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ABSTRACT

Statistical inference in multinomial multiperiod probit models has been hindered in the past by the high
dimensional numerical integrations necessary to form the likelihood functions, posterior distributions, or
moment conditions in these models. We describe three alternative approaches to inference that circumvent
the integration problem: Bayesian inference using Gibbs sampling and data augmentation to compute posterior
moments, simulated maximum likelihood (SML) estimation using the GHK recursive probability simulator,
and method of simulated moment (MSM) estimation using the GHK simulator. We perform a set of Monte-
Carlo experiments to compare the performance of these approaches. Although all the methods perform
reasonably well, some important differences emerge. The root mean square errors (RMSEs) of the SML
parameter estimates around the data generating values exceed those of the MSM estimates by 21 percent on
average, while the RMSEs of the MSM estimates exceed those of the posterior parameter means obtained via
Gibbs sampling by 18 percent on average. While MSM produces a good agreement between empirical
RMSEs and asymptotic standard errors, the RMSEs of the SML estimates exceed the asymptotic standard
errors by 28 percent on average. Also, the SML estimates of serial correlation parameters exhibit significant
downward bias.
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1. Introduction

Discrete economic choices are often made repeatedly over several time periods. Examples
include the choice of which brand of a frequently purchased product category to buy on each
successive purchase occasion and which of several industries or occupations to work in during each
year of one’s life. A multinomial multiperiod probit (MMP) model can be a reasonable framework
for studying choice behavior in such situations. However, the very high dimensional integrations
necessary to form the likelihood function, posterior distribution, or moment conditions for inference
in the MMP model have until recently precluded its application. Rapid advances in simulation based
approaches to inference (McFadden 1989, Pakes and Pollard 1989, Keane 1994a, McCulloch and
Rossi 1994) have now made both classical and Bayesian inference feasible. These advances have
led to several interesting applications of the MMP model. These include sequential models of the
decision to work (Keane 1994a), brand choice (Elrod and Keane 1994, Keane 1994b, McCulloch and
Rossi 1994), choice of residential location (Hajivassiliou et al. 1993), and the probability a country
will default on loans (Hajivassiliou and McFadden 1994).

Despite this burgeoning list of applications, there has been no systematic comparison of
alternative approaches to simulation based inference for the MMP model in samples representative
of these applications. The goal of the present paper is to provide such a comparison. First, we
describe three simulation based approaches to inference: Simulated maximum likelihood (SML)
estimation using the Geweke-Hajivassiliou-Keane (GHK) recursive probability simulator, method of
simulated moment (MSM) estimation using the GHK simulator, and Bayesian inference based on
Gibbs sampling and data augmentation. We perform a set of Monte-Carlo experiments to compare
the performance of these approaches. The experimental design allows the impact of three important

features of the data on the performance of the methods to be assessed: 1) serial correlation of the



random components of utility, 2) serial correlation of the exogenous variables, and 3) contemporane-
ous cross-alternative correlations of the random components of utility.

Although all three approaches to inference perform reasonably well in our experiments, some
important differences emerge. The root mean square errors (RMSEs) of the simulated maximum
likelihood point estimates around the data generating values exceed those of the method of simulated
moments estimates by 21 percent on average, while the RMSESs of the MSM estimates exceed those
of the posterior means obtained via Bayesian inference by 18 percent on average. While MSM
produces a good agreement between empirical RMSEs and asymptotic standard errors, the RMSEs
of the SML estimates exceed the asymptotic standard errors by 28 percent on average. Also, the
SML estimates of serial correlation parameters exhibit significant downward bias.

While this is the first systematic study of the performance of simulation based approaches to
inference in the MMP model in representative samples, a number of authors have studied the single
period case. McCulloch and Rossi (1994) studied Bayesian inference using Gibbs sampling and data
augmentation to compute posterior moments in a single period multinomial probit model. Geweke,
Keane, and Runkle (1994) compared four alternative methods of inference in the single period
multinomial probit model: Bayesian inference using Gibbs sampling and data augmentation, MSM
and SML using the GHK probability simulator, and MSM estimation based on a kernel smoothed
frequency simulator. Only Keane (1994a) has studied simulation estimation in the multiperiod probit
model, and he examined both MSM and SML estimation based on the GHK probability simulator.
However, he only considered binomial probit models. Furthermore, he did not consider Bayesian
inference and did not utilize an experimental design that allows evaluation of the influence of the data
structure (for example, serial correlation of the exogenous variables) on the performance of the

alternative methods.



In Section II we describe the MMP model. Section III takes up two simulation based
approaches to classical inference in this model (SML and MSM) and the GHK method for simulation
of choice probabilities upon which these approaches are based. In Section IV we describe the
Bayesian approach to inference using Gibbs sampling and data augmentation to compute posterior
moments. Section V lays out the experimental design of our Monte-Carlo study, Section VI presents

the results, and Section VII concludes.

II. The Model

Assume that agents choose among a set of J mutually exclusive alternatives in each of T time

periods. If individual i chooses alternative j at time t, he/she derives utility

Uijt = Xf.Bj + €5t G=1.....5t=1,.D,

ij

where X, is ap X 1 vector of exogenous variables, §; is.ap X 1 vector of corresponding coeffi-
cients, and €;; is a random shock to utility that is known to the agent but unknown to the econometri-
cian. Choice j is made at time t if Uy > Uy, for all k # j. The econometrician observes the

choice

1 if i chooses j at time t
d.. =

4t .
0 otherwise,

but not the utility of any choice. The probit model is obtained by assuming
fi = (eill""’eﬂl""’eilT""’eiJT)' —~ IIDN(O,E), = [O'jk].

Since choices only depend on utility differences, it is conventional to measure utility relative
to alternative J. Since the scale of utilities is indeterminate, it is also conventional to normalize by
setting the variance of the error term corresponding to the first alternative in the transformed model

equal to one. Thus, we define



2.1) Ujj = (Uy—Uyo(oy; +oy—20,) 12
= [Xij8—Xinfy) + (ee—€udl(oy; +oy—207y) ™12
=Xif+ep (=11t=1T),
where X;;(j = 1,...,J) is the appropriate transformation of X;(j = 1,...,J) and 8;G =1,....0) is the

appropriate transformation of 8;j = 1,...,J). (Notice that U}y, = 0 and €};, = 0.) We further define

22 €= (6?11’---’6?,1—1,1,---,6?11',---,G?,J—l,"r)'
¢; ~ IIDN(O,2%, I* = [0},],
where I* is the corresponding appropriate transformation of T; by construction, o = L.

In the notation of the transformed model, choice j is made at time t if
(2.3) Ui > Uj forallk = j G = 1,...,J-1).
In order to have a compact notation for the sequence of choices observed for person i, define
2.4) 4y = [igpo-odip)y & = (@igoe-0dy),  and i = {jldy = 1}.
If P(d;) denotes the probability that i chooses the sequence d;,

P(dl) = P(Uzvjit:t > Urkt vk jit’ t= 1,...,T)

= Ple}j o€l > Xibi—Xi5 B, VE # §p ¢ = 1,...,T)]

If the e}‘jt are serially independent, then this is the product of T integrals each of dimension J — 1.
However, if the e;‘jt are serially correlated, this is in general a T « (J—1) variate integral. As T
and/or J grow, inference requiring exact evaluation of such integrals rapidly becomes infeasible.
Much of the earlier work on the MMP model sought to avoid this problem by imposing low order
factor structures on I*. For example, if a random effects structure is imposed, the order of

integration is reduced to 2 + (J—1). The goal of simulation based inference is to allow a richer

covariance structure to be used.



x

In this paper we consider a particular special case of the model (2.1)-(2.4) in which the €3t
are stationary first-order autoregressive processes and in which the X}‘jt are divided into two sets of

covariates: A set X}, that is constant across alternatives (which can be thought of as containing

ijt
characteristics of agent i) and a Z?jt set that varies across alternatives (which can be thought of as
containing attributes of alternatives, such as price or quality), but for which the corresponding
coefficient is restricted to be equal across alternatives.

These decisions are motivated by the desire to study models that are practical. Note that even
if the high order integration problem can be solved by simulation techniques, unless J and T are both
quite small it is not feasible to estimate an unrestricted Z* matrix which would contain T2(J ~1)%/2
free parameters. This motivates our decision to study models in which the errors follow a stationary
first-order autoregressive process. Our partitioning of the covariates into two types is motivated not
only by a desire to imitate applications, but also by the fact that likelihood surfaces in the
multinomial probit model tend to be very flat unless one includes covariates that vary across
alternatives (Keane 1990).

