:
B1 (w1) = infϕ:Θ→U ,ς:Θ→{v,v}

R θ
θ {C(ϕ(θ))− Y (ς(θ))}dπ

s.t. w1 =
R θ
θ {ϕ(θ) + θς(θ)}dπ,

∀θ, θ0, ϕ(θ) + θς(θ) ≥ ϕ(θ0) + θς(θ0).

The incentive-compatibility constraints imply that if ς(θ) = ς(θ0), then ϕ(θ) = ϕ(θ0) for any θ, θ0 ∈ Θ.
They also imply that ς must be monotone. Thus, the component planning problem in period 1 can be

rewritten as:

B1 (w1) = inf{ϕ,ϕ∈U ,bθ∈[θ,θ]} [{C(ϕ)− Y (v)}Π(bθ) + {C(ϕ)− Y (v)}(1−Π(bθ))]
s.t. w1 = {ϕΠ[bθ] + v

R bθ
θ θdπ}+ {ϕ(1−Π[bθ]) + v

R θbθ θdπ},
ϕ+ bθv = ϕ+ bθv,

where Π[bθ] = R bθθ dπ and v = v(y) and v = v(y). In this problem, the component planner chooses a cut off

value for shocks bθ and a utility allocation of the form: {ϕ(θ), ς(θ)} = {ϕ, v}, θ < θ̂ and {ϕ(θ), ς(θ)} = {ϕ, v},
θ ≥ θ̂. Let {ϕ∗

1
, ϕ∗1,

bθ∗1} denote optimal choices of ϕ, ϕ and θ̂ as functions of the component planner’s period 1
utility promise w1.18 We modify the notation for a constrained efficient resource allocation rule accordingly

and, for b1 ∈ B∗1, let c∗1(b1) = C(ϕ∗
1
(B−11 (b1))), c∗1(b1) = C(ϕ∗1(B

−1
1 (b1))) and θ∗1(b1) = bθ∗1(B−11 (b1)). As

before, we construct the optimal tax function on B∗1 so that the constrained efficient allocation is affordable:

T (b1, y) = b1 + y − c∗1(b1), (60)

T (b1, y) = b1 + y − c∗1(b1).

The function θ∗1 summarises the effect of different wealth levels in B∗1 upon the agent’s first period
labour allocation. We will refer to the dependence of θ∗1 on b1 as a wealth effect. Lemma 9 provides a

sufficient condition for θ∗1 to be non-constant over all b1 ∈ B∗1.
18 If these choices are not unique, we take a selection from the component planner’s optimal policy correspondence.
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Lemma 9 If C00/C 0 is non-decreasing and b1 and b01 are in B∗1, then bθ∗1(b1) 6= bθ∗1(b1).
Proof: See Appendix. ¥

Remark 4: If the agent’s utility function u is CARA or CRRA with coefficient of relative risk aversion

greater than or equal to 1, then C 00/C 0 is non-decreasing.

We now show that the presence of wealth effects on the labour allocation implies that the expected

marginal asset tax is not zero. This a straightforward implication of two properties of the tax system.

First, as observed in Remark 3, an agent’s expected taxes in each period are zero provided she selects the

prescribed labour allocation. Second, the agent pays higher taxes at all wealth levels in the high labour

income state.

To derive implications for marginal asset taxes, first note that by the first property, for each b1 ∈ B∗1

T (b1, y)Π[θ
∗
1(b1)] + T (b1, y)(1−Π[θ∗1(b1)]) (61)

= (b1 + y − c∗1(b1))Π[θ
∗
1(b1)] + (b1 + y − c∗1(b1))(1−Π[θ∗1(b1)]) = 0.

Next consider an agent who increases her savings from b∗1 ∈ B∗1 to b∗1 + δ ∈ B∗1, but keeps her labour
allocation the same. Then, the change in the agent’s expected tax payment is given by

∆T ≡ E[T (b1 + δ, y∗1(b1, θ))− T (b1, y
∗
1(b1, θ))]

= E[T (b1 + δ, y∗1(b1, θ))− T (b1 + δ, y∗1(b1 + δ, θ))]

= (T (b1 + δ, y)− T (b1 + δ, y))(Π[θ∗1(b1)]−Π[θ∗1(b1 + δ)], (62)

where the first equality follows from (61). It follows that since T (b1 + δ, y) > T (b1 + δ, y), the sign of ∆T

depends on ∆Π ≡ Π[θ∗1(b1)]−Π[θ∗1(b1 + δ)]. This term is a function of the effect of first period wealth on

the labor allocation. By Lemma 9 and the fact that ρ(θ) > 0, when C 00/C 0 is non-decreasing, ∆Π is always

non-zero and, hence, the agent’s tax payment changes if she alters her savings level without correspondingly

altering her labour supply. ∆T/δ provides a discrete approximation to an agent’s marginal asset tax.19 It

follows that this too is linked to the presence wealth effects on labour supply and, under the condition of

Lemma 9, is non-zero.

