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Motivation

“New Keynesian” monetary models often abstract entirely from
financial intermediation and hence from financial frictions

Representative household
Complete (frictionless) financial markets
Single interest rate (which is also the policy rate) relevant for all
decisions

But in actual economies (even financially sophisticated), there
are different interest rates, that do not move perfectly together
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Cúrdia and Woodford () Credit Frictions Halloween 2008 2 / 40



Motivation

“New Keynesian” monetary models often abstract entirely from
financial intermediation and hence from financial frictions

Representative household
Complete (frictionless) financial markets
Single interest rate (which is also the policy rate) relevant for all
decisions

But in actual economies (even financially sophisticated), there
are different interest rates, that do not move perfectly together
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Spreads
(Sources: FRB, IMF/IFS)
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USD LIBOR-OIS Spreads
(Source: Bloomberg)
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LIBOR 1m vs FFR target
(source: Bloomberg and Federal Reserve Board)
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Motivation

Questions:

How much is monetary policy analysis changed by recognizing
existence of spreads between different interest rates?

How should policy respond to “financial shocks” that disrupt
financial intermediation, dramatically widening spreads?
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Motivation

John Taylor (Feb. 2008) has proposed that “Taylor rule” for
policy might reasonably be adjusted, lowering ff rate target by
amount of increase in LIBOR-OIS spread

— Essentially, Taylor rule would specify operating target for
LIBOR rate rather than ff rate

— Would imply automatic adjustment of ff rate in response to
spread variations, as under current SNB policy
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SNB Interest rates
(source: SNB)
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Motivation

John Taylor (Feb. 2008) has proposed that “Taylor rule” for
policy might reasonably be adjusted, lowering ff rate target by
amount of increase in LIBOR-OIS spread

— Essentially, Taylor rule would specify operating target for
LIBOR rate rather than ff rate

— Would imply automatic adjustment of ff rate in response to
spread variations, as under current SNB policy

Is a systematic response of that kind desirable?
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The Model

Generalizes basic (representative household) NK model to
include

heterogeneity in spending opportunities
costly financial intermediation

Each household has a type τt(i) ∈ {b, s}, determining
preferences

E0

∞

∑
t=0

βt

[
uτt (i) (ct(i); ξt)−

∫ 1

0
vτt (i) (ht (j ; i) ; ξt) dj

]
,

Each period type remains same with probability δ < 1; when
draw new type, always probability πτ of becoming type τ
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Cúrdia and Woodford () Credit Frictions Halloween 2008 6 / 40



The Model

Generalizes basic (representative household) NK model to
include

heterogeneity in spending opportunities
costly financial intermediation

Each household has a type τt(i) ∈ {b, s}, determining
preferences

E0

∞

∑
t=0

βt

[
uτt (i) (ct(i); ξt)−

∫ 1

0
vτt (i) (ht (j ; i) ; ξt) dj

]
,

Each period type remains same with probability δ < 1; when
draw new type, always probability πτ of becoming type τ
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The Model
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The Model

Aggregation simplified by assuming intermittent access to an
“insurance agency”

State-contingent contracts enforceable only on those occasions
Other times, can borrow or lend only through intermediaries, at
a one-period, riskless nominal rate, different for savers and
borrowers

Consequence: long-run marginal utility of income same for all
households, regardless of history of spending opportunities

MUI and expenditure same each period for all households of a
given type: hence only increase state variables from 1 to 2
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The Model

Euler equation for each type τ ∈ {b, s}:

λτ
t = βEt

{
1 + iτ

t

Πt+1
[δλτ

t+1 + (1− δ)λt+1]
}

where
λt ≡ πbλb

t + πsλs
t

Aggregate demand relation:

Yt = ∑
τ

πτcτ(λτ
t ; ξt) + Gt + Ξt

where Ξt denotes resources used in intermediation
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Log-Linear Equations

Intertemporal IS relation:

Ŷt = EtŶt+1 − σ̄[ı̂avgt − πt+1]− Et [∆gt+1 + ∆Ξ̂t+1]

−σ̄sΩΩ̂t + σ̄(sΩ + ψΩ)EtΩ̂t+1,

where
ı̂avgt ≡ πb ı̂bt + πs ı̂dt ,

Ω̂t ≡ λ̂b
t − λ̂s

t ,

gt is a composite exogenous disturbance to expenditure of type
b, type s, and government,

σ̄ ≡ πbsbσb + πsssσs > 0,

and sΩ, ψΩ depend on asymmetry
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Log-Linear Equations

Determination of the marginal-utility gap:

Ω̂t = ω̂t + δ̂EtΩ̂t+1,

where δ̂ < 1 and
ω̂t ≡ ı̂bt − ı̂dt

measures deviation of the credit spread from its steady-state
value
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The Model

Financial intermediation technology: in order to supply loans in
(real) quantity bt , must obtain (real) deposits

dt = bt + Ξt(bt),

where Ξt(0) = 0, Ξt(b) ≥ 0, Ξ′t(b) ≥ 0, Ξ′′t (b) ≥ 0 for all
b ≥ 0, each date t.

