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Abstract
This study tests experimentally whether the ability of subjects to play a noncoop-
erative game’s mixed-strategy equilibrium (to make their play unpredictable) is
affected by how much information subjects have about the structure of the game.
Subjects played the mixed-strategy equilibrium when they had all the information
about other players’ payoffs and actions, but not otherwise. Previous research has
shown that players of a game can play a mixed-strategy equilibrium if they
observe the actions of all players and use sophisticated Bayesian learning to infer
the likely payoffs to other players. The result of this study suggests that the
subjects in our experiments did not use sophisticated Bayesian learning. The result
also suggests that economists should be careful about assuming in their models that
people can easily infer everyone else’s payoffs.

The views expressed herein are those of the authors and not necessarily those of the Federal
Reserve Bank of Minneapolis or the Federal Reserve System.



Sometimes it pays to be unpredictable. Tennis players
know this. So does the Internal Revenue Service. If a ten-
nis player always served to the same part of the court, the
player’s opponent would know where to be in order to
easily return the serve. And if the IRS published set rules
about the factors that would trigger an audit, taxpayers
would know how to easily avoid one. So the best strategy
for both the tennis player and the IRS is to choose more or
less randomly from among their alternative actions.

These kinds of strategic choices are often studied in
noncooperative game theory. If all of the players in a game
find it optimal to make their play unpredictable, the game
is said to have a mixed-strategy equilibrium.

One standard assumption of noncooperative game the-
ory is that all the players’ payoffs are common knowledge.
This is a fairly strong assumption. In many games, it is not
true. But without this assumption, players of a game may
not be able to play an equilibrium. Recent results in game
theory show that players can reach equilibrium if they ob-
serve the actions of every player in the game and are able
to use that information to infer the likely payoffs to other
players, by using a particular learning process known as
sophisticated Bayesian learning (Jordan 1991, Kalai and
Lehrer 1993).

In this study, we use an experiment to test whether how
much information players have available to them about the
structure of a particular game affects their ability to play
the mixed-strategy equilibrium of that game. We find that,
in our experiment, when players have all the information
about the payoffs and actions of other players, they are
able to play the game’s mixed-strategy equilibrium. But
players do not do that when they do not have complete
payoff information, even when they have enough informa-
tion about the game to possibly learn what they need to
know about other players’ payoffs. This result suggests that
the players did not learn about the payoff structure of the
game using sophisticated Bayesian learning. This result
also suggests that economists should be careful about as-
suming in their models that people can easily infer every-
one else’s payoffs.

Games, Equilibrium, and Learning
Any game can be described by the actions of the players,
the payoffs to those players, and the information that the
players have about these actions and payoffs. Again, non-
cooperative game theory typically assumes common
knowledge—that anything known about the game is
known by all players, that each player knows what is
known by all players, that each player knows that each
player knows what is known by all players, ad infinitum.
So, for example, if players in a game have complete in-
formation about the payoffs to all the players in the game,
common knowledge implies that each player knows that
all players have this complete payoff information.

In game theory studies, the assumption of common
knowledge is used to derive a Nash equilibrium, the prin-
cipal solution concept in noncooperative game theory. A
Nash equilibrium is a set of strategies for each of the play-
ers in the game, in which no player has an incentive to
change his or her own strategy for choosing actions in the
game as long as the other players do not change their strat-
egies.

Unfortunately, game theory does not specify how play-
ers reach a Nash equilibrium or how they obtain the as-

sumed common knowledge. If players have to learn about
payoffs to other players, they might not arrive at the Nash
equilibrium. Depending on the game, how players learn
can have a great effect on whether they can play the Nash
equilibrium.

Theories of the learning process in noncooperative
games model the information players need to resolve stra-
tegic uncertainty in order to construct individually optimal
strategies. One learning process that has been studied ex-
tensively is, again, sophisticated Bayesian learning.

Sophisticated Bayesian learning assumes that all players
know their own payoff functions but not the payoff func-
tions of other players. Uncertainty is represented as a sub-
jective prior over other players’ types, that is, as the deter-
minants of other players’ payoffs. Initially, strategies are
chosen as a Bayesian Nash equilibrium of the static game.
Then players observe the initial choices of all players, up-
date their beliefs about the payoff functions of other play-
ers, play the Bayesian Nash equilibrium given the updated
beliefs, and repeat the process. As play proceeds, all play-
ers update their beliefs about what determines the payoffs
of the other players. As they attempt to figure out what
characteristics of other players could be consistent with the
optimality of those players’ observed choices, players grad-
ually learn the game, including the payoff functions of the
other players.

