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1. Introduction

The presence of multiple equilibria poses a tough problem for economic theory.
Uniqueness of competitive equilibria can be guaranteed only under extremely restrictive as-
sumptions about agents’ preferences; such as either identical preferences or representability
by Cobb-Douglas utility functions. In fact, recent work by Mercenier (1994) demonstrates
that nonuniqueness of equilibrium prices also arises empirically in applied general equilib-
rium models,

In asking what can be done to alleviate the difficulties caused by this multiplicity,
we wish to explore the consequences of imagining that competitive equilibria are somehow
chosen according to a probability distribution concentrated on equilibrium prices. We
consider the nicest possible case—the probabilistic selection of prices depends continuously
ont the data, and the random selection rule is itself common knowledge among all agents
in the economy. Results due to Allen (1985a, 1985b) and Mas-Colell and Nachbar (1991)
prove that “typical” smooth exchange economies permit continuous random selections from
their equilibrium price correspondences. We therefore restrict ourselves to these generic
economies having a finite or countable number of equilibria for all possible distributions
of the total initial endowment vector. Yet this situation causes risk-averse traders to wish
to insure themselves against the price uncertainty induced by the random selection among
multiple equilibria. Qur paper examines the ultimate outcomes that occur when this
happens. We view the hypothesis of complete markets and the availability of actuarially
fair insurance policies as desiderata for an idealized perfectly competitive economy.

One result of random equilibrium selection is that it generates nontrivial distributions
over competitive equilibrium allocations. Due to risk aversion, these distributions fail to

satisfy Pareto optimality. The First Welfare Theorem fails ex ante when equilibrium



prices are randomly selected even though it holds ex post for any particular competitive
price vector and associated equilibrium allocations. Introduction of the random selection
alters the economy-—not only does its equilibrium change, but more fundamentally, the
entire specification switches to include some risks that were previously absent but now
must be hedged. The net result of this process of realizing that randomization among
competitive equilibria will occur and making fair insurance contracts is that a new and
unique equilibrium is reached after finitely many steps whenever the original economy
featured a continuous random selection from its equilibrium price correspondence. Qur
equilibrium outcome is Pareto optimal. We further show that any regular competitive
equilibrium allocation of the original economy can be reached in two steps as the unique
equilibrium of our process provided that a suitable continuous random selection (which
always exists) is followed.

The uncertainty induced by randomization among equilibria has been discussed else-
where. Cass and Shell (1983) provide examples of random selections as sunspot equilibria,
and Chichilnisky, Dutta, and Heal (1992} study the market structure necessary to support
insurance against the choice of equilibrium. We are concerned with a clear statement of
the convergence of the implied sequence of reallocations.

Randomization among equilibria has close connections with extrinsic uncertainty
or sunspots {Azariadis (1981), Balasko (1983), Cass and Shell (1983)). This introduces
uncertainty which has no direct effect on endowments or preferences. The fact that our
procedure needs more than one step is a direct consequence of their “irrelevance result” that
if individuals share common subjective probabilities, extrinsic uncertainty cannot affect
Pareto optima and therefore the competitive equilibria of complete market economies.

Extrinsic uncertainty can matter if markets are incomplete (e.g., Azariadis (1981)) or if



traders have diverse prior beliefs (Kurz (1993)). Our problem will typically not converge
to an optimal allocation under these conditions.

The remainder of this paper i1s organized as follows: Section 2 introduces notation
for our model, and Section 3 shows the genericity of our critical property that guarantees
that there is a continuous random selection from the equilibrium price correspondence
as we redistribute the total initial endowment vector among agents. Section 4 contains
the statements and proofs of our main results. Finally, Section 5 concludes with further

interpretations of our conclusions.

2. The Model

We study a basic model of a smooth pure-exchange economy having finite numbers
of consumers and commodities. For technical reasons (see Section 3), C* utilities and
demands are required for our analysis. Moreover, we focus on economies that satisfy a
generic property that excludes the presence of a continuum of competitive equilibria for
any feasible redistribution of initial endowment vectors. (Again, see Section 3 below.)

