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ABSTRACT

The notion of skilled-biased technological change is often held responsible for the recent behavior
of the U.S. skill premium, or the ratio between the wages of skilled and unskilled labor. This
paper develops a framework for understanding this notion in terms of observable variables and uses
the framework to evaluate the fraction of the skill premium’s variation that is caused by changes in
observables. A version of the neoclassical growth model is used in which the key feature of aggregate
technology is capital-skill complementarity: the elasticity of substitution is higher between capital
equipment and unskilled labor than between capital equipment and skilled labor. With this feature,
changes in observables can account for nearly all the variation in the skill premium over the last 30
years. This finding suggests that increased wage inequality results from economic growth driven by
new, efficient technologies embodied in capital equipment.
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1 Introduction

There have been striking changes in the quantity and price of skilled labor relative to unskilled
labor over the postwar period. For education-based skill classifications, the quantity of skilled labor
relative to unskilled labor has increased considerably, and the skill premium, defined as the wage
of skilled labor relative to unskilled labor, has grown significantly since 1980. Perhaps the most
widely studied question about these observations is: Why has the skill premium risen during a
period of substantial growth in the relative supply of skilled labor? Many studies have found that it
is difficult to account for the increase in the skill premium on the basis of observable variables and
have concluded that latent skill-biased technological change is the main factor responsible for the

1 However, there is no generally accepted, explicit economic mechanism for interpreting

increase.
skill-biased technological change, nor are there any direct measures of the implicit trend growth in
this object.

In this paper, we develop a theoretical framework that provides a simple, explicit economic
mechanism for understanding the importance of skill-biased technological change in terms of ob-
servable variables, and we use the framework to evaluate the fraction of historical variation in the
skill premium that can be accounted for by changes in observed factor quantities and the fraction
that is due to unobserved variables. We conduct our analysis using a version of the neoclassical
growth model in which the key feature of the aggregate technology is capital-skill complementarity.
In our framework, this means that the elasticity of substitution between capital equipment and
unskilled labor is higher than that between capital equipment and skilled labor. An important im-
plication of capital-skill complementarity is that growth in the stock of equipment tends to increase
the marginal product of skilled labor, but decreases the marginal product of unskilled labor. We
hypothesize that capital-skill complementarity may be important for understanding wage inequality
because the stock of equipment has been growing at about twice the rate of either capital structures
or consumption over much of the postwar period, and its relative price has been falling. Moreover,
these trends have accelerated since the late 1970s, a period in which the skill premium has grown
substantially. Thus, skill-biased technological change in our framework simply reflects the rapid

growth of the stock of capital equipment combined with the different ways that equipment interacts

with skilled and unskilled labor in the production technology.



This hypothesis of capital-skill complementarity is formalized by Griliches (1969). To illus-
trate how this mechanism can affect the skill premium, consider a three-factor production function
similar to one used by Stokey (1996) in a study of inequality and trade. Output is produced with
capital equipment (k), unskilled labor (u), and skilled labor (s). Equipment and unskilled labor are

perfect substitutes and have unit elasticity of substitution with skilled labor (s):
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This example shows clearly that growth in the stock of equipment, ceteris paribus, will increase the
skill premium, since increases in the capital stock increase the marginal product of skilled labor,
but will decrease the marginal product of unskilled labor. This example also shows that, with
competitive markets and a growing capital stock, increased wage inequality can be a consequence
of capital-skill complementarity.

This example is qualitative. Our purpose, however, is to evaluate whether capital-skill com-
plementarity has been a quantitatively important factor in accounting for changes in aggregate wage
inequality over the last 30 years. To conduct our quantitative analysis, we use the basic framework
of the neoclassical growth model. Given our focus on the connection between capital equipment and
wage inequality, we must modify the standard two-factor (aggregate capital and aggregate labor)
neoclassical aggregate production function. To do this, we develop a four-factor aggregate pro-
duction function that explicitly distinguishes between capital equipment, capital structures, skilled
labor, and unskilled labor and that allows for different elasticities of substitution between unskilled
labor and capital equipment and between skilled labor and capital equipment. With competitive
markets, we can simply read factor prices off the value of marginal product schedules of this aggre-
gate production function, and we can then compare the skill premium in the model with the skill
premium in the data.

The values of the production function parameters that govern the substitution elasticities



between capital equipment and skilled labor and between capital equipment and unskilled labor
are important elements of this quantitative analysis. We first review elasticity estimates from the
existing literature. Although there are no estimates of substitution elasticities between equipment
and skilled labor or between equipment and unskilled labor in the literature, there are estimates
for these two elasticities using total capital (capital equipment plus structures). These estimates
are consistent with capital-skill complementarity. As a starting point for our quantitative analysis,
we use these existing elasticity estimates based on total capital as proxies for the elasticities in
our model involving equipment, and we compute the skill premium from our model. To assess
the importance of capital-skill complementarity, we compare the skill premium from this model
with the skill premium from a version of our model with no capital-skill complementarity. This
comparison suggests that capital-skill complementarity is a key factor in understanding changes in
wage inequality, as the model with capital-skill complementarity accounts for much of the historical
variation in the skill premium, while the version without capital-skill complementarity predicts a
strongly counterfactual 45 percent decline in the skill premium. We then extend the analysis by
estimating the substitution elasticities directly and by evaluating the extent to which the estimated
production function is consistent not only with historical variation in the skill premium, but also
with other important long-run growth observations. The elasticities that we estimate are very similar
to those that we use from the literature.

Our main finding is that with capital-skill complementarity, changes in observed factor inputs
alone can account for most of the variation in the skill premium over the last 30 years. During this
period, the skill premium has three distinct patterns: a modest increase in the 1960s, a decline over
much of the 1970s, and a sharp increase after 1980. The prediction of our simple model with capital-
skill complementarity, but no changes in unobserved variables, is consistent with these three key
patterns. We also find that our aggregate production function preserves the success of the standard
two-factor neoclassical model in that it is consistent with the behavior of income shares and the
returns on capital over time. Since the introduction of capital-skill complementarity eliminates the
importance of unmeasured trend changes in accounting for the skill premium, we conclude that
capital-skill complementarity is a reasonable, explicit economic mechanism for understanding the
phenomenon of skill-biased technological change widely cited in the literature.

