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ABSTRACT

We find that precautionary saving accounts for only & modest (less than 3 percentage point) increase in the
aggregate saving rate, at least for moderate and empirically plausible parameter values. This finding is based
on a quantitative analysis of a reasonably parameterized version of the standard growth model modified to
include a large number of agents who receive uninsured idiosyncratic labor endowment shocks. In contrast
to representative agent models, asset trading is quite important to individuals. The model can also account
qualitatively for the positive skewness of wealth and income distributions, and significantly greater wealth
inequality compared to income inequality.
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I. Introduction

This paper has two main goals. The first is to provide an exposition of
nodels whose aggregate behavior is the result of market interaction among a
large number of agents subject to ldiosyncratic shocks. This class of models
involves a considerable amount of Individual dynamics, uncertaintiy, and
asget trading which 1s the main mechanism {(in the models) by which
individuals attempt tc smooth consumption. However, aggregate variables are
unchanging. This contrasts with representative agent models in which
individual dynamics and uncertainty coincide with aggregate dynamics and
uncertainty. The exposition is motivated by two facts: (i) the behavior of
individual consumptions, wealths and portfollos is strongly at variance with
the complete markets model implicit in the representative agent framework,
and (ii) recently several authors have found versions of such models useful
for analyzing a varliety of issues including assei pricing, monetary policy,
buginess cycles, and taxationl.

The exposition is bullt around the standard growth model of Brock and
Mirman [1972] modified to include a role for uninsured idiosyncratic risk
and liquidity/borrowing constraints. This is done by having a large number
of agents who receive Iidiosyncratic labor endowment shocks which are
uninsured, as in the models of Bewley [1986, undated]z. As a result of this
market incompleteness in combination with the possibility of being borrowing

constrained in future periods, agents accumulate excess capital in order to

1See, for example, Aiyagari [1993b], Diaz-Jimenez and Prescott [1992],
Imrohoroglu [1989, 1991], Aiyagari and Gertler [1991], Huggett [1950].

2The absence of insurance markets is taken as given. There can be no doubt
that private information and the resulting problems due to moral hazard and
adverse selection have a loit to do with incomplete insurance. While it would
be degirable to take explicit account of these features (see, for eg., Green
1987, Phelan and Townsend 1991, Taub 1930, Levine 1991, Atkeson and Lucas
1992), this is beyond the scope of this paper.
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smooth consumption in the face of uncertain individual labor incomes.

The second main goal of this paper is to use such a model to study the
quantitative importance of individual risk for aggregate saving. This study
is motivated by the debate concerning the sources of aggregate capital
accumulation, in particular, the suggestion that precautionary saving may be
a quantitatively Iimportant component of aggregate savinga. For example,
Modigliani [1988] argues that the pure bequest motive is likely important
only for people in the highest income and wealth brackets and that (p.39),
"Some portion of bequests, especially in lower income brackets, is not due
to a pure bequest motlve but rather to a precautionary motive reflecting
uncertainty about the length of life, although it is not possible at presgent
toc pinpoint the size of this component." Several other authors have
suggested that the precautionary motive may contribute importantly to wealth
accumulation. For example, Zeldes {1989, p.289] has conjectured that, “...a
significant fraction of the capital accumulation that occurs iIn the United

States may be due to precautionary savings." Skinner [1988] and Caballero
[1990] contain similar suggestions.

The results of this paper suggest that the contributlon of uninsured
idiosyncratic risk to aggregate savings ig quite modest, at least for
moderate and empirically plausible values of risk aversion, variability and
persistence in earnings. The aggregate saving rate is higher by no more than
3 percentage polints. However, for sufficiently high wvarlability and
persistence In earnings the aggregate saving rate could be higher by as much

as 7T-14 percentage points.

We should emphasize that the focus of this paper is on idiosyncratic

3See Kotlikoff and Summers [1981], Kotlikoff [1988] and Modigliani
[1988].
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shocks. It is important to distinguish between risk that is due to aggregate
shocks (and hence undiversifiable) and risk that 1s due to idiosyncratic
shocks (which is diversifiable 1if complete Iinsurance markets existed)
because the assumption that consumers face a constant (in & steady state)
interest rate is Jjustified only when the shocks are purely idiosyncratic
(and uninsured) since in that case there is no aggregate uncertainty.
Therefore, the specification of the earnings process consumers face should
only capture the ldiosyncratic component of the uncertainty and not include
the common {aggregate) component since this involves aggregate uncertainty
and will be reflected in stochastic interest rates. Further, the empirically
reasonable requirement that cross—section distributlions of earnings, wealth,
income, consumption, etc. (normalized by the respective per capita values)
be stationary requires that the specification of the individual earnings
process be trend stationary4.

There are several additlonal distinguishing features of our exercise
relative to the many analyses of precautionary saving in the literature.
These are: (i) endogenocus heterogeneity, (ii) aggregation, (iii) infinite
horizons, (iv) borrowing constraint, and (v) general equilibrium, i.e.,
endogenously determined Iinterest rate. For a given Iinterest rate optimal
individual saving behavior leads to a distribution of agenis with different
levels of assets reflecting different histories of labor endowment shocks.

Aggregation implies some level of per capita assets. In a steady state

4Since the shocks are purely idiosyncratic (by assumption), per capita
earnings will be growing deterministically. Therefore, the existence of a
stationary cross-section distribution for earnings normalized by per capita
earnings implies that the individual earnings process must be trend
stationary. Some authors (eg., Caballero 1990, Deaton 1991, Section 2.1)
have used difference stationary earnings processes which have the
empirically unattractive implicatiocn that cross-section distributions
(normalized by per capita values) get more and more dispersed over time and
stationary distributlions do not exist.
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equilibrium the per capita amount of capital must equal the per capita asset
holdings of consumers and the interest rate must equal the net marginal
product of capital (as determined by a standard neoclassical production
function}. These features Iin combination explain why the interest rate is
necessarily less than the time preference rate and, hence, the aggregate
capital stock and the saving rate are necessarily greater than under
certainty {equlvalently, complete marketg). In particular, this is true
regardless of the convexity of the marginal utillty of consumption which has
been the traditional criterion for generating precautionary saving.

Most analyses of precautlonary saving are done in a single agent model
with an exogenously specified interest rate. Consequently, the endogenous
heterogeneity and aggregation issues are not addressed. The focus on the
convexity of marginal utility in the traditional literature is entirely due
to the focus on single agent problems who typically have a two period
horizon and do not face a binding borrowing constraint. The convexity of
marginal utility becomes unnecessary once features (i) - (v), especially
(iii) and (iv), are taken into account. This is explained in Section III.

We wish to emphasize the point that general equilibrium effects may not
be Jjust second order considerations. As we will show, they can be very
Important in understanding why 1idlosyncratic shocks and liquidity
constraints can fail to generate significant increases in aggregate saving.

Some additional implications of our analysigs are as follows. In
contrast to representative agent models (see Cochrane 1989), 1ii turns out
that access to asset markels 1is quite Important in enabling consumers to
smooth out earnings fluctuations. In one example, by optimally accumulating
and decumulating assets, an lndividual can cut consumption variability by
about half and enjoy a welfare gain of about 14 percent of per capita

consumption, or about 8 percent of per capita GNP, compared to a situation
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in which he had no access to asset marketss.

The model 1s also consistent, at least qualitatively, with certain
features of income and wealth distributions. The distributions are
positively skewed (median < mean), the wealth digtribution is much more
dispersed than the income distribution, and Inequality as measured by the
Gini coefficient is significantly higher for wealth than for income.

The rest of this paper is organised as follows. In Section II we review
the relevant empirical and theoretical-quantitative 1literature which
suggests that the precautionary motive and liquidity constraints may be
important for a variety of phenomena. In Section III we offer an exposition
of modelg with uninsured 1idiosyncratic risk and liquidity consiraints. In
Section IV we describe the specification and parameterization and the
computational procedure. Section V¥V containg the results and Section VI
concludes with some suggestlions for further work. The Appendix contains

several propositions and proofs.

II. Precautionary Motive and Liquidity Constraints
There is a considerable 1literature which emphasizes precauticnary

savings and liquidity/borrowing constraints for understanding household

5'I‘he above calculation requires a complete model since good data on
consumption at the iIndividual level are not available. Otherwise, one could
use the consumpition data to get an idea of consumption variability at the
individual level and combine it with some specification of the utility
function to obtain an estimate for the welfare galn as in Lucas [1985].
Since data on earnings is available, this can be used together wiih a
complete model to estimate how much individual consumption varles in a
stochastic steady state equilibrium. The present model seems much more
appropriate for addressing this type of a question than a representative
agent model because Iin a representative agent model agents face only
aggregate uncertainty, which seems quite unrealistic. The representative
agent model may be a useful abstraction for other questions but not for this
one,




6

consumption/saving behavior as well as a variety of aggregate phenomenas.
The behavior of individual consumptions, wealths and portfelios are at
considerable variance with the predictions of complete markets modelsT.