To fix notation, suppose that there are ¢ goods (j=1,...,£) and N consumers
(h =1,...,N), each of whom has consumption set RS .. Let e; € RS, denote the
initial endowment of household k, and write wuj, for the utility function of trader 4,
where for each h =1,...,¢ the function up € U = {u: R{, - R ] u s €%, is strictly
differentiably monotone (Du(z) > 0 forall z € RS ), is strictly differentiably concave
(D*u(z) is negative definite for all = € R%,), and satisfies the boundary condition that
the closure in JR! of the upper contour set {z € R, | u(z) > u(Z)} through 7 is

disjoint from the boundary of R{ forall £ € RY,}. Let E denote the set of all

~

feasible reallocations of initial endowments, so that £ = {y = (y1,...,YN) € Rif\;




N
DoUR = o ep = é}. Where no confusion can result, we use the circumflex symbol to

h=1 h=1

designate the operation of adding vectors over individuals. We also write vectors without
subscripts to denote the entire “profile”— ie., e = (e1,...,en). We normalize prices to
belong to the (open) unit simplex A = {p € lRﬂ_+ ’ ZE:I Pj = 1}. Write x5 : A — RS
for individual #’s demand function (which dependsj :Llso on up and e), where for
p €A, za(p;up, en) = argmax {ux(z) i z€ R, and p-z < p-ep}; notethat z, isa

C* functionof pe A and ep € IRﬁ__*_.

3. The Critical Property

In order to prove our main result, we must hypothesize continuity of the random equi-
librium selection. However, this property need not be problematic as it holds for a generic
subset of economies. To be specific, each pure exchange economy in a dense G5 subset
possesses such a continuous random selection from its equilibrium price correspondence as
initial endowment vectors vary. This means that any economy satisfying the assumptions
of our model can be approximated arbitrarily closely by economies with continuous random
selections.

This claim is simply the continucus random selection result discovered by Allen
(1985a, 1985b), although we appeal directly to the formulation provided by Mas-Colell
and Nachbar (1991) since they perturb utility functions rather than aggregate excess de-
mand functions in the definition of generic subsets of economies. The argument is that,
for a countable intersection of open and dense subsets of economies, each redistribution
of endowments corresponds to an at most countable number of competitive equilibrium
prices. From this, one can show the existence of a continuous random selection from the

equilibrium price correspondence.



More formally, let ¥ : E — A denote the equilibrium price correspondence, where
for e = (ey,...,en) € E C Rfﬁ_, ¥e)={pe A | hg:l:nh(p;uh,eh) = hlgjl en}. Write
M(A) for the set of probability measures defined on Borel subsets of A, and endow
M(A) with the topology of weak convergence of probability measures. [Alternatively,
this is called the weak* topology and is defined by the condition that pu, — g € M(A)
if and only if z{ f(p)dun(p) — L{ f(p)dp(p) (pointwise) for all continuous and bounded
real-valued functions f on A.] A continuous random selection from the equilibrium price
correspondence is a (single-valued) function g : E — M(A) having the following two
properties: (i) g is continuous (when M(A) is endowed with its weak™® topology), and
(ii) ¢ is a selection from ¥ (that is, for all e € B, u(¥{e)) =1).

Definition. An Edgeworth box E {for the economy given by utilities and endow-
ments {(u1,e;),...,(un,en)} has the critical property if forall e’ € E= {(e},...,ey) €
REN | }231 el = hzfjjl eh}, the set ¥(e') is at most countable. In words, this says that for
any feasible redistribution of initial endowments, the resulting set of competitive equilib-
rium price vectors is at most countable, even at critical economies.

Our interest in the critical property derives from the results that it is generic and that
it suffices 1o ensure the existence of a continuous random selection from the equilibrium
price correspondence.

Proposition. Given endowments e;,...,en € Rfﬁ_ and utilities wgq,...,uy for
all but one person in the economy (where for each & = 2,... N, wp € U), for u
belonging to a countable intersection of open dense subsets (in the C* compact open
topology on utility functions u; : IRﬂ_+ —+ IR) of U, the critical property is satisfied.