Sophisticated Bayesian learning will always converge
to Nash equilibrium, but it requires that players process a
large amount of information.

In this study, we test whether subjects in an experimen-
tal game use sophisticated Bayesian learning to learn to
play the game’s Nash equilibrium. We manipulate the
information available to the subjects through two experi-
mental treatments. Then we test whether subjects’ play is
consistent with the predictions of sophisticated Bayesian
learning.

A Game for the Experiment
For our test, we need to choose a game for which we can
create an experimental treatment in which players can ob-
serve the actions of all other players without directly ob-
serving their payoffs. That is, players must have the mini-
mum information necessary for sophisticated Bayesian
learning. Two simple games are natural for an experiment-
er to consider for such a test: two-person matching pennies
and three-person matching pennies. Only one of these
games works for us.

Two-Person Matching Pennies
In a game of two-person matching pennies, each player
can choose to play either heads or tails. If the chosen ac-
tions of the two players match, then player A wins player
B’s penny, while if the actions do not match, then player
B wins player A’s penny.1 Table 1 shows how the actions
of the two players are linked to their payoffs.

In this game, predictability does not pay. If player A
always chose heads, then player B would always choose
tails and win A’s penny. But if player A knew that player
B would always choose tails, then player A would always
choose tails and win B’s penny. Similarly, if player B
knew that player A would always choose tails, then player
B would always choose heads, to win player A’s penny.
Each of the four combinations of actions gives one of the



players an incentive to change actions. We thus say that
this game has no equilibrium in pure strategies.

The game does have an equilibrium in another kind of
strategy, however. Neither player in the two-person match-
ing pennies game would be prepared to play heads or tails
consistently, but each player would be willing to randomly
play heads and tails, with equal probabilities for the two
actions. If each player used this strategy independently of
the other player, then the other player could not expect to
earn more by changing actions.2 The game has a mixed-
strategy equilibrium.

Games with a mixed-strategy equilibrium are not just
a theoretical nicety. Researchers have shown that mixed
strategies are optimal in, for example, modeling financial
and tax audits (Border and Sobel 1987 and Mookherjee
and Png 1989) and monitoring work effort (Kanodia
1985). Thus, the two-person matching pennies game
might appear to be a good one to use in an experiment on
learning.

However, it isn’t in ours. It doesn’t work with sophisti-
cated Bayesian learning. This type of learning requires that
an experimental subject observe all the other subjects’ ac-
tions but not directly observe their payoffs. But in a two-
person game, if a subject observes the actions of the other
subject and knows the payoff structure for the game, then
the payoffs are obvious as well. For example, in the two-
person matching pennies game shown in Table 1, if player
A plays heads, B plays tails, A observes B’s action, and A
observes Table 1, then A knows that B’s payoff was 1.
Player A’s knowledge of B’s realized payoffs cannot be
restricted without also restricting A’s observation of B’s
actions or A’s knowledge of the payoff structure of the
game.

Three-Person Matching Pennies
The use of sophisticated Bayesian learning can be tested,
however, with a three-person matching pennies game.

In a three-person game, all subjects’ knowledge of other
subjects’ payoffs can be restricted while letting them see
other subjects’ actions. Consider the three-person match-
ing-pennies game introduced by Jordan (1993) and shown
in Chart 1. In this game, the three players, X, Y, and Z, can
each choose either heads or tails. Each player has a coun-
terpart: X’s counterpart is Y, Y’s counterpart is Z, and Z’s
counterpart is X. Each player’s payoff is determined by
whether the player’s own choice of action matches the ac-
tion of his or her counterpart. If the player’s action is the
same as the counterpart’s action, then the player receives
nothing. If the player’s action is different from the counter-
part’s action, then the player receives a penny.

Table 2 shows an example of actions and payoffs for
the three players in this game. Suppose X chooses heads,
Y chooses heads, and Z chooses tails. Because X’s action
matches Y’s action, X receives nothing. Because Y’s ac-
tion does not match Z’s action, Y receives a penny. Be-
cause Z’s action does not match X’s action, Z receives a
penny.

With three players instead of two, the information that
experimental subjects have about other subjects’ payoffs
can easily be varied so that subjects can observe the ac-
tions of all other subjects, even if they do not observe the
payoffs to all subjects. Suppose that in a particular experi-
mental treatment, subjects see the actions of all the other
subjects. If subjects are told that every subject has a coun-

terpart and subjects all know how matches are rewarded,
then even if a subject observes the other subjects’ actions,
that subject will not know the other subjects’ payoffs un-
less the subject sees Chart 1. For example, if X knows that
X’s counterpart is Y, but X does not observe Chart 1, then
X does not know whether Y’s counterpart is X or Z.

