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ABSTRACT

We examine an otherwise standard model of capital accumulation in which spatial separation and limited
communication create a role for money and shocks to portfolio needs create a role for banks. In this context
we examine the existence, multiplicity, and dynamical properties of monetary equilibria with positive
nominal interest rates. Moderate levels of risk aversion can lead to the existence of multiple monetary steady
states, all of which can be approached from a given set of initial conditions. In addition, even if there is a
unique monetary steady state, monetary equilibria can be indeterminate, and oscillatory equilibrium paths
can be observed. Thus financial market frictions are a potential source of both indeterminacies and
endogenously arising economic volatility.

We also consider the consequences of monetary policy actions that rearrange the composition of government
liabilities. Contractionary monetary policy activities can have complicated consequences, depending
especially on the nature of the steady state equilibrium that obtains when there are multiple steady states.
Under plausible conditions, however, a permanent contractionary change in monetary policy raises both the
nominal rate of interest and the rate of inflation, and reduces long-run output levels. Thus liquidity provision
by a central bank—just as by the banking system as a whole—can be growth promoting. Loose monetary
policy also in conducive to avoiding development trap phenomena.

*Schreft, Federal Reserve Bank of Richmond; Smith, Federal Reserve Bank of Minneapolis and Cormell University, We
would like to thank [an Jewitt and three anonymous referees for their extremely helpful comments on the paper. The
views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis
or the Federal Reserve System.



Many mechanisms have now been established through which financial market conditions affect an
economy’s long-run level of real activity.'! One that has received particular attention is the provision of liquidity:
by providing liquidity banks affect the compeosition of savings, the availability of investment capital, and --
potentially -- the long-run capital stock.? However, often the largest bank in an economy is the central bank, which
also typically is the financial institution that issues the economy’s most liquid liabilities. Moreover, by conducting
open market operations, central banks affect the liquidity of the entire financial system. How, then, do common
monetary policy actions -- like changes in open market operations -- affect the long-run performance of an economy
when they occur permanently? This is a question that has attracted surprisingly little formal attention, despite its
cbvious importance,

To attack this question, it is clearly necessary to analyze an economy with at least three kinds of assets:
money, government bonds, and capital. In addition, in order for liguidity provision to “matter,” it is natural to
incorporate a formal liquidity -- providing sector -- such as a banking system -- into the analysis, Thus we need to
consider an economy with a fairly rich set of asset markets and financial market institutions to analyze the long-run
real consequences of open market activity.

Finally, there has been a good deal of interest in the potential existence of development traps (that is, cases
in which intrinsically similar economies have much different long-run behavior), in the scope for indeterminacy and
multiple equilibria, and in the potential for economies to experience endogenously arising volatility. Many, for
instance Mints (1945), Simons (1948), and Friedman (1960), have argued that monetary policy substantially affects
the scope for the indeterminacy of equilibria, especially in so far as the price level is concerned, and for equilibria
that display “excessive” economic fluctuations. We therefore might wish to ask whether the open market stance of
the central bank affects the potential for development trap phenomena to occur. If it does, this might significantly
affect monetary policy prescriptions offered to developing economies. In addition, does “tight” monetary policy

tend to reduce the scope for multiplicities to arise, or the scope for endogenously arising volatility? The latter

'For theoretical treatments of the linkages between financial markets and real activity see Greenwood and Jovanovic (1990),
Bencivenga and Smith (1991), Levine (1991), Cooley and Smith (1992), Bencivenga, Smith and Starr (1993a, b, ¢}, Khan (1993), Parente
{1993), and Greenwood and Smith (1993). Empirical evidence appears in Patrick (1966), Cameron (1967)., McKinnon (1973), and Shaw
(1973). More formal empirical studies of the connections between growth and financial markets are presented by Goldsmith (1969), Antj= and
Jovanovic (1993}, King and Levine (19933, b), and Levine and Zervos (1995).

*Theoretical treatments of liquidity provision and real activity appear in Bencivenga and Smith (1991), Levine (1991), and
Bencivenga, Smith, and Starr (19932, b, ¢). Liquidity provision receives particular emphasis in the heuristic discussions of Cameron (1967),
Hicks (1969}, McKinnon (1973), and Shaw (1973).
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questions have received little attention in the monetary growth literature.

In some sense this fact is not surprising. Most literature on the integration of financial market institutions
into growth models considers purely real economies. [n addition, most monetary growth models, at least in the
absence of government budget deficits or externalities, deliver unique monetary steady states under any
specification of monetary policy, and deliver unique dynamical equilibrium paths that monotonically approach
them. Moreover, often either monetary policy must be neutral, in the long-run, or policy changes that are conducive
to inflation raise the long-run level of real activity. Both results contradict a wealth of empirical evidence.?

This paper presents a monetary growth model with banks that operate to insure agents against random
liquidity needs. In this context we examine the existence, multiplicity, and dynamical properties of competitive
equilibria, and, in addition, we consider the consequences of permanent changes in monetary policy activity. More
specifically, we analyze the effects of open market activity by a central bank, represented here by changes in the
ratio of money to government bonds.

Under extreme choices of monetary policy, there may be no steady state competitive equilibria of our
ecconomy. We state conditions guaranteeing the existence of a nontrivial steady state equilibrium with valued fiat
money and positive nominal interest rates. We also establish conditions under which there is a unique monetary
steady state, or under which multiple steady states exists. A proliferation of steady state equilibria can occur
whenever agents are sufficiently risk averse (specifically, when they are more risk averse than with logarithmic
utility) and whenever monetary policy is sufficiently tight (that is, whenever the ratio of government bonds to
money is sufficiently high). Interestingly, if monetary policy is sufficiently loose, there can exist at most one
monetary steady state.

When multiple monetary steady state equilibria exist, it can easily transpire that at least one of them is a

saddle, while one or more may be a sink. Since our economy has only one initial condition (the initial capital

A1l of the theoretical literature described in footnote [ considers purely real models. Monetary growth models like those of
Diamond (1965), Mundell (1565), Tobin (1965), Sidrauski (19672, b), Brock (1974, 1975), and Tirole (1985) yield the implications just
described. Azariadis and Smith (1993}, Boyd and Smith (1995), or Schreft and Smith {19942) do present monetary growth models with a
financial market friction in which all of these claims must be modified.

Finally, Calvo (1979) considers in some detail the scope for multiple steady state equilibria to arise, as well as their dynamical
properties, in two classes of models. In a conventional monetary growth model where production occurs using only ¢apital and labor, he
derives the results stated in the text. When money enters the production function he finds that multiple monetary steady states can exist. We
employ the former formulation.

Empirical evidence on the adverse effects of inflation for long-run real activity appears in Levine and Renelt (1992), de Gregorio
(15932), Wynne {1993), and Builard and Keating (1994).
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stock), more than one steady state can potentially be approached. Indeed, we establish conditions under which a
given economy, with a given initial capital stock, can either follow a saddle path approaching a steady state with a
relatively low capital stock, or follow any of the continuum of paths that approach a locally stable, high-capital-
stock steady state. Economies suffering the former fate will have permanently high nominal interest rates, which
signal the existence of a significant distortion. Economies approaching the high-capital-stock steady state will have
relatively low nominal and real rates of interest. In any event, two economies with similar, or even identical, initial
capital stocks can end up with different long-run output levels.

The possibility that a locally stable, monetary steady state exists, even if the steady state is unique, also
indicates that dynamical equilibria of our economy may be indeterminate, even when steady state equilibria are not.
Moreover, it can easily transpire that paths approaching the steady state display damped osciliations as they do so.
Indeed, we demonstrate that, when the bond-to-money ratio is low, there can exist equilibrium paths that approach
no steady state, and display undamped or increasing oscillations. Finally, “tighter™ monetary policy is shown to
yield no obvious protection against local indeterminacy or endogenous volatility and it tends to be conducive to the
occurrence of development traps. Thus the integration of more interesting financial market institutions into modeis
of money and growth is a potential source of nonconvergence phenomena, an indeterminacy of equilibrium, and
endogenously arising economtic volatility.