Casual empiricism as well as formal evidence indicates that individual
consumptions are much more variable than aggregate consumption (Barsky,
Mankiw and Zeldes 1986, Deaton 1991). Further, individual consumptions are
not very highly correlated either with each other or with aggregate
consumption as would be the case with complete frictionless Arrow~Debreu
markets. This suggests that heterogeneity due to incomplete markets may be
important. Heterogeneity 1s clearly necessary for studying the importance of
borrowing constraints.

Further and more detailed evidence for the importance of precauticnary
saving is described by Carroll [1991] and summarized below. Individual
wealth heoldings appear to be highly wvolatile with large fractions of
households moving from one wealth declle to another over a few yearss. It
would be hard to explain such mobility across the wealth distribution over a
fairly short period of time (suggesting that age and life cycle related
factors are not the reasons) in the absence of temporary Iidiosyncratic

shocks. Avery, Elliehausen and Canner [1984] present evidence to the effect

6A partial list of such work includes: Aliyvagari [1993b], Diaz-Jimenez
and Prescott [1991], Alvagarl and Gertler [1991], Carroll [1991], Deaton
[1991]1, Caballero [1990], Huggett [1990], Zeldes [198%9a,b], Imrohoroglu
[1989, 1991], Kimball and Mankiw [1989], and Scheinkman and Welss [1986].

TSee Alyagari [1993a, pp. 22-241 for a lengthier discussion of the
predictions of models with complete frictionless markets and their empirical
shortcomings.

8Accor‘ding to Avery and Xennickell [1989], 60 per cent of households
were in a different wealth decile in 1985 than in 1982. Approximately 30 per
cent moved up and 30 per cent moved down. Only people in the topmost and the
bottommost deciles were more likely to stay put than move to another decile.



that the ratio of median wealth to median income is higher for individuals
in occupations with greater income wuncertainty, eg., farming and
self-employed businessman.

The evidence on portfolios Iindicates considerable diversity in
portfolio compositions for households with different wealth levels. Mankiw
and Zeldes [1991] present evidence that only about 25 percent of U. 5.
households own any stocks in spite of the fact that the expected return on
stocks has been so much higher than the risk-free rate. According to
evidence presented by Avery, Elliehausen and Kennickell [1988], the
ownership of stocks is highly concentrated at the top end of the wealth
digtribution whereas the ownership of liquid assets is concentrated in the
lower portion of the wealth distributiong. The portfolios of households with
low wealth contain a disproportionately large share of low return risk-free
assets and a disproportionately small share of high return risky assets. The
portfolios of high wealth households exhibit the opposite characteristiclo.
Such wide disparities In portfolio compositions would be hard to explain

under complete frictionless markets assuming Iindividuals have roughly

constant and equal relative risk aversion coefficients. lastly, it would be

9For example, the top one per cent of wealth holders own about sixty
per cent of all equity but only about ten per cent of all liquid assets. In
contrast, the bottom ninety per cent of households own about 53 per cent of
all liquid assets and only about nine per cent of all equity. Greenwood
[1983] presents similar evidence to the effect that the top five per cent of
wealth holders own about 85 per cent of all corporate stock and about 60 per
cent of all debt instruments (Table 4, p. 35 and Figure 2, p.34).

1OKessler and Wolff [1991] calculate that the lowest wealth quintile’s

pertfolio contains over 80 per cent of lliquld assets (currency, demand
deposits and time deposits), only about 9 per cent of financial securities
and corporate stock, and only about 3 per cent of other real estate (i.e.
not including housing) and unincorporated business. In contrast, the highest
wealth quintile’s portfolic contains only about 15 per cent of 1liquid
assets, about 22 per cent of financial securities and corporate stock, and
over 42 per cent of other real estate and unincorporated business (Table 6,
p.263). Similar evidence is presented in Mankiw and Zeldes [1951].
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hard to reconcile the vast amount of trading in asset markets and the
pattern of transactlon velocitles across assets with a complete frictionless
narkets story.

The above facts constitute quite strong a priori evidence in favor of
the importance of unlinsured ldiecsyncratic risk.

In the next section we provide an intuitive overview of the workings of
general equilibrium dynamic economies with heterogeneous agents, uninsured

ldiosyncratic shocks and borrowing constraints.

I1I. Economies With Heterogeneous Agents, Uninsured Idiosyncratic Shocks and
Borrowing Consiraints: An Exposition

The chief ingredient in this class of models is the "income fluctuation
problem“ll. In this problem a single individual facing uncertain earnlings and
a constant return on assets makes consumption and assetl
accumulation/decumulation decisions optimally in order to maximize the
expected value of the discounted sum of one-period utlilities of consumption.
The individual may be permitted to borrow (hold negative assets) up to some
limit. Under =some conditlons this is a well-defined problem and gives rige
to unique decision rules and a unique long-run distribution of asset
holdings, and, hence, a unique long-run average asset holdings.

The solutlon of this problem can be turned into a stochastic steady
state of a general equilibrium dynamic capital accumulation model in the
following way. Imagine that there is a continuum of individuals (of size
unity) subject to idicsyncratic earnings uncertainty and among whom asset

holdings are distributed according to the long-run distribution mentioned

115ee, Shechtman and Escudero [1977]. The ensuing exposition is based on
results from this paper and from Clarida [1987, 1990] and Bewley [undated,
1986]. See also Laltner [1992].




above., By construction, then, the cross-section distribution of assets will
be constant over time even though Individual asset holdings vary
stochastically over time. Further, the long-run average asset holdings for
an individual will equal the constant per-caplta assets of the population.
We now Introduce a neoclassical aggregate productlon function inte this
economy in which per-capita output depends on per-capita capital (the only
outside asset) and per-capita 1labor supply. Idlosyncratic earnings
uncertainty is generated by assumlng that individual labor supplies are
randomly inelastic and Iindependent across agents. Due to the idiosyncratic
nature of the labor supply shocks, the expected value of labor supply for an
individual equals the per-capita labor supply. Therefore, per-capita labor

supply 1s constant and may be normalized to unitylz.

Individual earnings are
then given by the wage (which equals the marginal product of labor) times
individual labor supply. Lastly, the return on assets faced by individuals
must equal the net marginal product of capital and the per-capita amount of
capital must equal per—capita asset holdings.

in the absence of earnings uncertalnty (equivalently, with full
insurance markets) all agents are alike and face no uncertainty. The model
collapses to the representative agent Brock-Mirman [1972] model of capital
accumulation whose steady state is characterized by an interest rate equal
toe the rate of time preference and per-capita capital given by the modified
golden rule. However, with Iidiosyncratic earnings uncertainty and no

insurance markets the combination of the precautionary motive and limited

borrowing leads to an interest rate lower than the rate of time preference

12An equivalent description is to imagine that individual labor supplies
are inelastic at unity but that Individual productivities are
idiosyncratically random and that average preductivity is normalized to
unity.
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and, therefore, to a per-capita capiftal higher than the modified golden rule
capitalls. Aggregate saving and the saving rate are higher.
To see these points more clearly, we start by describing the income

fluctuation problem and some properties of its solution.

The Individual’s Problem

For sgimplicity we assume that labor endowment shocks (equivalently,

earnings) are i1.1.d. over time14. We also permit some borrowingls. Let Cy» at,

and 1t denote period t consumption, assets and the labor endowment. Let Ulc)
be the period utility function, B be the utility discount factor with A =
(1-8)/8 > 0 being the time preference rate, r be the return on assets, and w

be the wage. The individual’s problem is to maximize

[r4]
(1a) E, b3 BtU(ct) subject to:
=0

(1b) c, + a = WL, + (1+r)at; c

t ¥ e t 20, a

= -b, almost surely (a.s.),

t £

where, b (if positive) is the limit on borrowing and 1t is assumed o be

i.i.d with bounded support given by [1m1n’1max]’ with 1min > 0.

Some discussion of the borrowing constraint seems appropriate here.

Clearly, if r < 0, some limit on borrowing is required; otherwise the

13Throughout this paper we abstract from technical progress and

aggregate growth. It ls straightforward to incorporate this and is indicated
later.

14In our gquantitative analysis we permit the labor endowment shock to be
serially correlated so that anticipation effects will be present,

15The purpose of permitting borrowing is to emphasize the point that it
only serves to reduce aggregate saving and the saving rate. That is, the
impact on the saving rate would be even less if borrowing were to be
allowed.




