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1. Tasks and Motivation

• Formulate the problem of learning
by unemployed workers about themselves

• characterize equilibrium with such learning

• examine how reemployment wages and rates
depend on search history
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What’s the story?

• workers do not know their ability/productivity
— some are lucky to find jobs =⇒ revise beliefs upward

— some are not so lucky =⇒ discouragement

• divergence in histories =⇒ endogenous heterogeneity in:

— workers’ beliefs about their job-finding process

— search decisions

— job-finding rates and wages
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Specific facts:

• average job-finding prob decreases with duration

• wage losses increase with unemployment duration:
— US Displaced Worker Survey (Addison and Portugal 89):
increasing duration by 100% reduces wages by 10%

— UK Labour Force Survey (Gregg and Wadsworth 00):
duration of 7-12 months =⇒ wage loss of 27 log points
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Other complementary theories:

• unobserved worker heterogeneity,
and long duration is a signal of low productivity

• skill depreciation during unemployment

• declining wealth/benefit during unemployment
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Why use an equilibrium?

• need to explain the above facts as market outcomes

• firms can adjust offers and vacancies to respond to learning:
— with exogenous wages, low-wage jobs would be
filled more quickly as reservation wages fall
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2. Model Environment

Workers and jobs:

• firms or jobs: free entry

• workers (risk neutral):
— unemployed workers search

— employed workers produce y > 0,
shock of separation into unemployment: δ

— shock of exit from market: σ
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Worker’s unknown ability:

• new worker draws ability i ∈ {H,L}:
— unknown, permanent, prob(H) = p

• worker’s productivity is a random variable:½
y > 0, prob ai
0, prob 1− ai

—H is more “productive”: 0 < aL < aH < 1

— realized immediately after contact
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Directed search:

• continuum of submarkets x ∈ X = [0, 1/aH ]

x: prob of getting productive match (per search unit);

W (x): wage level; λ (x): tightness

• search choice:
a submarket x to enter (tradeoff between x and W )
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Matching in submarket x:

• total number of (productive) matches: F (ue (x) , v (x))

• total productive units of search in submarket x:
ue (x) = aH × uH (x) + aL × uL (x)

ui (x): # of type-i workers in submarket x
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Matching in submarket x (continued):

•matching probability per productive (search) unit:

x =
F (ue(x), v(x))

ue(x)
= F (1,

v(x)

ue(x)| {z } )
tightness λ(x)

•matching probabilities for participants:
type-H type-L vacancy

aH x aL x F
v =

x
λ(x)
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Wage function W (x):

• free-entry of vacancies:
Jv (x) ≤ 0 and v (x) ≥ 0 for all x ∈ X

with complementary slackness
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• firm’s expected profit of vacancy in market x:
Jv(x) = −c + x

λ(x)
× (1− σ)× Jf(W (x))

• firm’s value of employing worker at w,
discounted to the end of previous period:

Jf(w) =
1

1 + r

£
y − w + (1− σ)× (1− δ)× Jf(w)

¤
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Wage function W (x):

• free entry implies wage function:

W (x) = y − cA
λ(x)

x
, A ≡ δ +

r + σ

1− σ

•W 0(x) < 0 (tradeoff between W and matching prob x)
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3. Learning in directed search equilibrium

Information and learning:

•match success and failure contain info about ai
— info content depends on x: aLx < aHx

• firms do not face signal extraction:
matching prob x/λ(x) and wage W (x) are known

• all participants know all statistics in all submarkets
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Worker’s beliefs: expected value of his a

• common initial belief: μ0 = p aH + (1− p) aL

• belief before search in a period: μ = PH aH + PL aL

• posterior prob after search outcome:
P (ai | x, success) = ai x

μ xPi =
ai
μPi

P (ai | x, failure) = 1−xai
1−xμPi

16



Updating beliefs:

• beliefs before and after search:

μ→

⎧⎪⎨⎪⎩
E (a | x, success) = aH + aL − aHaL/μ ≡ φ(μ)

E(a | x, failure) = aH − 1−xaL
1−xμ (aH − μ) ≡ H(x, μ)

• properties of updating:
— beliefs obey a Markov process

— μ is sufficient statistic for search history

— search in market with higher x is more informative
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Rule out experimentation (sufficient condition):

y − b

c
> [A + aHx

∗]λ0(x∗)− aHλ(x
∗)

x∗ is defined by: λ0(x∗) = aHλ(
1

aH
)
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Search decision of a worker with belief μ:

• value of being employed at wage w,
discounted to the end of previous period:

Je(μ,w) =
1

1 + r
{w + (1− σ) [(1− δ) Je(μ,w) + δ V (μ)]}

• return to search in market x:

R(x, μ) ≡ xμ Je(φ(μ),W (x)) + (1− xμ) V (H(x, μ))
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Search decision of a worker with belief μ (continued):

• search decision:
(1 + r) V (μ) = b + (1− σ)× max

x∈X
R(x, μ)

• policy functions:
— search choice (of submarket): x = g(μ) ∈ G(μ)

— desired wage: w(μ) =W (g(μ))
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Stationary symmetric equilibrium:

• Block 1: individual decisions and market tightness
(i) given W (.), workers with belief μ choose x = g(μ) ∈ G (μ)

(ii) workers update beliefs according to φ(μ) and H(g(μ), μ)

(iii) W (.) satisfies free-entry condition

(iv) consistency: λ (x) =
v(x)
ue(x)

for all x with v (x) > 0

• Block 2:
(v) distribution of workers consistent with law of motion

Equilibrium is block recursive (as in Shi 09)
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4. Monotonicity of desired wages