Not surprisingly, this three-person matching pennies
game in Chart 1 has no equilibrium in pure strategies. If
each player chose a pure strategy, one player would want
to change actions.3 However, this game does have a unique
Nash equilibrium in mixed strategies: each player chooses
heads with probability ½ independently. With this mixed
strategy, the expected payoff to each player is half a penny.
No player has an incentive to change the probability of
choosing heads as long as each of the other two players
also chooses heads with probability ½.

Again we point out that sophisticated Bayesian learning
converges to the Nash equilibrium. Therefore, if subjects
use sophisticated Bayesian learning in repeated play of the
three-person matching pennies game, then after enough pe-
riods, subjects should play the mixed-strategy Nash equi-
librium.

The Experiment
Design
We designed an experiment to test whether controlling
how much information that players have about the payoffs
to other players affects their ability to play the mixed-strat-
egy equilibrium of a version of the three-person matching
pennies game.4

Our Game
The game in our experiment differs in four ways from the
three-person matching pennies game described above.

• To make the payoff salient, we made the payoff for
not matching the action of the counterpart a dime in-
stead of a penny.5

• To avoid suggesting randomization, we changed the
labels for the players’ possible actions from heads or
tails to the neutral A or B. (For simplicity, here, how-
ever, we will continue to use the labels heads and
tails.)

• To minimize repeated-game effects, we put three
players instead of just one at each node of the triangle
in Chart 1, for a total of nine subjects.6 Each player
thus had three counterparts, and the player’s payoff
was determined by the number of counterparts whose
actions differed from the player’s action. For example,
if one person in group X chose heads while two peo-
ple in group Y chose tails and one chose heads, then
the person in group X failed to match two counter-
parts and received 20 cents. Depending on the actions
of his or her counterparts, a player could earn 0, 10,
20, or 30 cents each time the game was played.

• As is common in economic experiments, we repeated
the game for many periods with the same players, in
order to see whether their behavior changed over
time.7

Treatments
We designed two experimental treatments, which differ
only by how much information players had about what de-
termined the payoffs to other players.



In our first treatment, it was common knowledge that
the subjects were matched according to Chart 1, which was
shown and explained to the subjects in the common in-
structions. The subjects also saw the entire history of
choices for all subjects as it grew. The notion here was that
if subjects’ behavior in this baseline treatment is consistent
with the mixed-strategy equilibrium, then we can legiti-
mately investigate the role of payoff information by ana-
lyzing subjects’ behavior in the other treatment.

In our second treatment, every subject knew from the
common instructions that every subject’s payoff depended
on whether his or her choices matched those of three coun-
terparts. However, nothing else was specified about those
payoffs—who the counterparts were, for example. Over
time, each subject observed the entire history of choices for
all nine subjects. In this treatment, therefore, a subject had
enough information to apply sophisticated Bayesian learn-
ing. While a subject did not know the incentives of the
other subjects, these could be inferred from the history of
play. If those inferences were made correctly, then the
resulting observed behavior could be consistent with a
mixed-strategy equilibrium. Sophisticated Bayesian learn-
ing is consistent with this possibility.

Subjects, Sessions, and Periods
As subjects for our experiment, we selected undergraduate
students at the University of Minnesota. Each session in
each treatment consisted of nine subjects who played the
game for between 70 and 79 periods. We conducted sev-
eral sessions for each of the two treatments, with 3,249
subject-actions in the first treatment and 3,312 subject-
actions in the second treatment.8 For participating in the
experiment, subjects were each paid $5.00 plus earnings.9

In each session of the experiment, the subjects were
separated by partitions, so that they could not see each
other, and they were not allowed to talk to each other. Af-
ter all the subjects had been seated, the experimenter dis-
played the instructions for the treatment on an overhead
projector and read them to all subjects simultaneously.
Then play began. Each session lasted between 60 and 90
minutes.

The experiment was run on a computer network. In
each experimental period, the subjects saw on their com-
puters information about the choices they and the others
had made in the previous periods. (But, again, the amount
of information the subjects had about the past varied by
treatment.) In each period, subjects made their choices and
entered them on their computers. After all subjects had
made their choices in a particular period, their payoffs and
the actions of all the other subjects were displayed.

Predictions
We tested whether controlling how much information sub-
jects had about the structure of the matching pennies game
affected subjects’ play in the game. We tested two predic-
tions: If the subjects in the experiment play a mixed-strat-
egy equilibrium, then

• On average they should play heads with probability
½.