11

problem is not well-posed and a maxlmum does not exist. The present value of
earnings is infinite (a.s.) and nothing prevents the individual from running
a Ponzi scheme. If r > O, then a less restrictive alternative tc imposing =
borrowing 1imit is to impose present value budget balance (a.s.). This is
equivalent to requiring 1lim at/{1+r}t z 0 (a.s.). In turn, this limit
condition together with the nonnegativiiy of consumption is equivalent to
the period by period borrowing constraint a = —wl , /r (a.s.)ls.

t min

/r, then the borrowing limit b will never be

Consequently, 1f b exceeds wlmin

binding and b may be replaced by the smaller amount wlmin/r. Therefore,

without loss of generaliiy we may specify the limit on borrowing as

{2a) a, = -¢

{2b) ¢ = min {b, wlm n/r}, forr >0, ¢ = b, for r = 0.

i

If the limit on borrowing b 1s more stringent than wlmin/r (for
instance, if b 1is zero so that no borrowing 1is permitted}, then the
borrowing limit b may be regarded as ad hoc in the sense that it is not a
consequence of present value budget ©balance and nonnegativity of
consumption. Note that ¢ is to be regarded as a function of b, w and r. The
above form of the borrowing constraint will be referred to as a "fixed"
borrowing limit. Figure IIa shows the typical shape of the borrowing limit

as a function of r (curve marked ¢).

We now define at and zt.

165ee proposition 1 in the Appendix. Since r > 0, it is easy to gsee that
the borrowing constraint implies the limit condition. To see the reverse,
note that wlmin/r is the maximum amount that the consumer can repay for sure

without violating nonnegativity of consumption.
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(3a) 4, =a + ¢,

(3b) z, =Wl + (1+r)a, -rg¢,

z, may be thought of as the total resources of the agent at date t.

t
Using (2) and (3) we can rewrite (1b) as follows.

(4a) c, *+ at+1 =2z, C ¥ c, at = 0,

(4b) Zigg = w1t+1 + (1+r)ﬁt+1 - r.
Let V(zt,b,w,r) be the optimal value function for the agent with total
resources .. This function 1is the unigque solution to the following

Bellman’s equatioan.

(5) V(zt,b,w,r] = max {U(zt-ét+1) + BIV(zt+1,b,w,r)dF(lt+1)}
where the maximization on the right side is over at+1 subject to (4).

The optimal asset demand rule for an agent is obtained by solving the
maximization on the right side of (5). This yields the following

single-valued and continuous asset demand function.

(&) at+1 = A(zt,b,w.r); (asset demand function)

Substituting (6) into (4b} we obtain the transition law for total

resources Zt.

1TWe assume that the utility function U(.) 1is bounded, coniinucusly
differentiable, strictly increasing and strictly concave. Then, the wvalue
function V(.) is well-defined and is alsc continuously differentiable,
gstrictly increasing and strictly concave. The differentiability of the value
function is established in proposition 2 in the Appendix which also
characterizes the solution to the maximization problem in (5).
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(7 Zyag = w1t+1 + (1+r)A(zt,b.w,r) - r¢.

In Figures Ia and Ib we show some typical shapes for the functions on
the right sides of (6) and (7), under the assumption that the interest rate
r is less than the rate of time preference A. Clearly, the agent would like
to borrow but is limited by the borrowing limit. As total resources get
smaller and smaller the individual borrows more and more in order to
maintain current consumption and his debt approaches the berrowing limit. At
some point when total resources are too low It would be optimal to borrow

upto the limit and consume all of total resources. Thus, there exists a

-~ ES

positive value z > z = wlmin-r¢ z 0, such that whenever z, = z, it is

min t

optimal to consume all of total resources (i.e., set c, = zt) and set at+

t 1

to its lowest permissible value which 1s zero (see proposition 3 in Aiyagari

~

1993a). That is, it is optimal to exhaust the borrowing limit. For zy =z,

both ¢, and & are strictly increasing in z i.e., A(.) is strictly

t t+1 t’

increasing with a slope less than unity. In this situation the borrowing
limit is not currently binding'c.

Under some additional assumptions, the support of the Markov process

defined by (7) is bounded; specifically there is a z* such that for all zy =

z¥, Zy 41 = z, with probability one (see Figure Ib)lg. These conditions also

18The excess sensitivity of consumption to a transitory earnings

innovation is apparent here. In the liquiditiy constrained region consumption
responds one to cne even to transitory earnings shocks. Note that in this
i.i.d. case given current consumption other currently known variables will
not improve the forecast of future consumption. (This will not be true when
the earnings shocks are serially correlated.) Thus, tests such as Hall's
[1978] do not necessarily throw light on whether liquidity constraints are
or are not important.

198ee proposition 4 in the Appendix. The key condition here is that the
relative risk aversion coefficient shotild be bounded . This conditicn is
violated by, for example, negative exponential utility in which case there
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guarantee that there exlists a unique, stable stationary distribution for
{zt} which behaves continucusly with respect to the parameters b, w, and r
(see proposition 5 in the Appendix). Let an (the subscript reflecting the
fact that for now w is belng treated as fixed) denote long run average

assets. Using (3a) and (6) this is given by

(8) an = E{A(z,b,w,r}} - ¢,

where E{.} denotes expectation with respect to the statlonary distribution

cf =z.

Endogenous Heterogenelty and Aggregation

The distribution of {zt} and the value of an reflect the endogenous
heterogenelty and the aggregation features mentioned in the introduction.
an represents the aggregate assets of the population consistent with the
distribution of assets across the population implied by individual optimal
gaving behavior. In Figure Ila we show a typical shape of the graph of an
versus r.

The most important feature of this graph is that an tends to infinity

20

as r approaches the rate of time preference A from below ~. This reflects the

infinite horizon of consumers. If r equals or exceeds the rate of time

preference then the individual will accumulate an infinitely large amount of

exist values of r below A and a probability distribution for {lt} with
bounded support such that the consumer’s assets will wander off to infinity
a.s5. (see Schechtman and Egcudero 1977, pp. 159-161).

20See Bewley [undated, Figure 1, p.41, Clarida [1990, proposition 2.4,

p.548]. an is & continuous function of r (and also of b and w) but need not

be monotone in r.
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assetg and an may be thought to be infinity., Intuitively, if r exceeds A
then the individual wants to postpone consumption to the future and be a
lender. The consumption profile will be upward sloping and the agent will
accumulate an infinitely large amount of assets to finance an infinitely
large amount of consumption in the distant future21. This conclusion carries
over to the borderline case of r equal to A. In this case the consumer
attempts to malntain a smooth marginal uiility of consumption profile. At
the margin it is costless for the consumer to acquire an additional unit of
the asset. However, since there is a positive probability of getting a
sufficiently long string of bad draws of labor shocks, maintaining a smooth
marginal utility of consumption profile is only possible if the consumer has

an arbitrarily large amount of agsets to buffer the shockszz.

21The first order necessary conditlon (the Euler equation) for

individual optimization is: U’(ct] = B(1+F)Et[U'(ct+1)] with equality Iif
at+1 > 0. Therefore, on average marginal utility is decreasing at least
geometrically over time and will converge to zero (a.s.). More formally,
Bt(1+rJtU’(ct) is a nonnegative super-martingale and converges a.s. to a
finite random variable. Since g(1+r) > 1, it follows that U’ must converge
must converge to o a.s8. It follows that z, and

t t

at also converge to infinity, a.s. The conclusion holds also for the

borderline case of B(1+r) = 1. See, Chawrberlain and Wilson [1984] for the
detalls of the arguments.

to zeroe a.s. and, hence, c

ZZIt is easy to see that there cannot be a fixed point in Figure Ib
corresponding to 1t+1 = 1max when B(1+r) is unity. If there is such a finite

fixed point (denoted zmax) then we have {combining the envelope condition

with the first order condition for problem 5 and using the strict concavity

. ’ 7
of the wvalue function): V (zmax) z Et{V (yt+1+(1+r)A{zmax))} >

A (ymax+(1+r)A(zmax)] =V (zmax) which is a contradiction. Consequently, the

. at, and ct
all go to infinity a.s. Thus, there is a crucial difference between the
solutions to the individual problem with and without uncertainty when g({1+r)

equals unity.

support of the distribution of {zt} is unbounded. In fact, =z
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Next, note that for wvalues of r < A, an is always higher under
uncertainty than if earnings were certain, atleast as long as r is not too
mnuch below A, i.e., assets are not too costly to hold, This result is
independent of whether U’ is convex or concave and arises due to the
borrowing constraint and the infinite horizon. In a single consumer problem
with a two pericd horizon there is nc heterogeneity and the borrowing
constraint may be lignored by making suitable assumplions about the time
profile of earnings. However, with an Infinite horlizon, repeated shocks, and
r < A nelther the hetrogeneity nor the borrowing constiraint can be ignored.

If earnings were certain (or, equivalently, markets complete) an,would
equal (-¢) for all r < A. That is, per capita assets under certainty are at
their lowest permissible level since all agents are alike and everyone is
constrained. However, In a steady state under incomplete markets there is a
distribution of agents with different total resources reflecting different
histories of labor endowment shocks. Those with low total resources will
continue to be liquidity constrained whereas those with high total resources
will accumulate assets beyond the constrained level regardless of the
convexity of marginal utility simply because their current total resources
are quite high relative to average future total resourceszs. Aggregation then
implies that per capita assets must necessarily exceed its level under

certalnty24.