Moreover, all economies in this generic set possess continuous random selections from their

equilibrium price correspondences.



Proof. This follows from Mas-Colell and Nachbar (1991) combined with the ob-
servation that differentiable strict concavity is satisfied by a countable intersection of
(nonempty) open subsets of utilities. ®

Remark. The hypothesis that all utilities and demands are infinitely continuously
differentiable is needed for the proofs given in Allen (1985a, 1985b) and in Mas-Colell and
Nachbar (1991), which use very sophisticated tools from differential topology. Similarly,
these methods do not permit one to strengthen the result to yield an open and dense set of
well-behaved economies rather than a dense Gs subset. Note also that, while Allen (1985a,
1985b) obtains the generic finiteness of the equilibrium price set for all parameters, the
Mas-Colell and Nachbar (1991) framework gives only the conclusion that, for all parameter

values, the set of equilibria is at most countable for a residual subset of utilities.

4. The Main Result
This section presents the main theorem and its proof. As indicated above, the critical
property 1s needed to guarantee the existence of a continuous random selection from the
equilibrium price correspondence for all possible redistributions of endowments.
Theorem. For a countable intersection of open and dense subsets of C°° utilities in
U, starting from any initial endowment vectors e, € RY,, h=1,...,N, the sequence

of redistributions defined inductively by, for h=1,..., N,
62 = €p

and

e:_i_]‘ = A.’Eh(p; Up, e}:)d,u(e")(p)

converges to an allocation & = (&,...,éN) € Rﬁ_]\j_, where € = Iirrgo ep for each
n—
h =1,...,N, such that € has a unique competitive equilibrium price vector (i.e.,
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#¥(€) = 1). Moreover, the convergence occurs in finitely many steps—given u),...,un
in the generic set and e1,...,exn, there exists M such that ¢® =& for all n > M.

Proof. Let E denote the closure of E so that E = {(e},...,ey) € RN ’
N N N
Y e, = 3 en}. Note that feasibility of total demand ( > za(p;up,el)) at any com-
h=1 h=1 h=1

petitive equilibrium price p € supppu(e™) C ¥(e®) implies that the convex combinations
e"t! are also feasible, so that e"t! € E for all n. Then E is compact and there-

fore the sequence {€™}°2  has a convergent subsequence, call it {e™ }., such that

n'=1:

lim ¢ =é&¢€ E. Toshow that € € E notice that (iterated) individual rationality of the
n —oo

zp(p;un, ey), which are competitive equilibrium allocations for the economy with utili-

ties wuy,...,un and endowments e7,...,e%, implies that for all A =1,...,N and all
n=12,..., uh(e’g"_l) > un(e}) = up(es ). This, combined with the boundary condition
and the fact that e, € IRi+ for all A, implies that €€ E C Rij\_‘lr_

Let & € E be a limit of a convergent subscquence {e“'}:j:l. Since lim e® =€
and since p: E — M(A) is weakly continuous while the =z, are continuous (in fact,
C>) in prices and endowments, €, = [ zs(p;un, & )dp(€)(p). If w(€) is a Dirac mea-

A
sure, then necessarily zp(p;un,ér) = €, for p € ¥(¢) and, because € € E implies

N N N
S, zp(piun,8n) = 3 & = ) en, the First Welfare Theorem says that & is Pareto op-

h=1 h=1 h=1
timal. If u(€) is not a Dirac measure, strict concavity of up and individual rationality of
competitive equilibrium allocations implies that wup(e,) = uh(fach(p;uh,éh)dp(é)(p)) >
A

Saun(n(ps un, & ))du(@)p) = iuh(éh)du(é)(p) = uy(€n), which is a contradiction.
Therefore, € is Pareto optimal.

To show that the entire sequence—and not just a subsequence-—converges to e,
suppose not. Then {e”}77, must have subsequences with at least two distinct limits.