The effects of permanent changes in open market activity depend, of course, on the number of steady state
equilibria. When there is 2 unique monetary steady state, “contractionary” monetary policy actions (that is,
increases in the ratio of bonds to money) raise the nominal rate of interest and lead to a reduction in steady state
output. This occurs for an obvious reason: an increase in government bonds outstanding simply crowds out capital
in private portfolios. Thus liquidity provision by the central bank is itself conducive to long-run capital formation.

When there are multiple monetary steady states, of course, a richer set of phenomena can be observed.
However, the steady state that delivers the most conventional comparative static results has the feature that
contractionary monetary policy actions raise the nominal interest rate, and reduce the sieady state capital stock and
output level.

Our vehicle for examining these issues is Diamond’s (1965) model with money and government bonds,

which we modify in one important respect. In particular, we introduce a form of spatial separation and limited



communication into the environment in a manner following Townsend (1987) and, most explicitly, Champ, Smith,
and Williamson (1992). We allow agents to be randomly relocated, and we assume that interlocation exchange
requires currency. Thus agents who are relocated will wish to convert other assets into cash: this kind of randomly
arising need for liquidity creates a role for banks that is familiar from Diamond and Dybvig (1983). In this context
we analyze steady state and dynamical competitive equilibria and analyze the consequences of different levels of
liquidity provision by the central bank.

The scheme of the paper is as \Follows. Section | describes the environment, while section I considers the
nature of trade and the role for banks. Steady state equilibria are analyzed in section 111, while section 1V examines
dynamical equilibria. Section V summarizes and concludes.

I. Envirpnment

We consider an economy consisting of an infinite sequence of two-period-lived overlapping generations,
plus an initial old generation. In addition, in each period agenis are assigned to one of two locations; we assume
that at each date the locations are completely symmetric and that, at the beginning of each period, each location
contains a continuum of ex ante identical young agents with unit mass.

We lett = 0,1,... index time. At each date t there is 2 single final commodity that is produced using a
constant returns to scale technology with capital and labor as inputs. This technology is commonly available 10 all
agents. Any agent using K, uniis of capital and L, units of labor can produce F(K,, L) units of the final good at t.
We let (k) = F(k, 1) denote the intensive production function, where k, = K,/ L, is the time t capital-to-labor ratio
employed, We assume that f satisfies the following conditions: (a) £(0)z 0, (M) F&K)>0>f" (k), vk 2 0, and
&) " () = oo,

At each date the final good can be either consumed or set aside as an investment to be converted into
capital. One unit of the final good set aside at t becomes one unit of capital at t + 1 with probability one. Finally
capital, once produced, is used in production of the final good and then depreciates completely.

Young agents at each date are endowed with a single unit of labor, which they supply inelastically, and old
agents are retired. The initial old agents are each endowed with k, > 0 units of capital. No other agents have
endowments of capital or of the final good at any date.

For simplicity we assume that agents value only second-period consumption, which we denote by ¢, Let
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u{c} denote the common utility function of all agents. We assume throughout that u(c) has the CRRA form u(c) =
c'"?/ (1 - p) and, following Diamond and Dybvig (1983), we focus on the case p > 1.*

Three assets are available to agents in this economy. One is obviously the capital investment. We let §,
denote the per-capita quantity of the final good invested at t and k, denote the per-capita capital stock. Clearly, in
equilibrivm, k.., =i, |

The other assets are government liabilities. Let M, denote the outstanding nominal money supply per
capita in each location at 1, and let B, denote the nominal per-capita supply of bonds. Bonds mature in one period.
and each bond issued at t is a sure claim to I, units of currency at t + 1. Thus, I, is the gross nominal interest rate on
default-free government bonds, Money pays no interest, but it has a liquidity advantage over bonds that is
described below. Let p, be the time t price level, which is common across locations, and letm, = M,/ p,and b, =
B, / p, denote the per-capita values of the real quantity of money and bonds outstanding at date t.

The timing of events within a period is as follows. At the beginning of period ¢, young agents supply their
single unit of labor and eamn the real wage rate, w,. Since agents care only about second-period consumption, all of
their income is saved. Savings must be allocated among the three available assets. After these portfolio allocations
are made, a fraction © € (0, 1) of all young agents in each location is randomly selected to be transferred to the other
location. Although 7 is constant and known at the beginning of each period, only after savings decisions have been
made do agents discover whether they must relocate.

We assume that neither capital investments, nor the consumption good, nor government bonds can be
transported between locations. Thus money is the only asset that can be carried between locations, which is the
source of its liquidity advantage.® In addition, we assume that spatial separation and limited communication
preclude agents from exchanging privately issued claims originated in “the other™ location; hence only currency is
useful in interlocation exchange.®

For this reason, agents who discover that they are to be relocated will wish to convert their other asset

holdings into currency. Thus random relocations play the same role here that “liquidity preference shocks” play in

“The case where p € [0, 1] is considered by Schreft and Smith (1994b).

3In effect relocated agents face a cash-in-advance constraint on consumption purchases, while agents who are not relocated do not.
The inability to use bonds in interlocation exchange can be motivated by the realistic assumption that bonds are issued only in large
denominations.

“This formulation follows Townsend (1987), Mitsui and Watanabe (1989), Homstein and Kruself (1993}, and Champ, Smith, and
Williamsen (1992). The last of these papers contains a detailed discussion of these assumptions and some defense of their realism for the
United States and Canada around the turn of the century.,
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the Diamond-Dybvig (1983) model. As in that context, agents will wish to be insured against the event of
premature asset liquidation. The efficient way for this insurance to be provided [see Greenwood and Smith (1993)]
is through a bank that takes deposits, holds the primary assets in the model directly, and structures the returns paid
to agents in a way that depends on whether they are relocated (in effect, on their date of withdrawal). As in
Diamond-Dybvig, all savings will be intermediated through banks of this type. Thus agents who are to be relocated
simply make withdrawals from their banks and are then transported to their new location. This timing of events is
depicted in figure 1.

The final agent in the model! is the government. We assume that the government has no direct expenditures
and levies no direct taxes at any date. Thus the government need only manipulate the supply of its liabilities to
guarantee that it can meet its interest obligations in each petiod. LetR, = I, p,/ p,,, denote the gross real rate of
interest on government bonds between tand t + 1. Then the government budget constraint is
(1) R, b, =(M,- M, ,¥p, + b,; t20.

The initial conditions are M, > 0 and B,, = 0. Finally, we assume that the government conducts monetary policy by
choosing once and for all a ratio of bonds to money outstanding. That is,

2) b/m=p;t=0,

where [ is exogenously chosen by the government. Variations in B, which by assumption occur once and for all in
the first period, can be construed as permanent open market operations, Finally, for reasons that will scon become
apparent [see equation (15) below], P is assumed to satisfy the condition

(a.1) 1=>xa{l+B).

L. Trade

In this section we describe the nature of exchange in asset and factor markets and discuss the equilibrium
behavior of banks. Finally, the full set of general equilibrium conditions that our economy must satisfy is displayed.
A. Factor Markets -

We assume that any agent can run the production process. Producers hire capital and labor in competitive
factor markets that operate in each location. Hence capital and labor are each paid their marginal products, so the
standard factor pricing relationships obtain:

(3) r= f’(kt)l t20,



4) w, =wik) = (ko -k F(k); 20,

where r, is the time t rental rate on capital and w, is the real wage rate at t. Notice that w’ > 0 holds. In addition, it
will be convenient to make one additional technological assumption. Define Q (k) = k / w(k). Then assume that,
forall k,

(a.2y '&)>0.

Assumption (a.2) is equivalent to

(a.2) kw'(k)/wk)e (0, 1) k0.

Assumption (2.2) {or (2.2")] holds if, for instance, { is any CES production function with an elasticity of substitution
no less than one.”

B. Banks

Banks take deposits, hold the model’s primary assets directly, and announce deposit retum schedules that
depend on the depositor’s relocation status {or date of withdrawal). In addition, there is free entry into banking.
Thus competition ensures that, in equilibrivm, banks earn zero profits.

Let d,, (d,) denote the gross real return on deposits offered by a typical bank to agents who are (are not)
relocated at t. Banks announce these returns taking the returns offered by other banks as given. We seek a Nash
equilibrium in financial markets--that is, a situation where, given the announcements of other banks, no bank has an

incentive to alter its set of announced return schedules. Competition among banks for depositors implies that, in
equilibrium, deposit return schedules are chosen to maximize the expected utility of a representative depositor,
subject to a set of resource constraints, which we now describe. Given this behavior by banks, all savings will be
intermediated. Thus each young agent at t deposits w, with a bank.