19 If θ∗is differentiable and B∗1 is an interval then the differential version of (62) is E
£
∂T
∂b
(b, y)

¤
= −(T (b, y)−T (b, y)) ρ(θ∗(b))

∂θ∗

∂b , where
∂θ∗

∂b is the wealth effect term.
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The presence of wealth effects on labor supply also implies that a tax system of the form T (b1, y1)

that satisfies the state-by-state Euler equation cannot implement the constrained efficient allocation. To

see this, define F (b1, y1) :≡ βu(b1 + y − T (b1, y)). This function represents the discounted utility from

affordable consumption at time 1 under the tax system. Assuming F is differentiable in b1, a tax function

T set so that the state-by-state Euler equation holds implies that ∂F/∂b1 is independent of y1, so that F

is additively separable in b1 and y1 and of the form: F (b1, y1) = R(b1) + S(y1). Then, an agent choosing

labour in the market economy would maximise S(y)+θv(y), and the optimal choice of labour by the agent

would be independent of wealth. Thus, a tax function that satisfies the state-by-state Euler equations

cannot be used to implement a wealth-dependent labour allocation.

It is important to emphasise that this does not mean that the marginal asset tax will be non-stochastic

and independent of an agent’s labour. (60) will still imply that the marginal tax on assets will be different

at low and high labor supplies at a given wealth level. Absent such a feature, the tax system would be

unable to rule out joint deviations analogous to those in our first example, in which an agent with initial

wealth b0 saves more than B∗1 (b0) and chooses y for some θ < θ∗ (B∗1(b0)). Instead in this example, and

in general, the government discourages saving by both reducing the after-tax expected return from saving

and increasing the covariance of that return with labour earnings. To analyse these effects further, we

study numerical examples in section 7.

5.4 Utility bounds and borrowing limits

The previous examples focus on the implications of the incentive compatibility constraint for the tax

system. The lower bound on the continuation utilities in the component planning problems also has

implications both for taxes and the structure of asset markets. The argument in the proof of Proposition

1 implies that this lower bound can be implemented with a lower bound on an agent’s claim holdings.

In our implementation, an agent with utility promise wt and shock θ is induced to save Bt+1(ω
∗
t (wt, θ)),

the corresponding continuation cost of a component planner. If the component planner is restricted to

making utility promises in excess of U t+1, then our implementation will require agents to hold claims in

excess of bt+1 :≡ B1(U t+1). This borrowing limit will bind on those agents with low after-tax resources,

xt = bt + yt − Tt(bt, yt), in period t. When it binds, it also generates a wedge in the intertemporal Euler

equations of agents, though one that runs in the opposite direction to the wedge generated by the tax
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system. Specifically, the agent’s Euler equation is:

qtu
0 (ct) = βEt

∙µ
1− ∂Tt+1

∂b
(bt+1, yt+1)

¶
u0 (ct+1)

¸
+ bηt+1,

where bηt+1 denotes the multiplier on the borrowing limit. Consequently, the intertemporal wedge of an
agent can be decomposed as follows:

βEtu
0 (ct+1)− qtu

0 (ct)

βEtu0 (ct+1)| {z }
Intertemporal Wedge

=

E0

h
∂Tt+1
∂b (bt+1, yt+1)u

0 (ct+1)
i

E0u0 (ct+1)| {z }
Tax component

−

bηt+1
Etu0 (ct+1)| {z }

Limit Component

. (63)

The first component is induced by the tax system, the second by the multiplier on the borrowing limit.

Clearly, the second component is only present when the borrowing limit binds. However, the lower utility

bound in the planner’s problem also has implications for the optimal tax system. Specifically, the bound

restricts the planner’s ability to use continuation utilities to provide incentives for truthful revelation in

the optimal mechanism. Thus, the planner must rely more heavily on variations in current consumption to

provide incentives. Close to the lower bound, the constrained efficient allocation will then exhibit greater

consumption variability and larger insurance and effort wedges. These characteristics translate into greater

curvature of the optimal tax function at wealth levels close to the borrowing limit.

6 Extension: The ∞-period economy

For this subsection we set T = ∞. We assume that U and V are compact sets. In this infinite period
setting, this assumption guarantees that a utility allocation satisfying the temporary incentive-compatibility

constraints (6) also satisfies the incentive-compatibility condition (5). The definition of an equilibrium in

a component planning economy is almost identical to that given in Definition 1. We simply require thatP∞
t=0 qt <∞ and that Conditions 1 and 2 in that definition are replaced by:

10 For all t, Bt and Bt+1 satisfy (11). Additionally, each Bt ≥ −y(1 +
P∞

t=0 qt).
20

20 For all t, {ϕ∗t , ς∗t , ω∗t+1} attain the infima in the problems (11).
20This boundedness in conjunction with an argument similar to Theorem 4.14 in Stokey, Lucas and Prescott (1989) guar-

antees that the sequence of {Bt}∞t=0 satisfies the Bellman equation (11).
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Similarly, the definition of a competitive equilibrium in a market economy is the same as Definition 2

except for the requirement that
P∞

t=0 qt <∞ and the replacement of Conditions 1 and 2 in that definition

with:

10 For all t, Vt and Vt+1 satisfy (19). Additionally, each Vt : Bt →Wt.

20 For all t, {bct, byt,bbt+1} attain the infima in the problems (19).
The definition of implementation is identical to that in the finite period case. We now have the following

proposition.