As before, let {e”’}:,:=1 denote a convergent subsequence (the existence of which was



demonstrated above), and let {em'}:,zl be a subsequence of {e”}7-, having a different

limit, say € € E, so that € = lim e” #£ lim e™ =& where both & and £ are
n'—oo m! oo

Pareto optimal. Recall that Pareto optimal initial allocations lead to unique competitive

equilibrium prices and unique competitive equilibrium allocations when preferences are

smooth and strictly convex.

Notice that, for all h, the sequences {e}} ., of redistributions of endowments are
strictly improving in the sense that u(e?) < uzp(eft!) for all n, with strict inequality
unless p(e”) is a Dirac measure (which is surely the case whenever ¥(e™) is a singleton).
To see this, observe that because z,(p;up,e}) is consumer h’s demand at price vector
p € A when he has initial endowment vector e} € Hﬁ_+, necessarily uh(a:h(p; Up, e}’:)) >
un(e}). Strict concavity of utilities then implies that wa({ [ za(pjun,ef)du(e®)(p)) >
[ un(zr(psun, €7))du(e™)(p) > un(e}l) whenever p(e™) is nzt a Dirac measure. In this
iase, the Pareto optimality of both € and & means that there are consumers &' and h”
for which up(en) < up/(€n) and upe(Epv) < upr(€pr). This contradicts monotonicity
of up(e}) in n forall h=1,...,N whenever € # & If ¥(e") is a singleton—or, more
generally, if u(e™) is a Dirac measure—then e}t = z;{¥(e™);un,e}) for all h and
hence e™*' =em*? = ... sothat up(e}) Sup(ef™) =up(ef™)=... and M <n+1.
In this case, we must have & =e.

Finally, to show that the convergence occurs in finitely many steps, let ¢® — &
which is Pareto optimal. Then, for every ¢ > 0, there is M(e) such that |le® —é|| < ¢
for every n > M(e). By Theorem 4.5.3 and Corollary 4.5.4 of Balasko (1988, pp. 104-105),
every Pareto optimal allocation € € E has the property that there is €(€) > 0 such that
every e € E with ||le —€|| < €(€) is regular and has a unique competitive equilibrium

price vector. Setting M — 1 = M(e(g)) guarantees that ¥(e™~1) is a singleton, so



that p(eM=1) must be a Dirac measure. Then e is Pareto optimal, and therefore
eM=eMtl = =z W

Remark. Any regular competitive equilibrium can be achieved in two steps by using
a continuous random selection that assigns probability one to the competitive equilibrium
price vector associated with the desired Walrasian allocation.

Corollary. The convergent sequence e" identified in the theorem features Pareto
improvement at each step, and furthermore, its limit & is a Pareto optimal allocation.

Proof. By the individual rationality of competitive equilibrium allocations and by
concavity of each wup, we have wui(eft!) = un( [ zn(p;un, ef)dule™)(p)) >
Jun(zn(pyun; ef))du(e™)(p) > un(e}), with strict inequal?ty whenever #3¥(e") > 1.
A
This shows that strict Pareto improvement occurs at each step, except possibly if
#T(e") = 1. In that case, the proof of the theorem shows that the last step moves
directly to the contract curve—i.e., in symbols, if M —1 is defined to be the first integer
for which #¥(eM~1) =1, then p(e™~!) is precisely the Dirac measure concentrated at
the point ¥(e™~1) in A and (by strict concavity) each z;(p; uh,eﬁf_l) is a singleton
when evaluated at p = ¥(eM~1). Hence, for all b, eﬂ"’ = a:h(‘Il(eM‘l);uh,ehM”l),
which is Pareto optimal by the First Welfare Theorem. =&

Remark 1. The statement of the theorem is reminiscent of the concept of quasi-
stability analyzed in Hahn and Negishi (1962), in that we show that some set—-in our case,
a subset of the set of Pareto optimal allocations—serves as a sink for a certain discrete-
time process that involves trades conducted at “false” prices, where no consumption occurs
before the limit of the process has been reached. However, we do not claim stability or
its analogue for our setting, nor do we consider questions of how one can find competitive

prices. Instead, our process features perfectly competitive price vectors at each stage, albeit



traders myopically act as if the randomization and our resulting further redistributions will
not occur. Note also that we hit the limit after a finite number of steps, so that the common
objection that nontidtonnement processes let agents starve before arriving at the limit is
alleviated here.