23

It should be noted that for r & (0,A) such that wlm n/r < b, the

i
borrowing constiraint under Incomplete markets is more siringent than under
complete markets since under complete markets the borrowing limit would be
min {b,w/r} since E{1} = 1. This, in itself, makes per capita asseis
potentially higher under Iincomplete markets.

24As can be seen in Figure IlIa, if r is {tco low then even under
uncertainty everyone continues teo be liquidity constrained and per capita
assets are the same as in the certainty case. This will happen for values of
r which satisfy: U’(wlmax—r¢) = B(1+r)Et{U’(w1t+1—r¢)}. A related question
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General Equilibrium

The crucial features which explain how uninsured idiosyncratic shocks
and borrowing constraints lead to higher aggregate saving are that an is
finite only if r is less than A and that it tends to infinity as r
approaches A from below. To see this, let f(k,1) denote per capita output as
a function of per capita capital (k) and per capita labor (which equals
unity) and let 3 be the depreciation rate of capital. Now consider the curve
labeled K(r) in Figure IIb. This is a graph of k versus r defined by the
marginal condition arising from producer profit maximization, r = f1[k.1)-a,
which must hold in a gteady state of this economy. Under standard
assumptions, this curve is downward sloping, tends to w as r tends to (-3&)
and tends to zero as r tends to . In addition, we can express the wage w as
a function of r since w equals fz(k,l]. Denote this by w(r) which is a
decreasing function under standard assumptions, tends to zero as r tends to
o, and tends to w as r tends to (-8). For a given r, let Ea denote the value
of an when w equals w(r) and let NI (for no insurance) be the graph of

Ea(r) versus r25. A steady state of this economy is then characterized by the

is what happens to Ea If uncertainty is increased. Sibley [1975] and Miller

[1976] show that if U’ is convex then a mean preserving spread in the
distribution of {lt} will lower the consumptlion function, equivalently,

raise the asset demand function (6). (In their papers the borrowing

constraint is of the form: at = —wlmin/r.). That is, the consumer will

consume less and save more for each level of total resources z,. {This may

be thought of as the infinite horizon analogue of the standard two period
analyses of precautionary saving.). However, whether this will increase per
capita asgets or decrease 1t is hard to say since a shift in the assget
demand function changes the stationary distribution of total resources and,
thereby per capita assets in a complicated way. The quantitative results
reported in Section V always indicated that an Increase in the variability
of {lt} shifted the Ea curve to the right.

25This curve also has the same general shape as the an curve in Figure
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condition K(r) = Ea(r). This is sghown in Figure IIb by the intersection
point (labeled e™) of these two curveszs. Intuitively, one may think of K({r)
as the capital desired by firms at the interest rate r, and Ea(r) as the
capital supplied by households at the interest rate r.

Now consider what the steady siate of the economy would be if there
were no uncertalnty, or, equivalently, there were full insurance markets.
Then the economy consists of a representative agent who receives the
constant earnings w in each period., If r is lesg than A the agent would
always be up agalnst his borrowing limit and his asset holdings would be
(-¢). If r equals A his asset holdings equal his initial holdings whatever
they may be. If r exceeds A then he would accumulate an infinitely large
amount of asseits. Therefore, the right angled line labeled FI (for full
insurance) consisting of the horizontal segment at the height A and the
vertical segment corresponding tc the binding borrowing constraint
represents the individual’s desired asset holdings as a function of r. The
steady state of thls full insurance eccnomy is al the point ef.

It is clear from the preceding argument that the aggregate capital
stock is higher and the interest rate is lower in the economy with uninsured

idiosyncratic shocks and borrowing constraints as compared to the standard

ITa in which w was ireated as a separate parameter, instead of as a function
of r. It is also continuous and tends to w as r tends to A from below. It
rneed not be monotonic. To understand this, suppose the borrowing limit is
zero, r is fixed and the utility function is iso-elastic. Then it ls easgy to
see that an Increase in w leads to a proportional increase in &, z, ¢, and
a. That 1isg, the an curve shifts to the right with an increase in w.

However, since w(r) is decreasing in r, it is quite possible that the NI
curve is non-monotonic in r.

26Note that since the NI curve need not be monotonic there is no

guarantee that the steady state is unique.
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economy27. The saving rate which is given by 8k/f(k,1) 1is also higherza.

The above analysis alsc explains why general equilibrium considerations
in combination with the shape of the Ea(r) curve can play an important role
in limiting the impact of idieosyncratic risk and liquidity constraints on
aggregate saving. Since Ea approaches infinity as r approaches A from below
average household assels are extremely sensitive to slight wvariations in the
interest rate when it is close to (but below) the rate of time preference.
In a partial equilibrium analysis of a s8ingle household r is chosen
arbitrarily and if one chooses an interest rate close enough to the rate of
time preference one can generate arbitrarily large precautionary saving in
excess of the certainty case. For instance, Zeldes [1989] considers a finite
horizon partial equilibrium model and assumes that r equals A. If the
horizon is long enough then the fact that r equals A will imply a
substantial accumulation of assets. However, a general equilibrium analysis
does not permit r to be chosen arbitrarily. Instead r is determined

endogencusly as described earlier and is always less than A. How much r is

27Deterministic growth in the aggregates can easily be accommodated in

the same way as 1t can be in the standard growth model assuming that the
utility function is iscelastic (see section 5.4, pp. 105-107 in Stokey and
Lucas with Prescott 1989) . Assume that due to labor augmenting technical
progress, effective per capita labor supply, and, hence, the wage, grow as
(1+g)t. Assume that the borrowing limit also grows as (1+g)t and let u be
the elasticity of marginal utility. Then the steady state interest rate with
complete markets will equal [(1+A}((1+g)” -1] whereas with 1incomplete
markets the interest rate would be less than [(1+?L)(1-l~g)’1 -11. The
distributions of earnings, total resocurces, assets, consumpition, and income

after normalizing by their respective per capita values would be stationary.

28This follows since k/f(k,1) is an increasing function of k. It is
strictly increasing if the capital share is less than unity. Note that since
there is no growth in this economy net saving is zero in the steady state.
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reduced relative te the certainty case and, thereby, how much aggregate
saving is increased is then a quantitative Issue. Our quantitative analysis
in the next twe sections indicates a modest impact on aggregate saving when
r is endogencusly determinedzg.

We will briefly describe the effects of varying the borrowing limit b,
This is related to two other features of the an curve in Figure IIa. When r
equals negative unity (so that the gross return on assets is zero), assets
will always equal (-b). When r eguals zero, b is not an argument of the
asset demand function A(.). Hence, an decreases one to one with increases
in b when r is zero. These two features suggest that the an curve shifis to
the left when b increases. Therefore, permitting a higher borrowing 1limit
serves to lower aggregate capital and raise the interest rate towards the
time preference rate {(see Figure IIb). The intuition behind this conclusion
is that when borrowing is permitted individuals need not rely solely on
holdings of capital to buffer earnings variation. Borrowing can alsc be used
to buffer these shocks and, hence, leads to smaller holdings of capitalso.

It follows from the previous remarks that if uninsured idiesyncratic
risk and no borrowing (b = 0) lead to a small increase in aggregate capital
relative to the certalnty case, then permitting some borrowing (b > 0) will

lead to an even smaller increase in aggregate capital.

29Clearly, the elasticity of the K(r) curve plays an important role in
determining whether the impact of uninsured idiosyncratic shocks and
borrowing constrainits is mainly on the interest rate or on aggregate saving.
However, it should be kept in mind that the K(r) and w{r) functions are
related through the production function. Therefore, the K(r) and Ea(r)
functions are not independent of each other.

3ONote that the effects of an increase in b occur only in the range of

interest rates for which wl /r > b, If wl /A < b, then there is a range
min nin

of values of r below and near A for which marginal changes in b do not
affect an or the Ea(r) curves. Therefore, if the steady state is in this

range then marginal changes in b have no effect on the steady state.
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We briefly describe the effects of setting a, = -¢* = -wlm n/r and

t i
restricting r to be positive. As noted earlier this is the appropriate form
of the borrowing constraint implied by the present value budget balance and
nonnegativity of consumption when r > 0, and will be referred to as the

"present value" borrowing constraint. If 1 is zero, this is equivalent to

nin
the case of no borrowing (b = 0). If, however, 1 is positive, then an

min
tends to {-w) as r tends to zero (see Figure Ila, curve marked an(¢*)).
This can be seen by substituting wl ./t for ¢ in equations (3) - (8). The
first term on the right side of (8) remains finite whereas the second term
tends to (-w) as r tends to zero. Intuitively, as r becomes smaller the
borrowing limit becomes larger permitiing the individual to carry large
amounts of debt. That is, the present value of minimum earnings 1ls tending
to infinity enabling the individual to service large amounts of debt. The
main difference between this case and the case of a fixed borrowing limit is
that under the present wvalue borrowing constiraint there always exists a
steady state with a positive Interest rate. With a fixed borrowing limit
there may be no steady state with a positive interest rate though there does

exist a steady state with a negative interest rate31.

