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Abstract

Many industries are characterized by a small number of �rms making many entry
decisions over a large choice set. Nowhere is this more true than in the case of the dis-
count retail sector, where Target, Wal-Mart, and Kmart compete in a national market.
Traditional discrete choice models of �rm entry are ill-suited to this high dimensional
choice problem. We instead draw upon recent innovations in the application of max-
imum score estimators to models of revealed preference (Bajari and Fox (2006), Fox
(2007)). Unlike previous work on this sector, our approach allows us to consider any
number of potential rivals, any number of stores per location, the endogeneity of the
distribution network, and unobserved (to the econometrician) location attributes that
might cause �rms to cluster their stores. Moreover, we show how recent innovations in
set identi�cation and inference can be used to separate the role of these unobservables
from observed location attributes like population. We �nd that all �rms (especially
Target and Kmart) �nd it advantageous to cluster stores around distribution centers.
Conditional upon that clustering, however, they �nd it costly to locate their stores in
close proximity to one another (i.e., an �own business stealing� e¤ect). All �rms (es-
pecially Kmart) �nd it even more costly to locate in close proximity to a rival. Both
of these strategic e¤ects are understated if unobservable market attributes are ignored.
Using counterfactual simulations, we explore the role of the distribution network in
determining the level of retail competition faced by consumers in markets of varying
sizes.
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1 Introduction

A cursory examination of the size distribution of �rms in almost any industry reveals a

similar pattern: dominance by a few extremely large players. Large, multinational corpo-

rations sell everything from chemicals to co¤ee. Instead of observing the birth of many

new �rms as markets grow, we mainly witness the continued growth of a handful of large

incumbents. Although game theory provides a rich framework for analyzing strategic in-

teractions between small numbers of players, the complexity of the objective function that

such �rms maximize is truly daunting. Furthermore, many industries are dominated by as

few as two or three �rms, begging the question of how one can estimate rich systems of

parameters with the observed behavior of so few players. As a result, empirical models of

strategic interaction have tended to focus on interactions between very small �rms in iso-

lated geographic markets or narrowly de�ned product categories.1 While analytically clean,

this approach misses important features of modern competition: scale and scope. In this

paper, we aim to develop a simple empirical method for tackling such large scale problems.

Our motivating example is the decision by a retail chain of where to locate its stores.

While our empirical analysis will focus on the discount store industry, the same insights

apply to almost every area of retail trade. Due to the increasing importance of information

technology, distribution systems, and volume purchasing, virtually every retail industry is

now dominated by a handful of powerful chains. While a few industries (like supermarkets)

still feature some strong regional chains, most retail markets are e¤ectively controlled by

just two or three national players. Discount stores are a prominent example, with three

national chains accounting for nearly three quarters of total sales. Each of these chains must

solve a complex optimization problem: build a network of outlets that moves products

to consumers as e¢ ciently as possible, recognizing that their rivals are trying to do the

same. While this optimization problem is naturally viewed as a discrete game, it has an

extremely complex structure. Firms must choose the optimal design of a vast network

of both stores and distribution centers in the face of �erce competition. Moreover, the

combination of network and competitive e¤ects implies that spillovers between stores could

be either positive or negative. From an estimation standpoint, even if a tractable method for

1A notable exception is Jia�s (2006) model of retail store location, which we will discuss in detail below.
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solving an equilibrium were available, the solution would not likely be unique. Nonetheless,

we argue that the parameters that govern such complex interactions can be estimated in a

relatively simple manner using the logic of revealed preference and the tools of maximum

score and set inference.

By relying on a revealed preference argument, we consider a large number of �local�

perturbations to the observed network structure that involve swapping pairs of stores owned

by rival �rms between matched pairs of markets. The structure of these swaps serves two

purposes. First, the deviations from the observed equilibrium must be payo¤ reducing,

generating preference inequalities on which we base estimation. This revealed preference

structure also eliminates the need to solve for an equilibrium, mitigating concerns over

multiplicity of equilibria and greatly reducing the computational burden of the estimation

procedure. Second, by considering only matched swaps of rival stores between pairs of mar-

kets, these inequalities mimic the structure of a di¤erence-in-di¤erences design, allowing us

to eliminate a common, market level unobservable, which is key for obtaining unbiased esti-

mates of either congestion e¤ects or economies of density. Pairwise maximum score allows

the researcher to estimate multinomial choice problems using arbitrarily chosen pairwise

comparisons, provided the structure preserves a rank-ordering property.

Intuitively, our estimation strategy exploits the complexity of the decision space to

o¤set the small number of market participants. Even though the number of players is small

(in this case three), the number of alternative con�gurations (and pairwise deviations) is

immense, allowing us to exploit asymptotics in the number of choices, rather than the

number of agents. However, the small number of players does impose a cost when it comes

to recovering and decomposing the �xed e¤ects we have di¤erenced away in the maximum

score procedure. Employing another set of inequalities based this time on the �rst order

conditions from the pro�t maximization problem, we recover ranges in which these �xed

e¤ects can lie, and then project them on additional covariates using set inference techniques

developed in Beresteanu and Molinari (2006). Set identi�cation follows from the limited

number of inequalities available given the small number of players observed in this industry.