We next set out notation for the specific MMP model used in the subsequent experiments.
Partition each coefficient vector 8;' = (B;',y’) reflecting cross-equation constraints of the form

~ %7

employed in the experiments, and conformably partition X;; = (Xjj,Zi;). Further define the

matrices
X 0 -~ 0 - - 0 ]
ilt py O 0 zi’;t
—x 0o X - 0 » 0 . %
Xit = gt 0 s R = ? ’ th Z.i2t
A
0 0 X?Lt _0 0 p]_‘ A lLt_

where L =J — 1 and |g;| < 1 = 1,...,L). Conformably define



U. 5%
. ite . il B B Py
€ = s U=t [, B*= 3* > P =
€Lt * B AL
UL, L

In matrix notation, the model is then
<r¥ A E 3
U:t = X;ﬁ* + Ziey + e;t’

Finally, adopt the notational convention ujo = €;9, Xjo = [0]. The random utility component €},

follows a conventional, stationary, first-order autoregressive process
€ = Rej, g + Vi, vie ~ IDNQ,¥), ¥ = [yy].

Thus, the v;, are serially uncorrelated but correlated across alternatives. With this structure, or;k =
Yj/(1—pyp;). The assumption that R is diagonal is specific to the normalization on choice J in (2.1).
In general, if R is diagonal for the given normalization, it will not be diagonal for alternative
normalizations. The diagonality assumption made here will be most appealing when choice 7T is a
baseline decision, such as a no purchase option in a brand choice model or a no work option in an

occupational choice model, for which it is reasonable to assume utility is nonrandom.

III. Classical Approaches to Inference

A. Simulation of Choice Sequence Probabilities

Classical approaches to inference in the MMP model rely on Monte-Carlo simulation of the
choice sequence probabilities P(d;) and substitution of these simulated probabilities into likelihood
functions or moment conditions. In an extensive study of alternative methods for simulation of
multinomial orthant probabilities, Hajivassiliou, McFadden, and Ruud (1992) conclude that the GHK
probability simulator, due to Keane (1990), Geweke (1991), and Hajivassiliou and McFadden (1994),

is the most accurate of all methods considered. Geweke, Keane, and Runkle (1994), in a Monte-



Carlo study of alternative approaches to simulation based inference in the single period multinomial
probit model, concluded that classical methods based on GHK substantially outperformed classical
methods based on kernel smoothed probability simulators. For these reasons, we rely exclusively
on GHK to simulate choice probabilities when implementing classical simulation based estimators
in this paper. Here we provide a description of the GHK simulator applied to the simulation of
choice probabilities on the MMP model just described. For a proof of the unbiasedness of the GHK
simulator in general, see Borsch-Supan and Hajivassiliou (1993).

To describe the GHK simulator it is useful to define some additional notation. Let
- . I .
U{kt = U'i‘kt - U’l‘_]t (] = 1,...,J;t = 1,...,'.[‘), ellkt = e?kt - eijt‘ :

(Notice that U, = 0 and &, = 0.) Choice j is made at t if the J — 1 constraints Ui, < 0 for all

k # j are satisfied. Further let

E(=D) = @B o108 o 10--- ) a0d €@ = (Ea(i0)s--Fr(—dim))
where d; is the choice vector defined in (2.4). Thus &d) ~ TIDN(0,Z(dp), where £(@) is the
appropriate transformation of I*.

Let A(d,) be the unique lower triangular Cholesky decomposition £(d;) = A(d)A(d)'. Then
#d) = A@)i(d), where (suppressing the i subscript) Fi(—j) = 1o Mj—10Mjp+ 10000
#@) = @(=jp),--.,Fr(=ir)’, and ny ~ IDN(O,1) for all i,j,t.

Finally, define Ul(il1,...,% t—1,7%- i) as the value of G, when the random variables
(fi115-+ o715 0= 15711+ -»Tipe) Ar€ fixed at the draw @ 1eensif =17kt -l Note that for p = k this
is a number, and for p < k this is a random variable. Then, the GHK simulator for the probability
of the choice sequence (d;;,...,d;), or equivalently Giy,..-sji), is constructed as follows (suppressing

the i subscript):



Period 1:

Step:

() Drawq; st Oya@'p <0

!
(]l—l) Draw 17.] -1,1 s.t. l]jl_l 1(’711, 717j1—-1,1) <0
G)  Skip ﬂjl,l

- t 1 ¢ ¢ !
G;t1) Draw 75 44,1 St U;l-i-l,l(’?n,---vﬂjl—l,l:ﬂj,ﬂ,l) <0

4 4
) Draw 1y s.t. Ujl(’ﬂu, ,7111—1 1,77_‘14-1 15eat) < 0

Period t:

Step:

¢ ~L 4
(1) Draw nlt ( 11, ’ﬂJ,t—l’nlt) < 0

. ¢ = - ot t t

(lt_l) Draw ﬂjt_l,t s.t. [J;:—l,t(n11""’"J,t—1’7’1t""’njt—l,t) <0
. . {

0:) Sklp njtt

. ! 3 ~¢ ~! ¢ ¢ t
G,+1) Draw Nj+1, SL U;,+1,t(’711»---""IJ,t—l»"hv"~’7'jt-1,t’77j,+1,r) <0

] 3t -8 -t ¢ t ] ¢
)] Draw 75  s.t. U.,I‘t(nll’""nJ,t—l’nlt""’njt—l,t’njﬁl,t""’th) <0

and finally, construct:



10

Poux @y .- ,d, | B*,2*,X*)
1 o ¢ t ~J1 t ¢
= M ; E PU;; < O)I;HP[ e CH ,’7k—1,1) < 0] - P U:’i1+1,1(1711’-"’77j1—1,1) <0

=1 ¢ ¢ ! ]
II P[ kl(nll’""ﬂjl—l,lvnj1+1,1""’ﬂk—l,l) < 0]

k=j,+2

. i1
At o2 £ !
© o P( f:(ﬂu’---"‘lk— < 0) P[Uh "111’ ’”Jt—lmlt""’nk—l,t) < O]

e ") ) -t ~4
P [UJj +1 t(’)] 11,...,11]1,';_1,7) 1t’""’7jt—l,t) < 0]

=t ¢ t t t
H P[Uh(ﬂu’ ’ﬂJt—l’nlt"'"njt—l,t’ﬂjt+l,t’""nk—l,t) < O] .

k=j+2

B. Classical Estimation Methods
The two classical estimation methods we consider are simulated maximum likelihood (SML)
and method of simulated moments (MSM). The SML estimator maximizes the simulated log-
likelihood function, which is obtained simply by substituting GHK simulators of choice sequence
probabilities into the log-likelihood function:
N
L(B*,Z*) = Y logPeux(d;|8%,2*,X*).
i=1
The SML estimator is consistent if M/(N)2 - o as N - . (For proofs, see Lee 1992, 1993 and
Gourieroux and Monfort 1993.)
A direct application of the MSM estimator developed in McFadden (1989) to the MMP model
would involve indexing all possible choice sequences s = 1, ..., JT and defining the choice indicators
d,, = 1 if i chooses sequence s and O otherwise. Then form the MSM estimator by solving the

moment conditions;
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N JT

Y Y Wild, — Pouk(dic] Barsn EmisvoX*)] = O.

i=1s=1
This MSM estimator is consistent for fixed M. This direct approach is not feasible because of the
computational burden involved in simulating the probabilities of JT sequences and forming JT
weights.

Keane (1990) proposed the computationally feasible alternative of factoring the sequence

probabilities into transition probabilities and forming the alternative estimator:

T
>y wyld, - Porxl(diiel digse o0 1.Bpsv-Enasne X)) = O,

i t= jz

N J
je] 1

where the transition probabilities are simulated using ratios of GHK-simulated choice probabilities,

Pk (i oG5 e 1,5

Pork( il digy--o i) = Pouk(digs---,di ;1)
ilo--->Mjt—

Although this gives a biased simulator of the transition probability, an MSM estimator of this form
is consistent if M/(N)!/2 - oo as N - o (see Keane 1994a). In addition, Keane (19942) finds in
a Monte-Carlo study that it has superior small sample properties to SML, especially when serial
correlation is strong. (This study was limited to binomial probit models. We provide evidence for

the trinomial probit case, and Keane’s finding will be strengthened.)