Competitive banking sector would then imply equilibrium credit
spread

ωt(bt) = Ξbt(bt)

More generally, we allow

1 + ωt(bt) = µb
t (bt)(1 + Ξbt(bt)),

where {µb
t } is a markup in the banking sector (perhaps a risk

premium)
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Log-Linear Equations

Monetary policy: central bank can effectively control deposit
rate idt , which in the present model is equivalent to the policy
rate (interbank funding rate)

Lending rate then determined by the ωt(bt): in log-linear
approximation,

ı̂bt = ı̂dt + ω̂t

Hence the rate ı̂avgt that appears in IS relation is determined by

ı̂avgt = ı̂dt + πbω̂t
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The Model

Supply side of model: same as in basic NK model, except must
aggregate labor supply of two types

Labor only variable factor of production for each differentiated
good
Firms wage-takers in labor market
Competitive labor supply, except wage demand may be
increased by exogenous wage markup process {µw

t }
Dixit-Stiglitz monopolistic competition
Calvo staggering of adjustment of individual prices

Only difference: labor supply depends on both MUI: λb
t , λs

t , or
alternatively on Ωt as well as λt
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Log-Linear Equations

Log-linear AS relation: generalizes NKPC:

πt = κ(Ŷt − Ŷ n
t ) + ut + ξ(sΩ + πb − γb)Ω̂t − ξσ̄−1Ξ̂t

+βEtπt+1

where

γb ≡ πb

(
λ̄b

¯̃λ

)1/ν

depends on Ω̄

— other coefficients, and disturbance terms Ŷ n
t , ut , defined as in

basic NK model, using σ̄ in place of the rep hh’s elasticity
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What Difference Do Frictions Make?

A simple special case: credit spread {ωt} evolves exogenously,
and intermediation uses no resources (i.e., spread is a pure
markup)

Then Ξ̂t terms vanish, and {ω̂t} exogenous implies {Ω̂t}
exogenous

The usual 3-equation model suffices to determine paths of
{Ŷt , πt , ı̂avgt }:

AS relation
IS relation
MP relation (written in terms of implication for ı̂avgt , given
exogenous spread)
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What Difference Do Frictions Make?

The difference made by the credit frictions:

The interest rate in this system is ı̂avgt , not same as policy rate
Additional disturbance terms in each of the 3 equations

Responses of output, inflation, interest rates to non-financial
shocks (under a given monetary policy rule, e.g. Taylor rule) are
identical to those predicted by basic NK model

hence no change in conclusions about desirability of a given rule,
from standpoint of stabilizing in response to those disturbances

Responses to financial shocks: equivalent to responses (in basic
NK model) to a simultaneous monetary policy shock,
“cost-push” shock, and shift in natural rate of interest.
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Optimal Policy

Natural objective for stabilization policy: average expected utility:

E0

∞

∑
t=0

βU(Yt , λb
t , λs

t , ∆t ; ξ̃t)

where

U(Yt , λb
t , λs

t , ∆t ; ξ̃t) ≡ πbu
b(cb(λb

t ; ξt); ξt) + πsu
s(cs(λs

t ; ξt); ξt)

− 1

1 + ν

(
λ̃t

Λ̃t

)− 1+ν
ν

H̄−ν
t

(
Yt

At

)1+ω

∆t ,

and λ̃t/Λ̃t is a decreasing function of λb
t /λs

t , so that total disutility
of producing given output is increasing function of the MU gap
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Optimal Policy: LQ Approximation

Compute a quadratic approximation to this welfare measure, in
the case of small fluctuations around the optimal steady state

Results especially simple in special case:

No steady-state distortion to level of output (P = MC,
W/P = MRS)(Rotemberg-Woodford, 1997)

No steady-state credit frictions: ω̄ = Ξ̄ = Ξ̄b = 0

—Note, however, that we do allow for shocks to the size of
credit frictions
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Optimal Policy: LQ Approximation

Approximate objective: max of expected utility equivalent (to 2d
order) to minimization of quadratic loss function

∞

∑
t=0

βt [π2
t + λy (Ŷt − Ŷ n

t )2 + λΩΩ̂2
t + λΞΞbt b̂t ]

Weight λy > 0, definition of “natural rate” Ŷ n
t same as in basic

NK model
New weights λΩ, λΞ > 0

LQ problem: minimize loss function subject to log-linear
constraints: AS relation, IS relation, law of motion for b̂t ,
relation between Ω̂t and expected credit spreads
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t same as in basic

NK model
New weights λΩ, λΞ > 0

LQ problem: minimize loss function subject to log-linear
constraints: AS relation, IS relation, law of motion for b̂t ,
relation between Ω̂t and expected credit spreads
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Optimal Policy: LQ Approximation

Consider special case:

No resources used in intermediation (Ξt(b) = 0)
Financial markup {µb

t } an exogenous process

Result: optimal policy is characterized by the same target
criterion as in basic NK model:

πt + (λy /κ)(xt − xt−1) = 0

(“flexible inflation targeting”)

However, state-contingent path of policy rate required to
implement the target criterion is not the same
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Implementing Optimal Policy: Interest-Rate Rule