Our paper builds on and extends a large and growing IO literature on the estimation

of discrete games that started with a series of seminal papers by Bresnahan and Reiss

(1987, 1990, 1991). In three companion papers, the authors considered entry by single
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store �rms into isolated geographic markets, quantifying the impact of price competition by

identifying the threshold market sizes at which �rms choose to enter a given market. Mazzeo

(2002) and Seim (2006) extended this analysis to include product and spatial di¤erentiation

respectively, but maintained the focus on single unit �rms in isolated markets. While

Seim (2006) exploited the bene�ts of incomplete information to purify equilibria, Bajari

et al. (2006) used this information structure to adapt the two step methods utilized in

dynamic discrete games to the static settings considered here. The �rst structural papers

to address the chain store network problem directly are Jia (2006) and Holmes (2006).

Holmes (2006) examines the spatial structure of Wal-Mart�s national network from the

perspective of dynamic discrete choice, using Wal-Mart�s sequential decisions over where to

open additional stores to infer the importance of economies of density. However, he does not

model (or control for) the choice of distribution network or reactions to (or by) Wal-Mart�s

rivals. The latter simpli�cation allows for the possibility of mistakenly attributing density

economies to the observation of �rms clustering their stores to avoid rivals. Jia (2006)

examines the network decision of both Kmart and Wal-Mart from a strategic perspective,

using a full solution method that exploits a lattice representation of the two player problem.

However, her elegant, lattice-based solution mechanism comes at a cost, restricting her

analysis to only two national players and locations that contain only a single outlet per

�rm. She notes that, without the latter restriction, her �nding of positive chain e¤ects (i.e.,

density economies) would be less likely to result. In our analysis, we consider the full set

of potential locations, allow for any number of competing �rms, and place no restrictions

on the number of stores per location while controlling for proximity to endogenously placed

distribution centers. Aside from �nding a strong incentive to cluster around distribution

centers, we �nd no evidence that �rms bene�t from locating their stores in close proximity

to one another �rather, we �nd strong evidence of own business-stealing.

Our analysis also draws extensively on recent extensions and applications of maximum

score. While our pairwise maximum score procedure is based on Fox (2007), the �rst

stage of our estimation framework is closest in structure to Bajari and Fox (2006), who

consider competitive bidding for packages of mobile phone �spectrum�licenses. The double

di¤erencing procedure used here is also similar to one of the identi�cation strategies used by

Pakes, Porter, Ho and Ishii (2006) to eliminate the structural component of the composite
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error utilized in their moment inequality based approach.

2 Model

We focus on the discount store industry. While this segment of retail was once quite

fragmented, in the past few decades it has come to be dominated by three main players: Wal-

Mart, Kmart, and Target. While each �rm is essentially national in scope, there are some

fairly obvious distinctions in the types of markets they choose to serve. Some of this is driven

by the types of consumers they target. Consistent with its rural beginnings and choice of

merchandise, Wal-Mart clearly favors rural locations and smaller cities, avoiding the major

cities almost completely (not always by choice). Target, on the other hand, clearly prefers

urban locations, consistent with its more �up-market� focus. Finally, Kmart is much less

focused, having stores both in major cities and rural towns (which may explain its lackluster

performance). In addition to proximity to consumers, location choice is also constrained by

logistics - stores have to be stocked with merchandise from a regional distribution center,

and may further bene�t from being close to one another (economies of density). In other

words, all three �rms are designing an optimal network of stores, balancing economies of

scale and distribution against the idiosyncratic preferences of individual consumers.

In retail industries, location choice essentially dictates the types of consumers you are

going to serve, as individuals tend to sort themselves into reasonably homogeneous neigh-

borhoods. While such sorting could (and probably does) occur on a very local level, from

the researcher�s perspective, there is a trade-o¤ between choosing a �ne grid and allow-

ing for meaningful correlated unobservables. With this trade-o¤ in mind, we chose Core

Based Statistical Areas (CBSAs) as our basic building block. CBSA refers collectively to

metropolitan statistical areas and smaller micropolitan statistical areas, which we will call

a market or location. Firms then choose which locations to enter and how many stores to

build in each. While this is somewhat restrictive in that it ignores more nuanced aspects of

spatial di¤erentiation, it will allow us to account for correlated, market level, unobservables,

which are key to correctly identifying network and congestion e¤ects. In this section, we

outline the estimation algorithm used to recover a �rm�s payo¤ function, which describes

the determinants of its entry decisions.
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Consistent with the determinants of behavior described above, we model the per store

payo¤ to �rm f = fT;K;Wg of each store in market j as:

�Tj = �T;Own ln
�
NT
j + 1

�
+ �T;Other ln

�
NW
j +NK

j + 1
�
+ �T;DCDCT

j + �T;XXj + �j

�Wj = �W;Own ln
�
NW
j + 1

�
+ �W;Other ln

�
NT
j +NK

j + 1
�
+ �W;DCDCW

j + �W;XXj + �j

�Kj = �K;Own ln
�
NK
j + 1

�
+ �K;Other ln

�
NW
j +NT

j + 1
�
+ �K;DCDCK

j + �j

where Nf
j is the total number of stores �rm f operates in market j, DCfj is the distance

from market j to �rm f�s nearest distribution center, Xj is a vector of exogenous attributes

of market j (e.g. income, population, household size, regional dummies), � is a vector of

parameters
�
�f;Own; �f;Other; �f;DC ; �f;X

	
with �f;K = 0; and

�j = XXj + �j

where �j is an unobserved (to the econometrician) attribute of market j (assumed to be

scalar and common across �rms). Note that XXj describes the way in which the Xj

variables a¤ect Kmart�s pro�ts. The impact of Xj on Wal-Mart�s pro�ts, on the other

hand, is represented by (X + �W;X)Xj , while the e¤ect of Xj on Target�s pro�ts is found

from a comparable expression. �f;Own > 0 would indicate that the per-store pro�t for

�rm f is increasing in the number of stores it has a particular location (i.e., economies of

density). �f;Other < 0 indicates that �rm f�s pro�ts per store are falling in the number of

its competitors�stores in the same location.