IV. Bayesian Inference Using the Gibbs Sampler

Bayesian inference using the Gibbs sampler (Gelfand and Smith 1990) and data augmentation
(Tanner and Wong 1987) has been applied to the multinomial multiperiod probit model by Allenby
and Rossi (1993). The approach taken here follows Allenby and Rossi but differs in 3 respects:
Here, all priors are proper whereas Allenby and Rossi used improper priors for 8*; stationarity is

enforced through data augmentation of presample random utilities, rather than through explicit
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restrictions on I* (see step 2 below); and the coefficients of covariates are fixed rather than random:.
In a Bayesian approach, the latent utilities U’i‘jt and the coefficient vectors 6}‘(1 =1,...,J-1),~, and
I* enter the model in symmetric fashion, having a joint posterior distribution conditional on the data.
The computation of a posterior moment involves integration over both the latent wtilities and the
parameters. The Gibbs sampling-data augmentation algorithm executes this computation by
constructing an artificial sample from the joint posterior distribution and then forming sample means
of the functions whose posterior moments are of interest.

To provide an overview of the algorithm in generic notation, suppose a model specifies a
probability density function f;(Y [Y.,0) for observable random vector Y conditional on the latent
random vector Y and parameter vector 8. Suppose the model also specifies a probability density

function £,(Y|6) for Y. Having observed Y, we know the likelihood function is

LY|6) = [ 61 T.06F|6dY.
Y

The explicit integration in this expression is often quite difficult, and consequently maximum
likelihood or other optimization estimates are nontrivial. (The SML estimator described above is an
example.) Given a prior probability density for 6 with kernel f;(§), the posterior probability density

for @ is

J SO | V08T |0)dY

p@lY) = _ i
j eJ @ (Y]Y,0)D,(Y|)dYds

and the posterior expectation of a function of interest 20.Y) is

[o] ¢80 DO | L0567
f o [ JoOLY Y .OE(T|6)dTds

E[g(¥.0] =

= j 56,0, | Y)d¥d,
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where p(9,Y|Y) is the joint posterior density function for 6 and Y.
Suppose there is a partition of the parameter vector ¢ into m subvectors, 8 = (8(y)s---,0(m))>

such that the conditional posterior density functions
PO 105, # 1L,Y,Y)

are of sufficiently simple form that synthetic random vectors 5(i) from the corresponding distribution

can be drawn. Suppose further that the conditional posterior density function

p(Y]6,Y)

is of a form that the generalized signal extraction problem of drawing synthetic random vectors from
the corresponding distribution has a practical solution. (An example will be provided below.) The
Gibbs sampling-data augmentation algorithm proceeds beginning from an initial value (6©,¥®) in
the support of p(0,?| Y), drawing in rotation Y, 6(1y> ++-» O(y) from the appropriate conditional
distribution and replacing the previous value with the one just drawn.

To describe the implementation of this method for the multinomial multiperiod probit model,
some minor changes and extension in notation are necessary. Let the Uly, Xij, 8], and e;; continue
to denote the latent utilities, covariates, coefficients, and disturbances of the transformed model,

respectively, except that the transformation (2.1) is replaced by
Ui = U= Ui
= [XiB8—XinBy) + (€]
=X +ep (G=1L1t=1T).
The values of the 8} change accordingly, as does ¥ = var(ej;—Re; ;). The diagonal matrix R is

unaffected.
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Since the restriction ¢;; = 1 has not been imposed, the parameters at this point are
unidentified. In order to achieve identification, the following proper prior distribution was used in

all cases:

B} ~ NG, Vs G=1,..7-1)
v ~ N, V,)
pj ~ TN(Q-,O%J,) G=1,.J-1,
where TN denotes truncation of the univariate normal distribution to the unit interval (0,1);
¥~ WE; ),

where W denotes the Wishart distribution; and the prior distributions of these 2J components are
mutually independent. These proper prior distributions identify the BI, v, and ¥ which otherwise
would be identified only up to a scale factor. Then E;(ah‘)"m is comparable with B; of Section II
G = 1,...,L); ¥(o7) "2 is comparable with  of Section II; and (0},)~V/? ¥ is comparable with ¥
of Section II.

Equivalent expressions for the probability density kernel for the Uj, are

N T
4.1y |¥| ~NT2exp —%— E Z (5; —Re:,t_l)"l"l(e; —Re’;’t_l) R

N T . e e .
@2 ¥ Nexp) -2 303 (U -KiB - Ly a0 —KeB L [
where

Ui = U;: - RUi*,t—l’ x:t = X;t - RX;,t—lv Z‘i‘t = Zi*t - RZ:,t—l;
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or

N T
4.3) || NT2exp "-;- E E[U:t —RU:,t—l_(uit_R”'i,t—l)]‘Ir—l[U;; —RU:,t—l_(ﬂit_R""i,t—l)] )

i=1t=1

where g, = X;8* + Z.y, each multiplied by the kernel density of the unconditional distribution

of 6;0,

N
@4)  [Vo®RD)| Mexp] =2 T VR D] e [,

i=1

where [Vo®, ¥l = ¥/ (L—0300).
The kernel of the posterior density function for 8*, v, p, ¥, and the U’{t is the product of
(4.1) or (4.2) or (4.3); (4.4); the density kernels for the prior distributions; and

N T .
@.5) IIIIHWU;.dp,

im1t=1
where H is an indicator function for consistency of orderings and signs of the U?jt(j = 1,...,L) with

the observed choice vectors d;,. Using notation defined in Section II, this is
H(U3pdi) = 1iff Uy € {U3| Ul e > Uge vk # Jii}.

A six-step Gibbs sampling-data augmentation algorithm is employed to construct draws from
the posterior distribution. Initial values for ﬁ*, v, p, and ¥ are drawn from the prior distributions,

and initially U;, =0 (G = 1,....N; t = 1,...,T).

Step 1. Drawing U?t(i = 1,...,n; t = 1,...,T). The kernel density of the conditional distribution
of the Uj, is the product of (4.3) and (4.5). The conditional distribution of U} = (U}j,...,Ulp)’ is

truncated normal. The conditional normal distribution is given by the relations
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* ®
Ui — #iy — Rego = vy

U, — i — RUG —mp) = Vi

*
Uir = iy — RUG r-1—#i1-1) = Vi

from (4.3), which imply
(1, 0 0~ 0 0 0] Uy —Hyy Re,+v,, |
-R I; 0 - 0 0 O Un—bs '
0 -RI;~- 0 0 O Uh—ns _ Vi3
0 0~ -R It 0} U1 —mr ViT-1
0 - 0 -RI .
L. T— i Ui*T_#iT ] - VlT o

Denoting the LT X LT matrix in this expression by G™!, we have

- -.

RT—I RT—2 RT—3 -~ R IT

Hence the conditional normal distribution of u}‘ has variance G(I;® ¥)G' and mean
i +Rep

T *
_[lfl-'l'R eio_

The truncations of this distribution are linear and are given by (4.5). Hence the distribution of U'{tj
for given i and t, conditional on Uj,,(s # torj # £), €, and all the parameters of the models is

truncated univariate normal. Therefore, U}, ..., Ulp, Usss -ovs Uas <vvs Uppy ooe, Upp may easily
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be drawn in succession, the drawn values replacing the old ones at each step. Details of this

procedure are set out in Geweke (1991).

Step 2. Drawing €}o(i = 1,...,n). The kernel density of the conditional distribution of the €} is the
product of (4.1) and (4.4). These expressions reflect the assumption that the process {e?t}? =—ce IS
stationary. Since €;, = Re;,_; + Vv, the conditional distribution of €;, involves only €, R, and

V. It is indicated by the linear regression

& = Beyy + & covietp$) =0
B = [VoR,I)IR[V,(R,¥)]71, and § has variance

Vo@R,¥) — BV,R,¥)B".
Hence the conditional distribution of €}, is

€lo ~ N[Be};, Vo®R,¥) — BV R, ¥)B'].

Step 3. Drawing p. The kernel density of the conditional distribution of p = (py,...,0p)' is the
product of (4.1), (4.4), and the kernel density of the truncated normal prior distribution of p.
Expression (4.1), read as a function of p, is the kernel density of a multivariate normal distribution

with precision (inverse variance)

N T N T
yt E eﬁ,t—l - it E E 52‘1,:—151,:—1
i=1 t=1 j=1t=1
Hd = H i b
N T N T
yH Z > e;L,t—lle,t:—l S E leﬁ.,t-l

i=1t=1 i=1t

where ¥ = [¥~1}, , and mean Hyvy, where
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M
=
M=
M=

*
€1,e—16,0—1

L=
U
Pt
-
[}
i
L d
K
s

T
*
&L t"‘lelj t—1
=]

M
%
Mz

'C—-
i
-
v
—
H

Let o' = (a1,...,01) and V, = diag(c2 ,...,6%). Then the distribution corresponding to the kernel

density that is the product of (4.1) and the prior density for p is
4.6) NHgv, + V', @E+V;H™]

truncated to the unit hypercube in RL. The conditional distribution’s kernel density is the product
of the kernel density of this distribution and (4.4). Hence drawings from the full conditional
distribution for o may be made by drawing from (4.6) and then using an acceptance step for the unit
hypercube and (4.4). This may be done efficiently by noting that (4.4) is bounded above by
|(1/N)SEO| ~n/2exp(—NL/2), where Sy = YN _ €060, because (1/N)S,, is the unconstrained
conditional maximum likelihood estimate of V, = var(e;g). Thus, drawings for p are made from

(4.4), rejected if p; < O or p; = 1 for any j, and then accepted with probability

@.7) IVO(R,‘II)I"leexp{—% trS%VO(R,‘I')"I} / ";T s, | "N2exp [—.1522]

The acceptance step is motivated by the similar procedures of Marriott et al. (forthcoming) for
stationary time series. The computation of (7) is trivial, and the fact that €}, is a synthetically drawn

latent variable prevents acceptance probabilities from becoming impractically small.