Proposition 3 Assume U and V are compact. Let ξCP = {{qt}∞t=0, {ϕ∗t , ς∗t , ω∗t+1}∞t=0, {Bt}∞t=0, {Ψt+1}∞t=0}
be an equilibrium of a infinite-period component planner economy ECP ({U t+1}∞t=0, {Gt}∞t=0 ,Ψ0). Then,
the associated constrained efficient utility allocation can be implemented by a competitive equilibrium in

a market economy with taxes and borrowing limits.

Proof: See the Appendix. ¥

7 Numerical Analysis

To shed further light on the properties of the optimal tax system, we turn to numerical examples. We set

parameters according to recent calibrations of Bewley economies with endogenous labour supply. However,

our examples are intended to be illustrative rather than a fully calibrated quantitative exercise. For reasons

of space, we only report one example in detail below. However, we indicate those properties that are robust

across other examples that we have computed.

7.1 Calibration and numerical procedure

We adopt the utility function:

u(c, y; θ) = κ
c1−σ

1− σ
+ (1− κ)(y − θy)1−γ

1− γ
. (64)
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Here, θ may be interpreted as a cost of effort shock21. This preference specification is common in macro-

economics.22

The numerical parameters for this economy are
©
κ, σ, γ, y, β, U,Θ, π, {Gt}∞t=0

ª
. For our benchmark

case, we follow Heathcote, Storesletten and Violante (2003) in setting the preference parameters (1−κ)/κ
to 1.184, y to 1, σ to 1.461, γ to 2.54 . Heathcoate, Storesletten and Violante choose this parameterisation so

that their model matches the empirical fraction of time devoted to labour and the wage-hours correlation

for the US. It implies a Frisch elasticity of labour supply of 0.3. In addition, we set β to 0.90. In the

benchmark case, we assume that 1/θ is distributed uniformly on the interval [0.2, 1.2]. We set U to

−3.48, which translates into a borrowing limit of −2.14. This value of U lies between the lifetime utility

that an agent would attain if she were at her “natural” borrowing limit23 in a Bewley economy without

taxes, which is clearly −∞, and the lifetime utility under autarky without taxes and markets, equal to

−2.74. Government consumption is constant over time and equal to 0.1 in each period, which amounts to
approximately 30% of period aggregate output.

We numerically solve for the steady state of a component planner economy.24 In the steady state,

the price of one period non-contingent claims is constant at q, the component planner’s cost function B

and optimal policy functions, {ϕ∗, ς∗, ω∗} are time invariant, and the cross sectional distribution of utility
promises, Ψ, is a fixed point of the Markov operator implied by ω∗. Our algorithm solves the recursive

component planner problem using numerical dynamic programming techniques at each intertemporal price.

We use the policy functions from this problem to obtain an approximation to the limiting distribution over

utility promises. We iterate on the intertemporal price until this distribution is consistent with resource

feasibility. The solutions to the component planner problems imply a time invariant tax function T (b, y)

on Graph Y∗, where Y∗(b) = {y : y = Y (ς∗(B−1(b), θ)), θ ∈ Θ}.
21Alternatively, θ can be interpreted as the reciprocal of a productivity shock. Then, y should be interpreted as the agent’s

output.
22These preferences retain the key property of additive separability in consumption and labour. They drop the inessential

property of multiplicative separability in the shock and the utility from labour. They are clearly not bounded. Below, we

assume that the tax functions we compute do not admit an infinite sequence of deviations that raise the agents’ payoff above

their constrained efficient one.
23The natural debt limit is the maximal borrowing that an agent can service. Given the bound on the agent’s per period

output, this borrowing limit is finite, but it translates into a utility bound of −∞.
24We do not have a proof of the existence of a steady state in our environment. The numerical policy functions we compute

indicate that the Markov process for utility promises possesses an ergodic distribution. As in Atkeson and Lucas (1995) the

lower bound on utilities is essential to ensure this.
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Figure 1: The tax function, T (b, y) .

7.2 Numerical Results

The optimal tax function T for the benchmark parameterisation is illustrated in Figure 1 on the set Graph

Y∗. A striking feature of the tax function is the high curvature in the neighbourhood of the borrowing

limit. In particular, the cross partial of the tax function is large in absolute value here, making marginal

income taxes sensitive to wealth and marginal wealth taxes sensitive to income. This conforms with the

discussion in section 5.4. Figure 1 reveals that T is negative for small values of b and y, thus agents with

low wealths and low incomes receive transfers.