Since per store pro�ts are the same at every store in a given market, total �rm level

pro�ts are given by

�f =
X
j

Nf
j � �

f
j ;

which is, ultimately, the quantity that �rms are maximizing. An important feature of our

modeling framework is the inclusion of the unobserved market attribute, �j , which serves as

our structural error. From a practical standpoint, it is unlikely that our vector of observable

market attributes ( Xj) will capture everything about a market that is important in driving

pro�tability. If we ignore these unobservables (i.e., forcing the idiosyncratic store-speci�c

error, which we have not yet explicitly included, to control for them), we will likely arrive
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at biased estimates of a number of parameters �particularly those associated with Nf
j .
2 Of

course, explicitly including �j as part of the error structure creates potential endogeneity

problems since Nf
j is a local attribute that is determined in equilibrium. It is, therefore, a

direct function of �j as well as an indirect function of �k 8 k 6= j: In solving this problem, we

rely on three identi�cation assumptions �in particular, (1) endogenous attributes of each

market (i.e., the number of stores of one�s own �rm, the number of stores of other �rms,

and the distance to the closest distribution center) are �rm speci�c (i.e., distance to closest

Wal-Mart distribution center is relevant only for Wal-Mart stores), (2) the unobserved

attribute �j is common across �rms, and (3) after controlling for the common unobservable

�j , any remaining idiosyncratic error is uncorrelated with N
f
j , N

�f
j , and DCfj . The �rst

two assumptions are common in both the sorting and discrete choice (demand) literature.

The �nal assumption is sensible if the idiosyncratic error represents measurement error or

a realization of information learned after entry has taken place.3 For this reason, it is

important that we include amongst our observable attributes of each market variables that

might be di¤erently valued by di¤erent �rms. One obvious candidate is simply geography.

The locations of corporate headquarters can explain much of Wal-Mart�s prominence in

the South and the ubiquitousness of Target in the upper Midwest. We therefore include

regional dummy variables in the Xj vector.

We model the equilibrium locations of all Targets, Wal-Marts, and Kmarts as they

appeared in 2006.4 The locations of each �rm�s distribution centers are important deter-

minants of these siting decisions, but are certainly not exogenously determined. There is

a potentially complicated model of �rms�decisions about where to place these distribution

centers that we do not attempt to model. Instead, we deal econometrically with the fact

that DCfj is endogenous, allowing us to recover unbiased estimates of �rm preferences.5

Our estimator is based on a revealed preference approach that uses pairwise comparisons

2See Bayer and Timmins (2007) for relevant Monte Carlo evidence.
3Pakes et al. (2006) employ a similar error decomposition.
4Following the standard practice in the static entry literature, we treat the entire networks of each �rm

as being determined simultaneously in a one-shot game. In contrast, Holmes (2006) models the dynamics of
store di¤usions, albeit from the perspective of only a single �rm.

5The upside of this approach is that it allows us to recover the role played by distribution centers in the
�rm entry decision in a very simple framework. We �nd that proximity to distribution centers matters a lot.
The downside of this approach is that it does not allow us to predict new spatial distributions of distribution
centers under a counterfactual scenario. We return to this issue below.
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between the observed location decisions made by �rms and speci�c �single-store�deviations.

The assumption is that a single-store deviation (i.e., taking a single store and moving it to

a new location, holding the location decisions of other �rms �xed) is a deviation from the

observed Nash equilibrium and is, therefore, payo¤ reducing for the �rm. Recall that the

per store pro�t of a given �rm (say Target) in market j is given by

�Tj = �T;Own ln
�
NT
j + 1

�
+ �T;Other ln

�
NW
j +NK

j + 1
�
+ �T;DCDCTj + �

T;XXj + �j

Since the per store pro�t is the same for every store in a given market, Target�s total pro�t

in market j can be written

NT
j �
�
V Tj

�
NT
j

�
+ �j

�
where

V Tj
�
NT
j

�
= �T;Own ln

�
NT
j + 1

�
+ �T;Other ln

�
NW
j +NK

j + 1
�
+ �T;DCDCTj + �

T;XXj

Note thatNW
j andNK

j are always held at their observed values in V Tj
�
NT
j

�
, as we only con-

sider unilateral deviations. The logic of the estimator is to consider �swaps�of a single store

from one market to another. For example, consider moving a single Target store from market

a (e.g. Minneapolis), which currently contains NT
a Target stores, to market b (e.g. Chicago),

which currently contains NT
b Target stores. Since the observed con�guration

�
NT
a ; N

T
b

�
is

part of an equilibrium, Target�s total pro�ts must be higher under the observed con�gu-

ration than under the proposed counterfactual con�guration
�
NT
a � 1; NT

b + 1
�
. Note that

since all �spillovers�(i.e. congestion e¤ects or economies of density) are assumed to occur

within, but not across, markets (i.e. pro�ts are additively separable across markets) the

change in total �rm pro�ts only depends on the incremental changes associated with the

two markets exchanging stores, yielding the following relatively simple inequality