Step 4. Drawing ¥. The kernel density of the conditional distribution of ¥ is the product of (4.1),

(4.4), and the kernel density of the inverted Wishart prior distribution of ¥. The prior and (4.1)

imply
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N T
T~ WIS + 3 % (6 —Re)(ex —Refe ), » + N

i=1 t=1

The effect of (4.4) is then accommodated through an acceptance step just as it was in the drawing

of p.

Step 5. Drawing Bj( = 1,...,L). The kernel density of the conditional distribution of F* =
(BY',...,BL")" is the product of (4.2) and the kernel density of the normal prior distribution of 8.
Since the model imposes no cross-equation constraints on the ﬁ; and the priors of the B; are
independent, the conditional distribution of each BJ* has a simple form. Expression (4.2) as a

function of ﬁ;‘ is the kernel density of a multivariate normal distribution with precision

. N T 2 2
v 3 ¥ XX

i=1t=1 |

and mean

1 =1 i=1t=1

NT, =1y R L0
IIPIEEANDWCLL) 528 AT
1=] t=
where

wi(}i = U — fe:ﬁz = Zyey(? # J)
and

5 s ,
Wi?t = Uy — Zy-

This mean and precision may then be combined with the prior mean and precision in the usual way

to form the conditional, normal posterior distribution from which it is simple to make drawings.
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Step 6. Drawing . The kernel density of the conditional distribution of +y is the product of (4.2)
and the kernel density of the normal prior distribution of y. Expression (4.2) as a function of v is

the kernel density of a multivariate normal distribution with precision

Ty Yy

i=1t=1 £=1j=1

’
jreife

(-

N T L L N T L L
[E )3 I Iy u’t] IIDIPIP MY Z5 U= X -
i=1t=1?=1j=1 i j

The mean and precision may then be combined with the prior mean and brecision in the usual way
to form the conditional, normal posterior distribution from which it is simple to make drawings.

From the structure of (4.2) and the prior distributions for the BJ* and vy it is clear that the joint
conditional posterior distribution of (8*,y")’ is normal, and therefore the J + 1 drawings in steps 5
and 6 could be combined into one. This requires the solution of a much larger set of linear
equations, each iteration of which results in greater execution time. On the other hand, the use of
J + 1 drawings rather than one introduces additional serial correlation into the Gibbs sampler. In
the applications undertaken here, the choice is not important, because over 95 percent of execution
time is devoted to drawing the U}, and €}y, and this step is the source of most serial correlation in
the Gibbs sampler.

The same prior distributions were employed throughout the experiment:
B8] ~ NQ,Ip); v ~ NQO,Ip); p; ~ TN(0.5,0.25); T~ W10 - I,10).

The effect of the prior distribution for ¥ is to center the ., which otherwise would be identified
only up to a scale factor, about 1.0. This in turn would induce a proper posterior distribution for

the E’: and v, even if the priors for these coefficients were flat and improper. (This technique was
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introduced by McCulloch and Rossi (1994) in the one-period multinomial probit model.) The
posterior distribution of these parameters induces a posterior distribution on I* = var(e},), with

0l = Y/(1—p;0,). In the context of the normalization set forth in Section II, parameters of interest

]
are 8;(01) "G = 1,...,1); ¥(o1) ™% p; for j = 1,...,L; and the lower triangular matrix A%:
A¥A¥' = (0])"1¥. To make drawings from the posterior distribution of these functions it is
necessary only to transform the drawings of the 83, v, pj, and ¥.

The first 200 iterations were discarded to allow “burn in” from the initial drawing from the
prior distribution. Inspection of these iterations showed that parameter values moved from well

outside the concentration of the posterior distribution to its concentration in fewer than 100 iterations.

The next m = 5,000 iterations were retained, creating the posterior sample
{5*0),70),‘,6)’\1,0)}?: "

The posterior mean of a function of interest
g = E[g(B*,7,0,9)]

is approximated by the corresponding posterior sample moment,

-
£, =ml Y g(5°0,99,00,%0).
j=1

The standard error of this Monte-Carlo approximation to § was assessed as described in Geweke
(1992). Typically, this standard error was less than 10 percent of the posterior standard deviation

for the experiments undertaken.

V. Experimental Design

In our Monte-Carlo experiments, we consider a three alternative model (J = 3) with T = 10.

We construct 20 artificial datasets of size N = 500 using the data generating process
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Up =05 +1 X +1-Zy + ¢y
Ui2t= _1.2+1 ‘Xit+1 .Zit2+€i2t
Ui3l = 0.0.

The random shocks to utility evolve according to

€1t = P1€i1e-1 T Vi

€2t = P26ipp—1 T Vit

1 0
[Vm] — [ﬂiu]
V. 2 .
3y Yl—ay Mzt

with 7, ~ IIDN(0,I(1—p?)). In the notation of Section II,

By = (0.5,1,1), B, =(-12,1,1)
Xiltl = Apy = Xit’ Xim_ = Zilt’ Xi2r.2 = Zi2t

Biz =Bxs =17,
where Xy, refers to the £th element of the Xj;, vector. The regressors are constructed as follows:
Xx; = oy + A=)y (= 1,...,T)
Zy = ¢y + (1-¢H)PE (=12t=1,...T)
with
0<¢<1, p~IDNQO,1I), w,~IODNQO,), y¥;~ IDNQO,1), §&; ~ IDNQ,I1).
In our experiment we use a 3 X 2 X 2 full factorial design,

p = 0.50 or 0.80; a,; = 0.50 or 0.80; ¢?= 0 or 0.50 or 0.80.

These correspond to “low” and “high” serial correlation and cross correlation in the random
elements of utility and “no,” “low,” and “high” serial correlation in the exogenous variables,

respectively.
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VI. Results

The results of the 12 Monte-Carlo experiments are reported in Tables 1-12. For the classical
methods we report three statistics for each parameter in each model: 1) the mean of the point
estimates across the 20 replications, F ; 2) the root mean square error (RMSE) of the point estimates
around the data generating values, RMSE; and 3) the mean of the asymptotic standard errors across
the 20 replications, ASE. For Bayesian inference we report 1) the mean of the posterior means
across the 20 replications, 5; 2) the RMSE of the posterior means around the data generating values,
RMSE; and 3) the mean of the posterior standard deviation across the 20 replications, PSD.

In the remainder of this section, we compare the performance of the different methods in
each experiment, focussing primarily on the RMSEs as the criterion of performance. In order to
make possible comparisons between the classical and Bayesian methods, we treat the empirical
RMSE:s of the classical point estimates around the data generating parameter values as comparable
to the empirical RMSEs of the Bayesian posterior means around those values. Also of interest are
comparisons of empirical RMSEs with ASEs for the classical point estimates. In this context, we
also compare empirical RMSEs of the Bayesian posterior means with the corresponding PSDs.

In Table 1 we consider the model with p = 0.50, a,; = 0.50, and ¢? = 0. This is the case
of low serial correlation and low cross correlation of the random elements of utility combined with
no serial correlation in the exogenous variables. For Bayesian inference, the mean across the 20
replications of the posterior means are close to the data generating values for all 9 model parameters.
This is also true of the MSM point estimates. SML, on the other hand, while producing point
estimates close to the data generating values for most model parameters, exhibits severe bias in
estimating the degree of serial correlation. In particular, the mean SML point estimate of 0, is
0.376, while the data generating value is 0.500. If we use the empirical RMSEs divided by (20)12

to form t-tests for the estimated deviations of mean point estimates (or mean posterior means) from
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data generating values, highly significant biases are found for the SML estimates of all covariance
matrix parameters (a;;, 2y, 01, Op)- No significant biases are found for the MSM estimates. For
Bayesian inference, marginally significant biasés are found only for p, and B, if the Bayesian
posterior means are viewed as estimates of the data generating parameter values.