The paper is organized as follows: In Section 2, we discuss the factor price and quantity



data we use in the analysis. In Section 3, we present the basic model. In Section 4, we present
our quantitative analysis. In Section 5, we provide a summary and conclusion. We discuss the

construction of the data and the econometric technique in the appendices.

2 The Data

Here, we summarize historical changes in the quantities and prices of capital equipment,
structures, skilled labor input, and unskilled labor input. We first document changes in prices and
quantities of the two types of capital input. There are large differences in the growth rates of capital
equipment and capital structures. Based on the accounting in Gordon (1990) for increases in the
efficiency of new capital equipment, the stock of equipment grew at an average rate of about 6.2
percent between 1954 and 1975.2 This growth rate increased after 1975, rising to about 7.5 percent
per year. Structures, however, grew at a much slower rate between 1954 and 1994, with an average
annual increase of 3.2 percent per year. In contrast to the growth rate of equipment, the growth
rate of structures slowed after 1975, falling to about 2.6 percent per year. These series are shown
in Figure 1. There are also important differences in changes in the relative prices of equipment and
structures. Since 1954, the relative price of equipment (to consumption of nondurables and services)
fell significantly, declining at an average rate of about 4.5 percent per year, while the relative price
of structures (to consumption of nondurables and services) remained roughly constant over this
period. Figure 2 shows the decline in the ratio between the Gordon-based price index for capital
equipment and the price index for consumption of nondurables and services.® The rate of decline in
the relative price of equipment accelerated after 1975, declining at a rate over 6 percent annually.
We follow Greenwood, Hercowitz, and Krusell (1996) in interpreting this long-run decline in the
relative price of capital as reflecting technological change that is specific to the production of capital
equipment.

The literature that has analyzed skilled and unskilled labor generally defines labor skill on
the basis of education. Many education measures show a strong secular increase in the quantity of
skilled labor relative to the quantity of unskilled labor. Figure 3 shows the ratio of (weighted) hours
worked of skilled to unskilled labor. Skilled labor is defined as requiring college completion or better

(at least 16 years of school). The data are drawn from the Current Population Survey (CPS) over



the 1963-92 period. (A detailed description of these data is in Appendix 1.) The principal feature
of these data is a substantial increase in the ratio of skilled to unskilled labor input. This ratio rises
by more than 100 percent.? Despite the relative increase in the quantity of skilled labor, the wage
of skilled labor relative to unskilled labor has increased. Figure 4 shows the three key patterns of
the skill premium: a modest increase in the 1960s, a decline over much of the 1970s, and a sharp
increase after 1980. Overall, the skill premium increased about 18 percent over the period.

Despite these strong trends in relative input levels and factor prices, the shares of income
earned by aggregate capital and aggregate labor have been roughly constant. The aggregate labor
share of income is shown in Figure 5. It is defined as the ratio of labor income—defined as wages,
salaries, and benefits—to the sum of labor income plus capital income—defined as depreciation,
corporate profits, net interest, and rental income of persons. The labor share of income averaged 71
percent over the 196392 period, attaining a maximum of about 73 percent in 1970 and a minimum
of about 69 percent in 1984.

In addition to the quantities and prices of these four inputs, we find that the ratio of capital
equipment to skilled labor input is important in our analysis. As we discuss in the following section,
this ratio affects the skill premium through capital-skill complementarity. Figure 6 presents the
ratio of equipment to skilled labor input. This ratio has grown consistently over the entire period,
and its growth rate is somewhat higher in the latter part of the period.

To summarize, the main descriptive features of these data are (1) rapid growth in the stock of
capital equipment (and a corresponding fall in its relative price) with an acceleration in both trends
after 1975, (2) a substantial increase in the relative quantity of skilled labor input, (3) a sharp
increase in the skill premium beginning in 1980, (4) an increase in the ratio of capital equipment to

skilled labor input, and (5) relative constancy of aggregate income shares of capital and labor.

3 The Model

We can simplify our analysis considerably by abstracting from modeling the household sector
and focusing on just the aggregate production function. Our basic approach is as follows: We
develop a four-factor production function, and then we choose values for the production function

parameters. Given the time series of the quantities of the four inputs and the value of marginal



product schedules from the production function, the model yields factor prices. We define the skill
premium in our model as the ratio of the wage of skilled labor to the wage of unskilled labor per
unit of work. Thus, we form the ratio of the marginal product of skilled labor to that of unskilled
labor from our model, and we can compare the skill premium predicted by the model with that in
the data.

We construct our production function by modifying the standard two-factor (aggregate capi-
tal and aggregate labor) neoclassical production function commonly used in macroeconomic analysis.
There are two key differences between the standard production function and that developed here.
One is that we include four factors of production: (1) skilled labor, (2) unskilled labor, (3) cap-
ital equipment, and (4) capital structures. We explicitly distinguish between capital equipment
and structures because of the very different growth rates of the quantities and relative prices of
these variables summarized in the previous section. The other difference is that we allow for differ-
ent substitution possibilities between skilled labor and equipment and between unskilled labor and

equipment.

A A Two-Sector Economy

Since we interpret the decline in the relative price of capital as equipment-specific technolog-
ical change, we analyze an economy with two sectors: one produces consumption goods and capital

structures and the other produces capital equipment. Output of these two sectors is given by

Ct + Tgp = AtG(kgb kgt» Uf, 5?) (1)