NT
a � V Ta

�
NT
a

�
+NT

a � �a +NT
b � V Tb

�
NT
b

�
+NT

b � �b

>
�
NT
a � 1

�
� V Ta

�
NT
a � 1

�
+
�
NT
a � 1

�
� �a +

�
NT
b + 1

�
� V Tb

�
NT
b + 1

�
+
�
NT
b + 1

�
� �b

Simplifying this expression yields

g�V Ta �NT
a ; N

T
a � 1

�
+g�V Tb �NT

b ; N
T
b + 1

�
+ (�a � �b) > 0 (1)
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where the g�V fj (�; �) notation represents the decrease (or increase) in pro�ts associated with
removing a single store from (or adding a single store to) a particular market. A di¢ culty in

using this inequality to recover the structural parameters of Target�s payo¤ function is the

di¤erence in �xed e¤ects, (�a � �b). In addition to the valuation of the exogenous features
of the market which are common to all players (represented here as Kmart�s preferences over

population, for example), these �xed e¤ects capture the parameters �a and �b, which are

common knowledge of the �rms, but unobserved to the econometrician. To obtain unbiased

estimates of the pro�t parameters, we must eliminate these common unobservables from

the preference inequality. Therefore, we consider another hypothetical store movement that

will allow us to di¤erence these �xed e¤ects away. In particular, consider moving one Kmart

store from b to a. This yields a similar inequality to the one above, but with an o¤setting

di¤erence in the �xed e¤ect term:

g�V Ka �NK
a ; N

K
a + 1

�
+g�V Kb �NK

b ; N
K
b � 1

�
+ (�b � �a) > 0 (2)

Subtracting equation (2) from equation (1) yields another inequality that is free from

this problematic term:

g�V Ta �NT
a ; N

T
a � 1

�
+g�V Tb �NT

b ; N
T
b + 1

�
�g�V Ka �NK

a ; N
K
a + 1

�
�g�V Kb �NK

b ; N
K
b � 1

�
> 0

(3)

Using the same logic, we construct many �o¤setting�swaps of stores between the three

retailers. By considering many such �minor perturbations�to the observed spatial network

of stores, we are able to construct a pairwise maximum score objective function with which

to estimate the � parameters (the remaining (common) parameters () are estimated in a

second step). Manski (1985) shows that point identi�cation of the � parameters requires

a special regressor with continuous support. This covariate essentially serves to break ties

between choices and therefore must di¤er across choices by a su¢ cient margin. Distance

to the nearest distribution center, which will always vary across locations and players is a

natural candidate since we only consider switching stores from one market to another. Ow-

ing primarily to the non-smoothness of the objective function, the pairwise maximum score

procedure does not yield analytic standard errors (or asymptotic normality). Therefore,

standard errors will be obtained using the bootstrap with sub-sampling.
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Finally, it is important to note what has happened with the endogenously determined

local attributes (NOTHER;f
j ; NOWN;f

j ; DCfj ) in this system. We would expect each of these

to be correlated with �j (i.e., places that are desirable owing to unobserved factors are likely

to have more stores in them (both OWN and OTHER). Locations surrounded by locations

with desirable unobservables are, similarly, more likely to be close to a distribution center

(assuming distribution centers are placed with the goal of servicing a large number of

attractive markets). Key to our estimation strategy, �j no longer appears in our objective

function when it comes time to estimate the parameter vector �. However, the other

elements of �j (apart from �j) are important in giving a meaningful economic interpretation

to several of the parameters recovered in the �rst stage. The common, market speci�c

terms were di¤erenced away. This is an issue in any procedure that involves di¤erencing

out common unobservables. An important contribution of our framework lies in the ability

to recover these additional parameters, rather than simply di¤erencing them away.

2.1 Decomposing the Market Level Fixed E¤ects

Crucial to our understanding of �rm entry behavior is the recovery of the parameters X ,

which are included in �j ; the �xed e¤ect terms that were di¤erenced out of equation (3).

Recall from above that these parameters describe how the demographic variables included

in Xj a¤ect Kmart�s pro�ts. The impact of Xj on Wal-Mart�s and Target�s pro�ts are

represented by (X+�W;X)Xj and (X+�T;X)Xj , respectively. Although we have already

obtained estimates of �W;X and �T;X in the �rst stage, we clearly need to know Kmart�s

values (captured by XX) in order to determine the overall value that any �rm places

on an attribute like per-capita income or population density. However, because we were

concerned that �j would be correlated with all the N�s, we included it in the �xed e¤ect

(�j) and di¤erenced it out in the �rst stage. We will now use our �rst stage estimates, along

with an assumption on �rm behavior, to recover (set valued) estimates of the �xed e¤ects.

We can then project these interval estimates onto X using Beresteanu and Molinari�s (2006)

techniques for set valued random variables.