Figure 2 shows ∂T (b,y)
∂y , the marginal labour income tax in our economy, as a function of y. Each

curve corresponds to a different wealth level b. Marginal labour income taxes are decreasing in wealth.

They decrease particularly rapidly as wealth levels approach the borrowing limit. We have found this

to be a robust feature of optimal tax functions across the various alternative parameterisations that we

have computed. In contrast, we have found that the dependence of the marginal labour income tax on

labour income is sensitive to the choice of utility function and shock distribution. In the benchmark

parameterisation that we illustrate here, marginal labour income taxes have an inverted U shape when

drawn as a function of income, holding wealth fixed. At the lowest and highest labour supplies at each

wealth level, the marginal income tax is zero. At intermediate levels it is positive.25

25The same pattern has been found in the static non-linear tax literature when similar assumptions on preferences and
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Figure 2: The Marginal Labour Income Tax, ∂T (b,y)
∂y .

It is interesting to compare these findings to those from the static non-linear income taxation literature.

That literature has analysed the dependence of optimal marginal income taxes on income only. Given the

sensitivity of the optimal tax schedule to the specification of preferences and the underlying shock distri-

bution, few general results are available. In his seminal contribution, Mirrlees (1971) obtained marginal

income tax rates that are low and slightly declining in income, while Diamond (1998) and Saez (2001) find

marginal income taxes that are high and sharply declining in income at low income levels.26 These recent

findings have been interpreted as being consistent with the empirical phasing out of social benefits at low

incomes. Our result, that marginal income taxes should be high at low wealth levels, complements this.

It suggests that any transfers received by low wealth agents should be rapidly phased out as their income

rises.

The implications of the intertemporal wedge for marginal asset taxes are illustrated in figures 3 and 4.

Figure 3 plots ∂T
∂b (·, y) against b for different fixed labour income levels y. As the figure indicates, marginal

asset taxes vary across incomes. Thus, an agent’s period t + 1 marginal asset tax is stochastic from the

shocks are made. The zero marginal income taxes at the lowest and highest labour supplies stem from the fact that the

incentive-compatibility constraint does not bind at these points. See Seade (1977).
26The low value of marginal income taxes in Mirrlees (1971) stems from his choice of utility function: log c+log(1− l), which

implies a high labour supply elasticity. The monotonically declining pattern of rates in income stems from his assumption of a

log-normal distribution of shocks. Diamond (1998) and Saez (2001) assume lower labour supply elasticities and a (calibrated)

Pareto shock distribution, and obtain higher marginal income taxes.
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perspective of period t. Moreover, these marginal assets taxes covary negatively with income, being high at

low income levels and low at high ones. As with marginal income taxes, variation in marginal asset taxes

is greatest close to the borrowing limit. Figure 4 explicitly relates the tax function to the intertemporal

wedge. Recall that the contribution of the tax function to the intertemporal wedge can be decomposed

into an expected marginal tax and a covariance component:

Et

£
∂T
∂b (bt+1, yt+1)u

0 (ct+1)
¤

Et [u0 (ct+1)]
= Et

∙
∂T

∂b
(bt+1, yt+1)

¸
+

Covt
£
∂T
∂b (bt+1, yt+1) , u

0 (ct+1)
¤

Et [u0 (ct+1)]
. (65)

Figure 4 shows the total contribution of the tax function to the wedge (solid line), as well as the expected

marginal asset tax (dashed line) and covariance (dash-dot) components. Since the covariance component

is always positive, the total contribution acts as an upper bound for the expected marginal asset tax.

The total contribution is small away from the asset limit. Over most of the wealth range it is less than

1% in value, but close to the borrowing limit it becomes much larger rising to about 16%. The expected

marginal asset tax peaks at a little over 2% at the borrowing limit, and then falls steadily with wealth.

The covariance component is also decreasing in wealth, but it is much larger close to the limit and falls

off much more quickly as wealth increases. Consequently, the covariance component plays the major role

in generating the total contribution of the tax system to the intertemporal wedge only when the agent’s

wealth is small and the total contribution is high. The small total contribution of the tax function to

the intertemporal wedge does not imply that taxation of asset income is small in our economy. The gross

return on assets in our benchmark parameterization is approximately equal to 10%. It follows that the

corresponding tax on asset income is equal to the tax contribution to the intertemporal wedge multiplied

by a factor of 10.27

8 Concluding remarks

We study optimal taxation in a class of dynamic economies with private information. We show that

constrained efficient allocations in this environment can be implemented as competitive equilibria in market

27The equilibrium value of q is 0.90375 for our benchmark parameterization. The corresponding marginal tax on asset

income, τ can be derived from the agents’ intertemporal Euler equation:

u0 (ct) = βEt

∙µ
1

qt
− 1

¶
(1− τ t+1 (bt+1, yt+1)) + 1

¸
u0 (ct+1) ,

evaluated at the constrained efficient allocation.
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economies with taxes. The optimal tax system is simple and conditions only upon current wealth and

current labour earnings. The incentive compatibility constraints shape the features of the resulting optimal

tax system. We analytically derive implications for both income and asset taxation and further explore

them in numerical examples.