In comparison of RMSEs, Bayesian inference has an edge over the classical methods. The
RMSEs of the posterior means around the data generating values are smaller than the corresponding
RMSE:s of the classical point estimates around the data generating values for 6 of the 9 model
parameters. Exceptions are 8, and §,, for which the RMSEs of the MSM point estimates are
smallest, and §,, for which the RMSE of the SML point estimates is smallest. Another clear pattern
is that for MSM the empirical RMSEs and the mean asymptotic standard errors are in close
agreement for most model parameters. But for SML, the mean asymptotic standard errors are
substantially below the empirical RMSEs for the covariance matrix parameters. Interestingly, the
mean asymptotic standard errors for MSM and the mean posterior standard deviations from Bayesian
inference are in very close agreement. Given that the RMSEs for Bayesian inference are generally
lower than for MSM, this also means that the mean posterior standard deviations obtained via
Bayesian inference are generally well above the RMSEs of the posterior means about the data
generating values.

Rather than describing Tables 2-12 with the same level of detail devoted to Table 1, we
instead point out certain broad patterns that emerge. As we move across Tables 1 to 3, the serial
correlation in the covariates is increasing (¢2 increases from 0 to 0.50 to 0.80) while other things
are held constant. For most model parameters, the RMSEs for all three methods have a tendency
to rise as ¢ increases. The exception involves the p, for which the RMSEs fall as ¢? increases.
It also appears that the RMSEs for the SML point estimates improve relative to those for the other

methods as ¢? increases.
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In Tables 4-6 the degree of serial correlation in the random components of utility is increased
(with p,; and p, being set at 0.80). Again, as we move across Tables 4 to 6, the serial correlation '
in the covariates is increasing. Comparing Tables 4-6 with Tables 1-3, we see that the increase in
the p generally causes RMSEs to rise. This is especially true for MSM. But for MSM and Bayesian
inference, the increase in the p causes the RMSEs for the p to fall. This is not true for SML.
Again, as in Tables 1-3, there is a pattern of rising RMSEs as ¢2 increases. This effect seems to
be greater in Tables 4-6. Thus, increased serial correlation of the errors seems to accentuate the
positive impact of increasing serial correlation in covariates on RMSEs. The p are again an
exception to this pattern, as the RMSEs of the p again appear to fall as ¢2 increases.

In Tables 7-9 the degree of serial correlation in the random components of utility is returned
to the Table 1-3 level (with p; and p, being set at 0.50), but the cross correlation of the errors is
increased (a;, is set at 0.80). There is no obvious impact on the overall level of the RMSEs as
compared to Tables 1-3. However, there is a substantial relative improvement for SML in the
¢? = 0 case of Table 7, where it produces the best RMSE for 7 of 9 parameters. And there is a
substantial relative improvement for MSM in the ¢? = 0.80 case of Table 9, where it produces the
best RMSE for 4 of 9 parameters. These improvements in relative performance for SML and MSM
do not extend to other cases.

In Tables 10-12 both the degree of serial and cross correlations in the errors is set at the
“high” level (p; = p, = 0.80, a;; = 0.80). Again, in moving across Tables 10 to 12, the degree
of serial correlation in the regressors is increased. The RMSEs for all model parameters except the
p tend to be higher than in Tables 1-3, and this effect is most pronounced for MSM. For the p the
RMSEs are clearly lower than in Tables 1-3. As we move across Tables 10-12, it is again obvious

that the RMSEs for all model parameters except the p tend to rise as serial correlation in the
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covariates increases. The RMSE:s for the p tend to fall. There is relative improvement in the perfor-
mance of MSM as ¢? increases.

Comparison of Tables 10-12 with Tables 4-6 isolates the impact of increasing cross
correlation when serial correlation in the errors is fixed at the high level. This leads to a clear
reduction in the RMSE for the p as estimated by SML, but not for other methods. Comparison of
Tables 10-12 with Tables 7-9 isolates the impact of increasing serial correlation in the errors when
cross correlation is fixed at the high level. This causes an increase of the RMSE for all parameters
and for all methods, except for the p, for which the RMSEs decrease for all methods.

Averaging across all 12 models and all 9 parameters, the ratio of RMSE for SML to that for
Bayes is 1.39. The ratio of RMSE for MSM to that for Bayes is 1.18. In Table 13 we present for
each of the three methods the means of the RMSEs for each model parameter across all 12
experiments. We also report the mean bias and mean ASE or PSD. The Bayesian posterior means
have the lowest (or tied for lowest) RMSEs about the data generating parameter values for 7 of the
9 model parameters. The exceptions are 8, and 8,5, the slope coefficients on the variable X, in the
utility functions for alternatives 1 and 2. For both of these parameters, the RMSEs of the SML point
estimates are the smallest. Nevertheless, for all parameters except p, and p,, the RMSEs produced
by all three methods are typically within a range of 10 to 20 percent of one another. The principal

weakness of SML appears in the very large RMSEs of the SML point estimates for p; and p,, which

~

N

are 80 to 150 percent greater than those of MSM or Bayesian inference.

In Table 13 we also see that agreement between RMSEs and ASEs is quite close for MSM.
For SML, the ASEs are in the range of 40 percent to 60 percent below the RMSEs for all four of
the error covariance parameters. There is some tendency for the PSDs to be below the RMSEs of

the posterior means for Bayesian infererice. The grand means of the PSDs or ASEs are 0.060 for
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Bayesian inference, 0.065 for MSM, and 0.049 for SML. Thus, the RMSEs of the SML point
estimates exceed the asymptotic standard errors by 38 percent on average.

In Table 14 we present a regression that summarizes the relative performance of the
alternative methods. The dependent variable in this regression is the log RMSE of the point
estimates or posterior means for a parameter in one of the experiments. The right hand side
variables are dummies for parameter, method of inference, and different levels of the treatments (that
is, degree of cross sectional correlation in the errors, degree of serial correlation in the errors,
degree of serial correlation in the regressors), along with interactions of the treatment dummies with
an indicator for whether the parameter is a p and interactions of method of inference with parameter
and treatment levels. The intercept in the regression corresponds to the base case of Bayesian
inference for vy in the model with p = 0.50, a,; = 0.50, and ¢ = 0.

The coefficient on MSM-GHK of 0.165 indicates that the RMSEs for the MSM estimates of
7 tend to be roughly 16 percent greater than the RMSEs of the Bayesian posterior means. For SML
the corresponding estimate is roughly 4 percent. Turning to the coefficients on the model parameter
dummies, we see that the cross correlation parameters a,, and a,, are much less precisely estimated
than most other model pararr;eters. Also pj, B51, and B8,, are much less precisely estimated than
P1> B11» and Bi. This presumably occurs because the fraction of the population that chooses
alternative 1 is substantially greater than the fraction that chooses alternative 2.

By looking at the interactions of the parameter dummies with the method of inference, we
can determine if the relative performance of the methods in terms of RMSEs differs systematically
across parameters. Note that all the parameter with MSM-GHK interactions are insignificant except
for those involving B, and 8,5, the coefficients on X, in the alternative 1 and 2 utility functions.
These are —0.181 and —0.195, respectively, which, when combined with the MSM main effect of

0.165 reported above, indicates that MSM produces slightly smaller RMSEs than Bayesian inference
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for these parameters (as was already apparent in Table 13). The parameter with SML-GHK
interactions produce some striking results. The interactions involving o, and p, have coefficients of
0.767 and 0.909 and are significant at the 1 percent level. Thus, the RMSEs of the SML point
estimates for the serial correlation parameters are roughly 76 percent and 90 percent greater than
those of the Bayesian posterior means. Also significant are the interactions involving the cross
correlation parameters a;, and a,,, which are 0.191 and 0.280. Thus, the performance of SML
relative to other methods deteriorates substantially for these parameters.

Also of interest are the coefficients on the treatment dummies. These were entered both
individually and in interaction with a dummy (“DEP=RHO”) for whether the parameter is p; or p,.
This is because, as the above discussion of Tables 1-12 made clear, there are obvious differences
in how the treatments affect the RMSEs for the p’s vs. all other model parameters. Note that the
estimated main effect for p; = p, = 0.80 is 0.122. This indicates that raising the serial correlation
in the errors from 0.50 to 0.80 causes the RMSEs for Bayesian inference to rise by roughly 12
percent for parameters other than the p. However, the interaction of the p; = p, = 0.80 dummy
with the p parameter dummy has a coefficient estimate of —0.421. This indicates that for the p
parameters, raising the serial correlation in the errors causes the RMSE for Bayesian inference to
fall by roughly 30 percent.