Want to show:

• policy function, w (μ) =W (g (μ)), is strictly increasing

— i.e., wages fall as beliefs deteriorate

— i.e., search decision x = g (μ) strictly decreases in μ

Problems:

• value V (μ) is convex;
• V 0(μ) may not exist; FOC may not be applicable
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A map of our approach:

• use lattice-theoretic methods to prove:
policy function is monotone

•monotone policy function + convex value function
=⇒ validate first-order condition

• the above results + first principles of calculus
=⇒ envelope condition + differentiability of V
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Topkis’ Theorems (98):

max
z∈−X

f(z, μ), z = −x; μ ∈M

• If f is supermodular in (z, μ),
(and if (−X)×M is a lattice),
then maxZ (μ) and minZ (μ) are increasing in μ

• If f is strictly supermodular in (z, μ),
then every selection z (μ) ∈ Z (μ) is increasing in μ.

24



Use lattice-theoretic techniques:

• transform payoff function:
R̂(z, μ) ≡ R(x, μ)

μ
, z ≡ −x

• optimal search decision z(μ) ∈ Z(μ):

(1 + r) V (μ) = b + (1− σ)× μ× max
z∈−X

R̂ (z, μ)
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Theorem 4.1: monotonicity of desired wages

Assume separation rate satisfies 0 ≤ δ ≤ δ̄. Then

• R̂(z, μ) is strictly supermodular in (z, μ)

• every selection z(μ) ∈ Z(μ) is an increasing function;
every selection x = g(μ) is a decreasing function

• w(μ) =W (g (μ)) is an increasing function
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Why is R̂(z, μ) strictly supermodular?

μ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
expected value:

prob. xμ−−−−−−−−−→ φ(μ); δ × xμφ(μ) + μxW (x)

prob. (1− xμ)−−−−−−−−−−→ H(x, μ); m ≡ (1− xμ)H(x, μ)

High x submarkets have low wages:

• failure in higher x =⇒ deeper discouragement: ∂m∂x < 0

•marginal “damage” of x increases in μ: ∂
∂μ

h
∂m
∂x

i
< 0
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Why is R̂(z, μ) strictly supermodular? (cont’d)

• convexity of V is important:
properties above carry over to payoff only for convex V :

R̂ =
−z W (−z)
A(1− σ)

− δ

A
z V (φ(μ))| {z } + (1μ + z) V (H(z, μ))| {z }

expected payoff to success to failure

• assumption δ ≤ δ̄ is needed
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Theorem 4.1 (continued): strict monotonicity

Assume 0 < δ ≤ δ̄. Statements below are equivalent:

• (i) V (μ) is strictly convex for all μ

• (ii) every selection z(μ) ∈ Z(μ) is strictly increasing

• (iii) corner z = −1/aH is not optimal for any μ > aL

• (iv) corner z = −1/aH is not optimal for μ = aH

• (v) y−bc < (A + 1)λ0( 1aH )− aHλ(
1
aH
)
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Why linear V over some beliefs =⇒
even most optimistic workers search for lowest wage?

• V (μ) being linear in [μa, μb]
=⇒ decision problem is strictly concave for such μ
=⇒ optimal choice of z is unique for such μ

• strict supermodularity of R̂
=⇒ monotonicity of optimal decisions
=⇒ unique maximizer is corner, {−1/aH}, for such μ
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Why linear V over some beliefs =⇒
even most optimistic workers search for lowest wage?

• V (μ) linear in [μa, μb] =⇒ unique maximizer is {−1/aH}

• Same argument applies to μ ∈ £φi(μa), φi(μb)¤, i ≥ 1:
unique maximizer is {−1/aH} for all such μ

• limi→∞ φi(μ)→ aH ,
and Z(μ) is upper hemicontinuous
=⇒ {−1/aH} ∈ Z(aH).
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5. Uniqueness and differentiability

Theorem 5.1:

• optimal choices obey first-order condition

• generalized envelope theorem holds

• from the point where a worker has a match failure,
— value function is differentiable

— optimal choice is unique
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Why is V differentiable at a match failure?

• Suppose V not differentiable at μτ+1 = H(z(μτ ), μτ )

=⇒ multiple choices will be optimal in (τ + 1),

=⇒ V 0(μ−τ+1) < V 0
¡
μ+τ+1

¢
• worker can gain by raising z slightly above z (μτ )
(i.e., searching in submarket with slightly higher w)

— next period beliefs slightly above μτ+1
—marginal benefit increases by a discrete amount

—matching prob decreases continuously
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5. Implications

• unemployment duration =⇒ wage losses, discouragement

• wage dispersion among identical workers

• what about average job-finding prob in a cohort?
— searching for easier jobs increases job-finding

— but average ability in a cohort deteriorates with duration
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Implications (continued):

• reemployment and wages depend on entire history:
past occurrences of unemployment, past spells, etc.

• history can be summarized by beliefs entering unemployment
and, hence, by worker’s pre-unemployment wage

• even without skill differences, higher pre-unemp wage
— increases reemployment wages;

—may induce longer duration
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6. Conclusion

• tractable equilibrium theory of learning:
block recursivity; lattice-theoretic in dynamic prog

• discouragement during search:
longer search =⇒ more pessimistic =⇒ wage losses

• endogenous heterogeneity useful for:
understanding wage formation, duration dependence, etc.

• learning + aggregate fluctuations?
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