We construct our optimal tax system using the recursive formulation of the planner’s problem. This

formulation relies on expected utility promises to summarise past histories of shocks. We obtain an agent’s

constrained efficient continuation allocation as a function of her wealth in the market economy, rather than

her expected utility promise. In our fiscal implementation, we then set taxes as functions of an agent’s

wealth and labour supply so as to ensure that the agent can afford the constrained efficient allocation.

These tax functions allow the government to pin down an agent’s after-tax resources as a function of her

current wealth and current labour supply. We show that given future tax functions, the agent will find it

optimal to allocate after-tax resources between consumption and savings in a socially efficient way.

The recursive formulation of the planner’s problem that underlies this argument is, however, only

valid for the case in which the agent’s shocks are i.i.d. Consequently, our fiscal implementation will not

work when shocks are persistent. In this case, wealth levels do not adequately describe past histories.

Moreover, when shocks are persistent an agent’s current shock influences her intertemporal marginal rate

of substitution. Thus, the agent’s intertemporal allocation of consumption and savings will depend upon
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this shock as well as her after-tax quantity of resources. The simple decomposition of the agent’s and

component planner’s within period problem on which the proof of Proposition 1 relies will no longer holds.

Kocherlakota (2003) provides an alternative fiscal implementation that works even with persistent

shocks. In Kocherlakota’s formulation, the government keeps track of an agent’s entire history of labour

supplies and condition taxes upon this history. The government does not use wealth to summarise aspects

of an agent’s past history.

It remains an open question as to whether there exists a fiscal implementation intermediate between

ours and Kocherlakota’s that would be valid for an economy with persistent shocks. Doepke and Townsend

(2002) and Fernandes and Phelan (2000) have shown that there do exist recursive formulations of the

planning problem for Markovian shocks. These rely on a vector of utility promises to keep track of

histories. Similarly, a recursive fiscal implementation for an economy with persistent shocks could not rely

on an agent’s stock of non-contingent claims alone to keep track of past histories. It would be necessary to

augment the state space. For example, it may be possible to use an agent’s portfolio position in a richer

asset market structure in conjunction with truncated labour histories to encode past shock histories. We

leave this important extension to future work.

Our fiscal implementation also embeds specific assumptions about the relative roles of markets and gov-

ernment policy. In particular, no private insurance contracts are allowed with the current market structure.

In practice, government welfare programs and private credit and insurance contracts are complementary

in providing incentives and determining the extent of risk-sharing supported in a competitive equilibrium.

Exploring this complementarity could provide important insight in cross-country differences in government

policies.

9 Appendix: Proofs

Proof of Lemma 2: The constraints in problem (14) are linear and the objective is strictly convex.

Hence, by a standard argument (see for example, Stokey, Lucas with Prescott, 1989, Theorem 4.8) BT is

also strictly convex. Suppose Bt+1 is strictly convex. The constraints in problem (11) are linear and, since

Bt+1 is strictly convex so is the objective in problem (11). Thus, Bt is also strictly convex. Applying this

argument iteratively from period T − 1 back to period 0 completes the proof. ¥

Proof of Lemma 3: Given the multiplicative nature of the shocks, existence of optimal functions
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{ϕ∗t (wt, ·), ς∗t (wt, ·), ω∗t+1(wt, ·)} that solve problem (11) when w ∈ Wt can be established by applying the

arguments of Kahn (1993). The existence of functions {ϕ∗T (w, ·), υ∗T (w, ·)} that solve problem (14) when

wt ∈Wt+1 can be similarly established.

By a standard argument, if (ϕ0, ς 0) satisfies the period T incentive-compatibility (15), then ϕ0 and ς 0 are

monotone in θ. Hence, (ϕ∗T (wT , ·), ς∗T (wT , ·)) are monotone. Similarly, if (ϕ0, ς 0, ω0) satisfies the incentive-
compatibility condition (12), then ς 0 and d0 = ϕ0+βω0 are monotone. Hence, for t < T , (d∗t (wt, ·), ς∗t (wt, ·))
are monotone, where d∗t (wt, ·) = ϕ∗t (wt, ·) + βω∗t+1(wt, ·). Let (ϕ0(d), ω0(d)) denote the solution to

sup
(ϕ0,ω0):d=ϕ0+βω0

[C(ϕ0) + qtBt+1(ω
0)].

It is easy to check that (ϕ∗t (wt, θ), ω
∗
t+1(wt, θ)) = (ϕ0(d∗t (wt, θ)), ω

0(d∗t (wt, θ))). The strict convexity of C

and Bt+1 imply that (ϕ0(d), ω0(d)) are strictly increasing. Since d∗t is monotone, it then follows that ϕ
∗
t

and ω∗t+1 are monotone as well.