Some Alternalive Interpretations

31This can be seen by referring to Figure IIb. With a fixed borrowing
limit b > 0, the steady state interest rate will be negative if Ea is
positive when r equals zero and the curve XK(r) is such that it intersects
the Ea curve at a negative r. (This occurs in one of our numerical
examples. ). When the borrowing limit is WImin/r there is zlways a positive

interest rate at which Ea is zero, ensuring that there is always a steady
state with a positive interest rate (see Figure Ila). Again, note that the
an curves corresponding to a fixed b and corresponding to the variable

Iimit wlm n/r may colnclde for a range of values of r near and below A if it

i

happens that wlm n/h < b. This is because, for values of r in thls range the

i
borrowing limit b is not binding (see equation 2).
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The model of individual optimization in (1) and (2} can be turned into
a pure exchange model with government debt in order to analyze the effects
of changing the level of government debt. Let the government have
cutstanding a constant per capita amount of debt denoted d interest on which
is financed by an equal (across agents) lump sum tax v (= rd). Then the
consumer’s budget constraint (2) is altered to: cy e = wlt - rd +
(1+r)at. The steady state equilibrium condition is an = d, where an
denotes per capita asset holdings in the steady state.

In this model, whether debt neutrality holds or not depends crucially
on how the borrowing constraint Iis speclified. With a fixed borrowing limit
as in (2) debt neutrality will not hold. However, with a present value
borrowing constraint, i.e., the borrowing limit equals the present wvalue of
minimum earnings adjusted for lax obligations so that we have 2, z
-(wlmin—rd)/r, then debt neutrality does hold. The equilibrium interest
rate, the distribution of asset holdings net of government debt, and
consumption are invariant to the level of d. This can be seen by using the
transformation at* = at—d In the above equations. Thus, the validity of debt
neutrality in this framework with incomplete markets is entirely dependent
on whether the borrowing limit takes account of changing tax obligations.

The model of individual optimization in (1) and (2) can also be turned
into an ‘"optimum quantity of money"” model as in Bewley [1983] by

interpreting a, as (mt—l]/p, b as 1/p, and r as the Iinteresi paid on money,

t
where my is an agent’s nominal money holding at the beginning of period t, p
is the price level, and the per capita nominal money supply is constant at
unity. Note that r/p is the real value of per capita lump sum taxes (equal
across agents) levied to finance interest payments on money. The borrowing

constraint is equivalent to nonnegativity of money holdings. The steady

state equilibrium condition is that per capita asseft heldings must be zero;
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equivalently, per caplita nominal money holdings equal unity. The problem can
be posed as finding an equilibrium p for a given r (as Bewley posed it), or
as finding an equilibrium r for a given p (as is done here). The latter way
of posing the problem makes it easier to see why it is not possible to have
monetary equilibria with r being arbitrarily close to the rate of time
preference (Bewley 1983).

In Figure 1Ia, let r# be the interest rate at which average assets are
zero corresponding to the an curve with variable borrowing limit given by
wlmin/r. This will be a monetary equilibrium with a price level p# =
r#/(wlmin); equivalently a borrowing limit b# = 1/p#. One cannot support an
interest rate higher than r# by lowering the price level (raising real
balances, or, equivalently, raising the borrowing limit) since the portion
of the curve an at and above r# is unaffected. This is because when p < p#
and r > r#, we have wlmin/r < wlmin/r# = 1/p# < 1/p. Therefore, the
constraint a, z ~-1/p will never bind. Raising the price level above pi
(equivalently lowering the borrowing limit) only serves to increase an in a
neighborhood of r# and, hence, lowers the interest rate.

In the next section we describe model specification, parameterization
and the computation procedure for a wversion of the capital accumulation
model with serially correlated labor endowment shocks. In the section after

that we describe the results on the contribution of precautionary saving to

aggregate saving and some other results.

IV. Model Specification, Parameterization and Computation
The model period is taken to be one year and the utility discount
factor B is chosen to be 0.96. The producticn function f(.) is assumed to be
Cobb-Douglas with the capital share parameter (denoted «) taken to he 0.36.

The depreciation rate of capital (8) is set at 0.08. The periocd utility
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function ig of the constant relative risk aversion (CRRA) type, i.e., Ulc) =
[x::"_"J - 11/(1-p), where g ig the relative risk aversion coefficient. Results
are repocrted for three different wvalues of p € {1, 3, 5}. The above
technology and preference specifications and parameter values are chosen to
be consistent with aggregate features of the post war U. S. economy and are
commonly employed in aggregative models of growth and business cyc1e532

For the labor endowment shocks we use a Markov chain specification with
seven states to match the following first order autoregressive
representation for the logarithm of the labor endowment shock (equivalently
earnings).

2.1/2

(9) log(lt) = plog(lt_l) + o(1-p7) " "e,, €, - Normal(0,1)

t* Tt
(10) ce {0.2, 0.4}, p € {0, 0.3, 0.6, 0.9}

The coefficient of wvariation equals o and the =serial correlation
coefficient equals p. We then follow the procedure described in Deaton
{1991, p.1232] and Tauchen [1986] to approximate the above autoregression by

a seven siate Markov chain33. Table I at the end reporis the ¢ and p values

SZSee, for example, Prescott [1986].
33We divide the real line into seven Intervals as follows. 11 = (-, -5c/2},
I2 = (-5¢/2,-3¢/2), 13 = (-30/2, -¢/2), I4 = (~0/2,0/2}, IS = (¢/2,30/2), I6

= (30/2,50/2), and I7 = {5¢/2,w). The state space of ln(lt} is taken to be
the finite set {-3¢, -2¢, -¢, 0, o, 2¢, 3¢} so that l1 = expl[(i-4)e], i =

1,2,...,7. We then compute the transition probabilitles = = prob{lnl <
Ij’lnlt
for £, assumed in (4.1). We then compute the stationary probability vector 8

assoclated with the probability transition matrix w and the expected value

1j E+1
= log li} by numerical integration using the Normal (0,1) density

of the labor endowment El = 219111' Per capita labor endowment is normalized
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implied by the Markov chain and shows that the approximation is quite good.
The values of ¢ and p were based on the following studies. Kydland
[1984] reports that the standard deviation of annual hours worked from PSID
data is about 15 per cent. Abowd and Card [1587, 1989] use data from the
PSID and NLS and calculate that the standard deviations of per cenit changes
in real earnings and annual hours are about 40 per cent and 35 per cent,
respectively. The implied value for the coefficient of variation (c.v.) in
earnings depends on the serial correlation In earnings. If earnings are
i.i.d. this yields a figure of 28 per cent for the c.v. of earnings.
Positive correlation would lead to a larger figure34. The covariances
reported in Abowd and Card [1987, Table 3, p.727 and 1989, Tables IV, V, VI,
pp. 418-4221 suggest a first order serial correlation coefficient of about

0.3. This would give a figure of 34 per cent for the c.v. of earnings.

Heaton and D. Lucas [1992] also use PSID data to estimate several versions

to unity by scaling the support of the labor shock distribution by El1. That
is, we define l'i = li/El. The Markov chain for the labor endowment shock is
defined by the state space {l’i} together with the probability transition
matrix w. Note that 1’ will have the same coefficient of wvariation and
serial correlation ccoefficient as 1. Table 1 at the end shows that the
approximation is quite good for moderate values of ¢, though for high values
of ¢ the Markov chaln had a somewhat higher coefficient of variation. We
also tried the following alternative for calculating the tiransition
probablilities: nij J

very good approximation to o even for high values. However, its

= prob{lnlt+1 €I .1n1t € Ii}' This procedure yielded a
approximation to p (especially for the high values) was not s¢ good. The

values of p based on the Markov chaln were somewhat lower.

34Let y be the log of earnings, ay be the standard deviation (s.d.) of
y, and ¢g be the s. d. of (yt-yt-l)' Suppose that y follows the first order
process: y, = trend, + py + €, where ¢ is 1i.i.d. It is straightforward
t t t-1 7 Fer B
to calculate that ay/¢g = [2(1-p)] .
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of equation (9). Their estimates (see their Tables A.2 - A.5) indicate a
range of 0.23 to 0.53 for p and a range of 0.27 to 0.4 for ¢. These studies
suggest that a wvalue of ¢ of 20-40 per cent at an annual rate may be
reasonable.

Note that we have made no allowance for the possibility that the
reported earnings variabilities contain significant measurement error. As
the discussion in the papers by Abowd and Card suggests, this is a serious
poseibility, and the relevant degree of idicsyncratic earnings variability
may be somewhat lower. However, thle is balanced by the possibilities that
the data do not include uninsured losses and taste shocks. In addition since
the agents in the model are infinitely rather than finitely lived a larger
value of ¢ may be needed to capture the relevant degree of variability in
permanent income35

Lastly, the borrowing limit b is set to zero, i.e., borrowing is
prohibited. As explained in the previous section permitting some borrowing

would lead to even smaller effects on the aggregate saving rate.