Let m, denote the quantity of real balances held by a representative bank at t, where all bank asset holdings
are in per-depositor terms. Similarly, let b, denote the bank’s real bond holdings at t, and let i, denote its level of
time t capital investment. Then the bank faces the balance sheet constraint
5) mt+b+icw; t=0.

In addition, the bank promises to deliver the gross real return d, to all of its depositors who are relocated at t. By

TLower elasticities of substitution are considered by Schreft and Smith (1994a). Allowing for lower elasticities of substitution
strengthens the potential for multiple steady state equilibria to exist and enhances the potential for endogenously arising economic volatility.
We comment further on this point below.
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the law of large numbers, a fraction 7 of the bank’s depositors are relocated; thus the bank promises a per depositor
payment of @ d,, w, to agents who are reiocaied at t. Relocated agents must be given currency; therefore the bank’s
payments to “movers” are constrained by its holdings of real balances:
(6) Tdp W, sm P/ Psy); 120
The gross real return on money, p,/ p,.;, appears in (6) because agents who are relocated at t are given
real balances at that date, which they then carry into t + 1. The real return on these money holdings is, of course
D,/ py.1- The promised real return to depositors, d,,, incorporates this consideration.

For the fraction 1 - w of its depositors who are not relocated at t, the banl has promised a gross return of d,,
per unit deposited. Thus the bank owes (1 ~ 1t} d,, w, to nonmovers, which it pays at date t + 1, If], > 1, which we
assume throughout, money is dominated in rate of return. Hence the bank will not carry real balances between
periods; or, in other words, it holds money oniy as a reserve to pay agents who are relocated at t. Thus payments to
nenmovers will be financed solely out of the bank’s holdings of bands and capital, so that
(7 (l-myd,w, s Rb,+r,.,i; t=0.
must hold.

It will be convenient to represent the bank’s choices in terms of the weights attached to different assets in
its portfolio. To this end, let ¥, = m,/ w, denote the bank’s ratio of reserves to deposits, and let u, = i,/ w, denote the
ratio of its capital investments to its deposits. Then equation (6) can be rewritten as
6)  dusvi(p/pd/ W t20,
while (7} takes the form
(7)) dus[romtR(1-v-p)]/(0-m) t20.

In addition, v, =2 0 and p, = 0 must hold. However, we do rot require that v, + 1, < 1 be satisfied because banks may
in principle borrow from the government or from each other.

We have argued that, in any Nash equilibrium, banks must choose a return schedule (d,, d.;) and a set of
portfolio weights to maximize the expected utility of a representative depositor, subject to (6") and (7'). That s,
banks choose d,,, d., ¥., and y, to solve the problem
max {7 (g W' P + (1 - m)(d W'} / (1 - p)

subject to (6, (7, Y, 2 0, and &, > 0.
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As is apparent from (7"}, any equilibrium with positive capital investment must satisfy the no-arbitrage
condition
(8) Ri=ru; tz0.
When (8) is satisfied, any bank is indifferent between investing in bonds and physical capital. in addition, when (8)
is satisfied, the bank’s equilibrium reserve-deposit ratio is given by
ONREE RS (EOVE D FRILITEESIH)
Thus the function y summarizes the equilibrium behavior of the bank; this function gives the reserve-deposit ratio
as a function of the nominal interest rate alone. Notice that, withp > [, y(I) e [®, 1]¥ [ 2> | and that y{1) = =.?
In addition, it is straightforward to show that
(10)  Wy'®)/yy=[p- 1}/pIl - yDI>0.
In particular, the representative bank has a reserve-deposit ratio that is increasing in I, This occurs for a siraple
reason: as [, rises, the bank’s optimal choice of reserve holdings is subject to standard income and substitution
effects, When p > 1 holds, income effects dominate substitution effects, and increases in I, induce banks to become
more liquid. The nature of the analysis when y'(I} < 0 holds is discussed in Schreft and Smith (1994b).
C. Equilibrium

In equilibrium the factor pricing relationships (3) and (4) must be satisfied, as must the no-arbitrage
condition (8). In view of (3), (8) can be rewritten as
(1) Re=f'(k,. s tz 0.
In addition, money supply must equal money demand at each date. Since all demand for money here derives from
banks’ demands for reserves, in equilibrium
(12) m,=y(wk); t20
is satisfied. Finally k,, , = i, must hold. From (5), this condition is equivalent to
(13) ke =[wk)-b-m]; t=0.
These conditions, plus the government budget constraint (1), constitute the full set of equilibrium conditions of the
model. For future reference, we note that (1) can be rewritten as

(14) Rebuy=m-m. (. /p)+bs t2 L

*lt is easy to verify that the implied values d, and d,, satisfy d, > d_, whenever [, > 1 holds. Consequently non-movers never wish to
withdraw prematurely.
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HI. Steady State Equilibrium
Equations (2) and (12) imply that, in equilibrium, m, + b, = (1 + B) ¥ (1) w(k) must hold.
Substituting this condition into (13) yields the equilibrium law of motion for the capital stock:
(15) ko y=wl{-(+PyyUo]; t2 0.
In addition, using (2) in the government budget constraint and rearranging terms yields
(16) m,, (1B =m(p/p ) +BRAp./PI=m(p/p, (A +BI) 120,
We now observe that, by definition,
(i Pl P =k, VT,
is satisfied. Then, equations (12), (18}, and (17) imply that
(18} YU D= +BERy Iy wk) k. )/ (1 +B)wk, ) t20
Equation {18) describes the evolution of the nominal interest rate over time,
We now turn our attention to the characterization of steady state equilibria. Dynamical equilibria are taken
up in section [V,
A. Characterization . -
When k, =k, and I, = I, ; hold, equation (15) reduces to
a9 k/iwk)=QK)=1-(1+B)y @)
At the same time, equation (18) becomes
(20) FR=(1+BI/(1+BD.
Equations (19) and (20) express the relations between k and 1 that must obtain in an‘y steady state equilibrium.
Clearly the bond-to-money ratio, P, is a ceniral parameter of the model, which summarizes the “looseness™
or “tightness” of monetary policy. Low values of B imply a large supply of money relative to bonds, and hence
correspond to “loose” settings of monetary policy. When B = 0 monetary policy is as loose as possible. Technically
matters are substantially different depending on whether 8 > 0 or B = 0 holds: we focus first on the former case.
Having characterized steady state equilibria under each configuration of monetary policy, we will return to discuss
why these two situations are so different.
1. The Case B> 0.

Equations (19) and (20) are depicted diagrammatically in figure 2 under the assumption that (3 > 0.
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Assumption {a.2), along with y* (1) > 0, implies that (19) describes a downward sloping locus in the figure: clearly *
2D dk/dll(,g,=-(l+B)y'(l)lﬁ'(k)<0.
It ts also easily verified that
(22) dk/d[!(m)=(l+[3)/(1+BI)2f”(k)<0.
Thus (20) also defines a negatively sloped locus.

Since y (1) = = and £ (0) = 0 both hold, it is apparent that the locus defined by (19) passes through the
points (1, QT[T -m (1 + B and (v (1 7/ (1 + B)), 0). Similarly, the locus defined by (20) contains the points (1,
(EY (D)and (v /(U +BNOYT T+ vy G/ + B/ [1+ Byt (1/7(1+PN]). Thus,when B > 0, there are two
possible configurations of equations (19) and (20). These configurations are depicted in figures 2.2 and 2.b. We
now delineate these possibilities.
Case I; ©{Q7[1-7n(l+P)} < 1. Inthiscase the I = | intercept of equation (19) lies above that of equation
{20). Since the I =" (1 /(1 + B)) intercept of (20) lies above that of {19), a steady state equilibrium, denoted (I,
k"), with I" > 1 necessarily exists. This equilibrium may or may not be unique. Figure 2.a depicts the situation
where a unique equilibrium exists.
Case 2. " {Q'[1-m(l+P)]}>1. Inthiscase the I = [ intercept of equation (19} lies below that of equation (20).
As a consequence, if any steady state equilibria with [ > 1 exist, there are necessarily at least two. We exhibit below
several examples where two steady states with 1> ] exist, as shown in figure 2.b. If [ is too large, however,
equations (19} and (20) may have no intersections. In this event there are no steady state equilibriz with [ > 1, as the
bond-money ratio is too large to allow the government to finance its interest obligations when [ > 1.