Instrument rule to implement the above target criterion:

Given lagged variables, current exogenous shocks, and observed
current expectations of future inflation and output, solve the AS
and IS relations for target idt that would imply values of πt and
xt projected to satisfy the target relation

What Evans-Honkapohja (2003) call “expectations-based” rule
for implementation of optimal policy

Desirable properties:
— ensures that there are no REE other than those in which the
target criterion holds
— hence ensures determinacy of REE
— in this example, also implies “E-stability” of REE, hence
convergence of least-squares learning dynamics to REE
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Implementing Optimal Policy: Interest-Rate Rule

idt = rn
t + φuut + [1 + βφu]Etπt+1 + σ̄−1Etxt+1 − φxxt−1

−[πb + δ−1sΩ]ω̂t + [(δ−1 − 1) + φuξ]sΩΩ̂t

where φu ≡ κ
σ̄(κ2+λy ) > 0, φx ≡ λy

σ̄(κ2+λy ) > 0

a forward-looking Taylor rule, with adjustments proportional to
both the credit spread and the marginal-utility gap
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Implementing Optimal Policy: Interest-Rate Rule

Note that if sbσb >> ssσs , then sΩ ≈ πs , so that if in addition
δ ≈ 1, the rule becomes approximately

idt = . . .− ω̂t + φΩΩ̂t

Since for our calibration, φΩ is also quite small (≈ .03), this
implies that a 100 percent spread adjustment would be close to
optimal, except in the case of very persistent fluctuations in the
credit spread
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Implementing Optimal Policy: Interest-Rate Rule

Essentially, in the case that sbσb >> ssσs , it is really only ibt
that matters much to the economy, and the simple intuition for
the spread adjustment is reasonably accurate.

But for other parameterizations that would not be true. For
example, if sbσb = ssσs , the optimal rule is

idt = . . .− πbω̂t

which is effectively an instrument rule in terms of iavgt rather
than either idt or ibt
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Optimal Policy: Numerical Results

Above target criterion no longer an exact characterization of
optimal policy, in more general case in which ωt and/or Ξt

depend on the evolution of bt

But numerical results suggest still a fairly good approximation to
optimal policy
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Calibrated Model

Calibration of preference heterogeneity: assume equal probability
of two types, πb = πs = 0.5, and δ = 0.975 (average time that
type persists = 10 years)

Assume Cb/C s = 1.27 in steady state (given G/Y = 0.3, this
implies C s/Y ≈ 0.62, Cb/Y ≈ 0.78)

— implied steady-state debt: b̄/Ȳ = 0.8 years (avg
non-fin, non-gov’t, non-mortgage debt/GDP)

Assume relative disutility of labor for two types so that in
steady state Hb/Hs = 1
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Calibrated Model

Assume σb/σs = 5

— implies credit contracts in response to monetary policy
tightening (consistent with VAR evidence [esp. credit to
households])
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Calibrated Model

Calibration of financial frictions: Resource costs Ξt(b) = Ξ̃t bη,
exogenous markup µb

t

Zero steady-state markup; resource costs imply steady-state
credit spread ω̄ = 2.0 percent per annum (follows Mehra,
Piguillem, Prescott)

— implies λ̄b/λ̄s = 1.22

Calibrate η in convex-technology case so that 1 percent increase
in volume of bank credit raises credit spread by 1 percent (ann.)

— implies η ≈ 52
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Numerical Results: Alternative Policy Rules

Compute responses to shocks under optimal (i.e., Ramsey) policy,
compare to responses under 3 simple rules:

simple Taylor rule:

ı̂dt = φππt + φy Ŷt + εm
t

strict inflation targeting:

πt = 0

flexible inflation targeting:

πt + (λy /κ)(xt − xt−1) = 0
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Numerical Results: Optimal Policy
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Numerical Results: Optimal Policy
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Provisional Conclusions

Time-varying credit spreads do not require fundamental
modification of one’s view of monetary transmission mechanism

In a special case: the same “3-equation model” continues to
apply, simply with additional disturbance terms

More generally, a generalization of basic NK model that retains
many qualitative features of that model of the transmission
mechanism

Quantitatively, basic NK model remains a good approximation,
esp. if little endogeneity of credit spreads
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Provisional Conclusions

Recognizing importance of credit frictions does not require
reconsideration of the de-emphasis of monetary aggregates in
NK models

Here, a model with credit frictions in which no reference to
money whatsoever

Credit a more important state variable than money

However, interest-rate spreads really what matter more than
variations in quantity of credit
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Provisional Conclusions

Spread-adjusted Taylor rule can improve upon standard Taylor
rule under some circumstances

However, full adjustment to spread increase not generally
optimal, and optimal degree of adjustment depends on expected
persistence of disturbance to spread

And desirability of spread adjustment depends on change in
deposit rate being passed through to lending rates

General principle can be expressed more robustly in terms of a
target criterion
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Provisional Conclusions

Simple guideline for policy: base policy decisions on a target
criterion relating inflation to output gap (optimal in absence of
credit frictions)

Take account of credit frictions only in model used to determine
policy action required to fulfill target criterion
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