Let = QtAtG(kgb kgb u?: 5?) (2)

where ¢; is consumption, x4 is investment in structures, and x.; is output of the equipment sector.
The superscripts of the input variables denote the sector in which they are used: c¢ for consumption
and structures, e for equipment. Services of capital structures and equipment, kg and ke, are
assumed to be proportional to their respective stocks, which are measured in efficiency units. There
are two types of labor input, u; and s;, where u; is unskilled labor and s; is skilled labor, again, both

measured in efficiency units. There is a common, or neutral, technology factor, A;, and another



technology factor, ¢;, which is specific to the capital equipment sector. The function G is common
to both sectors and is homogeneous of degree one. These properties guarantee that under perfect
competition in factor markets, profit-maximizing firms will allocate the inputs so that input ratios
will be equalized across both sectors. Therefore, the equilibrium relative price between consumption
and equipment will equal ¢; at each point in time.® This allows us to aggregate the sectors by defining

total output, ¥, in consumption units, as

Le
Yt = ¢t + Tst + q_tt — AtG(k8t7 ket7 Ut, St) (3)

where the inputs are now defined as the sum of the inputs in each of the two sectors. The evolution

of the two stocks of capital is standard, although we allow for type-specific depreciation rates:

ks,t—i—l = (1 - 5s)kst + x5t (4)

ke,t—i—l = (1 - 6e)ket + Tet. (5)

B A Functional Form for the Aggregate Production Function

To conduct our analysis, we must choose a functional form for the production function. Our
objective is to work with a parsimoniously parameterized function in the four inputs: s, u, ke,
and ks. Translog production functions offer considerable flexibility, but involve a large number of
parameters. Since the CPS data we use to construct skilled and unskilled labor input are annual
and begin in 1963, it would be difficult to estimate a translog function. Therefore, we restrict our
attention to the class of constant elasticity of substitution (CES) production technologies. This
type of production function is tractable, involves considerably fewer parameters than the translog
function, is characterized by elasticities of substitution that are constant, and provides a relatively
simple specification that allows us to evaluate the role of capital-skill complementarity in accounting
for changes in the skill premium in a transparent way.

We simplify the production function by assuming that it is Cobb-Douglas over capital struc-
tures and a CES aggregate of the three remaining inputs and that the remaining inputs are nested

in a general CES form. Thus, y = k¢4~ where § is a constant returns to scale CES aggregate of



u, ks, and ke.

There are three ways of nesting these inputs within a CES function. Each nesting allows
two elasticities of substitution to be different, but restricts the third elasticity by the symmetry
of the CES aggregator. The first nesting is § = 11 (ke, Y2(s,u)), where T1 and Yy are different
CES functions. This formulation, which is used in Katz and Murphy (1992), does not allow for
capital-skill complementarity, because it restricts the elasticity of substitution between k. and u
be the same as that between k. and s. The other two possible nestings do allow for capital-skill
complementarity. They are § = Ti (s, Ya(ke,u)) and § = Yi (u, Ya(s, ke)). The first of these
two specifications restricts the elasticity of substitution between s and k. to be the same as that
between s and u. However, this restriction is a shortcoming of the first specification, since the
literature on factor elasticities suggests that the elasticity of substitution between skilled labor and
unskilled labor is higher than the elasticity of substitution between skilled labor and capital. (See
Hamermesh (1993).) Perhaps not surprisingly, we also find that this first specification is not as
consistent with the data as the second specification. Therefore, we use the second specification in

our analysis.® This specification is given by
Gkt Rty 56) = K [ + (1= p) (R, + (1= V) s) 7] 7 (6)

In this specification, @ and A are share parameters and ¢ and p govern the elasticity of substitution
between unskilled labor, capital equipment, and skilled labor. This nested production function also
has a symmetry property: the elasticity of substitution between equipment and unskilled labor is
the same as that between skilled labor and unskilled labor. In the next section, we show that for the
parameter values we ultimately choose that this symmetry property does not restrict any elasticities
to be at variance with estimates from the literature. Note that this in contrast to the symmetry
restriction embedded in the other nesting described above. With this formulation, the elasticity
1

of substitution between equipment (or skilled labor) and unskilled labor is 1=, and the elasticity

of substitution between equipment and skilled labor is 1T1p- The case in which capital is more

complementary with skilled labor than with unskilled labor corresponds to o > p.” To maintain
strict quasi-concavity of the production function, both o and p are restricted to lie in (—oo, 1). If

either o or p equals zero, the corresponding nesting is Cobb-Douglas. Values of o or p greater than



zero indicate greater substitutability than in the Cobb-Douglas case.

The labor input of each type is measured in efficiency units: each input type is a product of
the raw number of labor hours and an efficiency index. In particular, s; = 1shs and uy = Vyrhoye,
where hj is the number of hours worked and 1) is the (unmeasured) quality per hour of type
¢ at date t. It is clear that 1; can be given different interpretations: it can be human capital,
accumulated by the agent, or it can represent a skill-specific technology level, which may have come
about by research and development. In the absence of direct measures of labor quality for each skill
level, these two interpretations cannot be distinguished. In the following section, we discuss the

exact specification of this unobserved term.

C The Skill Premium From the Model

Following the literature in this area, we define the skill premium, 7, as the ratio of skilled
labor wages to unskilled labor wages. Our modification of the standard neoclassical production
function has a number of interesting implications for the skill premium. Given our assumption that
factor prices are equal to marginal products per unit of work, the skill premium can be expressed

as a function of input ratios:

L) SN ™ B

The effects of input ratios are important, since these ratios show significant trends over the postwar

period. One effect of capital-skill complementarity on the skill premium can be seen in the first ratio
in the expression. When the quantities of the two types of labor inputs are held fixed, the change
in the skill premium in response to an increase in the amount of equipment is positive if and only
if 0 > p. This implies that an increase in the stock of equipment, ceteris paribus, will increase the
skill premium only if the elasticity of substitution between equipment and unskilled labor is higher
than that between equipment and skilled labor. Another important effect is that for all admissible
parameter values, the skill premium is increasing in the ratio of unskilled to skilled labor hours.
To further illustrate the implications of this model for the skill premium, we log-linearize the

expressions and decompose the log of the skill premium into three components that have specific



economic interpretations. Log-linearizing equation (7) and omitting the constant term yields

o—p (ket\’ hut) (¢st>
1 ~ ) A— [ — l—0o)ln|— | .
nm o~ A\ p <St) +(1-o0) n<hst +oln s

After differentiating this expression with respect to time and denoting the growth rate of variable

x by ¢., we obtain, after some algebra,®

gﬂ't = (1 - U) (ghut - ghst) + g (g’l/)st - g"/)ut) (8)
ket p
+(U_p))\ S_t (gket _ghst _gwst)'

Equation (8) is an important object, since it provides a simple way of using our model to understand
how changes in the growth rates of inputs separately affect the growth rate of the skill premium
at any point in time. This allows us to isolate the effect of capital-skill complementarity on the
skill premium from two other components which are important elements in other studies of the skill
premium. The first component, (1 — o) (gn,, — 9n.,) , depends on the growth rate of skilled labor
input relative to the growth rate of unskilled labor input. Following the literature, we call this
component the relative quantity effect. Since o < 1, faster growth of unskilled labor than of skilled
labor increases the skill premium.