As is apparent from figures 2.2 and 2.b, if a steady state equilibrium with [’ > T exists, it must be the case
that (k") > 1. In other words, capital overaccumulation, which is always possible in the standard Diamond (1965)
model, does not occur here,

In order to characterize when multiple steady state equilibria with [ > 1 exist, it will evidently be useful to
know when equation (19) is steeper than equation (20) wherever the two intersect. This condition is stated in the

following proposition.

“If assumption (2.2} fails to hold, then £ (k) will riot be monotonte, and neither will the locus defined by (1%). 1t is then easy 0 see
that there is far more scope for the existence of multiple steady state equilibria (and for endogenous volatility) when (2.2) is violated than when
it is satisfied. This issue is considered in further detail by Schreft and Smith (1994a).

1 Assumption (2.1) implies that Q' {1 - = (1 + P)] is well-defined.
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Proposition 1. Let (I°, k™) denote an intersection of equations (19) and (20). Then, at this intersection,
dk /df |(,9, <dk/dl [(m, holds iff
(23) [k wKD)/ wEkD] WD) /K TED A+ By O/ T -1+ Byy (1)} > {1 -

k" w/(k") Aw (&)} [y () /17 v/ (1)) (1 + BUY!
is satisfied.

Proposition 1 is proved in appendix A. It asserts that, whenever B > 0, and whenever (23) holds at some steady state
with I* > 1, there necessarily exists at least one additional steady state with [ > 1. We now produce an example
economy that possesses multiple monetary steady states.

Example [, Let f{k) = Ak®, with A =0.55 and o = 0.335, and set w = 0.25 and p = 2. Table | reports the
steady state equilibrium values of k and I -- at each of two sieady state equilibria -- for three different values of § >
0. Evidently, when B > 0 holds, it is straightforward to produce multiple monetary steady states with { > 1,

2. The Case B =0

We now present the case where there are no bonds outstanding separately, for reasons that will soon be
apparent. When B = 0 holds we have y"' (1 /(1 + B)} = =, a situation that clearly differs from figure 2. Also, for the
purpeses of this sub-section, we assume that the production function has the CES form
(24) Ky =(ak*+b)" 6 < 1.

Assumption (a.2) requires that ¢ = 0 also hold.

We can now state the main result of this sub-section.

Proposition 2. Suppose that § = 0 and (24) hold. Then there is go steady state equilibrium where [’ > | holds and
where (23) is satisfied.

The proof of proposition 2 appears in appendix B. The proposition asserts that, at any intersection of equations (19)
and (20), equation (20) is necessarily more steeply sloped than equation (19). Hence there is at most one steady
state equilibrium with [ > 1, as shown in figure 3.

3. Discussion

As example 1 illustrates, no analog of proposition 2 will be generally available when > ¢ hoids. Why,
then, is the situation with B = 0 so different from the situation with § > 07 The answer has to do with the

government’s budget consiraint. When P = 0, the government budget constraint implies that the steady state
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inflation rate must satisfy p, .,/ p, = [. Note, in particular, that the steady state inflation rate is independent of I and
k. In addition, when p = 0, (20) reduces to (k) = I.

When [ > 0 holds, the government budget constraint (16) implies that the steady state inflation rate
satisfies
(25)  p/p=0+BD/(1+P) )

Thus the higher |, the higher is the steady state rate of inflation as the government is forced to finance a higher level
of interest abligations on its debt.

When B > 0 and v’ (I} > 0 hold, multiple monetary steady states with [ > [ can exist, To see this, suppose
that " is high. Then y (I") is also high, diverting savings away from capital formation. Hence (k") is high, as is
the steady state inflation rate. These facts validate the high nominal rate of interest. Similarly, when I is low so is
¥ (I, I'(k"), and the steady state rate of inflation. This validates the low nominal interest rate. However, whenp =
O the steady state inflation rate is independent of {*. This breaks the link between I” and the steady staie rate of
inflation that is essential to the existence of multiple monetary steady state equilibria.

These observations allow us to state one immediate implication. As conventionally conceived, “tight”
monetary policy corresponds to a high ratio of bonds-to-money, and conversely for “loose™ monetary policy. The
“loosest” possible monetary policy corresponds to B = 0: it is exactly this policy that is most conducive to the
existence of a unique monetary state. “Tighter” monetary policies with higher values of f are exactly the policies
that are most likely to lead to the existence of multiple monetary steady states and, as we will demonstrate, to
development trap phenomena.

B. Comparative Statics

We now turn our attention to the comparative static consequences (that is, the consequences for steady
state equilibria) of open market activity. In particular, an increase in P represents an increase in the bond-money
ratio and hence corresponds to an open market sale. Conversely, a decrease in [ constitutes an open market
purchase. Thus higher levels of B correspond to “tighter” monetary policies, in conventional terminology.

The consequences of an increase in J depend on whether or not there is a unique monetary steady state
and, in the case of multiple steady states, on which steady state obtains. We now consider the two possible cases.

Case 1. Suppose that there is a unique steady state equilibrium with " > 1, as in figure 2.a. Tt is readily
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verified that an increase in the bond-money ratio from P to " shifts the locus defined by (19) downwards in figure
4.a. The same increase rotates the locus defined by (20) in a counter-clockwise manner. The result is depicted in
figure 4.a. The steady state position of the economy shifts from point A to point B: clearly the nominal interest rate
falls and the steady state capital stock rises as a result of the increase in B. Thus, when there is a unique steady state
equilibrium, what are conventionally regarded as “contractionary” open market operations rzise the long-run level
of real activity, and ultimately reduce the nominal rate of interest. In particular, a “contractionary” change in
monetary policy does not produce a long-run contraction.

Case 2, The situation with multiple steady state equilibria is depicted in figure 4.b. Here an increase in the
bond-money ratio from B to B’ shifts the loci defined by (19) and (20) in the manner just described. However, now
there are two steady states with I > 1. If an increase in [ causes the economy to move in the long-run from point C
to point D (or point B), the effect of an increase in 3 is to redyce the nominal rate of interest and to faise the capital
stock. This corresponds to the situation in case |. However, if an increase in B shifts the economy from point A to
point B (or point D), the result is to rgise the nominal rate of interest in the long-run and to reduce the steady state
capital stock.

Conventional wisdom is that “tighter” monetary policy (a higher value of B) raises nominal rates of
interest, and potentially reduces output, If this conventional wisdom is correct {(which it may not be), then the most
interesting situation in this model is when the economy has multiple steady state equilibria (with B > 0) and
asymptotically converges to the low-interest rate, high-capital-stock steady state. The issue of convergence is
addressed in section IV,

IV. Dynamical Equilibria

In this section we characterize dynamical equilibria. We will be particularly concerned with three issues:
(a) which, if any, of the steady state equilibria with I > ] can be approached, (b) whether dynamical equilibria are
unique, and (¢) whether endogenously arising volatility will be displayed along dynamical equilibrium paths. As we
will show, it can easily ranspire that all steady state equilibria can be approached, given the initial capital stock k..
Moreover, we cannot typically expect there to be a unique dynamical equilibrium when there are multiple steady
state equilibria. It will also often be the case that there are multiple dynamical equilibria even if there is a unique

maonetary steady state with I" > I, Thus the operation of financial markets can easily be a source of indeterminacy
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of equilibrium. Finally, we will show that equilibria dispiaying endogenous volatility can easily be observed. We
also describe conditions under which there exist cyclic equilibria where this volatility does not dampen. Thus the
financial system can be a source not only of indeterminacy, but also of “excessive fluctuations”.
A. The Case of Cobb-Douglas Production

In order to illustrate the possibilities that can arise, we begin with the case where f (k) = Ak, withe g
(0, 1). An analysis of more general production functions is undertaken below,

When production is of this Cobb-Douglas form, it is easily verified that (k.. )}/ w (k. ;) =
[e/(l-a)]/k.,, Usingthis factin equation (18), and using (15) to substitute out k., ;, we obtain the following
equilibrium law of motion for the nominal rate of interest:

27 yE)=e(Q+BR Y@/ Q-0 +BL[1-1+P)y ] t=0.