Construct y∗t , c
∗
t and B∗t+1 by setting y∗t (b, θ) = Y (ς∗t (B

−1
t (b), θ)), c∗t (b, θ) = C(ϕ∗t (B

−1
t (b), θ)) and

B∗t+1(b, θ) = Bt+1(ω
∗
t+1(B

−1
t (b), θ)). ¥

Proof of Lemma 4 Part 1. The two incentive constraints imply that ς(θ) ≥ ς(θ) and ϕ(θ) ≥ ς(θ).

Hence, the “upward” incentive constraint: ϕ(θ) + θς(θ) ≥ ϕ(θ) + θς(θ) must hold with equality at the

optimum. If not ϕ(θ) > ϕ(θ), but then the strict convexity of C implies that the planner can reduce her

costs by lowering ϕ(θ) by ε and raising ϕ(θ) by επ(θ)/π(θ). The promise keeping and upward incentive

constraint can then be used to eliminate the ϕ variables from the planner’s problem. We drop the downward

incentive constraint ϕ(θ) + θς(θ) ≥ ϕ(θ) + θς(θ), and consider the following problem:

sup
{ς(θ),ς(θ)}

{C(w1 − (θ − θ)ς(θ)π(θ)− θς(θ))− Y (ς(θ))}π(θ) + {C(w1 −E[θ]ς(θ))− Y (ς(θ))}π(θ). (66)

It follows from (66), the convexity of C and −Y and the fact that C 0(0) = 0, that there is a critical A such

that if A(w1) ≡ w1 − (θ − θ)ς∗1(w1, θ)π(θ) > A, then ς∗1(w1, θ) = v(y). If A(w1) < A, ς∗1(w1, θ) = v(y).

Suppose that A(w1) > A, then C(A(w1) − θv(y)) −y < C(A(w1) − θv(y)) −y. Also, w1 = A(w1) +

(θ− θ)ς∗1(w1, θ)π(θ) > A(w1). So, by the convexity of C, C(w1 − θv(y)) − y < C(w1 − θv(y)) − y. Again

by the strict convexity of C, C(w1−E[θ]v(y)) − y < C(w1−E[θ]v(y)) − y. Thus, if A(w1) > A, it follows

from (66) that the cost in state θ is lower if ς(θ) = v(y). The cost in state θ is also lower if ς(θ) = v(y).

So in fact ς∗1(w1, θ) = v(y). It follows that there exists a critical w1 = A+ (θ − θ)v(y)π(θ), such that for
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w1 > w1, ς∗1(w1, θ) and ς∗1(w1, θ) equal v(y), for w1 < w1, ς∗1(w1, θ) equals v(y). For w1 < w1, ς∗1(w1, θ)

solves

sup
{ς(θ)}

{C(w1 − (θ − θ)ς(θ)π(θ)− θv(y))}π(θ) + {C(w1 −E[θ]ς(θ))− Y (ς(θ))}π(θ).

It follows easily from the convexity of C and −Y that there exists a critical w1 ∈ R ∪ {−∞}, such that
for w1 > w1, ς

∗(w1, θ) = v(y), and for w1 < w1, ς
∗
1(w1, θ) = v(y). (The set w1 < w1 may be empty). It

follows from the above discussion that the solution to (66) satisfies the upwards incentive constraint with

equality and ς∗1(w1, ·) is non-decreasing. Hence, this solution satisfies the downwards incentive constraint
and solves the original component planner’s problem.

Part 2. It follows from the previous part that

B1(w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B11(w1) = C(w1 −E[θ]v(y))− y for w1 < w1

B12(w1) = {C(w1 − (θ − θ)v(y)π(θ)− θv(y))− y}π(θ) for w1 ∈ (w1, w1)
+ {C(w1 −E[θ]v(y))− y}π(θ)

B13(w1) = C(w1 −E[θ]v(y))− y for w1 > w1.

Each B1i is strictly convex and differentiable. Hence, B1 is piecewise strictly convex and differentiable

except at w1 and w1.

Part 3. Let B0i(w0) = supC(w0−βw1)+qB1i(w1). Let w∗1i(w0) denote the solutions to these problems,
where C 0(w0 − βw∗1i(w0)) = q/βB01i(w

∗
1i(w0)). Clearly, B

0
11 > B012 > B013, and so w∗11(w0) < w∗12(w0) <

w∗13(w0). Thus, B
0
01(w0) = C 0(w0 − βw∗11(w0)) > C 0(w0 − βw∗12(w0)) = B002(w0). Also, w

∗
11(w0) is strictly

increasing, and eventually, w∗11(w0) > w1. At this point, B01(w0) = C(w0 − βw∗1(w0)) +qB11(w
∗
1(w0)) =

C(w0 − βw∗1(w0)) + qB12(w
∗
1(w0)) ≥ C(w0 − βw∗2(w0)) + qB12(w

∗
2(w0)). Thus, there exists a critical w

12
0

such that for w0 >(resp. <)w120 , B02(w0) < B01(w0). By identical reasoning, there exists a critical w230
such that for w0 >(resp. <)w230 , B03(w0) < B02(w0) and a critical w130 such that for w0 >(resp. <)w130 ,