With only three �rms and without making explicit distributional assumptions, we are

unable to recover point estimates of �j . There is simply not enough information in data

describing the store siting decisions of just three �rms to identify the precise values of this
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many parameters. However, we can recover ranges in which those parameters must lie and

then use these intervals to set-identify X . In order to do so, we make use of an additional

assumption about �rm behavior similar to that employed by Pakes, Porter, Ho, and Ishii

(2007). In particular, we begin with each �rm�s marginal pro�tability of stores in each

market j:

@�T
j

@NT
j

= �T;Own ln
�
NT
j + 1

�
+ �T;Own

NT
j

NT
j + 1

+ �T;Other ln
�
NW
j +NK

j + 1
�
+ �T;DCDCT

j + �
T;XXj + �j

@�W
j

@NW
j

= �W;Own ln
�
NW
j + 1

�
+ �W;Own

NW
j

NW
j + 1

+ �W;Other ln
�
NT
j +N

K
j + 1

�
+ �W;DCDCW

j + �W;XXj + �j

@�K
j

@NK
j

= �K;Own ln
�
NK
j + 1

�
+ �T;Own

NK
j

NK
j + 1

+ �K;Other ln
�
NT
j +N

W
j + 1

�
+ �K;DCDCK

j + �j

Note that we will not attempt to recover the determinants of the number of total stores

that each �rm builds. This will be a¤ected by capital constraints and cash reserves, long-

run business plans, access to foreign suppliers, and so forth. Instead, we assume only that

each �rm allocated whatever stores it did build in an optimal fashion �that is, they added

stores to each market until the marginal pro�tability of additional stores was equalized

across markets. In particular, for each �rm f , there is a value cf such that observed

marginal pro�ts in each market with at least one store must be greater than cf , while the

marginal pro�ts from one additional store must be less than cf :

�f;Own ln
�
Nf
j + 1

�
+ �f;Own

Nf
j

Nf
j + 1

+ �f;Other ln
�
N�f
j + 1

�
+ �f;DCDCf

j + �f;XXj + �j � cf (4)

�f;Own ln
�
Nf
j + 2

�
+ �f;Own

Nf
j + 1

Nf
j + 2

+ �f;Other ln
�
N�f
j + 1

�
+ �f;DCDCf

j + �f;XXj + �j < cf (5)

where �f;X = 0 if f = K. Note that in markets where the �rm has zero stores, it is at a

corner solution and only Equation (5) must hold. De�ne the following components of �rm

f�s marginal pro�ts in market j

 f1;j = �f;Own ln
�
Nf
j + 1

�
+ �f;Own

Nf
j

Nf
j + 1

+ �f;Other ln
�
N�f
j + 1

�
+ �f;DCDCf

j + �f;XXj

 f2;j = �f;Own ln
�
Nf
j + 2

�
+ �f;Own

Nf
j + 1

Nf
j + 2

+ �f;Other ln
�
N�f
j + 1

�
+ �f;DCDCf

j + �f;XXj
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Since we have estimated all the � parameters in the �rst stage (and observe everything

else), we can treat this component of marginal pro�ts as known.6 Because payo¤s are only

identi�ed up to an additive scale parameter in our discrete choice framework, we have one

free normalization. Setting the value of �j equal to zero for some base location, we have7

 f2;base < cf �  f1;base

With these bounds on cf for each �rm, we can now use equations (4 & 5) to bound �j

for each �rm:

 f1;base �  
f
2;j < �j �  f2;base �  

f
1;j ; if Nf

j > 0

�j �  f2;base �  
f
1;j ; if Nf

j = 0

Assuming that the �j�s are the same for all �rms, the intersection of these bounds

describes the set of admissible values that �j can take for each market j.8 Note that

if we had point estimates of the �j�s, we could simply project them onto X using a linear

regression. However, because the �j�s are set identi�ed, our dependent variable now comes in

interval form: �j 2 [�Lj ; �Uj ]. Therefore, we rely on the methods developed by Beresteanu
and Molinari (2006), which use a transformed Minkowski average of the data to recover

bounds and con�dence sets for X . Speci�cally, we estimate the parameters for the best

linear predictor of � in the interval [�L; �U ] conditional on X. Suppose X were to consist of

two variables, X1 and X2. Then the population set-valued best linear predictor is de�ned

as

� =

(�
1
2

�
:

�
1
2

�
=

�
E(X2

1 ) E(X1X2)
E(X2X1) E(X2

2 )

��1 �
E(X1�)
E(X2�)

�
; � 2 [�L; �U ]

)

The estimate b� is obtained by using the sample analogs of the above expectations. The
third term in brackets can simply be estimated by �̂�1 =

�
1
JX

0X
��1
. The last term in

6We will correct for the fact that these are estimates in the second stage standard errors.
7 In practice, the base location used is the Albany, Georgia Metropolitan Area. Kmart, Target, and Wal-

Mart each have one store there. The area�s population is around the 75th percentile and the population
density is close to the median value of all 912 CBSAs in our sample.

8Note that we drop from the �j decomposition exercise around �fty locations where the sets of �j�s are
disjoint (i.e. where no value of �j can satisfy all three �rms inequalities). This is an indication of model
mis-speci�cation. Because this only happens with a small fraction of our overall locations, we do not make
any correction for possible sample selection in the decomposition of �j .
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brackets can be written as E(G), where G is a set-valued random variable re�ecting all

possible values of X 0�, given that � is bounded by �U and �U :

G =

��
X1�
X2�

�
: � 2 [�L; �U ]

�
The sample analog to this expectation is given by the Minkowski average �GJ = 1

J

LJ
j=1Gj :

That is, for each observation j, Gj is a line segment with endpoints at (Xj1�jL; Xj2�jL)

and (Xj1�jU ; Xj2�jU ). The Minkowski sum of Gj , from j = 1::J , adds all these segments

to form a many-sided polygon. This polygon is then transformed by (X 0X) to obtain an

estimate of the set � = [1; 2]. Therefore,b� = �̂�1 �GJ (6)

In general, if there are K covariates in X, this estimated set b� will be a K-dimensional
polytope. In our application, the X variables include a constant term and various location-

speci�c characteristics, such as the log of population and median income, the average house-

hold size, the percent of the area�s population living in urban areas, the population den-

sity, and regional dummies. It is di¢ cult (if not impossible) to Minkowski sum such a

high-dimensional set-valued random variable. However, we can estimate a subset of the

parameters of the best linear predictor using the same logic as the Frisch-Waugh-Lovell

Theorem for partial regression in point-identi�ed models. For example, to estimate the set

of possible coe¢ cients on log(median income) and pctUrban, �rst obtain the residuals from

a linear regression of log(median income) on all other X variables besides pctUrban and the

residuals from a linear regression of pctUrban on all other X variables besides log(median

income). Denote these ~X1 and ~X2 and use in place of X1 and X2 above.