The second component, o (gy,, — gy, ), involves the growth of skilled labor efficiency relative
to that of unskilled labor efficiency. We call this component the relative efficiency effect. The effect
of a relative increase in the growth rate of skilled labor efficiency on the skill premium depends
on o, which governs the substitution elasticity between the two labor inputs. If the elasticity of
substitution between skilled and unskilled labor is greater than one, a relative improvement in the
quality of skilled labor increases the skill premium. However, if there is sufficient complementarity
between skilled and unskilled labor, a relative improvement in the efficiency of skilled labor leads to
a relative increase in the marginal product of unskilled labor, which results in a decline in the skill
premium.

The third component, (o — p) A (%f)p (Gker — Ghey — Gubs,) » 18 the capital-skill complementar-
ity effect. This component depends on two factors: the growth rate of equipment relative to the

growth rates of skilled and unskilled labor input, and the ratio of capital equipment to efficiency
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units of skilled labor input. If o > p, skilled labor is more complementary with equipment than is
unskilled labor. In this case, faster growth in equipment tends to increase the skill premium as it
increases the relative demand for skilled labor. To illustrate the effect of (’Z—?)pon the skill premium,
assume that the equipment growth rate exceeds the growth rate of efficiency units of skilled labor.
With these assumptions, the growth rate of the skill premium increases over time if p > 0 (more
substitutable than Cobb-Douglas) but decreases if p < 0. With p < 0, the share of income paid to
equipment relative to the share paid to skilled labor goes to zero in the limit and, as a result, income
is divided solely between skilled and unskilled labor. Since the share of income paid to skilled labor
is bounded at one, the growth rate of the skill premium is bounded. This is because the wage growth
of skilled labor in this limiting case equals growth in total output less growth in skilled labor input.

Thus, the effect of this ratio on the growth rate of the skill premium depends on the shape of the

isoquants of the technology.”

4 Quantitative Analysis

A An Initial Analysis of the Importance of Capital-Skill Complementarity

With values for the parameters of the production function, we can use equation (8) to assess
quantitatively how the skill premium has been affected by capital-skill complementarity and by
the other two factors derived in the previous section. In this section, we present results from two
experiments designed to provide an initial quantitative evaluation of the importance of capital-skill
complementarity in accounting for changes in wage inequality. In these experiments, we compare
the actual skill premium in the data to the skill premium in the model for particular values of the
production function parameters. To focus on the extent to which observable variables can account
for changes in the skill premium, we restrict the unmeasured quality of the two types of labor (¢,
and 1)5) to be constant in these two experiments.

In the first experiment, we use our model to answer the following question: What would have
happened to the skill premium between 1963 and 1993 if there were no capital-skill complementarity
and no changes in unmeasured labor quality? Thus, this experiment consists of restricting the
substitution elasticities between unskilled labor and capital and between skilled labor and capital

to be the same. By abstracting from capital-skill complementarity and from unmeasured changes
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in labor quality, this experiment isolates the effects of changes in the relative quantities of the two
types of labor on the skill premium. For this first experiment, we work with the following simplified

version of our production function:

11—«

G (kt, g, 8t) = kgy [(Vuhue)” + (1 = p) (Yshst)?] =

To conduct this experiment, it is necessary to choose values for the production function parameters.
The parameter o does not appear in the skill premium expression, and since unmeasured labor
quality is assumed to be constant, the terms 1, and s can be normalized to one. Therefore, we
need to assign values to two parameters: the share parameter p and the curvature parameter o. We
fix the parameter u such that the average share of labor income paid to skilled labor in the model
is equal to that in the data. The parameter o governs the elasticity of substitution between the two
types of labor. We set this parameter equal to %, which yields an elasticity of substitution between
unskilled labor and skilled labor of 1.5, which is consistent with estimates reported in the literature.
(See Johnson (1997).)

The skill premium predicted by this version of our production function is presented in Figure
7. The large increase in the stock of skilled labor results in a monotonic decline in the skill premium
of about 45 percent over the sample. This prediction from this version of the model obviously
stands in sharp contrast to the actual skill premium. Clearly, if changes in observable variables are
to account for observed changes in wage inequality in our model, it must be through the mechanism
of capital-skill complementarity. Moreover, if the model is to be successful, this mechanism must
not only offset the substantial negative trend in the skill premium produced by the relative increase
in skilled labor, but also capture three other important features of the data: the modest increase
in the premium during the 1960s, the decline over much of the 1970s, and the sharp increase after
1980. To provide an initial assessment of the implications of capital-skill complementarity for the
skill premium, we conduct a second experiment in which the elasticity of substitution in our model
between unskilled labor and equipment is higher than that between skilled labor and equipment. We
continue to focus on the effects of observable variables on the skill premium, and therefore maintain
the restriction that unmeasured labor quality of the two types is constant (1, = 1y, and g = 1g).

To conduct this second experiment, we need to choose values for the two key curvature

12



parameters {o, p} as well as for the share parameters {\, u}. One strategy for choosing values for
the curvature parameters would be to use existing estimates of substitution elasticities. However,
existing estimates of substitution elasticities between different types of labor and capital are based on
measures of total capital, while in our model, the mechanism of capital-skill complementarity works
through capital equipment.!® For this experiment, we use estimates of substitution elasticities from
the literature to parameterize our model, and we treat these estimates from the literature as plausible
values that make for a good starting point in our analysis. Our objective is to determine whether
capital-skill complementarity appears to be quantitatively important for understanding variations
in the skill premium based on substitution elasticities broadly in line with existing estimates.