The main effects of the ¢ = 0.50 and ¢* = 0.80 treatments are 0.185 and 0.468. Thus,
raising the correlation across time periods in the regressors from 0 to 0.50 or from O to 0.80 causes
the RMSEs for Bayesian inference to rise by roughly 18 percent and 46 percent for all parameters
other than the p. However, the interactions of the $? = 0.50 and ¢2 = 0.80 dummies with the p
parameter dummy have coefficient estimates of —0.383 and —0.530. These imply that raising the
correlation across time periods in the regressors from 0 to 0.50 or from 0 to 0.80 reduces the

RMSEs for the p parameters by roughly 20 percent and 6 percent, respectively. Thus, we see that
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increasing either serial correlation in the random parts of utility or in the covariates causes the serial
correlation parameters to be more precisely identified.

An important result is that the interactions of p; = p, = 0.80 with MSM and SML are both
significantly positive, at 0.129 and 0.142, respectively. This indicates that for MSM and SML the
increases in RMSEs for model parameters other than the p parameters when serial .correlation is
strong are about 25-26 percent and the drops in RMSEs for the p parameters when serial correlation
is strong are only about 13-14 percent. Thus, the performance of Bayesian inference relative to
classical methods improves significantly as serial correlation is increased. This result may be
surprising, because the serial correlation in the Gibbs draws for the latent variables is increasing
when the serial correlation in the random component of utility is increased. However, the accuracy
of the GHK method for simulation of choice sequence probabilities will also decrease.

The only one of the interactions of the ¢ = 0.50 and ¢? = 0.80 treatments with MSM-GHK
and SML-GHK that is significant is the interaction of ¢2 = 0.80 with SML-GHK. This has a
coefficient of —0.148, which indicates that the performance of SML relative to Bayesian inference
improves as serial correlation in the regressors increases. The interaction of ¢? = 0.80 with MSM-
GHK also has a negative coefficient of —0.057, but this is not significant.

Interestingly, increasing the cross correlation parameter a,; from 0.50 to 0.80 has little effect
on the precision with which Bayesian inference uncovers the parameters of the data generating
process. However, the significant coefficients of —0.082 and —0.129 on the interactions of the ay
dummy with MSM-GHK and SML-GHK indicate that the relative performance of MSM and SML

improves as cross correlation is increased.
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VII. Conclusion

We find that Bayesian inference using Gibbs sampling and data augmentation to compute
posterior moments, MSM estimation using the GHK probability simulator, and SML using the GHK
probability simulator all perform reasonably well in point estimation of parameters of the data
generating process in a three alternative 10-period multinomial multiperiod probit model. However,
some important patterns emerge regarding relative pefformance of the methods—both in general and
in response to changes in the treatment variables in our experimental design.

General findings are that Bayesian inference has a substantial edge over the classical methods
if one compares RMSEs of the posterior means around the data generating values with RMSEs of
the classical point estimates. We find that across all model parameters in all 20 replications of all
12 experiments, the RMSEs of the SML point estimates exceed those of the MSM estimates by 21
percent on average, while the RMSEs of the MSM estimates exceed those of the posterior means
obtained via Bayesian inference by 18 percent on average. Also, there is generally close agreement
between the RMSEs and asymptotic standard errors for MSM, and between the RMSEs and the
posterior standard deviations for Bayesian inference, but the RMSEs of the SML point estimates
exceed the asymptotic standard errors by 38 percent on average. The main weakness of SML
relative to the other methods is in estimation of serial correlation parameters. We examined models
with AR(1) errors, and the SML estimates of the AR(1) coefficients are clearly biased downward and
have RMSEs roughly twice as great as for other methods. This problem would lead to larger
RMSE:s in out of sample forecasts obtained using SML as compared to the other methods.

Four important patterns emerge in the response of root mean square errors to the design
variables. First, RMSEs for all estimation methods and model parameters rise as serial correlation
in either the errors or in the covariates is increased, except for the autocorrelation coefficients of

random utility, where RMSEs fall. Second, RMSEs of Bayesian estimates relative to the classical
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estimates fall significantly as serial correlation in random utility increases. Third, increasing serial
correlation in the covariates leads to a small relative decrease in the RMSEs of the SML estimators.
Fourth, increasing cross correlation of the errors leads to relative declines in the RMSEs of the SML

and MSM estimators.
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Table 1: Corr(my,72¢) = 0.5, p1 = pg = 0.5, Corr(z¢,T¢—1)} = 0.0

Bayestan

Inference MSM-GHK SML-GHK
9 | DGP 3 RMSE _PSD 3 RMSE ASE | 3 RMSE ASE
aj, | 0.500 | 0470 0.085 0.080| 0.520 0086 0088 | 0566 0.110 0.075
a%, | 0.866) 0.884 0.0583 0.065| 0.880 0.056 0.070 | 0.933 0.084 0.059
p; | 0.500 | 0.496 0.023 0.032| 0.504 0.024 0.031] 0.455 0.050 0.028
p3 | 0.500 | 0.475 0.040 0.061 | 0.480 0.048 0.065 [ 0.376 0.131 0.051
T | 0.500 | 0.492 0.025 0.036 | 0.499 0.025 0.032| 0.502° 0.024 0.030
B3, | -1.200 | -1.210  0.065 0.083 | -1.204 0.074 0.078 | -1.231  0.079 0.077
*, | 1.000 | 0.988 0.024 0.037 | 0.995 0.021 0.032| 0.993 0.022 0.032
B3, | 1.000| 0974 0.059 0.058| 1.005 0.056 0.054 | 1.012 0.057 0.051
v | 1.000| 0.995 0024 0.037| 0993 0.028  0.033 | 0.995  0.025 0.032

Table 2: Corr(71z, 72¢) = 0.5, p1 = p2 = 0.5, Corr(zs,2:-1)= 0.5

Bayesian

Inference " MSM-GHK SML-GHK
9 | DGP|[ 3§ RMSE P3D 7 __RMSE __ASE i RMSE ASE
a}, | 0.500 | 0457 0.069 0.092] 0.505 0.088 0.124 | 0.597 0.131 0.088
a3, | 0.866| 0.872 0.070 0.077 ) 0.854 0.093 0.081 | 0.922 0.096 0.068
p; | 0.500 | 0506 0.022 0.025| 0.509 0.025 0.026 | 0476 0.03¢ 0.023 ]
p5 | 0.500| 0489 0.037 0.050 | 0.496 0.036 0.057 | 0416 0.091 0.043
Bi | 0500|0493 0.018 0.032 | 0499 0018 0031} 0502 0017 0.028]
B3 | -1.200 | -1.208  0.090 0.111|-1.180 0.115 0.106 | -1.235 0.104 0.102
*, | 1.000 | 0.989 0.02§ 0.042 | 0.995 0.029 0.040 | 0.997 0.029 0.038 |
B5, | 1.000 | 0.947 0.091 0.080 | 0.974 0.104 0.084| 1.016  0.087 0.072
v* | 1.000] 0987 0.034 0.043| 0.981 0.038 0.040 | 0.987 0.034 0.039 |

Table 3: Corr(ms,72:) = 0.5, p1 = p2 = 0.5, Corr(ws,z:—1) =0.8

Bayesian

Inference MSM-GHK SML-GHK
9 | DGP|_ 3 RMSE__PSD 7 RMSE __ASE i RMSE ASE |
aj, | 0.500 | 0.438 0.113 0.096 | 0535 0.137 0.137 | 0.574 0.122 0.085
a3, | 0.866 | 0.860 0.071 0.079 [ 0.861  0.097 0.085 [ 0.931  0.101 _ 0.070 |
Pt | 0500 | 0507 0.025 0.025| 0.507 0.029 0.026 | 0.483 0.032 0.024
p5 | 0.500| 0494 0.054 0.045 | 0.490 0.064 0.052 | 0.429  0.086  0.040 |
Gi, | 0500 0.488 0.027 0.034| 0.498 0.029 0.034 | 0.503 0.027 0.031
B5, | -1.200 | -1.193  0.111 0.115 | -1.186  0.124 0.112 ) -1.243  0.115  0.104 |
Bi, | 1.000| 0.974 0.041 0.046 0.987 0.038 0.044 | 0.991 0.033 0.041
B3, | 1.000| 0.939 0.093 0.077 | 0.982  0.100 0.088 | 1.006  0.065 0.070 |
v | 1.000 | 0.986 0.041 0.047 | 0.986  0.039 0.044 | 0.996 0.036 0.042 |

Note: @ = parameter, DGP = data generating value, 8 = average parameter estimate,
RMSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.