B03(w0) < B01(w0). Let w0 = min(w
12
0 , w130 ) and w0 = min(w

23
0 , w130 ). Then, for w < w0, ω

∗ = w∗11, for

w ∈ (w0, w0), ω∗ = w∗12, and for w > w0, ω∗ = w∗13. Thus, ω
∗ is increasing. ¥

Proof of Lemma 6: By (53), if the agent saves b∗1, she attains the consumption level c
∗
1(y) if she

chooses y and c∗1(y) if she chooses y. The definitions of T 1 and T 1 imply qu0(c∗0) = β(1− T 1)u
0(c∗1(θ)) and

qu0(c∗0) = β(1 − T 1)u
0(c∗1(θ)). Thus, independently of the agent’s labour choice in period 1, it is optimal

for the agent to save b∗1. It then follows from the component planner’s incentive-compatibility condition
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that the agent will choose (c∗1(θ), y) when her shock equals θ and (c
∗
1(θ), y) otherwise. Hence, a

∗ can be

implemented in a market economy with the tax function (54).

Now, suppose that the tax function T (b, y) = T0(y) + T1(y)b implements a∗ in the market economy

and that T1(y) < T 1. Then, as in the proof of the previous lemma, the agent can save b
∗
1 and select y

regardless of her shock. This is feasible and delivers the same payoff, w0, to the agent as a∗. However, since

T1(y) < T 1, qu
0(c∗0) < β(1−T1(y))u0(c∗1(θ)), so that the agent can do even better and obtain a payoff above

w0 by saving slightly more than b∗1, and selecting an effort of y regardless of her shock. It follows that if

T (b, y) implements a∗ then T1(y) ≥ T 1. Similarly, if T1(y) > T 1, the agent can improve on the planner’s

solution by saving slightly less than b∗1 and choosing y regardless of her shock. Thus, T1(y) = T 1. It then

follows from (48), that the agent’s a∗ is consistent with the agent’s Euler equation only if T1(y) = T 1. ¥
Proof of Lemma 9: Define K(bθ) = v

R bθ
θ (
bθ− θ)π(θ)dθ− v

R θbθ (θ− bθ)π(θ)dθ. The promise keeping and
incentive-compatibility constraints imply that:

ϕ
1
=
1

β
(w0 − ϕ0) +K(bθ)− bθv and ϕ1 =

1

β
(w0 − ϕ0) +K(bθ)− bθv. (67)

Let bθ◦(w0) = bθ∗1(ω∗(w0)), ϕ◦1(w0) = ϕ◦1(ω
∗(w0)) and ϕ◦1(w0) = ϕ∗1(ω

∗(w0)). Suppose that w20 > w10 and

that eθ = bθ◦(w20) = bθ◦(w20). The first order conditions for the component planner’s problem yield at each

wi
0, i = 1, 2,

C 0(ϕ∗0) =
q

β
[C 0(ϕ◦1)Π(eθ) +C 0(ϕ◦

1
)(1−Π(eθ))]. (68)

(67), (68) and the strict convexity of C imply that ϕ∗0(w
2
0) > ϕ∗0(w

2
0), ϕ

◦
1
(w20) > ϕ◦

1
(w10) and ϕ◦1(w

2
0) >

ϕ◦1(w
1
0). The first order conditions from the component planner’s problem also imply that at each wi

0,

i = 1, 2, h
{C(ϕ◦1)− Y (v)}− {C(ϕ◦

1
)− Y (v)}

i
ρ(eθ) + [C 0(ϕ◦1)∆v(1−Π(eθ))− C 0(ϕ◦

1
)∆vΠ(eθ)] = 0. (69)

The first term above is negative: the component planner obtains a higher quantity of net resources when

the agent exerts higher effort. Consequently, the second term is positive. Now incentive-compatibility

implies: ϕ◦(wi
0)−ϕ◦(wi

0) =
eθ∆v, where ∆v = v− v > 0. The convexity of C then implies that C(ϕ◦1(w

2
0))

− C(ϕ◦
1
(w20)) > C(ϕ◦1(w

1
0)) − C(ϕ◦

1
(w10)), so that the first term in the above expression increases across

the two utility promise levels w10 and w20. Next let H(ϕ) = [C 0(ϕ + eθ∆v)∆v(1 − Π(eθ)) − C 0(ϕ)∆vΠ(eθ)].
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Then

H 0(ϕ) = [C 00(ϕ+ eθ∆v)∆v(1−Π(eθ))−C 00(ϕ)∆vΠ(eθ)]
=

C 00(ϕ+ eθ∆v)
C 0(ϕ+ eθ∆v) [C 0(ϕ+ eθ∆v)∆v(1−Π(eθ))− C 00(ϕ)

C 0(ϕ)

C 0(ϕ+ eθ∆v)
C 00(ϕ+ eθ∆v)C 0(ϕ)∆vΠ(eθ)]

>
C 00(ϕ+ eθ∆v)
C 0(ϕ+ eθ∆v) [C 0(ϕ+ eθ∆v)∆v(1−Π(eθ))− C 0(ϕ)∆vΠ(eθ)] > 0.