Remark 2. The MDP planning procedure for public goods (proposed by Dreze and
de la Vallée Poussin (1971) and Malinvaud (1972a)) also has the property that reallocations
are Pareto improving at each step.

The procedure analyzed in our theorem can be viewed as the iteration of a map. The
properties of this map, which we call F, are studied in the next proposition.

Proposition. Define F: E — E by

Fly,--oun)) = (faml(p; ul,y1)*fl»u(y)(zﬂ),---,/‘A rcN(p;uN,yN)d#(y)(p)),

where E = {y = (y1,-.-,UN) € IR_‘H}_ | ;Z::lyh = éleh and ua(ys) > up(er) for all

h=1,...,N} istheset of all individually rational feasible allocations and s : E — M(A)

is a continuous random selection. The map F' has the following properties:

(i) F is continuous and has a fixed point.

(i) For each y € E, either F(y) =y or F(y) Parcto dominates y—i.e., y #y' = F(y)

implies that wp(yy) = ua(yr) forall A =1,...,N with up(y}) > ur(yr) for some

h=1,...,N.

(i11) The point y € E is a fixed point of F if and only if y is a Pareto optimum,
Proof. To see (i), note that the continuity of F follows from the fact that the

random selection gy is continuous combined with continuity of the demand functions

zp(-;un,) in p € A and y, € RE, for any up € U. By Brouwer’s Fixed Point

Theorem, F has a fixed point on the compact and convex subset E of Rfﬁ_

For (i), use individual rationality to observe that wun(zn(p;un,yr)) = un(ys).
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The inequality is strict for some consumer h = 1,...,N whenever zn(p;un,yn) # yn;
this follows from the strict concavity of utilities wuy € . Strict concavity also implies
that uh(gmh(p;uh,yh)du(y)(p)) > guh(zh(p;uh,yh))dp(y)(p) for any nondegenerate
distribution u(y) on A. This proves that ua(y}) > un(yn) whenever vy}, # yn, as
desired.

Finally, one direction of (iii) follows from (ii). For the equivalence, note that every
Pareto optimal allocation has a unique supporting competitive price vector and, at these
prices, agents’ demands are such that they do not wish to trade away from the optimal
allocations. B

Observation 1. In general, whenever there are multiple equilibria for the original
economy that receive strictly positive probability under the continuous random selection,
one cannot achieve the limit allocation in a single step except for extraordinarily special
configurations. Depending on the probability weights assigned to various equilibria, the
first step gives a reallocation that lies in the convex hull of the competitive equilibrium
allocations for the original economy; the first reallocation generally is not Pareto opti-
mal and hence requires additional redistributions. The basic problem is that an overall
equilibrium need not be achieved in a single step, so that the process must be repeated.

Observation 2. The iterative process of redistribution which we construct has
three elements: (C) finding the set of competitive equilibria for a given endowment
distribution, (D) assigning a probability distribution to these prices, and (I) allocating
the average (according to the distribution) of the equilibrium allocations to the traders
in the economy. Steps D and I can be understood as the outcome of complete insurance
against randomization.

To see this, let e" = (e7,...,e%) € RS, be the nth-step initial allocation of

11



endowments, and suppose that there are multiple competitive equilibria in the exchange
economy with endowments e”. Each equilibrium price p™' € ¥(e®) C A is associated
with allocations (or demands) z™' € E C R, where z™ = (:y’f’i,...,a:;,'i,’i) and,
forall h=1,....N, z}"' = z4(p™%us,el). Let u® € {pr € M(A) | " (T(e™)) =

, , #V(e)
1} = {(p™*); | pt >0, Y, p™ =1} be a probability distribution on ¥(e®). By

i=1

strict concavity of utilities, demands are single valued, and we can think of u" as a

distribution on the corresponding z™' vectors to simplify the notation. By the First

Welfare Theorem, each allocation z™* is Pareto optimal. However, the distribution u®

is not. To see this, observe that strict concavity implies that every individual h prefers

(strictly) the allocation Z} = 3 p™* 2t and E = (F7,...,3%) is feasible. This is
:

exactly the argument of Cass and Shell (1983) and Balasko (1983), which establishes that

with strictly concave von Neumann-Morgenstern utility functions, extrinsic uncertainty

cannot affect optimal allocations.