• They should also randomize between heads and tails
with probability ½ regardless of the past actions of
any of the subjects in the game. In particular, the
probability that any subject chose heads in any given
period should not depend on the number of heads

chosen by the subject’s counterparts in the preceding
period.

For each of our two experimental treatments, we per-
formed two tests to see whether the subjects played the
mixed-strategy equilibrium of independently randomizing
between heads and tails with a probability of ½.

• We tested whether, on average, the subjects played
heads with probability ½.

• We tested whether, in a particular period, the proba-
bility that a subject chose heads was ½, regardless of
whether the subject’s counterpart group had played
zero, one, two, or three heads in the preceding period.
For this test, we estimated four separate probabilities
of playing heads—one for each possible number of
heads played by the counterpart group in the preced-
ing period—and tested whether the estimated proba-
bilities were all ½.

It seems reasonable to assume that subjects in the first
experimental treatment, who have all the information about
the structure of the game and can observe the actions and
payoffs of all players in the game, will play the mixed-
strategy Nash equilibrium. In fact, unless subjects play the
mixed-strategy Nash equilibrium in the first treatment, the
second treatment will not be interesting. Why test whether
subjects with limited information play the mixed-strategy
Nash equilibrium if subjects with complete information do
not?

Subjects in the second experimental treatment have lim-
ited information about the payoff structure of the game, but
they observe the actions of all subjects. Therefore, they
could use sophisticated Bayesian learning to determine the
best strategy for their play. If all subjects used sophisticat-
ed Bayesian learning in this treatment, then they would
randomize, that is, play the mixed-strategy Nash equilibri-
um.

Results
In our experiment, subjects do not seem to have used so-
phisticated Bayesian learning.

The unconditional probability that the subjects played
heads was about the same in the two experimental treat-
ments. In both, subjects came close to unconditionally ran-
domizing between heads and tails with equal probability.
(The probabilities are 0.508152 for the first treatment and
0.500468 for the second.) This result should not be sur-
prising, at least for the first treatment. Subjects in the first
treatment have complete information, so we expect them
to play the mixed-strategy Nash equilibrium and random-
ize between heads and tails with equal probability. If sub-
jects in the second treatment used sophisticated Bayesian
learning, then overall they would also randomize between
heads and tails with equal probability.

However, the probability of playing heads in the two
treatments was quite different when subjects’ actions were
conditioned on the previous actions of their counterparts.

In the first experimental treatment, remember, the sub-
jects saw all the actions of the other subjects and had all
the information they needed to compute the payoffs to all
those other subjects. Here the subjects played heads and
tails with nearly equal probabilities, regardless of the num-
ber of heads played by their counterpart groups in the
preceding period. Chart 2 shows that in this treatment, the



probability that a subject played heads was about 0.52 if
no counterpart had played heads in the preceding period
and about 0.47 if all three counterparts had played heads
in that period. Thus, subjects in this treatment do seem to
have chosen heads and tails with equal probability regard-
less of counterpart play in the preceding period. We tested
statistically the hypothesis that the true probability of
choosing heads in this treatment was ½, regardless of
previous counterpart choices. The test failed to reject this
hypothesis at the 5 percent level of significance.

Subjects acted differently in the second experimental
treatment. In this treatment, remember, subjects were al-
lowed to see all other subjects’ actions, but they were not
told the rules necessary to determine all the other subjects’
payoffs.10 Chart 3 shows that in this treatment, the proba-
bility that a subject played heads was about 0.83 if no
counterpart had played heads in the preceding period, but
was only about 0.18 if all three counterparts had played
heads. Thus, subjects in this treatment do not seem to have
chosen heads and tails with equal probability regardless of
counterpart play in the preceding period. We statistically
tested the hypothesis that the true probability of choosing
heads in this treatment was ½, regardless of previous
counterpart choices. The test strongly rejected that hypoth-
esis.

If the subjects in the second treatment had used sophis-
ticated Bayesian learning to determine what their best strat-
egy should be, then they would have played the mixed-
strategy Nash equilibrium of choosing heads with proba-
bility ½ regardless of previous counterpart choices. The
fact that the subjects did not randomize actions with equal
probability, regardless of previous counterpart choices,
shows that they did not use sophisticated Bayesian learning
in this experiment.

Conclusions
In our experiment, information affects players’ ability to
play a game’s mixed-strategy equilibrium. The only dif-
ference between our two experimental treatments is how
much information the subjects have about the payoff
structure for all the other subjects. In the first treatment,
subjects were told all about that payoff structure, while in
the second treatment, they were not. Even though this dif-
ference between the treatments should have had no effect
on the subjects’ ability to randomize if subjects had used
sophisticated Bayesian learning, the subjects’ play in the
two treatments was significantly different. With complete
payoff information, subjects did randomize and play the
mixed-strategy equilibrium. Without complete payoff in-
formation, they did not. We conclude, therefore, that sub-
jects in the second treatment did not use sophisticated
Bayesian learning to find their best strategy, which was to
randomize between the two actions with equal probability.