35Suppose that earnings (yt) follow the process: Ve = (1-p}ya + Py, *

2,172

o(1-57) e where €, is i.i.d. with zerc mean. lLet ¥ = 1/(1+r) be the

market disciZ;t factor ;nd T be the horozon. Then permanent income (y%) ig
given by: y? = ya + (yt*ya)[(l—vj/(l—zp}][1-(?p)T]/(1-gT). Therefore, the
variabllity of permanent income as measured by the standard deviation (s.d.)
is higher when the horizon is finite as compared to when the horizon is
infinite. For illustrative purposes if we take r = 0.04, p = 0, and T = 50,
then the s.d. of permanent income is higher by a factor of 1.16 as compared
to the infinite horizon case. Note that higher values of p reduce this
adjustment factor. This suggesis that to capture the effects of the observed
variability in earnings in a model with infinitely lived agents the standard
deviation of earnings in the model needs to scaled up by a factor of about
1.2. The Markov chain approximation that we use tends to deliver this

automatically for the high value of ¢ (0.4); see Table I at the end.
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Computation

We approxXimate the asset demand as a function of total rescurces (for
each of seven possible current labor endowment shocks) by a continuous,
plece-wise linear functicn over an interval. The minimum value of total
resources zmin equals wminlmin’ where Wiin i1s the wage corresponding to an
interest rate equal to the time preference rate36. The maximum value of total
resources Z ax is set equal to the maximum possible value of per-capita
total resources which equals f{kmax,l} *+ (1-6)kmax, where kmax iz ihe

37

maximum sustainable capital stock™ . The interval [zm 'zmax] iz divided into

in
25 sub-intervals not of equal length. Finer sub-intervals were chosen at the
lower end of the interval and coarser sub—-intervals at the upper end of the
intervalsg. Figure 3 shows the asset demand functlons corresponding to 1min
and lmax for a particular set of parameter values.

The algorithm for approximating the steady state uses simulated series
and the bisection method. We start with some value of r (say, r1] close to
but less than the rate of time preference (see Figure Ilb). We then compute
the asset demand function as described above. We thenh simulate the Markov

chain for the Ilabor endowment shock using a random number generator and

obtain a series of 10,000 drawssg. These are used with the asset demand

3OSince the equilibrium interest rate is never higher than the rate of time

preference, the wage cannot be lower than Woin
37

kmax is the unique positive solutlion to f(k,1) = 8k.

38The reason is that for low levels of total resources assets will be zero
since the borrowing constraint will bind. At some critical level of total
resourcegs assets will become positive. This introduces a high degree of
nonlinearity in the asset demand function. Consequently, it is important to
have a finer grid at the 1lower end of the interval to obtain a good
approximation. It turned ocut that througheout the upper half of the interval
the asset demand function was very nearly linear so that a small number of
grid points was adequate to obtain a good approximation in this region.

39We repeated all the calculations using 20,000 draws and found that the
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function to obtain a simulated series of assets. The sample mean of this is

taken to be Ea, We then calculate r_, such that K{rz) equals Ea. If r

2 2

exceeds the rate of time preference it is replaced by the rate of time

preference., Now note that by construction Ty and r, are on opposite sides of

the steady state interest rate r*. Without loss of generality we may suppose

that r, < r* < r, (by relabeling, if necessary). We then define ry = (rl +

rz)/z (thie is the bisection part) and calculate Ea corresponding to rg. If

Ea exceeds K(rs) then r_, is replaced by r,, and we use bisection again. If Ea

2 3

1 is replaced by T, and we use bisection again.

Typically, this yields an excellent approximation to the steady state within

is less than K(ra) then r

ten iterations. Figure 4 shows the graphs of Ea(r) and K{r) for a particular
case.

Once the steady state is approximated we use the solutlion to calculate
the following objects of interest. We calculate the mean, median, standard
deviation, coefficient of wvariation, skewness, and serial correlation
coefficlent for labor inccme, asset (capital) holdings, net Income, gross
income, gross saving, and consumption40. These descriptive statistics are
based on the simulated series obtained in the manner described before. We
also calculate measures of inequality for each of these variables. We use
the simulated series for each varlable to construct its distribution and
then we compute the Lorenz curves and calculate the associated Gini

coefficlients.

changes in the results were very minor.

40The skewness measure ls (mean-median)/standard deviation. This is 1/3
of Pearson’s second coefficlent of skewness. For a log-normal distribution
with standard deviation o the skewness measure 1is approximately o/2. Net

income ls defined as wlt+rat. Gross income is net income plus depreciation

which is aat. Gross saving is gross income minus consumption.
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V. RESULTS
Aggregate Saving

In Tables IIA and 1IB we present the net return to capital in percent
(before the /) and the saving rates in percent (following the /) for o
(coefficient of wvariation of earnings} equal to 0.2 and 0.4, and various
values of p (serial correlation in earnings) and p (the relative risk
aversion coefficient)41. For comparison it is easy to calculate that the full
Insurance net return to capital is 4.17 percent and the saving rate is 23.67
percent42.

The main peint to note is that the differences between the saving rates
with and without Iinsurance are quite small for moderate and empirically
plausible values of o, p and p. However, for high values of o, p and p the
presence of Idiosyncratic risk can raise the saving rate quite significantly
by up to 7 percentage points. The extreme case when o equals 0.4, p equals
0.9 and p egquals 5 leads to a considerable increase in the saving rate of
almost 14 percentage points.

These results may be related to the concepts of relative prudence (RF)
and equivalent precautionary premium {(EPF) developed by Kimball [1990]. For

the CRRA preferences used here RP equals (u+1) and EPP equals RP(oC]zfz

3
41The o and p values reported in the Tables are the ones used in
computing the Markov chain approximation to the laber endowment shock - not
the values of ¢ and p impllied by the Markov chain approximation. These are
described in Table I. Note that for high values of ¢, the Markov chain based
value of ¢ is higher and hence indicates even greater earnings variability
than is Indicated in Tables II.

42Recall that the production function is Cobb-Douglas with « being the
capital share parameter. The saving rate equals &8k/f(k,1) which may be
written as ﬁ[kflff]/fl which equals Su/(r+3). With full insurance, r equals

A.
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where T, 1s the coefficlent of variation of consumption. For a given value
of r increases in earnings variability (¢} or persistence {p) shift the Ea
curve in Figure IIB to the right and also increase C and, hence, the EPP.
As can be seen from Table II, the equilibrium interest rate falls and the
saving rate goes up. An increase In g also shifts the Ea curve to the right
and directly increases RP and the EPP. Again, from Table II, the equilibrium
interest rate falls and the saving rate goes up43.

Some studies (eg., Caballero 1990, Deaton 1991, Section 2.1} use
earnings processes that are difference stationary instead of being trend
stationary. This may be approximated by making p approach unity and
simultanecusly letting o approach infinity in such a way as to keep
cr[2(1-p]1/2 fixed and positive (see note 33)}. Table II suggests that this
would depress the return to capital and increase the saving rate enormously.
However, as noted in the Introduction the limiting model 1is not well

behaved.

Variabilities

The results for the wvariabilities (measured by the coefficient of
variation) of consumption, income (net and gross), gross saving and assets
are in Tables IIJA and IIIB at the end. The main points to note are the
following. Consumption varies about 50-70 percent as much as income. Saving
and assets are much more volatile than income. Saving varies about three

times as much as income and assets vary about twice as much as income. Risk

43As ncted in the intreduction and explained in Section III, infinite

horizons and binding borrowing constraints play important roles in our
results. Further the Ea curve represents the result of aggregating the
saving behavior of a large number of consumers. Kimball’s concepts and
results are developed for a single consumer with a two period horizon and
ignoring borrowing constraints.
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aversion tends to reduce the variabilities of all these variables.
Variability in earnings (¢) has a relatively smaller effect on the
variability of consumption and relatively 1larger effects on the
varlabilities of other variables. Consumption varlability rises with
persistence in earnings and falls with risk aversion. Variability of

consumption relative to income behaves similarly.