Consider an economy in which individual endowments are uncertain but there is no
aggregate risk. The uncertainty can be described by a probability distribution v on
E. Malinvaud (1972b) shows that the competitive equilibria of this economy necessarily
coincide with the equilibria of a fully insured economy in which endowments are given by
€ = (€1,...,6n), where &= é edv(e). If we interpret the random selection as assigning
the associated competitive equilibrium allocations to individuals, then Step I achieves full
insurance and the following Step C determines the competitive equilibria of the insured
economy. Such insurance could be achieved either by trade in insurance contracts (Mal-
invaud (1972b)), by trade in price-contingent derivative securities {Chichilnisky, Dutta
and Heal (1992)), or by trade in Arrow (1953) securities which pay off in each state

i = 1,...,#%¥(e"), where the states are the price vectors selected from W(e™). As

12



Observation 1 points out, this reallocation is typically not optimal.

Observation 3. One may wonder whether it is possible to characterize the limit
points of our process completely. We have been unable to do this in general, due to the
potentially complex nature of the set of Pareto optima in high dimensions and the fact that,
by choosing appropriate continuous random selections, we can generate at least the convex
hull of the set of regular competitive equilibrium allocations for the original economy in
our first step. However, for the 2 x 2 Edgeworth box (1.e., £ =2 and N =2), we
can give a characterization. As the continuous random selection changes, we can generate
a closed subset of the contract curve for a given initial endowment distribution in the
original economy. The set of all limit points of our process contains only individually
rational and Pareto optimal allocations, but not every such allocation can be reached
because, for instance, the indifference curve through an original initial allocation may
perhaps not contain the original economy’s unique competitive equilibrium allocation.
Thus, our redistribution process implicitly proposes a refinement of the core, and this
refinement of a cooperative solution concept always gives a nonempty closed set of feasible
allocations. On the other hand, with an atomless continuum of each type of agent in a
2 x 2 Edgeworth box for which the original initial endowment vector led to exactly three
distinct competitive equilibria, relatively open subsets of the contract curve are generally
included in our set of limit points of the process. We conclude that for large economies,
our process does not necessarily yield the core or, equivalently, the competitive equilibrium
allocations of the original economy.

Observation 4. A more abstract way to derive the existence of a limit set (for
all random selections considered together) satisfying Pareto optimality and uniqueness of

competitive equilibria could be based on Zorn’s Lemma. Define the binary relation =<
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on E by z <y if and only if either y belongs to the relative interior of the convex
hull of the competitive equilibrium allocations with endowments z and there are at least
two such equilibria or y is a limit of such a chain beginning at z. The relation —< is
asymmetric and acyclic; it is a subrelation of the strict Pareto dominance relation. Then
the partial ordering < has a maximal linearly ordered chain which has an accumulation
point (because the nonempty set E of feasible and individually rational allocations is
compact). Conclude that a maximal chain has a maximal element, which is an allocation
having a unique competitive equilibrium. However, this alternative method does not yield
convergence in finitely many steps, nor does it guarantee the equality of all possible limits

for a given (continuous) random selection.