By the same partial regression logic, we can also estimate one-dimensional projections of

the identi�cation region. For example, the identi�cation region of the best linear predictor

coe¢ cient for a single k can be estimated by the interval
9

̂k =
1PJ

j=1
~X2
j;k

24 JX
j=1

min
n
~Xj;k�Lj ; ~Xj;k�Uj

o
;

JX
j=1

max
n
~Xj;k�Lj ; ~Xj;k�Uj

o35 (7)

where ~Xj;k is the residual from the regression of Xj;k on the other Xj;�k, including the

constant term.
9This simple result comes from Corollary 4.5 of Beresteanu and Molinari (2006).
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For both the one-dimensional and two-dimensional projections, con�dence sets can be

formed by bootstrapping and computing the Hausdor¤ distance between the estimated set

for the original sample and the estimated set for each bootstrapped sample, H(�b; �̂). Under

standard regularity conditions, Beresteanu and Molinari (2006) show that r =
p
nH(�b; �̂)

is asymptotically normally distributed. Therefore, we can use the 95th percentile of the

empirical distribution of r to construct bounds on the collection of all sets that, when

speci�ed as the null hypothesis for the true value of the population identi�cation region

for �, cannot be rejected at a 95% con�dence level. This is analogous to forming a 95%

con�dence interval for a point estimate.

3 Data

The data for the discount store industry are taken primarily from Trade Dimension�s Retail

Tenant Database for 2006. This proprietary dataset contains all 6,150 Wal-Mart, Kmart,

and Target stores in operation in the continental United States as of August 2006. These

include both pure discount stores that carry general merchandise and newer supercenter

formats that also carry full grocery lines.10 Because of the additional di¢ culty in modeling

a �rm�s choice of store format, we do not distinguish between these two types of stores in

our current application.

Stores are assigned to markets based on the 2005 Census de�nitions for Core Based

Statistical Areas (CBSAs), a term that refers collectively to metropolitan statistical ar-

eas and smaller micropolitan statistical areas. These statistical areas contain from one to

twenty-eight counties (on average, 1.9 counties) and include both a core urban area and any

adjacent counties that are closely linked economically and socially. Metro areas are those

with a core urban area with a population of at least 50,000, and micro areas are those with

a core urban area with a population from 10,000 to 50,000. These areas account for roughly

93% of the U.S. population and over 90% of the discount stores in our dataset. We exclude

from our analysis any stores that are located in the isolated spaces outside these statistical

areas.11 We believe that using CBSA�s as our market de�nition is more appropriate than

10We exclude Sam�s Club stores, owned by Wal-Mart, because these warehouse clubs do not compete
directly with Kmart and Target stores.
11We exclude 4 Target stores, 67 Kmart stores, and 431 Wal-Mart stores.

14



using counties since they typically de�ne a more natural �shopping area�by grouping small

adjacent counties together. The same criticism that applies to using large counties (e.g.,

Los Angeles County) to measure markets also applies here �all stores in the largest metro

areas probably do not compete equally with one another.

We have collected demographic and economic data on each CBSA from the U.S. Census

Bureau. The most recent population estimates at the CBSA level are available from the

Census Population Division for July 2005. Household median income and average household

size are aggregated from the county level from the 2000 Census. We also include the

percentage of the metro or micro area population that is located in an urban area, collected

from the website of the Missouri Census Data Center. The most recent data on retail sales

are available at the county level from the 2002 Economic Census, which we then aggregate

to the CBSA level.

In addition to these local characteristics, an important determinant of a �rm�s store

location choice is the distance to suppliers, so a unique feature of our data is the avail-

ability of detailed information about distribution centers. The Trade Dimension�s database

contains the locations of each of the 113 distribution centers that serve the stores in our

analysis. Wal-Mart is vertically-integrated, owning all 70 distribution centers that supply

its stores. Kmart and Target operate most of the distribution centers that supply their

stores, 13 and 24 centers, respectively. However, a small number of their stores rely on

third-party distributors. We include the locations of one Merchants Distributors center and

�ve SuperValu distribution centers that serve Kmart and Target stores, respectively. Using

the Haversine formula, we calculate the distance from the population-weighted centroid of

each CBSA to the CBSA of the closest distribution center for each �rm.12

Summary statistics for these markets are provided in Tables 1 and 2. Of the 912 markets

that contain at least one discount store, 358 are metro areas and 554 are micro areas.