Table 4: Corr(mz, 72:) = 0.5, p1 = p2 = 0.8, Corr(z¢,z¢—1) = 0.0

Bayesian
} Inference MSM-GHK SML-GHK
8 | DGP | 5 RMSE PSD 3 RMSE ASE | § RMSE ASE
ai, | 0.500 | 0.506 0.063 0.079 | 0.567 0.121 0.107 | 0.620 0.138 0.067
aj, | 0.866 | 0.927 0.089 0.084| 0.892 0.109 0.097 | 1.012 0.161 0.064
p; | 0.800] 0.795 0.013 0.027| 0.808 0.022 0.018| 0.755 0.048 0.014
p5 | 0.800| 0.771 0.039 0.047| 0.790 0.042 0.037| 0.680 0.124 0.027
Bi. | 05001 0.496 0.025 0.041| 0.500 0.033 0.042] 0.499 0030 0.033
%, | -1.200 | -1.205  0.066 0.085 | -1.176  0.090 0.084 | -1.218  0.062 0.070
B, | 1.000 | 0985 0.026 0.038 | 0.985 0.028 0.037| 0.990 0.023 0.030
B3, | 1.000| 0.972 0.060 0.056 | 0.989 0.061 0.056 | 1.003  0.057 0.046
+* | 1.000] 0.991 0030 0.039| 0.982 0038 0.036]| 0.991 0.025 0.030

Table 5: Corr(mys, 2:t) = 0.5, py = p2 = 0.8, Corr(z¢,2:—1) = 0.5

Bayesian

Inference MSM-GEK SML-GHK
9 | DGP | i RMSE PSD i RMSE ASE| § RMSE ASE
aj, | 0500 0.455 0.084 0.088| 0.529 0.132 0.155| 0.606 0.140 0.076
a3, | 0.866 | 0.888 0.072 0.080 | 0.830  0.096 0.108 | 1.001  0.157 0.073
p; | 0.8001 0.798 0.016 0.020 | 0.805 0.020 0.016] 0.768 0.036 0.013
p5 | 0.800| 0.783 0.026 0.035| 0.791  0.039 0.038 | 0.702 0.104 0.025
By, | 0.500 | 0497 0.018 0.041| 0.501 0.029 0.041] 0.501 0.030 0.033
%, | -1.200 | -1.191  0.096 0.111|-1.121  0.140 0.116 | -1.233  0.110 0.097
Y, | 1.000 | 0.991 0.028 0.044 | 0.995 0.037 0.043| 1.000 0.031 0.038
B3, | 1.000| 0932 0.101 0.075| 0.960 0.091 0.090 [ 0.996 0.082 0.066
v* | 1.000 { 0.980 0.040 0.045| 0.066 0.054 0.044 | 0.987 0.038  0.037

Table 6: Corr(m, 12:) = 0.5, p1 = pz = 0.8, Corr(z:,z¢-1) = 0.8

Bayesian

Inference MSM-GHK SML-GHK
6 | DGP i _RMSE PSD i RMSE ASE 5 RMSE ASE
aj, | 0.500 | 0.418 0.139 0.099| 0.590 0.250 0.218 | 0.569 0.148 0.079
a%, | 0.866| 0.870 0.064 0.097| 0.863 0.132 0.137 | 1.003 0.169 0.084
ot | 0.800| 0795 0.015 0.018 | 0.802 0.018 0.018 | 0.772 0.033 0.014
p5 | 0.800| 0.781  0.029 0.033| 0.785 0.034 0.037 | 0.717 0.090 0.024
Bt | 0.500 | 0.485 0025 0.043 | 0497 0.032 0.047 | 0.497 0.028 0.037
B3 | -1.200 | -1.189  0.125 0.132 | -1.162  0.164 0.152 | -1.255  0.146 0.117
Bi, | 1.000 | 0.959 0.063 0.053| 0975 0.055 0.059 | 0.974 0.058 0.045
83, | 1.000| 0.920 0.109 0.084| 0993 0.112 0.126 | 0.987 0.092 0.076
v* | 1.000 | 0.973 0.059 0.0564 | 0.962 0.076 0.060 | 0.988 0.050 0.046

Note: 8 = parameter, DGP = data generating value, § = average parameter estimate,
RMSE = root mean square error, PSD = average posterior standard deviation,

ASE = average asymptotic standard error.




Table 7: Corr(mi¢, n2:) = 0.8, p1 = pz = 0.5, Corr(z;,zs—1) = 0.0

Bayesian
Inference MSM-GHK SML-GHK
9 | DGP| 3 RMSE PSD 3 RMSE ASE | ; RMSE ASE
aj, ( 0.800 | 0.754 0.073 0.079 | 0.822 0.096 0.079| 0.823 0.072 0.061
| a5, | 0.600 | 0.638 0.057 0.065| 0.587 0.052 0.046 | 0.624 0.049 0.042
pi | 0.500 | 0.488 0.025 0.032] 0502 0.028 0.032| 0446 0.058 0.028
| p3 | 0.500 | 0.476 0.045 0.057 | 0.503 0.053 0.054 | 0.417 0.098 0.044
Bi1 | 0.500 | 0.493 0.024 0.034 | 0.496 0.025 0.031| 0.501 0.024 0.029 |
B3 | -1.200 | -1.228  0.061 0.088 | -1.202  0.072 0.075 | -1.213  0.068 0.070
12 | 1.000 | 0.987  0.027 0.035| 0.990 0.028 0.032] 0.990  0.025 0.031
B3, | 1.000{ 0.973 0.052 0.056 | 0.998 0.055 0.050 | 0.994 0.051 0.047
v* |[_1.000 | 1.003 0.025 0.038] 0.990 0.027 0.033 | 0.994 0.024 0.032
Table 8: Corr(mit,72:) = 0.8, p1 = p2 = 0.5, Corr(zs,2:-1) = 0.5
| Bayesian 1
Inference MSM-GHK SML-GHK
# | DGP| 3 RMSE PSD é RMSE ASE | § RMSE ASE
ai, | 0.800 | 0.706 0.116 0.096 | 0.766 0.008 0.117| 0.812 0.095 0.075
a3, | 0.600 | 0.612 0.045 0.062| 0.564 0.061 0.054 | 0.603 0.046 0.048
pi | 0.500| 0.500 0.022 0.025| 0.508 0.027 0.026 | 0.469 0.040 0.023
p3 | 0.500 | 0494 0.028 0.049 | 0.517 0.040 0.052 | 0.448  0.064 0.040 |
Biy | 0.500| 0.494 0.019 0.031| 0.497 0.019 0.029] 0501 0.020 0.027
B3 | -1.200 [ -1.189  0.074 0.105 | -1.145 0.112 0.103 | -1.183  0.082 0.090
12 | 1.000 | 0.988 0.030 0.042] 0.990 0.029 0.039 | 0.993  0.030 0.037 |
B3, | 1.000 | 0.932 0.0904 0.077 | 0.958 ©0.090 0.081 | 0.973 0.071 0.066
v* | 1.000 | 0.992 0028 0044] 0979 0.034 0.040 | 0.982 _ 0.035__ 0.038 |
Table 9: Corr(m:,72:) = 0.8, p1 = p2 = 0.5, Corr(zs,7:-1) = 0.8
Bayesian
Inference MSM-GHK SML-GHK
| 6 | DGP| 3 RMSE PSD 3 RMSE ASE | 3 RMSE ASE
aj, | 0.800 | 0.708 0.106 0.089 | 0.799 0.080 0.127 | 0.762  0.081 0.072
a3, |_0.600 | 0.638 0.059 0.067 | 0.586 0.057 0.059 | 0.634  0.064 0.052
pi | 0.500 ] 0502 0.023 0.024 | 0.506 0.026 0.026 | 0473  0.037 0.024
p3 | 0.500 | 0.483 0.044 0.042 | 0.480 0.061 0.049 | 0444 0.072 0.040
Bi1 | 0.500| 0.491 0.027 0.033 | 0.496 0.026 0.032 | 0499 0.027 0.029
B3 | -1.200 | -1.210  0.095 0.111 | -1.165 0.098 0.109 | -1.212  0.103  0.091
Bi, | 1.000| 0.973 0.044 0.046 | 0.983 0.038 0.043 | 0.982 0.037 0.040
B3, | 1.000| 0.930 0.089 0.077| 0.969 0.070 0.083 | 0.959 0.070 0.063
v* | 1.000 | 1.001 "0.041 0.048 | 0985 0.043 0.045| 1.001  0.042 0.041

Note: § = parameter, DGP = data generating value, § = average parameter estimate,
RMSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.