Importance of Assel Trading

An approximate expression for the welfare loss from consumption
variability, measured as the percentage of average consumption the consumer
ig willing to give up, is gliven by pnczfz, where p is the relative risk
aversion ceoefficient and o is the coefficient of variation of consumption.
In contrast to representative agent models (see Cochrane 1989) the resultis
here imply that consumers are able to accomplish a significant amount of
consumption smecothing by accumulating and decumulating assets and, hence,
enjoy significant welfare benefits from participating in asset markets. To
see this conslder how variable consumption would be if an individual could
not trade in asset markets. Suppose that a consumer held a fixed quanitity
of assets equal to the per caplta amount and consumed his earnings plus the
return on the assets. In this case 0, would be given by
@/[1+mr/{(1—m)(r+6)}]44. If, as an example, we take u = 3, o = 0.4, and p =
0.6 then o with a fixed amount of assets equals 0.35. Actual consumption
variability {from Table IIIB at the end is 0.17. Thus by optimally

accunulating and depleting assets consumption variabllity is cut in half

44This may be derived as follows. With fixed assets equal to k

individual consumption ct = rk+w1t. Hence, 0c = o/[1+rk/w]. Now note that,

k/w = (kflff)/{fltw/f}} = a/{{r+5)(1i~a¢)}}, since the production function is
Cobb-Douglas.
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yvielding a2 welfare benefit of about 14 percent of per caplia consumption, or

about 8 percent of per capita GNP.

Cross Section Distributions and Inequality Measures

Since 1long run distributions for an individual coincide with
cross—-section distributions for the population, results for variabilites of
individual consumption, income, and assets have immediate implicatons for
cross-section distributions. These resulis are gualitatively consistent with
cagual empiricism and more careful empirical observation; there is much less
digpersion across households in consumption compared to income and much
greater dispersicn in wealth compared to income (see Tables IIIA and IIIB,
and Figures 5A and 5B for an example). In all cases, the fraction of
liquidity constrained households is close to zero45. Skewness coefficlents
reveal another aspect of inequality. All of the cross-gection distributiecns
are positively skewed (median < mean]46. However the degree of skeuness is
somewhat less than in the data. For example, median net income, gross income
and capital are all over 90 percent of their respective mean wvalues. In
contrast, U. S. median household income is about 80 percent of U. S. mean

household income47. Lorenz curves and Gini cocefficients (see Figure 6 for an

450f course, it is the possibllity of being constrained (and its utility
cogt to the household) that affects behavior and leads teo this result.

46Note that the labor shock distribution is positively skewed gince it
is an approximation of a log-Normal distribution. However, we found that
even when the labor shock distribution is symmetric the mechanics of the
model naturally generate positlve skewness (median < mean) in the wealth
digtributlon, even though the Iincome and consumption distributions were
roughly symmetric.

YThis figure is for 1985 from the Statistical Abstract of the United
Staltes 1988, using numbers for median and mean household incomes from Tables
693 and 694, p.424. The corresponding ratio for male persons in 1985 is
0.79, and for female persons in 1985 is 0.71 (both from Table 710, p. 432,
ibid). It should be possible to lower the ratio of median to mean income in
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example) show that the model does generate empirically plausible relative
degrees of inequality. Consumpticn exhibits the least inequality followed by
net income, gross Income and then capital, and saving exhibits the greatest
inequality. However, the model cannot generate the observed degrees of
inequality. For example, when p is 5, p is 0.6 and ¢ is 0.2 the Gini
coefficients for net income and wealth are 0.12 and 0.32, respectively
(Figure 6). In U. S. data, however, the Ginil coefficient for income is about

0.4 and that for net wealth is about 0.848.

V1. Concluding Remarks
In this paper a version of the Brock-Mirman growth model with a large
number of agebts subject to uninsured idiosyncratic shocks was described and
its qualitative and gquantitative implications for the contribution of
precautlonary saving to aggregate saving, importance of asset trading, and
Income and wealth distributions were analyzed. This class of models may also

be useful in understanding various asset return puzzles. Mehra and Prescott

the model by adjusting ¢, the coefficient of variation of jearnings. Since
earnings are approximately log-Normal, median/mean % exp(-¢ /2). This ratio
equals 0.98 when o iIs 0.2, and it equals 0.92 when ¢ is 0.4,

48See, for example, Greenwood [1983, Table 9, p.41], Kessler and Wolff
[1991, Table 4, p.260]. According to Greenwood [1983, Table 4, p.35, Table
7, p-40], in 1973, the top 5 percent of wealth holders held close to 60
percent of net wealth, and the top 5 percent of Iincome earners earned about
23 percent of total income. Kessler and Wolff [1991, Table 3, p.259] present
a very similar number for net wealth in 1983. There are several reasons for
the discrepancy between the model and the data. First, the way income and
wealth distribution data are put together does not match well with the
model. Since the model is one of infinitely lived agents a household in the
model should probably be thought of as consisting of members of all the
different generations of a family. Implicitly, the model assumes that the
different generations of a family are linked by begquests and, therefore,
focuses only on total family income, wealth and consumption where the family
is more broadly defined than in the data. Second, the model focuses on only
one source of inequality (that due to different histories of labor endowment
shocks) and abstracts from other sources of Iinequality like differences in
the endowments of human capital (broadly interpreted]).
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[1985] suggested that these puzzles cannot be "accounted for by models that
abstiract from transactions costsg, liquidity constraints and other frictions
absent in the Arrow-Debreu set-up." However, this requires that the models
be generalized to include aggregate dynamics and uncertainty49. This is a
very hard problem computationally since the distribution of assets across
households can no longer be taken to be constant. Instead, the cross-section
distribution is part of the state vector which evelves stochastically over
time in response to aggregate shocks. This 1s an issue that remains to be
explored.

This class of models can also differ from the infinite lived agent
complete markets model on some important policy lissues. For Iinstance, with
complete markets dynamic optimal factor taxation leads to the resulf that
the capital income tax should be zero in the long run (see Chamley 1986).
However, Aiyagari [1993b] shows that with Iidiosyncratic shocks and
incomplete markets the capital income tax is strictly positive even in the
long run. Therefore, the large welfare gains of reducing the capital income
tax to zero calculated by Lucas [1990] in a complete markets model may well

turn out to be welfare losses in an incomplete markets model.

49See Alyagarl and Gertler [1991] for an early attempt based on differential
transactions cosis but without aggregate uncertainty. Because of the absence
of aggregate uncertainty that model could only analyze the risk-free rate
and the transactions premlum but not the risk premium.
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Table I
Markov Chaln Approximatjon to the Labor Endowment Shock
Markov Chaln o/Markov Chain p

a\p 0 0.3 0.6 0.9

0.2 0.21/0 0.21/0.3 0.21/0.59 0.24/0.9

0.4 0.43/0 0.43/0.28 0.44/0.58 0. 49/0. 89
Table IIA

Net Return to Capital in %/Aggregate Saving Rate in ¥ (¢ = 0.2)

NI 1 3 5

0 4.1666/23. 67 4.1456/23.71 4,0858/23. 83

0.3 4.1365/23.73 4.0432/23.91  3.9054/24.19

0.6 4.0912/23.82 3.8767/24.25 3.5857/24.86

0.9 3.9305/24.14  3.2903/25.51  2.5260/27.36
Table IIB

Net Return to Capital in %/Aggregate Saving Rate in % (¢ = 0.4}

P\
0

0.3
0.6

0.9

1

4.0649/23. 87

3.9554/24.09

3.7567/24.50

3.3054/25.47

3

3.7816/24. 44

3.4188/25.22

2.7835/26.71

1.2894/31.00

5
3.4177/25.22
2.8032/26.66
1.8070/29. 37

~.3456/37.63
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Table IIIA
Coefficlents of Variation

consumption/net income/gross income
gross saving/assets

c=0.2

foANT 1 3 5

0 17,2724 .09/.2/7.24 .08/.19/.23
.75/.56 .73/.53 .71/.51

.3 L1/.2/7.24 .09/.2/.23 .09/.19/.23
.73/.54 .T2/.52 .7/.5

.6 L13/.22/.28 L12/.217.27 L11/.21/.26
.82/.66 .T9/.62 .75/7.59

.9 L22/.28/.40 .2/.26/.38 .18/.25/.36
1.03/.97 .94/. 87 .86/.79

Table IIIB

Coefficients of Variation

consumption/net income/gross income
gross saving/assets

c=0.4

FoAN T} 1 3 5

o .12/.37/.35 L11/7.37/7.34 -1/.38/.33
1.2/.59 1.17/.54 1.12/.5

.3 .15/.38/.37 .13/.38/.36 .127.39/.34
1.2/.64 1.14/.58 1.1/.53

.6 .2/.41/7.42 .177.417. 40 .15/7.41/.38
1.24/7.77 1.13/.67 1.03/.59

.9 .37/.49/.59 .31/.48/.54 .25/7.48/.51

1.33/1.13 1.137.94 .98/.8
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APPENDIX

Proposition 1: Let r > 0. Then a, = #wlm 2’ (a.8.) iff 1im a +1/(1+r]t =0

t i t

(a.s.).

t J_ gt J
jmo Cy/ (14007 = B w1 /(1er)