5. Interpretation

Multiplicity is sometimes offered as a “critique” of rational expectations (for instance,
see Hahn (1991)). The objection begins with the statement that even if individuals know
the entire structure of the economy, they may rationally expect some particular equilib-
rium to be realized. Rational expectations should require that such predictions be correct,
yet economists have no theory of which equilibrium will actually arise. To formalize the
argument, we should start with probability distributions. Once this is done—when the
distributions are incorporated into the model—the original equilibria fail to remain equi-
librium outcomes in the modified economy. The “no sunspot” result of Cass and Shell
(1983) and Balasko (1983) assures us that a nondegenerate distribution cannot be a com-
petitive equilibrium,

We could draw a negative conclusion from this, in that it says that competitive
equilibrium price distributions do not exist or, alternatively, that equilibrium requires un-

modelled coordination of beliefs. Instead, we believe that what we have here is a slightly
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different story. We show that even though one admits multiplicity in the fundamental
model, the modifications needed to generate price distributions, when successively ap-
plied, necessarily lead to a unique allocation which is indeed Pareto optimal. The only
requirement for this convergence—which occurs in a finite number of steps—is that the
underlying economy be generic and that agents all take the same well-behaved random
selection from the basic equilibrium price correspondence.

The process leads to a unique outcome as the limit of reallocations compatible with
competitive equilibrium under complete markets. At each step, individuals are able to
insure themselves against randomness in the equilibrium outcome. At the nth step, the
maximum number of elementary securities (or basic insurance contracts) which must be
traded is #U{e™), the number of competitive equilibria associated with the endowment
redistribution e"”. By assumption, the number of these equilibria is at most countable at
every step. With finitely many steps, the total number of securities required by the entire
process is at most countable, provided that the utilities of our basic economy lie in the
generic set for which our process is defined and converges. We view the completeness of
markets as one aspect of an idealized perfectly competitive environment. Completeness at
every stage is needed to insure against multiple equilibria and to guarantee that our process
does not stop before reaching a unique competitive equilibrium (and hence Pareto optimal)
allocation. Notice that the introduction of insurance alters the impact of randomization
and, in fact, changes the equilibrium.

QOur arguments require that the randomized selection from the competitive price
correspondence be continuous. Such selections exist generically but definitely not for all
economies. Whenever there are continuous random selections, typically there are uncount-

ably many of them (unless, of course, the equilibrium price correspondence is single valued,
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in which case the equilibrium price function is the only selection, continuous or otherwise).
We hypothesize that all agents use the same selection and that it is common knowledge.
This requirement can be weakened somewhat so that it applies only to the finite number of
redistribution points that arise during our process, but we must impose the restriction that
all of the averages (with respect to the randomization) defining our redistribution process
must use the same probabilities for all traders. (Otherwise, our redistributions need not
constitute feasible allocations.) We further use the common probabilities feature to define
the concept of fair insurance. Lack of agreement in evaluating probabilities usually leads
to outcomes with less than full insurance, even in the standard competitive framework.

In global terms, given utilities in our generic set satisfying the critical property, the
entire process continuously maps the open set E of feasible allocations onto its Pareto
optimal subset. Each possible initial endowment distribution is mapped to a point on the
contract curve. In fact, the fixed points of our entire process (i.e., its limit points) are
precisely the contract curve.

The process could also be interpreted as an iterated planning procedure, where
traders submit entire excess demand functions at each stage and the planner responds
with a redistribution of endowments that equals the average demand at equilibrium prices
according to a continuous random selection. Under this interpretation, no agent needs
to know the probabilities associated with the selection. Moreover, we could envision the
planner asking agents to send their excess demand functions for all prices and all individual
endowment vectors. From this data, the planner could proceed to perform the “thought
experiment” behind our process and then directly reallocate endowments to equal the limit
point of our process. Clearly the planning procedure could stop after one round if the plan-

ner chooses any one of the competitive equilibria of the original economy and assigns it
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probability one. However, the interest in our process is that, by choosing a nondegenerate
random selection, allocations other than competitive equilibria of the original economy can
be achieved.

Qur process suggests a comparison with a version of the social choice problem—
namely, to aggregate data from the economic environment so as to obtain a unique indi-
vidually rational and Pareto optimal outcome. For generic utilities, we do this in a way
that exhibits continuous dependence on the original initial endowments and that satisfies
uniqueness for a particular continuous random selection. Continuity with respect to utili-
ties must remain a conjecture, since new mathematical machinery appears needed to show
that there are random selections that depend continuously on preferences. We have not
investigated the minimal information requirements or the manipulation possibilities for

OlUr Process.
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