As before, the cases B > 0 and B = 0 differ. We consider each case in turn.

1. =9,

When [ > 0 holds, the fact that y (1} = 7 impiies that (27) defines a locus passing through the point (I,
y'{en/(1-e)[l-m 1+ Ify' fen/(l-a)[1-=(l+B}}>(<) 1 holds,” then the ], = I intercept of
(27) is greater (Jess) than one. In addition, since y*' (1) =w, as L, Ty (1 /(1 +B)), L s T e

It remains to describe the slope of the locus defined by (27). We now state a result giving this slope ata
steady state.

Proposition 3, Suppose that a steady state equilibrium exists with I" > 1, Let
A(p;B) =dl,, /dl|.. Then

@28) AER={(-a/aQ+PI-[p/lp-DIN-vy TN}/ +PI).
Moreover, A (p; B) > 0 holds if

29 [e-H/pl(+pH=1

Finally, if

(Go) B=21/(p-1),

then A (p; B) > 0 holds at any steady state with [" > 1.

Proposition 3 is proved in appendix C.

Byt for /(1 -} [1 - {1 +B)]} > (<) |l holds iffx /(1 - ) > () | - = (1 + B). The latter condition, in turn, is equivalent to = (1 +
B> () (1-2a)/(1-a).
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It is now apparent that there are three possible interesting configurations of the locus defined by (27).
These are depicted in figures 5.a - 5.c. We describe each case in turn,

Case | v'fan/(i-a)[l-n(l+B)} < 1. Inthiscase, which is depicted in figure 5.a, the [, = |
intercept of equation (27) is less than one. It follows that there exists at least one steady state with I" > 1 and A{p; B)
> |, and obviously it is possible that this steady state is unique. If there is a unique steady state then clearly it must

be the case that I, = I" ¥ t, so that the interest rate is unchanging over time.'?

Case2, v'fanx/(t-e)[l -=(l +@)]} > [. When this inequality Is satisfied there are two general
possibilities. The first of them is depicted in figure 5.b. This configuration of (27) would necessarily obtain if, for
instance, (30} was satisfied.

Ifdl,., /dl,> 0 holds ¥ I, then generically there are either no steady states with I > [, or there are at [gast
two of them. When multiple monetary steady states exist, the low-interest-rate steady state (I,) can be approached
from any initial I, (1, I;). The high-interest-rate steady state can only be approached by having 1, = [;. Since we
have a free choice of I, clearly either steady state can be approached. Dynamical equilibrium paths approaching the
low-interest-rate steady state will display locally monotone dynamics.

Table 1 reports values of di,, , / dl, at the [ow-interest-rate steady state for the economy of example 1.

The example corresponds to this case for the values of B reported.

Case3 v'{ax/(1-a)[1-n{ +B)]}> 1. When this inequality holds, it is possible that dl,,, / dI, <0
holds for some I, > 1. When this occurs it is also possible that there exists a steady state equilibrium with I" > [ and
Alp; B) <0. If such a steady state exists, there necessarily exists at least one additional steady state with a higher
rate of interest, and with dl,,, /dl, > 1. As before we let I, (I5) denote the low (high)-interest-rate steady state.

Clearly both steady states can be approached by setting [, =1, or I = I5. Thus, as before, monetary
equilibrium is indeterminate. It is also possible that the low-interest-rate steady state has A(p; B) > - 1, in which case
it is asymptotically stable. Indeed this is the situation depicted in figure 5.c. Here not only is there an
indeterminacy of monetary equilibrium, but paths approaching the low-interest-rate steady state display endogenous
oscillations as they do so. Indeed, it is possible that there exist equilibria displaying cycles of two or more periods:

one such equilibrinm is displayed in figure 5.c. The possibility of equilibria displaying undamped oscillation is

2The t = § version of the goverament budget constraint irnplies thet {1 + By my= (1 + BY ¥ (I} w (ko) = M., / po. Thus cleatly Lyisa
free initial condition; and int the case of a unique steady state we must set [, = 1",
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explored more formally in the next subsection.
2. 3=90,

When § = 0 holds we can provide a particularly sharp characterization of the dynamical behavior of the
nominal rate of interest. In particular, we have already shown that, in this case, there is a unique steady state with I"
> 1. We now provide conditions under which that steady state is asymptotically stable, and hence under which the
equilibrium is indeterminate. We also show that A (p; 0) < 0 necessarily holds, so that any paths that do approach
the steady state display endegenous oscillations as they do so. Finally, we state conditions under which there exists
a value p, such that A (p,; 0) =-1. In this case, as p is varied, a {lip bifurcation occurs at p,, and equilibria
displaying two-period cycles emerge. Hence not only are indeterminacy and endogenous volatility possible, but
economic oscillations need not dampen over time,

When B = 0 holds, equation (27) reduces to
@7 vy =le/(1-gly®W/L1-y @) 20
The following lemma gives a useful transformation of this law of motion for I,
Lemma 1, (a) Define the function h: [1, =) ~ &, by
(G hO={-e)/e][d-m)/ ]y d)}"
Then equation (27) is equivalent to
(32) L=h{l,,))itz0.
(b) k' (I) <0 holds, ¥ L. (c) If
@3 =wnzl-g,
then h: [I, =) ~ [1, =),
The proof of lemma 1 appears in appendix D. We will maintain the assumption {2.3) for the remainder of this
subsection.

The equilibrium law of motion (32) is depicted in figure 6. Evidently a steady state equilibrium with I" > 1
exists ff b''(1) > 1: this condition is easily shown to be equivalent to
(33) > (1-2a) /(1 -a).
It is also straightforward to verify that (33) is satisfied if (a.3) holds: thus (a.3) guarantees the existence of a steady

state equilibrium with I* > 1.
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As is apparent from (277, the steady state value [* satisfies
GO w/e@)=T[1-y O] =[(1-m/ 7] AP/ {1+[(1-7)/ 7] (@R-P).

For fixed values of & and « obeying (a.3), (34) gives [” as a differentiable function of p. We denote this relation by
I" = g(p). Straightforward differentiation of (34) establishes that

(35 eg'P/gp)=Inglp)/ {t+pl{l-n)/m]el)(l-p)/p}.

Thus, since g(p) > 1, g'(p) > 0 holds. In particular, as agents become more risk averse, the steady state nominal
interest rate must increase.

We are now interested in establishing conditions under which the steady state equilibrium is and is not
asymptotically stable. These conditions are stated in the next lemma.

Lemma 2, We have that

@36)  di, /dL|. =A(p:0) = ~{(1-a)/c]g(p)/ (p~1).

Therefore the steady state is asymptotically stable {unstable} if

(B7) TI'=g@E<E)p-De/ (-]

The proof of lemma 2 appears in appendix E. The lemma indicates that the steady state is asymptotically stable
(unstable) if the steady state nominal interest rate is not too large (small). Evidently the steady state must be
unstable if p is sufficiently close to one.

When the steady state is asymptotically stable, obviously there exists a continuum of dynamical
equilibrium paths displaying damped oscillation, as depicted in figure 6.-Hence indeterminacy and endogenously
arising volatility must be observed, However, it may aiso be the case that two-period cycles exist, so that the
interest rate oscillates in an undamped way. We now explore this possibility.

Define the function
(38) QE)=(-DU1-n)/n] {{e/{1-a)(p- 1)} "

We then have the following result,

Proposition 4, Suppose that there exists a value p satisfying Q(p) > L. Then there also exists a value p,>

(2 - m) /(1 - m) such that A (po; 0) =-1 and A, (p; 0) » 0. Moreover, there exist values of p near p, such that - at
these values of p - equilibria with two period orbits exist.

Proposition 4 is proved in appendix F. The proposition states conditions guaranteeing that, for some values
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of p, there is an equitibrium where L =T, > I, todd, and [, = [, > I, t even (with I, » I,.} Hence endogenous
volatility exists and does not dampen asymptotically, These oscillatory equilibria can exist when the steady state is
asymptotically stable; in this case there is obviously a large set of oscillatory equilibria.

For any specific parameter values, the existence of the desired value p is easily verified. We now illustrate
this point with an example.
Example 2, Suppose that & = 4 and that @ = %. It is easy to verify that Q(8) = 1.0024. Thus the desired value p,
exists; here p, <8 holds.