In the second experiment, we use the production function nesting given in equation (6). We
choose values for the curvature parameters that govern the substitution elasticities. To do this, we
review the existing literature. A number of studies have estimated elasticities of substitution between
capital and skilled labor and between capital and unskilled labor. These studies differ according
to the choice of functional form, estimation technique, and data. Several studies are summarized
by Hamermesh (1993). Many of the studies, including work by Rosen (1968) , Griliches (1969),
Berndt and Christensen (1974), Fallon and Layard (1975), Denny and Fuss (1977), and Brown
and Christensen (1981), report evidence consistent with capital-skill complementarity in that the
estimated elasticity of substitution between unskilled labor and capital is greater than that between
skilled labor and capital. Many of the estimates of the elasticity of substitution between unskilled
labor and capital in the literature are between 0.5 and 3, while most of the estimates of the elasticity
of substitution between skilled labor and capital are less than 1.2, and several are near 0. Based
on these estimates, we choose an elasticity of substitution between unskilled labor and equipment
of 1.5, which implies that ¢ = 0.33. By symmetry, note that the elasticity of substitution between
skilled labor and unskilled labor is also 1.5, which is consistent with the evidence summarized by
Johnson (1997). We choose an elasticity of substitution between skilled labor and capital of 0.6,
which implies that p = —0.67. Thus, we choose a parameterization for this experiment that is
a fairly moderate departure from the Cobb-Douglas specification (¢ = p = 0) of unit elasticities
across all factors of production. We choose the share parameters {\, 1} to match two statistics: the
average (total) labor share of income over the period and the average ratio of skilled labor’s share of

income to unskilled labor’s share of income. Finally, we require an estimate of «, structures’ share
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of income. Following Greenwood, Hercowitz, and Krusell (1996), we set a to 0.13.

The skill premium from this version of our model is shown in Figure 8, along with the actual
skill premium. Clearly, the skill premium from the model with capital-skill complementarity stands
in very sharp contrast to that from the model with identical elasticities of substitution shown in
Figure 7. The introduction of capital-skill complementarity not only offsets the large decline in the
premium generated by the large increase in the quantity of skilled workers, but it also captures
the three main features of the skill premium over this 30-year period: the modest increase in the
1960s, the decline over much of the 1970s, and the sharp increase after 1980. The main conclusion
we draw from these two experiments is that changes in observable variables, operating through the
mechanism of capital-skill complementarity, can account for a significant fraction of the variation in
the skill premium.

In the next section, we extend our analysis by asking whether our production function with
capital-skill complementarity can account for historical variations in wage inequality while maintain-
ing consistency with other important U.S. growth observations: the relative constancy of aggregate
labor’s share of income over time and a trendless rate of return on physical capital, with an average
rate of return in the model near the average in the data. We include these observations in our analy-
sis because they are frequently used to calibrate aggregate production functions in macroeconomics.
(See, for example, Prescott (1986).) To conduct this extended analysis, we choose parameter values
by estimating them using the first-order conditions of a profit-maximizing firm. This facilitates the
analysis of the model along these other dimensions and allows us to explore possible connections
between capital-skill complementarity and the importance of unmeasured trends in accounting for

the skill premium reported in the literature.

B An Extended Analysis

The findings in the previous section indicate that capital-skill complementarity, with moder-
ate differences in substitution elasticities between skilled labor and equipment and between unskilled
labor and equipment, seems to be quantitatively important for understanding fluctuations in wage
inequality over the last 30 years. However, the initial analysis focuses solely on the model’s ability
to account for wage inequality, and not other growth observations. In addition, the elasticities we

chose for the previous exercises are based on measures of total capital, rather than capital equipment,
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which is the key measure of capital in our model. In this section, we develop an alternative method
of choosing parameter values by estimating them from a representative firm’s profit-maximization
conditions.

The ideal way to obtain estimates of all the production function parameters would be to
embed our production function in a fully specified, dynamic general equilibrium model in which the
decisions for consuming, saving, choosing working hours, and becoming skilled versus unskilled are
explicitly determined. Given a stochastic specification of the production function, these decision
rules could be used in estimating the model parameters. Unfortunately, this type of analysis is much
less tractable, largely because we would need to keep track of the entire distribution of the different
types of labor. Since much of the difficulty in conducting the full general equilibrium analysis is due
to the explicit modeling of household decisions, we abstract from the household side of the model
and estimate the production function parameters directly.

We next describe the stochastic specification of the production function, and then describe
the maximume-likelihood method used to estimate the parameters. Our general approach is to use the
profit-maximization conditions of a firm hiring inputs in perfectly competitive factor markets. Since
we have consistent time series data on skilled and unskilled labor input and their respective wages,
we are able to use the first-order conditions for hiring skilled and unskilled labor in the estimation.
Unfortunately, we do not have data on rental prices of capital equipment and structures, which
prevents us from using the first-order conditions for hiring these factors. Instead, we develop a proxy
for these unobservable rental prices by equating the ex ante net return on equipment investment to
the ex ante net return on structures investment. The equations used in the estimation are discussed

in detail below.

C Stochastic Specification of the Production Function

To estimate the model parameters, we must specify a stochastic version of our model. We
assume that the efficiency factors of the two types of labor are random variables and that these
variables are unobserved by the econometrician.'’ We also assume that the relative price of capital
equipment is a random variable, which allows us to specify our proxy condition for unobservability
of rental prices of equipment and structures.

Following the analysis of the previous section, we will continue to focus our investigation on
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the extent to which changes in observable variables can account for fluctuations in the skill premium.
Thus, our benchmark specification will continue to be the model with no variation in labor quality
of the two types. To help interpret some interesting findings reported by Katz and Murphy (1992),
we will also conduct some analyses in which we allow for trend differences in unmeasured labor
quality of the two types. To facilitate a comparison with the model in Katz and Murphy (1992), we
specify the stochastic process governing labor quality of the two types as the following simple trend

stationary process (in logs):

ot = log (1), @1 = o+t +w (9)

where ¢, is a (2 x 1) vector of (logged) labor quality of the two types, o is a (2 x 1) vector of
constants specifying the value of the efficiency factors at the beginning of the sample, vy is a (2 x 1)
vector of growth rates of the two types of labor quality, and w; is a vector shock process which
we assume is multivariate normal and is i.i.d. with covariance matrix Q: w; "% N (0,€). The ii.d.
assumption simplifies parameter estimation considerably.'?