/(1+r)t. The first summation on the right converges {(as

Proof: By repeatedly using (2) we can write T

+ (1+r)a0 - A

t->w) to a well defined random variable which is finite since r > 0 and {lt}

has bounded support. Further a, = —wlmin/r (a.s.) implies 1lim Inf
at+1/(1+r‘)t z 0 (a.s.). Therefore, EJ=0 <:J/(1-:-1-]‘j converges to a well
defined and finite random variable since cy = 0. Hence, 1lim at+1/(1+r)t isg

well defined and lim at+1/(1+r‘)t z 0 (a.s.). To see the reverse, suppose, if

= _W1mi

+ re/2. Therefore, using (2) and the nonnegativity of

possible that a
probabllity 1

£ n/r - €, for some t, where £ > 0. With positive

t = lmin

consumption we have that at+1 = -wlmin/r + re/2 -(l+r)e, with positive
probability. Repeating the above argument for successive t’s, we have that
a, .. = _W1min/r + (res2) I1+(1+r)+(1+r)2+...+(1+r)n—1] - (14+r)%, with
positive probability. Therefore, at+n/(1+r)n = ~[w1min/r+c/2]/(1+r)n - &8/2 <
~£/2, with positive probability. Now fix a n large such that

(WImax/r)/(1+r)n_1 < g/4. By repeated application of (2) and the

nonnegativity of consumption, we can conclude that at+n+m/(1+r}n+m =
n-1 -m-1 n

(wlmax/rJ/(I;:; [1 -  (1+r) n_i at+n/(1?:) - Therefore, lim

at+n+m/(1+r) = (wlmax/r}/(1+r) + at+n/(1+r) < /4 - £/2 = —g/4, with

positive probabllity. This vioclates the limit condition.

Proposition 2: Let z = wlmin—r¢. (a) ¢, > 0 whenever z, > z,

min t t in’ (b) V(.)
is continucusly differentiable in z for all z > z_, ; (c) The solution to

min’

the maximization problem in (5) is characterized by: V’(zt) = U'(ct) 3
B(1+r)Et{V (zt+1)} with equality of at+1 > 0.

Proof: (a) Since V is concave it has left and right derivatives. If for some
¥ > ¥Yoin Ve have c# = O then we must have: U’{(0) = BRE{V’_(wl’-r¢+Rzi#)},
where R = 1l+r. Therefore, by concavity of V we must have c(z) = 0 for 2z «
Izmin,z#]. Hence, V(z) = U(0) + BE{V(wWl’'-r¢+Rz)} for z € [zmin,z#]. There
are two cases to conslider. Case (i): R z 1. Then wl'~-r¢+Rz = z. Hence,
V’+(z) = BRE{V’+(w1'~r¢+Rz)} = BRV’+(2) < V'+(z) which is a contradiction.
Cagse (ii): R < 1. Then z > 0. Then V’+(z) = BRE{V’+(w1’-r¢+Rz)} =

min
BRV’+(zmin) < V’+(zm ). This results in a contradiction as we let z ->

in

z "
nin

(b) From (a) it follows that at+1 < z, whenever z, > 0. Therefore, the

t t
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result follows from the Benveniste-Scheinkman [1979] theorem.

{c¢) The first equality follows from the Benveniste-Scheinkman [1979] theorem
and the second Inequality is just the first order necessary (and sufficient
by strict concavity) condition for maximization on the right side of (5).

Proposition 3: Assume that either U’ (0) < w or z_ . = wl_ . -r¢ > 0. Then
min min

-~

there is a z > z such that for all z_, =z, ¢, =z, and & = 0.
min t t t t+1
Proof: In either case U’(zmin) is finite and hence V’(zmin) ig finite. To
see the existence of such a 2z suppose to the contrary that the borrowing
constraint is never binding. From proposition 1 (c) and (4b) we have: V'[zt]
= i s L —
B(1+r)Et{V (zt+1)} = B(1+r)Vv (zmin) <V (zmin)' If we let z, -> =z this

t min
resulis in a contradiction.

Note: If U‘(0) = «» and wlmin—r¢ = 0, then the consumer would never exhaust

the borrowing limit.

Proposition 4 (Schechtman and Escudero 1977, Theorems 3.8 and 3.9): Let R =
(1+r), PR < 1, and assume that: (i) {lt} has bounded support, (ii)
(-cU’*/U’) is bounded above for all c sufficilently large. Then there exists
** ¥

z*¥ such that whenever zt = z¥, zt+1 = zt.

Proof: For convenience let y denote (wl-r¢). We will show that there exists
a z¥ < » such that whenever z, = z*, yhax+RA(zt) s z,. If A(z) is bounded
so that A(z) = K for all z = 0, then we can take z* = RK+ymax‘ So suppose
that A(z) -> w as z -> w. Note that V' (z} = U’(c(z)) where cl(z) = z=A(z).

Therefore, we have: EtV’(zt+1)/V’(ymax+RA(zt)) <
V’(ymin+RA(zt))/V'(ymax+RA(zt)) = U’(c(ymin+RA(zt)))/U’(c(ymax+RA(zt)]) =
[c(ymaX+RA[zt))/c(ymin+RA(zt))]“, where u is an upper bound on relative risk
aversion (=cU’’ /U ). Now, c(ymax+RA(zt)) = c(ymin+RA(zt)) +
W(lmax-lmin)h(y)' where O0sh(y)=1, since both c(z) as well as A(z) are

increasing in z. Therefore, EtV’[z
= 43

w(lmax lmin)h(y)/c(ymin+RA(th)I. As z, t

BREt{V’(yt+1+RA(zt))} (equality holds since A{(.) is positive}, A(zt) ~-> @,

and V(.) 1is bounded, increasing and concave. Therefore, we have:

1imzt_>mEtV’(zt+1)/V'(ymax+RA(zt]) = 1. Now choose £ < (1-BR)/{BR) and note
* ’ *
that there exists z* sufficiently large such that EtV (zt+1)/v [ymax+RA(zt))

% 1+ for all z, = z*. From the FONC (with equality since A(.) is positive)

t+1)/V’(ymax+RA(zt)) s [1 +

-> ®, ¢, -> o because U’(c,) =
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for the maximizatlon on the right side of (5) and the envelope condition we

. ¢ = ’ = ’ ’
have: Vv [zt] u (ctJ BREtV (zt+1) = BR(1+e)}V (ymax+RA(zt]) =
V’(ymaX+RA(zt)) for all z, = z*. By strict concavity of V(.) we then have
£ 3
that ymax+RA(zt) = z for all z, = z*.

t

Note: Condition (1i) in proposition 4 arises from a consideration of the
exponential utility case which has constant absolute risk aversion and,
hence, unbounded relative risk aversion. In this case there exist wvalues of
r below (1-8)}/B and a probability distribution for {lt} with bounded support
such that the consumer’s assets will wander off to infinity a.s. (see
Schechtman and Escudero 1977, pp. 159-161).

Proposition 5: Under the assumptions of proposition 4, there exists a unique
invariant distribution for {zt} which is stableso. Further the invariant
distribution behaves continuously with respect to the parameters b, r, and
W.

Proof: (Schechtman and Escudero 1977, Clarida 1987, Stokey and Lucas with
Prescott, hereafter SLP 1989, section 12.4, Menotone Markov Proceszes) The
Markov process defined hy (7) is monotone because A(z) is increasing in =z
which implies that a higher value of =z

makes higher values of z more

t t+l
likely. Therefore, if g(.) is an Increasing function then E{g(zt+1]:zt}is an

increasing function of z Further, it satisfies the Feller properiy since

g
A(z) is continucus., That is, if g(.) is a continuous function then
E{g(zt+1 t
condition which ensures that there is a unique ergedic set. This condition

,Z .1, € > 0, and T = 1 such that:

min’ “max

prob{zT < [z,zmax].z0 = zmin} r g, and prob{zT € [zmi o = zmax} = g
{see amsumption 12.1, p.381, SLP 1989). Figure 1B suggests that this is the
case. The key properties of this plicture are that ymin iz the unique fixed

1 and it is strictly less than the smallest fixed point

):zt} is a continuous function of z . Lastly it satisfies a "mixing"

requires that there exist z € [z

n,z]:z

point when 1

t+1 © “min
when 1 =] . To see the former note that at a fixed point for 1 the
t+1 max min
borrowing constraint must bind. Otherwise we have : Vi (z) =

BRE{V’' (v’ +RA(Zz})} = BRE{V’(ymin+RA(z)]} = ARV’ (z). This contradicts the fact

that BR < 1. Hence 2z = y

min is the unique fixed point for 1min' It follows

50That ig, starting from any Initial distribution the sequence of
distributions pgenerated by the Markov probability transition funcilon
converges to the unique invariant distribution.
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that any fixed point for lmax exceeds Ymin® In Brock and Mirman's [1972]
terminclogy the fixed point configuration in figure 1B is stable and there
is a unique ergodic set. Theorem 12.12, p.382 in SLP [1989] then delivers
the existence of a unique, stable staticnary distribution. Further, Theorem
12.13, p.384 In SLP [1989] shows that the distribution behaves continuously

with respect to the parameters b, r and w.
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