Table 10: Corr(my, n2:) = 0.8, p; = p2 = 0.8, Corr(z, z4-1) = 0.0

Bayesian
Inference MSM-GHK SML-GHK
9 | DGP|___§ RMSE PSD 3 RMSE ASE 3 RMSE ASE
ai; | 0.800 [ 0.78¢ 0.055 0.076| 0.834 0.121 0.097 | 0.868 0.097 0.056
a3, | 0.600 | 0.672 0.086 0.080 | 0.577 0.073 0.058 | 0.649 0.069 0.042
Pt | 0.800| 0.786 0.017 0.029 | 0.804 0.018 0.018 | 0.748  0.055 0.014
pt | 0.800 | 0.769 0.038 0.051| 0.800 0.041 0.032| 0.721  0.087 0.022
* | 0.500 ] 0499 0.025 0.040| 0.50I 0.030 0.042| 0.502 0.028 0.032
B3 | -1.200 | -1.230  0.067 0.089 | -1.177  0.087 0.081}-1.202 0.070 0.064
Br, | 1.000 | 0.992 0.026 0.038| 0.991 0.0 0.035| 0.989 0.027 0.029
B3, | 1.000| 0976 0.052 0.057| 0.989 0.061 0.053] 0.991  0.048 0.042
+* [71.000 | 1.007 0.030 0.039 | 0.989 0.036 0.036 | 0.991 _ 0.030 _ 0.030
Table 11: Corr{ms, n2¢) = 0.8, p1 = p2 = 0.8, Corr(z:,z¢-1) = 0.5
Bayesian
Inference MSM-GHK SML-GHK
¢ | DGP 3 RMSE PSD 3 _RMSE ASE 3 RMSE ASE
ai; | 0.800 | 0.705 0.109 0.088] 0.802 0.135 0.143| 0.826 0.101 0.067
a3, | 0.600| 0.672 0.086 0.081| 0.571 0.087 0.070 | 0.661  0.087 0.053
Pt | 0.800 | 0.793 0.016 0.020| 0.803 0018 0.016] 0.763 0.040 0.013"
p5 | 0.800| 0774 0.031 0.040] 0.801 0.030 0.034| 0.726  0.080 0.024
* 170500 | 0499 0019 0039| 0501 0.032 0.040| 0.501 0.025 0.032]
x| -1.200| -1.225 0.086 0.104|-1.147 0.130 0.111{-1.206 0.097 0.088
* | 1.000 |T0.993 0031 0043| 0.991 0.035 0.043| 0994 0.036 0.037 |
B3, | 1.000| 0.926 0.094 0075| 0.977 0.087 0.083] 0.966 0.066 0.062
v* | 1.000 | 1.000 0.0 0.046] 0.970 0.048 0.044] 0992 0.033 0.037
Table 12: Corr(m, 72:) = 0.8, p1 = p2 = 0.8, Corr(zs, s-1) = 0.8
Bayesian
Inference MSM-GHK SML-GHK
| 6 | DGP 3 RMSE PSD 3 RMSE ASE | 5 RMSE ASE
ai, | 0.800] 0.669 0.143 0.093| 0.860 0.188 0.204| 0.770  0.108 0.070
| a3, | 0.600| 0.701 0.121 0.106 | 0.585 0.091 0.088| 0.705  0.131 0.063
p} |70.800] 0.791 0.017 0.018 0.801 0.018 0.018] 0.767 0.037 0.014
| p5 | 0.800] 0.773  0.033 0.034| 0.788 0.030 0.035| 0.736  0.070 0.022
Br, | 0.500 | 0.488 0.025 0.042| 0.500 0.031 0.045| 0.499 0.028 0.036
B3 | -1.200 | -1.256  0.126 0.146 | -1.157  0.149 0.150 | -1.260  0.151  0.106
G;, | 1.000 | 0.965 0.062 0.054 | 0.983 0.053 0.057| 0.977 0.054 0.045
B3, | 1.000| 0.909 0.114 0087 0.984 0.101 0.113| 0955 0.091 0.069
v~ | 1.000 | 1.002  0.045 0.056 | 0.967 0.062 0.061 | 1.005 0.049 0.045

Note: 8 = parameter, DGP = data generating value, 6 = average parameter estimate,
RMSE = root mean square error, PSD = average posterior standard deviation,

ASE = average asymptotic standard error.




Table 13: Comparison of Means

Bayesian
Inference MSM-GHK SML-GHK

6 | BIAS RMSE PSD | BIAS RMSE_ _ASE :BIA§ RMSE ASE

-ai‘z -0.061 0.095 0.088| 0.027 0.128 0.133| 0.049 0.112 0.073
| a3, | 0.036 0.073 0.079]-0.012 0.084 0.079 | 0.073 0.101 0.060

pi | -0.004  0.020 0.025| 0.005 0.023 0.023|-0.035 0.042 0.019
p3 | -0.020 0.037 0.045| -0.007 0.043 0.045}-0.082 0.091 0.034

6%, | -0.007 0.023 0.037 | -0.001 _ 0.027 0.037 | 0.001_ 0.026 0.031
| B3, | -0.011  0.089  0.107| 0.032  0.113 0.106 | -0.024  0.099  0.090

Biz | -0.018  0.036 0.043 | -0.012 0.035 0.042|-0.011 0.034 0.037
B3, | -0.056 0.084 0.072)-0.019 0.082 0.080|-0.012 0.070 0.061

:7 -0.007 0.036 0.045 | -0.021 0.044 0.043 | -0.008 0.036 0.037

Note: Table reports the mean of the RMSE, the BIAS, and the PSD or ASE
for each model parameter across the 12 experiments.




Table 14: Root Mean Square Error Comparison

Predicted RMSE

Covarlate Coeff | 5td Err | t-ratio
Intercept 17 -3633| 0.064 | -56.493 |
MSM-GHK 0.165 0.090 1.846
SML -GHK 0.043 0.090 0.483
a3, 0.960 | 0.075 | 12.876
i 0.704| 0.075| 9.444
by -0.111 0.089 | -1.250
3 0.530 0.089 5.942
By -0.421 0.075 | -5.643
B3 0.904 0.075 | 12.118
B2 -0.024 0.075 | -0.326
B32 0.846 0.075 | 11.342
Corr (s, 2e) = 0.80 0.009| 0.037) -0.237
p1 = pz =0.80 0.122 0.037 3.303
¢? = 0.50 0.185 0.045 | 4.095
% = 0.80 0.468 0.045 { 10.384
Corr (171¢, 72¢) = 0.80 X pEP=REO 0.051 0.049 1.043
P1 = p2 = 0.80 X pep=rEO -0.421 0.049 | -8.615
#? = 0.50 X pEP=REHO -0.383 0.060 | -6.409
¢? = 0.80 x peP=REO -0.530 0.060 | -8.864
a2 X MSM.GEK 0.103 0.105 0.980
a9 X MSM-GHK -0.047 0.105 | -0.447
Pl X MSM-GHK -0.021 0.105 { -0.196
P3 X MSM.GHK -0.034 0.105 | -0.326
B1; X MsM-GEK -0.015 0.105 | -0.140
B3; X MsM.GEK 0.061 0.105 | 0.574
B7g X MsMm-GEK -0.181 0.105 | -1.713
332 X MsM.GHK -0.195 0.105 | -1.852
G1g X SML-GHK 0.191 0.105 1.812
G359 X SML-GHK 0.280 0.105 2.650
P] X SML-GHK 0.767 0.105 7.274
P2 X SML-GHK 0.909 0.105 8.621
P11 X sML-GEK 0.110 0.105 1.043
P21 X sML-GEK 0.108 0.105 | 1.028
Big X sML-GEK -0.046 0.105 | -0.434
B3 X sML-GEK -0.167 0.105 | -1.585
Corr (714, M2t) = 0.80 X MsM.cuK -0.082 0.050 | -1.652
p1 = p2 = 0.80 X msm-crk 0.129 0.050 2.597
¢? = 0.50 x MsM-GEK 0.033 0.061 0.543
¢* = 0.80 x Msm-GEK -0.057 0.061 | -0.938
Corr (11, 72¢) = 0.80 X smr-cEx -0.129 0.050 | -2.585
1 = p2 = 0.80 X smL-GrK 0.142 0.050 2.865
#* = 0.50 x smr-cmk -0.018 |  0.061 | -0.292
¢% = 0.80 x smr-caK | -0.148 0.061 | -2.431

Note: Dependent variable is log(RMSE). DEP=RHO means that the dependent
variable for the observation is the log(RMSE) for a parameter p; or ps.
€16 = p1€12-1+ 7M1, €24 = pre2:-1+ 72, €34=0