These results confirm the importance of information for
playing mixed strategies. The results also suggest that
economists should rethink models that assume people
know the payoffs to everyone in the model. Since that is
seldom true in real life, people often must infer payoffs
after observing other people’s actions. However, as this
study demonstrates, people may not make those inferences
correctly, even when theory suggests that they could.

*Also, Adjunct Professor of Finance, University of Minnesota.
1This is a zero-sum game: the sum of the payoffs of player A and player B is zero.
2For a complete treatment of equilibrium in the two-person matching pennies game,

see, for example, Gibbons 1992, pp. 33–34.
3Suppose, as in Table 2, that X chooses heads, Y chooses heads, and Z chooses tails.

Then Y and Z would each receive a penny, and X would receive nothing. Thus, X would
have an incentive to change to the strategy of playing tails. Since X has this incentive
to change, the assumed choice of actions cannot be an equilibrium. Now suppose that
X changes his or her choice, but the others do not: X chooses tails, Y chooses heads, and
Z chooses tails. Then X and Y would each receive a penny, and Z would receive nothing.
Now Z would have an incentive to change from tails to heads, so this set of pure strat-
egies cannot be an equilibrium. Similarly, it can be shown that no other set of pure strat-
egies is an equilibrium for this game.

4For a complete description and analysis of this experiment and its results, see
McCabe, Mukherji, and Runkle 2000.

5With this payoff, subjects who played the equilibrium would earn at least $12 per
hour. This was more than twice the rate that the subjects—who were college students—
could earn for unskilled on-campus employment at the time.

6This follows a suggestion of Friedman (1996).
7We did this to test whether subjects can learn to play the mixed-strategy equilib-

rium of the one-period game. In some games, the equilibria of the repeated game are not
the same as the set of equilibria of the one-period game. Repetition can expand the set
of strategies and payoffs; players can condition their behavior over time to punish or
reward their counterparts. In this experiment, since there is a unique equilibrium in the
one-period game, repeating it many times does not change the set of equilibria.

8We randomized the number of periods so that the subjects would not know how
many periods the experiments would last. This is consistent with O’Neill’s (1987) ex-
periment, in which subjects did not know how long it would last.

The average number of periods for the two experimental treatments was close to 73.
If each of five sessions had had 73 observations, there would have been 3,285 (5 × 9 ×
73) subject-actions in each experimental treatment.

9The subjects’ median earnings were $17.40; the 25th percentile of earnings was
$16.20, and the 75th percentile, $18.00.

10In this experimental treatment, recall, it is common knowledge that each subject
is matched with three other subjects, but subjects did not know how they were matched.
There are many ways in which nine subjects can be matched with one another while still
matching each subject with three other subjects. Our research tested whether subjects
learned the actual structure of the payoffs (shown in Chart 1) by observing the past
actions of other subjects. Jordan (1991) shows that if subjects follow a particular learning
rule, then they will eventually converge to an equilibrium. In our case, this would be the
unique mixed-strategy equilibrium.
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Table 1

How Actions and Payoffs Are Linked
in the Two-Person Matching Pennies Game . . .

Payoffs to Players A, B
When A Wins Matches and B Wins No Matches

Player B’ s Action

Heads         Tails

1, –1 –1, 1

–1, 1 1, –1
Player A’ s

Action

Heads

Tails



Chart 1 and Table 2

. . . And in the Three-Person Matching Pennies Game

Chart 1 Payoff Structure

Player X

Player YPlayer Z

X’s counterpart is Y

Z’s counterpart is X

Y’s counterpart is Z

Table 2 Payoff Example
Payoffs When a Match Pays Nothing and No Match Pays a Penny

Player Action Payoff

X Heads 0

Y Heads 1

Z Tails 1



Charts 2–3

How Counterpart Play Affected a Subject’s Actions

The Probability of a Subject Playing Heads in a Period vs.
The Number of Heads Played by Counterparts in the Preceding Period

Chart 2    With Complete Payoff Information

0                  1                   2                   3

0.52 0.53 0.50 0.47

Number of Counterpart Heads Last Period
0                  1                   2                   3

0.83
0.68

0.31
0.18

Number of Counterpart Heads Last Period

Chart 3    With Incomplete Payoff Information