When the conditions of proposition 4 are satisfied, then, we can observe two-period cycles. One such
cycle is depicted in figure 6.

When B = 0, monetary policy is “loose™ in the sense we have previously defined. Loose monetary policies
can be consistent with unique equilibria. Indeed equation (37) indicates that this must be the case if 1 2
(p-1Da/(l-ca)holds. However, when agents are fairly risk averse, setting B = 0 can easily imply the existence of
an array of oscillatory equilibria. Hence, without a fairly precise knowledge of the level of risk aversion, it is not
possible to know whether loose monetary policies yield unique equilibria or not.
3. The Evolution of the Capital Stock

Under the assumption of Cobb-Douglas production, the evolution of the sequence {1} is governed by the
scalar difference equation (27) and hence is independent of the evolution of {k}. However, the evolution of {k}
does depend on the equilibrium sequence {1,}. We now briefly describe the dynamics of k. as well as ..

Equation (15) implies that
(39 ka-k=wk[1-Q+Py@]-k.
1t follows that k, . , - k, = 0 obtains whenever
@0 Qk)s1-(1+B)y @
Equation (40) at equality is depicted in figures 7.a - 7.c. Obviously the locus defined by (40) at equality is upward
sloping, and points below {above) that locus have k., - k, > (<) 0.

There are now several possible configurations of the phase diagram. As is apparent from figures 5.a - 5.c,
L+ - I, = 0 holds iff I, = I'; that is, iff I, corresponds to some steady state value. Using this observation, we now

consider the four possibilities with respect to the nature of the phase diagram.
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Case [. Suppose that there is a unique steady state with I" > 1, and that L (p: B) > 1. Thenif [ <() 1,1,
- I, <(>) 0 holds. It follows that the phase diagram for the economy has the configuration depicted in figure 7.a.
The unique steady state with I" > 1 is a saddle, and paths approaching it do so monotonically, with I, = [" v t and
with k, evolving according to k., = w (k1 - (3 + By vy (M.

Case 2, Suppose that there is a unique steady state with I” > 1, and that A (p; B) < 0. This corresponds to
the situation in figure 6; the phase diagram for this case s depicted in figure 7.b. Clearly if L < (>) [, I,,, - > (<)
0. The unique steady state can either be a sink [if & (p; B) > -1] or a saddle [if & (p; B) <-1]. In the former case
flyctuations in both the nominal interest rate and the capital stock (real interest rate) can be observed along paths
approaching the steady state, In the latter case paths approaching the steady state have |, = I" ¥ ¢, and the capital
stock monotonically approaches its steady state value, as in case I.

Case 3, Now suppose that there are multiple monetary steady states with [ > 1, and that each of them has
A (p; B)> 0 (as in figure 5.b). Let 1, (I5) denote the low (high)-interest rate steady state, Then ,,, - [,> 0 holds if
I <Il,orl,>1Izand],,, -1, <0holdsifl, € (I, Iz). The resulting phase diagram is depicted in figure 7.c. The low
{high)-interest-rate steady state is a sink (saddle), and paths approaching each display locally monotone dynamics.

Case 4, Suppose that there are multiple monetary steady states with I > 1, and that the equilibrium law of
motion for I, has the configuration depicted in figure 5.c. The phase diagram corresponding to this situation is also
represented by figure 7.c. Evidently the high-interest-rate steady state must be a saddle, while the low-interest-rate
steady state may be either a sink or a saddle. In the latter case, paths approaching the low-interest-rate steady state
display constant nominal rates of interest, and a monotonically evolving capital stock.

As the phase diagrams make apparent, in the case of multiple steady states either steady state can be
approached from any nonnegative initial capital stock. The implications of this observation are discussed below.

1. The case of cycles,

Suppose that there is an equilibrium where the nominal interest rate has I, = I, t odd, and [, = I, t even, and
to fix ideas let I, <1, hold. We now descﬁbe the evolution of the capital stock in this case. To do so we define x, =
Ink,and a, = In A1 - (1 +PB) y(I)]; t = e, 0.”* Then it is easy to verify that a, > a,, and that x, evolves according to

4la) X =a,+(l-e)a.+( -a)le'_;; t odd

BOf course B =0 might hold.
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(4lb)y x,.,=a+({1-a)ag+(1-a)x; teven.
Evidently, the capital stock will itself asymptoticaily display a two-period cycle, with x, = x,, teven, and %, = xg, t
odd. x, < x, will hold, so that the capital stock will be high exactly when the nomina!l rate of interest is high.

If k, satisfies k, € (exp (%), [exp (X, - 25)]"®), then both k, and k, lie between the asymptotic values for k,
corresponding to even and odd periods. As a consequence, {k,} will display increasing oscillation over time and
will asymptotically converge to its own two period orbit.

B. More General Production Functions

Under Cobb-Douglas production, the evolution of the nominal interest rate is governed by a scalar
difference equation. With more general production technologies this is no longer the case. We now consider more
general production functions and timit our focus to the analysis of local dynamics.

The equilibrium time path of {k, [} is governed by the dynamical system consisting of equations (13) and
(18). To begin, it will be useful to transform (18) as follows. Define the function H(k) by
(42) H(k) = (k) / wk).

It is straightforward to show that
@3} kH'®/HEK) =- (kwK)/ wk) ] {K) / kK.
Obviously H is a decreasing function.

Employing the definition of H in (18), and using (15) to substitute out k, , ,, we can rewrite the
former equation as
(44) vy (L= +BL)y () we) Hi{w(k) [1 - +ByyONI /(1 + P L
We henceforth work with the dynamical system consisting of equations (15) and (44).

Suppose that we now consider a linear approximation to this system in a neighborhood of any steady state
(k’, I"y with I" > 1. Then we have
45) (KooK L -1 =Tk, -k, L-T7)Y,

where I is the Jacobian matrix

t+l f al'<l. aklﬂ / aIt
a1, /dk, ar,/d,

t+l
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It is straightforward to verify that, evaluated at the steady state,
46) kK=K Wk /w (k)
(A7) Ok /0L =K /) LA+ Py /T -1+ By ORIy I/ y ()]
(48) Bl /ak = (/K {1 - [k w/(k)/ wk)] [[ (k") /K £EIK W &)/ wkD Ty () /Ty ()]
(49) A /aL=1-[y(I)/yMI/T A+ -k H' &)/ HENA+B)yy TV I1- (1 +P)y ()]

Let T(k', [") and D(k’, I} denote the trace and determinant of 1, respectively. Then it is straightforward to
calculate that
(50) D, )= [k w' &)/ wiD] {1 -+ Py O -y Y/ Ty AN}/ A+ B 1M}

(51) Tk, 1D=1+D&", I +xK, '),
where
(52)  x(K, )= K W'k} wkDHwk) /K KA +By (HT -1+ y (O] -

{1- K" wk) /WO [y O/ Ty A1+ BTy
The following result is then immediate.

Proposition 5. (a) x(k", I") > (<) 0 if (19} is steeper (flatter) than (20} where they intersect. (b) Tk, ID>(<) 1 +
Dk, 173 if (19) is steeper (flatter) than (20) where they intersect. {¢) D{k’, 1" < 0 holds iff

(53) 1-(1+PyO)>A+BO[1-vy I (-1)/p.

Part (a) of the proposition is immediate from a comparison of equations (23) and (52), while part (b) follows
directly from (51). Part (c) is implied by equations (10} and (50).

Proposition 5 allows us to say a great deal about local dynamics. As before, we consider B=0 and 3 > 0
separately.
L B=0.

If B = 0 holds, then clearly (53) is satisfied. Moreover, in this situation there is a unique steady state
equilibrium with 1" > 1; this steady state is depicted in figure 3. Since (19) is flatter than (20) where they intersect,
T, I') < 1 + D(K, I") holds. This observation implies that ] has no eigenvalues greater than one, while D(k", I’} <
0 implies that J has one positive eigenvalue. Thus the steady state equilibrium is either a saddle or a sink. Both
situations can easily emerge, as we illustrate with the following examples.