Population estimates for 2005 range from 11,638 (in Pecos, TX) to over 18.7 million (in

New York-Northern New Jersey-Long Island). The number of discount stores per market

ranges from 1 to 161, but this distribution is highly skewed. The median number of stores

per market is 2, and 75% of markets have 5 or fewer stores.
12For the 8 Wal-Mart distribution centers located outside a CBSA, we assign them to the closest nearby

CBSA. Since these distribution centers are often in an adjacent county, this amounts to a displacement of
on average 35 miles.
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Wal-Mart has a presence in 98% of the markets, compared to 57% and 41% of the

markets for Kmart and Target, respectively. In part, this is expected because there are

twice as many Wal-Mart stores included in the data (2913) as there are Kmart and Target

stores (1295 and 1439, respectively). However, it also appears that these �rms follow quite

di¤erent strategies when locating stores. This can especially be seen in Table 2, which

summarizes the location characteristics for each store. Over 95% of Target�s stores are

located in metro areas, compared to only 68% of Wal-Mart�s stores and 78% of Kmart�s

stores.

4 Results

Our main empirical results are presented in Tables 3 and 4 for several alternative speci�-

cations of the model. Table 3 reports the parameters for the �rm-speci�c components of

per-store pro�ts, which were estimated in the �rst stage of our two-step procedure. The

results from the second stage procedure are presented in Table 4. Focusing �rst on the

results from the �rst stage, several features are worth noting.

First, with respect to density economies, the negative coe¢ cients on distance to dis-

tribution centers indicate that there are clear scale economies induced by the distribution

network. All three �rms exhibit a distaste for being far from their distribution centers. The

e¤ects are similar in magnitude for Kmart and Target, while the estimates for Wal-Mart�s

distaste is generally smaller than -1.13 This is consistent with other evidence of Wal-Mart�s

highly-e¢ cient logistics system. Second, in all of our speci�cations, we �nd clear evidence

of the congestive e¤ect of competition both among rival �rms (�fOTHER < 0) and among

stores owned by the same �rm due to business stealing (�fOWN < 0). While the competi-

tion e¤ect is to be expected, the dominance of the business stealing e¤ect over local density

economies unrelated to distribution is somewhat surprising given the results reported by

both Jia (2006) and Holmes (2006). At least two factors are likely to be in play here. First,

we consider larger markets than either Jia (2006) or Holmes (2006), and these markets

contain many more stores. Therefore, the chain/business stealing e¤ect we are �nding is

occurring within markets, as opposed to across markets. Cannibalization within markets is

13 In all speci�cations, we normalized the coe¢ cient on distance to distribution center in Kmart�s pro�t
function (�KDC) to -1.
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likely to be much stronger than cannibalization across markets. Second, we have included

a market level �xed e¤ect that accounts for unobserved market features that are likely to

be correlated with the clustering of stores.14 Column V, which contains the results from

a speci�cation in which the market level �xed e¤ects are dropped15, illustrates the con-

sequences of ignoring this heterogeneity. As expected, both the competition and business

stealing results are biased downward, as own and rival stores are now proxying for unob-

served spikes in the relative desirability of particular markets. Nonetheless, we still do not

�nd agglomeration/chain e¤ects.16 The importance of the unobservable characteristic can

also be seen by comparing the value of the score function under the di¤erent speci�cations.

When the unobservable coe¢ cient excluded in Column V, the estimator correctly matches

approximately 67% of the sampled inequalities. This score jumps to 91% when the unob-

servable is included in Columns I-IV. We also note that the models which include more of

the location-speci�c covariates have slightly higher scores, as expected.

These own and rival e¤ects also shed light on the relative strengths and weaknesses of

each �rm. By comparing the magnitude of these coe¢ cients, it appears that Kmart su¤ers

the most from the introduction of a rival �rm in the same market, while the impact of

rivals on store pro�ts is lowest for Wal-Mart. This indicates that Wal-Mart is the most able

to insulate itself from competition. In fact, the impact of an additional store on per-store

pro�t is almost the same whether the entrant is a competing chain or another Wal-Mart,

suggesting that Wal-Mart is fairly saturated in its existing markets. The estimated business

stealing e¤ect for Kmart is small, suggesting that if Kmart were to open another store in

an existing market, it would attract new customers rather than drawing them away from

the existing store. Again, this is likely due to relative saturation, there are more places

for Kmart to open stores. However, Kmart would pay a steep penalty were it to locate in

the same market as Target or Wal-Mart.17 The important role played by the unobserved

14Given the cross-market spillovers in Jia (2006) and Holmes (2006), the analog would be the inclusion of
a nest/cluster �xed e¤ect that is constant over the region in which the spillovers occur.
15By eliminating this unobservable, we no longer have to combine the matched inequalities for �rm pairs.

Instead, we use each of these inequalities (Equations (1) and (2)) separately and estimate the set of para-
meters that maximize the score function.
16We are in the process of repeating the analysis at the county level and allowing for cross-market spillovers.

By including cluster-speci�c �xed e¤ects, we should be able to control for correlated unobservables and isolate
the pure chain/business stealing e¤ect.
17Quick calculations based on Column III: The loss of a rival (changing from 2 stores total to 1 store)
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location attributes is evident in the own- and rival-store e¤ects in column V (where those

unobservables are ignored). The e¤ect of attractive unobservables is to make all �rms

more likely to place stores in particular locations. When these unobserved attributes are

ignored, this e¤ect is instead captured by the own- and rival-store e¤ects, biasing those

e¤ects towards zero.

Note that this model allows �rms to have di¤erent preferences over observable charac-

teristics of the market. Target, which is located primarily in metropolitan areas, has the

strongest preference for population relative to both Kmart and Wal-Mart, while Wal-Mart

has the weakest. This is consistent with conventional wisdom regarding each �rm�s pre-

ferred demographic. (Right now, the coe¢ cients suggest that Target likes median income

less than Kmart, while Wal-Mart likes it more.)