Here, the first inequality follows from the assumption in the lemma and the second from the fact that

the second term in (69) is positive. Then for all H(ϕ◦
1
(w20)) − H(ϕ◦

1
(w10)) =

R ϕ◦
1
(w20)

ϕ◦
1
(w10)

H 0(ϕ)dϕ > 0. This,

however, implies that the second term on the left hand side of (69) is increasing. But then both terms on

the left hand side of (69) are higher at w20 than w10. This contradicts (69) holding at both w20 than w10.

If b1 and b01 are in B∗1, then there exists a w0 and a w00 such that b1 = B1(ω
∗(w0)) and b01 = B1(ω

∗(w00)).

Since b1 6= b1, w0 6= w00 and θ∗1(b1) = θ◦(w0) 6= θ◦(w00) = θ∗1(b
0
1). ¥

Proof of Proposition 3: Truncate the infinite-period market economy at T < ∞. Set the agent’s
period T + 1 value function in the truncated economy to bVT+1 = B−1T+1. Subdivide each period t ∈
{0, . . . , T} into two sub-periods. In the first the agent exerts effort yt and obtains some after-tax resources
xt = bt + yt − Tt(bt, yt). In the second, the agent allocates xt between consumption ct and savings bt+1.

Each period of the component planner’s problem can be similarly sub-divided. In the first sub-period,

the agent makes a report and the component planner allocates utility from effort and an interim utility

promise; in the second, the planner allocates the interim utility promise between utility from consumption

and a continuation utility promise. By repeated application of the argument in the proof of Proposition

1, beginning in period T , a sequence of tax functions {Tt}Tt=0 and borrowing limits {bt+1}T−1t=0 can be

constructed such that confronted with these sequences, it is optimal for an agent with initial wealth B0(w0)

to choose the same period T -truncated allocation, {ct, yt}Tt=0 as is awarded to an agent with a w0-utility

promise by the component planner.

By successively increasing T , a sequence of tax functions {Tt}∞t=0 and borrowing limits {bt+1}∞t=0 can
be constructed which, along with {Gt}∞t=0 and Λ0 define a market economy. Set f = B0. If an agent with

an initial quantity of claims B0(w0) selects z∗(w0), the allocation obtained by a w0-promise agent in the

component economy, then she too receives a payoff of w0. Suppose there is some alternative allocation

available to the agent in the constructed market economy that gives a payoff of eU∞ > w0 + ε > w0.

Let eUT denote the payoff earned from this allocation over the initial T periods, and let ebT+1 denote the
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agent’s savings at date T under this allocation. Similarly, let UT be the agent’s payoff from z∗(w0) over

the initial T periods and let bT+1 be the agent’s savings at date T under this allocation. Now since agents

choose to select the component planner allocation in the truncated economy: UT (w0)+βTE bVT+1(bT+1) ≥eUT + βTE bVT+1(ebT+1) Hence, since the agent’s utility functions are bounded, w0 = limT→∞[UT (w0) +

βTE bVT+1(bT+1)] ≥ limT→∞[eUT+βTE bVT+1(ebT+1)] = eU∞ > w0 + ε. This is a contradiction. It then follows

that in the untruncated economy, the agent with initial wealth B0(w0) selects the allocation obtained by

an agent with an initial utility promise of w0. Condition 2 in the implementation definition is satisfied. ¥
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V 0(b 0)= m a x x ,y 0 D (x )+ θ 0v (y 0 )

s .t .   b 0 = x + T 0 (b 0 ,y 0) -y 0

P E R IO D  0 : S ta g e  2

S o lv e :

D (x )= m a x c 0,b 1 u (c 0)+ βV 1(b 1 )

s .t .  x = c 0+ q b 1

T im e

P E R IO D  1

S o lv e :

V 1(b 1 )= m a x c 1,y 1  u ( c 1)+ θ 1v (y 1)

s .t.   b 1 = c 1 + T 1 (b 1 ,y 1) -y 1

Figure A1: Timeline for the market economy.
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S o lv e :

B 0 (w 0 )= m in d ,ς 0 E [ X (d )+ Y (ς 0 ) ]

s .t .   w 0 = E [d  + θ 0ς 0  ]

+     In c e n tiv e  c o m p a tib ili ty

P E R IO D  0 : S ta g e  2

S o lv e :

X (d )= m in φ 0 ,w 1C (φ 0 )+ q B 1(w 1)

s .t .  d =φ 0+ βw 1

T im e

P E R IO D  1

S o lv e :

B 1(w 1)= m in φ 1 ,ς 1E [C (φ 1 )+ Y (ς 1 ) ]

s .t .  w 1 = E [φ 1 + θ 1ς 1  ]

+     In c e n tiv e  c o m p a tib il ity

Figure A2: Timeline for the component planner economy.
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