Suppose that f(k) is of the CES form given in (24). Then it is readily verified that (19) and (20) reduce to
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(54) A /b=(1+PII-0+ByM/Q+BD
and
(55) a¥ [1 + (b/ak®) e = (1 + By 1/ (1 + Bl).
In addition, kw'(k) / w(k) = (1 - 6) (ak® / b) /{1 + (ak® / b)] and kf*(k) / w(k) = ak° / b hold.
Example 3, Leta=b=1,p=2,0=0791746, and = =0.154387 hold. Then, with B = 0, it is easy to check that k’
=1, 1"=12,v(I") = /6, D(X", I") =-0.124953, and T(k", ["y = -1.254223 hold. Since T(k", 1"} <-1 - D(k", I"), J has
an eigenvalue less than -1. It follows that the steady state with 1" > | is a saddle. Paths approaching it display
locally monotone dynamics.
Example 4, This example is identical to example 3, except that p = 3 and 1 = 0.150462 hold. Thenk® =T and "=
1.2 satisfy (54) and (55), while D(k", I") = -0.0624765 and T(k", I") = -0.437552. The eigenvalues of J are 0.113398
and -0.55095. The steady state equilibrium is therefore a sink, and paths approaching it display damped oscillation,

In summary, the same situations that obtained under Cobb-Douglas production with P = 0 also can be
observed in the presence of more general technologies.
2. =0,

When B > 0 holds, some phenomena can be observed that do not occur under Cobb-Douglas production.
In particular, we can have two or more steady state equilibria with I* > 1, and the low (high)-interest-rate steady
state can be a sink (saddle). In addition, the eigenvalues of J, at the low-interest-rate steady state, can be complex
conjugates. This creates an additional route through which oscillatory behavior can be observed. We now illustrate
this point with an example.
Example 5, We assume that the production function is given by (24), witha=b =1, and o = 11/13. In addition, we
set p = 1.657462 and = = 0.071842. Then it is straightforward to check that there is a steady state equilibrium with
k' =1 and I* = 1.5. At this steady state equation (23) is viclated; therefore, with B > 0, an additional steady state
equitibrium must exist with a higher interest rate and a lower capital stock.

For this example one readily calculates that D(1, 1.5) = 1/130 = T(1, 1.5). Clearly, then, T(1, 1.5)* <4D(l,
1.5) holds, so that the eigenvalues of ] are complex conjugates with modulus less than one. Paths approaching the
low-interest-rate steady state must oscillate as they do so.

It is easy to show that, if D(k", I") > 0 holds at the low-interest-rate steady state, then D(k", I"} > 0 holds at
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the high-interest-rate steady state as well. Therefore proposition 5 implies that the high-interest-rate steady state for
this example is a saddle,
3. Summary

It is straightforward to construct examples where indeterminacy of equilibrium and endogenously arising
volatility are observed. There are more methods by which this can be done when production technologies are ot of
the Cobb-Douglas form.

V. Conglusion

We have examined a model of capital accumulation in which spatial separation and limited communication
create a role for money and random shocks to agents’ portfolio needs create a role for banks. We have seen that in
such a model there is considerable scope for the existence of multiple monetary steady states with positive nominal
interest rates, for the indeterminacy of monetary equilibria, and for endogenously arising economic fluctuations.

These possibilities arise because the severity of the financial market frictions that agents face are--at feast
partly~--endogenous in this environment. When nominal interest rates are low, agents perceive the costs of being
foreed to use currency in interlocation exchange as being correspondingly low, and hence they perceive financial
markets as providing, relatively speaking, ample liguidity and as functioning “smoothly.” When nominal interest
rates are high, on the other hand, agents perceive high costs to being forced to use currency in interlocation
exchange, there is a premium on liquidity, and the functioning of financial markets seems less smooth.

‘When the reserve-to-deposit ratio is increasing in the nominal interest rate (y" > 0), low nominal interest
rates {well-functioning financial markets) lead banks to invest heavily in capital. Hence the financial system
operates with relative efficiency, holds low levels of government liabilities, and finances capital formation. High
nominal interest rates, in contrast, are associated with banks holding comparatively large quantities of government
liabilities, with the result that there is less financing of capital investment. The inefficiency of the financial system
is detrimental to real activity. We have seen that a single economy can have either outcome as an equilibrium and
that it is possible for either steady state equilibrium to be approached starting from a given Initial capital stock.
Thus intrinsically similar - or even identical economies -- and even distinct economies with identical initial capital
stocks can display highly disparate asymptotic behavior. In this sense the operation of the financial system can

easily give rise to development trap phenomena.



25

[t is also the case that the conduct of monetary policy can significantly influence the scope for development
traps to exist. In particular, we have seen that when monetary policy is “loose enough” (that is, when B = 0), there
is necessarily a unique monetary steady state. However, indeterminacies and endogenous fluctuations can be
observed even when B =0, and setting B = 0 does not imply that two identical economies will have identical long-
run equilibria. Indeed, we have seen that some economies might experience undamped oscillation in interest rates,
inflation, and real activity when B = 0, even though a unique steady state equilibrium exists.

“Tighter” monetary policy stances that raise 3 above zero raise the specter of development trap
phenomena. In addition, once 3 exceeds zero and multiple steady state equilibria are observed, changes in monetary
policy can have complicated effects depending on which steady state equilibrium obtains. Steady state equilibria
delivering conventional comparative statics resuits will have the feature that contractionary monetary policies wili
raise the nominal rate of interest and result in lower output.

There are, of course, a number of issues that we have left unaddressed. One concerns the welfare
consequences of variations in the monetary policy parameter . Here the presence of multiple equilibria -- and
potentially multiple steady state equilibria -- gives rise to a number of subtleties that are beyond the scope of the
present paper. However, we can make a few casual observations. First, in the presence of multiple steady states
with positive nominal interest rates, an increase in f raises steady state welfare in the high-interest-rate steady state
if capital’s share does not exceed one-half. Depending on parameter values, an increase in B might increase or
reduce steady state welfare in the low-interest-rate steady state. Thus, in particular, there is no presumption that the
unique steady state that a.rises with B = 0 cannot be improved upon by tightening monetary policy. Doing so,
however, may increase the potential for development tap phenomenon.

A second issue that we have not discussed concerns the source of the non-neutrality of monetary policy in
this model. In many overlapping generations models, “pure open market” operations are neutral, even with respect
to the price level."* Neutrality obtains in those models only if open market activity is accompanied by a set of non-
distorting taxes and transfers that offset any changes in the government’s interest obligations on its liabilities.
However, whether or not the necessary transfers can be constructed at all in economies with positive nominal

interest rates is often an open question.'® Here the movement of agents between locations, along with the spatial

15ee, for Instance, Wallace (19&1), Chamley and Polemarchakis (1984), or Sargent and Smith (1987).
YFor adetailed discussion of this issue in the context of a particular model, see Sargent and Smith (1987).
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separation and limited communication that arises in the model, would make the existence of such transfers
particularly problematic.
There are, of course, 2 number of dimensions along which the analysis could be extended. One would be

the introduction of fiscal policy considerations, permitting an analysis of the consequences of varying a
govemment’s budget deficit. Another would be the introduction of bank regulation, which might well affect the
scope for multiple equilibria. A third would be to allow for some additional informational asymmetries that could
give rise to rationing in the market for investment capital. In such a context, open market operations might tend to
alleviate or exacerbate the rationing of credit, as Williamson (1986, 1987) has demonstrated elsewhere. All of these

would be interesting topics for future investigation.
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Appendix
A. Proof of Proposition 1.

It is easy to check that
A kQEWIQE=1-kw &)/ w Wl
Equation (A.1) allows us to rewrite (21) as
(A2) dkdl Lm =~/ Iy (DAY OIA+Byy D/ {1 - [kw'(k) / wk)]} Qk) =
WD [y O DI+ By /AL - [kw' (k) 7 w][T - 1+ B) ¥ (DL
where the second equality follows from (19). We can also rewrite (22) as
(A3} dksdl Im, =[(L+PYL/(1+ BT+ B £(K) = (KDY P £k F7(K) (1 + B = (WD) [k (k) / wik)]e
[w(k) /k (k)] [k (1 + BDY’ = - (1) [k (k) / wik)] Ew(k) / kw'(k)] (1 + BI)".
(23) follows immediately from (A.2) and (A.3). O
B. Proof of Proposition 2.