The second stage estimates are reported in Table 4. The bounds and 95% con�dence

sets for the coe¢ cient for population are positive in all our speci�cations, indicating, as

expected, that larger markets are more pro�table. We also note that, while the �rst-stage

estimates indicate Wal-Mart�s preference for population is lower than Kmart�s or Target�s,

the net e¤ect (captured by pop + �
W
pop) is positive. The set estimates for the other market

characteristics are generally neutral; that is, they cover both positive and negative values. It

is therefore di¢ cult to draw conclusions about Kmart�s location preferences, after controlling

for the impact of high values of population.

5 Counterfactuals

Because we did not explicitly model the decisions of box store retailers about how many

distribution centers to build and where to place them, we are limited in the counterfactual

scenarios that we can consider. In particular, we are constrained to consider either (1)

small variations under which it would be reasonable to hold the number and location of

distribution centers �xed, or (2) the situation in which distance to the distribution center is

not a factor in �rms�payo¤s. The former is useful for discerning the role of particular local

attributes in �rms�decisions. The latter is useful for discerning the role of distribution

has a positive impact on Kmart�s pro�t equal to the addition of 136,523 people in the market. (measured
from the median population of 74,150.) For Target and Wal-Mart, this impact would be equivalent to a
population increase of 82,250 and 56,450 respectively. These calculations use the midpoint of the interval
ln(pop) estimated in the second stage.
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costs in determining the spatial distribution of retail centers. This may have important

implications for pricing �some locations may face little competition because of their distance

form distribution center locations, leading consumers there to face higher prices.

In our simulation, we "turn o¤" the e¤ect of distribution centers (i.e., �f;DC = 08f)
and determine the new equilibrium number of each �rm�s stores in each location.

� Comment on equilibrium properties (i.e., existence and uniqueness).

� Show old and new equilibria.

� Determine number of stores per capita by size category of MSA.

� Do people in smaller MSA�s get more stores per capita under the counterfactual
scenario? Given the cost of operating distribution centers, we would expect that

�rms strategically place the so as to allow them to service a large number of stores.

We use our estimated model to determine what impact this motivation has on the

level of competition faced by �rms in various markets. Our interest is speci�cally in

the impact on consumers. Are �isolated� locations served by fewer �rms because of

the desire on �rms�part to reduce distribution distances? If so, we would expect that,

from consumers�point of view, cost savings to �rms arising from density economies

could be o¤set by higher prices from reduced competition.18 Is the distribution

network problem causing certain groups to face higher prices?

6 Conclusions

18Footnote explaining that we are only looking at competition between big box stores �not competition
between these stores and the �little guy�, who should thrive in isolated locations. Did we want to try to
add data on the little guys?
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Table 1: Summary Statistics by Market

Obs Mean Std Dev Min Max
Population in 2005 912 301,159 1,025,530 11,638 18,747,320
Land area (in sq. miles) 912 1716.63 2226.74 143.35 27259.87
Population density 912 152.61 225.52 1.78 2787.35
Average household size 912 2.55 0.19 2.18 3.75
Median Income 912 36,498.77 6,805.47 16,504.00 73,874.46
Percentage urban population 912 0.61 0.18 0.12 0.99
2002 retail sales (in $1000s) 912 3,169,755 10,632,448 73,768 183,700,000
Metro area 912 0.39 0.49 0 1
Northeast 912 0.10 0.30 0 1
Midwest 912 0.30 0.46 0 1
South 912 0.42 0.49 0 1
West 912 0.17 0.37 0 1
Distance to closest Kmart DC (in miles) 912 194.14 121.67 12.06 661.70
Distance to closest Target DC (in miles) 912 146.49 104.12 8.75 682.44
Distance to closest Wal-Mart DC (in miles) 912 92.64 64.14 8.75 506.67
Number of discount stores 912 6.19 14.12 1 161
Number of Kmart stores 912 1.42 3.43 0 43
Number of Target stores 912 1.58 5.44 0 72
Number of Wal-Mart stores 912 3.20 6.37 0 85
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Table 2: Summary Statistics by Store

Variable Kmart Target Wal-Mart
Population in 2005 2353013

(3975324)
3492545
(4282348)

1886391
(3105332)

Land area (in sq. miles) 3624:8
(3839:3)

4931:8
(4202:6)

3787:7
(3823:9)

Population density 534:9
(639:5)

696:0
(716:0)

414:5
(510:7)

Average household size 2:6
(0:2)

2:6
(0:2)

2:6
(0:2)

Median income 42083:2
(7411:4)

45536:4
(7474:9)

41024:4
(7562:3)

Percentage urban population 0:78
(0:18)

0:86
(0:12)

0:76
(0:18)

2002 retail sales (in $1000s) 24765258
(40070260)

36653720
(42806332)

19898874
(31626914)

Distance to closest own DC (in miles) 155:3
(118:7)

123:9
(89:8)

79:2
(49:3)

Metro area 0:78
(0:42)

0:95
(0:21)

0:68
(0:47)

Northeast 0:18
(0:39)

0:12
(0:33)

0:12
(0:33)

Midwest 0:30
(0:46)

0:28
(0:45)

0:24
(0:43)

South 0:33
(0:47)

0:34
(0:47)

0:47
(0:50)

West 0:19
(0:39)

0:26
(0:44)

0:16
(0:37)

1295 1439 2914
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Figure 1: Second Stage Set Estimates - 2D Projections
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