We use three structural equations to estimate the model parameters. The three equations

are as follows:

Wsthst + Wyt hut

7 = Ishy(Yr, X¢; 9) (10)
t
Wotlot by (i, X3 ) (11)
wuthut = worg ty <\t
(1= 6s) + A1 Gr,(Yr41, Xi11;0) = Ey <q:1—tl) (1 —6e) + qtArr1 Gr, (Vi41, Xey1; @). (12)
+

Equations (10) and (11) are based on income shares implied by the firm’s first-order conditions for
hiring skilled and unskilled labor. These equations are similar to those used by Griliches (1969) in
his initial study of capital-skill complementarity. Moreover, the approach of using income shares
to help choose production function parameter values is also standard in the equilibrium business
cycle and growth literature. (See, for example, Prescott (1986).) Equation (10) specifies that the
total share of labor income in the model (Ish;), as defined using the marginal products from the
production function, equals the aggregate labor share of income in the data. In this equation, the

data for the left side of the equation are the ratio of labor income—defined as wages, salaries, and
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benefits—to the sum of labor and capital income—defined as depreciation, corporate profits, net
interest, and rental income of persons. These definitions for labor and capital income are the same
as those used in Cooley (1995). Equation (11) requires that the skilled labor share of income relative
to the unskilled labor share of income in the data be equal to the corresponding production function
object, which we denote wbr;. This condition for the wage-bill ratio also follows from the firm’s
profit-maximizing decision in hiring skilled and unskilled labor.

Equation (12) develops a proxy for the unobservable rental rates of equipment and structures.
We construct this proxy by equating the expected net rate of return on investment in structures
with that on investment in equipment. This provides a simple way of ensuring that differences in
rates of return are not implausibly large. The left side of this equation is the date t 4+ 1 rate of
return on structures investment. This is equal to the sum of two components: (1) the marginal
product of structures Ay11 G, (Y41, Xi41; @), where Gi, is the partial derivative of the production
function with respect to structures, and (2) undepreciated capital structures (1 — é5). The right
side of the equation is the expected date t 4+ 1 rate of return on equipment investment. This
also is equal to the sum of two components: (1) the marginal product of equipment investment
qtAr11 Gr, (Vei1, Xiv1; @), where Gy, is the partial derivative of the production function with respect
to equipment, and (2) undepreciated capital equipment multiplied by the expected rate of change in
the relative price of capital E; (—qt—l) (1 — &) . Since the price of capital equipment tends to fall over

qt+
time, the term E} (q—tqi—l) is interpreted as the expected capital loss on undepreciated equipment.
The vector ¢ contains the parameters {8, 0¢, v, i, A, 0, p, Me, v, 2} (e will be defined below), and
X is the set of inputs {kst, ket, hst, hut }. In this equation, we assume that there is no risk premium,
which allows us to abstract from the covariance between consumption and returns in the estimation
procedure. We also assume that the tax treatments'® of these two types of investment are identical.™
The final simplifying assumption we make is to substitute the first term on the right side of the

equation with (1 —6.)q:/q+1 + ¢, where &; is the i.i.d. forecast error, which is assumed to be

normally distributed: € ~ N(0,7,).1
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D Estimation Technique

Because of the latent quality indicators of the two types of labor input, the model is a

nonlinear state-space structure of the following form:

measurement equations: Z; = f(X, ;@) + &

state equations: ¢y = wo + vt + wy

where the function f(-) contains the three nonlinear observational equations—the rate of return
equality condition and the two share equations—that are obtained as restrictions from our model.
The income shares and the rate of return difference are contained in the (3 x 1) vector Z;, X; is the
set of inputs described above, vy is the (2 x 1) vector of unobservable efficiency factors in which the
logs evolve according to the process specified in the state equation, and ¢; and w; are, respectively,
(3 x 1) and (2 x 1) vectors of i.i.d. normally distributed random disturbances with mean zero and
covariance matrices defined in the previous section.'6

This model is not straightforward to estimate because of the latent nature of i, and the
nonlinearity of f(-). Indicating with superscript T' the vector of observations, we can write the
joint probability distribution function (p.d.f.) of our model as 1 (ZT,wT|X T gb) Because 97T is
latent, we can only observe ¥ (ZT|X T qzﬁ). Therefore, in the structural estimation, we must collapse
the first p.d.f. into the second to map the model into the data. The source of the difficulties in
this operation originates exactly from the joint presence of the nonlinearity of the measurement
equations and the stochastic latent variables. This joint difficulty prevents us from using standard
Kalman filtering methods. Instead, we use simulation techniques to estimate the parameters of the
model.

In a companion paper (Ohanian, Violante, Krusell, and Rios-Rull (1996)), we analyze in
detail the econometric issues associated with the specification and estimation of our model and
compare the performance of different simulation-based estimation methods. This analysis focuses
on the performance of different techniques in small samples with trending variables. The conclusion
of this Monte Carlo study is that when the unobservable variables are specified as a trend stationary
Gaussian multivariate process, a simulated pseudo maximum likelihood estimation (SPMLE) based

on the first and the second moments is computationally efficient and produces parameter estimates
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in samples of size 30 with negligible bias. Based on these findings, we adopt this technique for
estimating the parameters of the model. In Appendix 3, we describe briefly the general method of
SPMLE and discuss its properties.

In this application, we use a two-step version of SPMLE as suggested by White (1994). This
version of SPMLE is useful when some of the variables are potentially endogenous. In our analysis,
we treat the date ¢ stocks of capital equipment and capital structures as predetermined, but we
allow for the possibility that date ¢ values of skilled and unskilled labor input may respond to date
t realizations of the shocks to technology or to labor quality. The two-step procedure we use takes
into account this potential endogeneity along the lines of other two-step estimators, such as two-
stage least squares. In the first step of the two-step SPMLE, skilled and unskilled labor input are
projected onto exogenous variables. In the second step, the fitted values of these two series are used
in SPMLE. Details of the estimation are described in Appendix 3.