We must demonstrate that any potential steady state equilibrium with [ > [ violates (23). When p =0,
equation (23) reduces to
(Ad)  [K'w'{K) / wlOIIw k) /KT EDYy ) /1= v(EN > {1 - [Cw! (k) / wlOT} [y / Py (D]
In addition, when (24) holds,
(A.5)  kw'(k)/wk)=(1-o){ak’/(ak® + b)]
and
(A.6) k(K / w(k)=ak®/b.
Using equations (10), (A.S), and (A.6) in (A.4), we can reduce the latter condition to
A7 {-o)/{l+a@ BIyO>p/(p- 1)
But each term on the left-hand side of (A.7) is less than one, while p / (p - 1) > 1. Thus (A.7) and hence (23)
cannot hold at any steady state, establishing the desired result. O
C. Proof of Proposition 3,

Differentiating equation (27), we obtain
(A8) vyl N dLe /dl=B/(1+BI)+y'A)/ y() - 1/ L+ (1 +B) v {EY /1 - (1 +B) v(DL.

Imposing I, = I, = I" in (A.8) and rearranging terms yields
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(A9)  Alp; B) =dlu, /dl | o= [1-(1+B) y(I" - [y(1') / Ty QI = BEY™.
Moreover, imposing I, = I,,, = I" in {27) and rearranging terms, we note that any steady state interest rate with [" > 1
satisfies
(A10) [1-(1+B) ¥y =[(1-@)/ el (1 +B)F/(1+BI).
Then equations {10) and (A.10) imply that
(A1) Mp; By = {I(1 - )/ {1+ B~ [p/ (p - DI[L - y(I)]"} /{1 + BI).
But this is exactly (28).

It follows from (A.11) that A(p; B) > 0 holds iff
(A12) [(1-@)/el(t + BIp - 1/p] > [1 - y(II.
However, [1 - v(IN]" < [1 - (1 + $) v(I")]" holds. Using this fact, along with (A.10), we have that a sufficient
condition for A{p; f) >0 is
(A.13) [(p-L/pl(1+BIY=2 1.
But this is equation (29). Finally, (A.13) is obviously satisfied for any I" > 1 if (30) holds. O
D. Proof of Lemma 1.

Equation (9) implies that
(A.14) (D) /I[1-y(D] = [/ (1 - m)] I'"e.
Therefore (27') can be rewritten as
(A3 L={[(l -e)/e}[(l -m)/w]y (. )}"
This establishes part (a). Part (b) follows immediately from p > 1. For part (¢} note that, since h is decreasing,

(A.16) lim h(I) < h(I")

)
holds, ¥ 1’ 2 1. Clearly

(A17) lim (1) ={[(] - o) / &}{(1 - =)/ ]} * = 1

g
holds iff [(1 - &) / e}[(T - =) / ] < 1. But this is exactly (a.3). O
E. Proof of Lemma2,

Differentiating (32) gives

(A18) dl,,/dL,=h(L.)/Lh’ (. ).
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Therefore
(A.19) Alp; 0) = h(1")/ I'k’(").
Moreover, it is easy to verify that
(A20) I'(D)/ @ =-ply (/v =-(p- DI - YD),
where the second equality follows from (10). Substituting (A .20) into (A.19), and using the first equality in (34),
we obtain (36). (37) follows immediately. O
F. Proof of Propositien 4

Equation (36) implies that, if p, exists, it satisfies
(A21) glpo) lpg-1)=e/(1-a).
It is casily shown that (A.21) is equivalent to selecting p, to satisfy
(A22) 1=(p- Dy{le/(1-®p- D}/ (p-2) = Z(p).
We therefore seek a value p, satisfying Z(p,} = 1.

It will now be useful to state two preliminary results.
Lemma3. Z[(2-m)/(1-m)]> 1 holds.
Broof. Whenp=02-m)/(1-m),{p-1)/{p-2)= 1/ holds. Moreover, (2.3} implies that [e /(1 - e)}{[(2 - m}/ (1
-m)}-1}> 1. Therefore Z[2 -m) /(1 -] >y (1)/ =1 O
Lemmad., Z(p) <1 holds iff
(A.23) Q(p)> 1.
Proof. Using the definitions of Z and v, it follows that Z(p) < 1 holds iff
(A24) p-1<{p-{1+[(1-m)/=]{(e/(1-e))p~-1)]¢-A'P}.

It is easy to verify that (A.24) is equivalent to (A.23). O

1f there exists a value P such that Q(P) > 1, itis easily checked that p > (2 —=)/(1~=x) must hold. Moreover,
Z(B) < 1. It then follows from the intermediate value theorem that there exists a value pee(f(2-m)/(1-m)], P)
such that Z(py) = 1.

We also wish to show that 4, (py; 0) » 0. It is straightforward but tedious to demonstrate that

(a25) =2 (p;0)/A{p;0) = { (e / (1~ a))(p, = 1)]/[(1-m)/ 2 ](ee/ (1-))(p, - 1)]‘“"]"" + pu"} —(p, ~1).
Thus A {pe; 0} » 0 holds iff
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a26) Wnflas(1-a)fp, =)} #[pu /(e D]+ [p.* 700 - H(1-m)/ =]/ (1-)](o, -} ™.

We now observe that
(A27) [(t-=)/ n]{[a /(1-a)p, - l)]}u-p,yp. = {! - y{[cx /(1-a)](p, - l)}} / y[a H{1-a)(p, - 1)]
holds. But then Z(p_) =1 impiies that
(A28) [(l—ﬂ)/n]{[a/(l-a)](pu - 1)}“%}“" =1/{p, -2).
Substituting this result into (A.26), it follows that A {p,; 0) » O holds iff
(A.29) exp[2pa/(po-2]/(po-1)#a/(l-e)

Straightforward differentiation of (38) establishes that ’(p) = 0 holds iff
(A30) exp[2p/(p-D]/(p-Dza/(l-e)
It is easily verified that (A.30) at equality has a unique solution, P and that Q’(p) > (Q 0V p <(>)F.

Now Q() 2 Q(p) > 1, so that Z(3) < [ holds. It is also the case that &, (pe; 0) = 0 holds iff p, =p.
But this is ruled out by Q(p) > L.

It now remains to establish that there exist two-period orbits satisfying (32) for some values of p near p,.
To show this we work with the equation [, =h (I, ). Atthe unique steady state
di, /dh ., | =17 Alpg; OO
If there exist values I, > 1 and [, > 1 (with [, # I;) such that h(l,) = [, and h{{,} = I,, we have the desired two-cycle,

The existence of such values I, and I, for some values of p in a neighborhood of p,, is immediate from the
following theorem on flip bifurcations. Its statement is tzken from Azariadis (1993), p.97
Theorem, Consider the system x,,, = H(x, p) where H: X x 2 ~ X, He C', and r > 3. Assume that (x°, p,) is 2 non-
hyperbolic equilibrivm for p,, and that the eigenvalues of the Jacobian D, H(x", p,) have moduli strictly less than
unity with the exception of a single real eigenvalue A(p,) =-1. Then if 1’(p,) » 0 as the parameter crosses the
bifurcation point p, in some direction, the equilibrium loses stability. Moreover, in a sufficiently small
neighborhood of (x° po) in X x (3, this system has a periodic orbit of period 2 on one side of the bifurcation point p,.
‘We have established that the map h satisfies the conditions of the theorem when & < 0.5, and when there exists a

value § with Q()> 1. O



Low-interest-rate Steady State

Table 1

High-interest-rate Steady State

. ————— r— —— —_————— —
B I k PPy dl,, /dL, I k PPy
e = == —
1.0 1.0718 0747 9653 7554 1.5156 0594 L7950
1.005 1.1094 0728 9480 8101 1.4830 0602 .8053
1.01 1.1703 0702 9212 8929 1.4067 0622 8305

Other parameter values are: A=055,2=0.335,1=025,p=20
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Case 1
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Case 2: Multiple Steady States




Figure 3

B =0: A Unique Steady State
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Figure 5.b

Case 2 [ (1+B) > (1-20) / (1-0)]
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Figure 6
Cobb-Douglas Production [B =0]
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Phase Diagram: Case 1
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Figure 7.b
Phase Diagram: Case 2
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Phase Diagram: Cases 2 and 3
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