The parameter vector ¢ has a dimension of 15. We reduce the number of parameters that
we estimate by calibrating some of the parameters and imposing some restrictions. One restriction
is that the shocks to the log of skilled and unskilled labor efficiency are uncorrelated and have the
same standard deviation. This implies that we can rewrite the covariance matrix Q = n2 I3, where
I is the (2 x 2) identity matrix and 1?2 is the common innovation variance. Other restrictions are
required to set the scale, or the level, of our model. In the measurement equations, a number of
parameters can act as scaling factors: ¢so, ©u0, A, and . It turns out that one of these parameters
must be fixed. We choose to fix a priori the initial level of skilled labor efficiency ¢so. Note that
this restriction is simply a normalization. We also are able to calibrate some of the parameters.
We follow Greenwood, Hercowitz, and Krusell (1996) in choosing values for the depreciation rates
of structures and equipment: s and é.. In addition, we estimate a time series (ARIMA) model
for the relative price of equipment, ¢q;, and use the estimated innovation variance as the variance
of the one-step forecast error for the relative price. The values for these calibrated parameters are

presented in Table 1.17

Table 1: Calibrated Parameters

8s be M2
0.05 0.125 0.02
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The remaining parameters to be estimated are the key curvature parameter o, which indexes
the elasticity of substitution between unskilled labor and equipment (ﬁ), the other key curvature
parameter p, which indexes the elasticity of substitution between skilled labor and equipment (1T1p)5
v, and s, the growth rates of unskilled and skilled labor efficiency; «, structures’ share of income; A
and p, the weights in the CES nestings of the production function; 1,9, the initial value for unskilled

labor efficiency; and 12, the variance of both labor efficiency factors.

E Findings From the Estimated Model

We first estimate the benchmark model, in which skilled labor requires at least four years
of college and in which there are no trend changes in unmeasured labor quality. We estimate the
model from 1963 to 1992 using the time series on labor input, wages, capital, and the relative price
of capital. Table 2 shows the two-step SPML estimates and the asymptotic standard errors for the
parameters of interest. The estimation is based on 500 simulations (S = 500), and standard errors

are computed as described in Appendix 3.

Table 2: Two-Step SPML Parameter Estimates—Benchmark Model

o p a %
0.401 —0.495 0.117  0.043
(0.049) (0.169) (0.003) (0.003)

Table 3: Elasticities of Substitution—Benchmark Model

l1—0o

Unskilled Labor-Equipment (L) 1.67
Skilled Labor—-Equipment (1%,;) 0.67

These estimates are consistent with the basic theory of capital-skill complementarity and,
in fact, are quite similar to the parameter values used in our second experiment in Section A. In
particular, we chose o = 0.33 in our second experiment (a substitution elasticity between unskilled
labor and equipment of 1.50), compared with the SPML estimate of ¢ = 0.40 (a substitution
elasticity between unskilled labor and equipment of 1.67).!® Similarly, we chose p = —0.67 in our

second experiment (a substitution elasticity between skilled labor and equipment of 0.6), compared
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with the SPML estimate of p = —0.50 (a substitution elasticity of 0.67). It is also interesting to
note that our estimate of the capital structures’ share of income («), which is about 12 percent, is
very close to the 13 percent share calibrated by Greenwood, Hercowitz, and Krusell (1996). Figure
9 shows the behavior of our model relative to the data we used in the estimation. These data
include (1) ex post rates of return on equipment and structures computed from our model (upper
left panel), (2) aggregate labor’s share of income in the model and in the data (lower left panel),
and (3) the share of labor income paid to skilled labor in the model and in the data, that is the
wage bill ratio (upper right panel). Recall that the production function parameters were chosen to
minimize the distance between these objects and the data.'® The model statistics shown in this
figure are produced with the i.i.d. shocks to both types of labor quality set to zero for every date.
Consequently, fluctuations in model-generated data are entirely due to changes in observable inputs.

We find that the behavior of the estimated model is broadly consistent with the actual data.
The model is able to capture the behavior of the relative income shares of skilled and unskilled
labor (the wage bill ratio) very closely, as it reproduces the sharp, steady increase over this 30-
year period. The model is also consistent with the relative constancy of aggregate labor’s share
of income. The actual share data fluctuate modestly over the sample, ranging between 0.69 and
0.73. This limited variability of income shares in the data has led some economists to conclude
that the aggregate production function is well approximated by a Cobb-Douglas function, since this
technology restricts factor shares to be constant. (See, for example, Prescott (1986).) In comparison
with the actual data, aggregate labor’s income share in our model is smoother, fluctuating between
0.70 and 0.71. This finding is very interesting, since the nested CES production function we use,
unlike the Cobb-Douglas technology, places no restrictions on the behavior of income shares over
time and, in fact, can produce large fluctuations in income shares. The ex post rate of return
on structures computed from our model averages about 4 percent and varies modestly between 3
percent and 5 percent. The ex post rate of return on equipment is more volatile than on structures,
and this volatility is due to unexpected fluctuations in the relative price of equipment. For example,
the ex post return on equipment in 1974 is about 17 percent, which reflects a very large unexpected
increase in the price of equipment, while the near-zero rate of return on equipment in 1984 reflects
a larger-than-expected decline in the relative price.?’ The average rate of return on equipment in

the model averages about 6 percent, compared with 4 percent on structures. This higher average is
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largely due to a few high returns in the late 1960s and early 1970s and to the very large outlier in
1974. It is important to note that the average levels of the rates of return on both types of capital
are reasonable, despite the fact that neither our production function nor the estimation strategy
places any restriction on the levels of these rates of return. Thus, an interesting finding is that our
estimated production function produces sensible average rates of return on physical capital without
explicit restrictions that impose this result.?!

The skill premium predicted by the estimated model is presented in the lower right panel
of Figure 9. We continue to find that the skill premium generated from the benchmark model
is consistent with historical movements in the skill premium in the data. The model captures
the three main changes in the skill premium that occurred over this 30-year period: The model
correctly predicts an increase in the skill premium in the 1960s, it is consistent with the decline
in the skill premium during the 1970s, and it also predicts the sharp increase in the skill premium
that occurred after 1980. Thus, we find that our benchmark model, driven entirely by observable
variables, not only can account for historical variation in the skill premium inequality over the
sample, but also is consistent with the behavior of aggregate income shares of labor and capital over
time, is consistent with the relative income shares earned by skilled and unskilled labor over time,
and produces reasonable rates of return on physical capital.

We now draw a connection between our analysis, which focuses on the importance of capital-
skill complementarity in accounting for changes in the skill premium, and other papers that have
concluded that a key factor responsible for the increase in the skill premium is an unmeasured trend
or another low-frequency component. Many economists (for example, Bound and Johnson (1992))
have defined this trend component as a skill-biased technological change that has shifted the demand
for skilled labor. The quantitative importance of a trend component is reported in important work
by Katz and Murphy (1992). They find that a simple supply-demand model specifying the log of
the skill premium as a function of a linear time trend, which represents a relative demand shifter
for skilled labor, and the log of the ratio of unskilled to skilled labor input can account for much of
the variation in the skill premium over time. They estimate their equation using OLS and report

the following coefficient estimates:
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hy
log 7 = 0.709 log (h—t) +0.033¢. (13)
st

Given the log-linear specification of this equation, the coefficient on the time trend means that the
skill premium grows 3.3 percent each year, ceteris paribus. Consequently, the total contribution of
the time trend over this 30-year period is to have increased the skill premium about 165 percent.
While it has become common to call the trend effect skill-biased technological change, the explicit
economic mechanism responsible for this large trend in the skill premium remains unspecified in
the literature. We use our framework to provide one interpretation of the trend term in the Katz-
Murphy model, measure the magnitude of the trend effect in terms of objects in our model, and
discuss the extent to which the trend term may be serving as a proxy for omitted capital-skill
complementarity effects.

The Katz-Murphy model for the log of the skill premium can be derived from our model with
equal elasticities of substitution between skilled labor and capital and between unskilled labor and
capital (no capital-skill complementarity) and trend differences in the growth of labor quality. To

illustrate this, consider the following version of our production function:
(8% (o (o loa
yr = Aeky' (psy + (1 — p)uf) ™= (14)

where k; is the sum of capital structures and capital equipment.
When we omit the constant term, the log of the skill premium for this production function

is simply

logm = (1 —o0)log <Z—u:> + olog (:jji) .

Given our specification for the log of labor quality,

Ve
pr=log (¥r), pr=po+yt+w, 7= : (15)

Yu

When we omit the constant and the disturbance term, the log of the skill premium in this version

of our model is
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logn: = (1 - 0) (324 ) + 02 — )t (16)

Comparing the log of the skill premium from our model with no capital-skill complementarity
to the Katz and Murphy (1992) regression indicates that the coefficient on the time trend in the
Katz-Murphy model can be interpreted as the product of o, the curvature parameter governing the
elasticity of substitution between skilled and unskilled labor and the difference in the trend growth
rates of skilled and unskilled labor quality, (s — 7). The implied estimates are shown in Table 4.
Based on the Katz-Murphy OLS estimates, the implied annual growth rate of skilled labor quality
is more than 11 percentage points higher than that of unskilled labor quality. This implies that
skilled labor quality has increased by a factor of about 30 relative to unskilled labor quality over this
30-year period. Thus, this analysis suggests that a large difference in the growth of relative labor
quality over time is required to account for the skill premium in our model without capital-skill

complementarity.

Table 4: Implied Parameter Values From the Katz-Murphy Regression

g Ys — Yu
Estimate 0.291 0.114

The data constructed by Katz and Murphy (1992) for skilled and unskilled labor differs somewhat
from ours, since their analysis focuses on the difference between college and high school graduates.
Therefore, we also estimate the parameters of this version of our model. To keep the comparison as
close as possible, we follow Katz and Murphy (1992) and report coefficient estimates using OLS.?2
We use only the equation involving the wage-bill ratio, since the Cobb-Douglas form generates
a constant labor share of income (o) that we set to the sample average (0.705). Since only the
difference in trends is identified in the Katz-Murphy model, we normalize trend growth in unskilled
labor quality to zero, and we estimate only the trend coefficient on skilled labor quality. 23 OLS

yields the following coefficient estimates:?*

Table 5: Two-Step SPML Parameter Estimates—Model With Equal Elasticities

o Vs — Yu
Estimate 0.210 0.094
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Our estimates of the parameters are quite similar to the implied estimates from the Katz
and Murphy (1992) regression coefficients and, in particular, confirm that a substantial difference
in the growth rates of skilled and unskilled labor quality is required to fit the data in the absence of
capital-skill complementarity. The behavior of this version of our model is shown in Figure 10. A
comparison of the results from our benchmark model (capital-skill complementarity and no trend
changes in labor quality) with this version of our model (no capital-skill complementarity and large
trend differences in relative labor quality growth) suggests that both versions can account for most
of the variation in the skill premium. The Katz-Murphy analysis showed how a trend, or other
low frequency component is important in accounting for the increase in the skill premium. Their
analysis has also led researchers to (1) try to understand the explicit economic mechanism behind
this unobserved trend, and (2) measure the changes in the data that are relevant for this mechanism.

We therefore argue that our version of the model without capital-skill complementarity is not
very useful along these two dimensions. One key shortcoming of this version is that the fundamental
economic factors driving the difference in trend growth of labor quality are unspecified. Conse-
quently, our level of understanding changes in the skill premium is limited. The other shortcoming
is that not only does the difference between the growth rates of labor quality seem implausibly
large, but these objects are inherently difficult to measure. Our benchmark model, however, makes
considerable progess along these dimensions. It provides an explicit and simple economic mecha-
nism for understanding variation in the skill premium on the basis of observable variables, and it
identifies the key factors that are important for this mechanism. Based on the similarity of the
results between our benchmark model and the Katz-Murphy model, one conclusion that seems rea-
sonable is that unmeasured trend effects may simply be serving as a proxy for omitted capital-skill
complementarity.

We also estimated a third version of our model that allowed for both capital-skill comple-
mentarity and a difference in the growth rate of labor quality of the two types. We found that the
estimates from this version did not change our conclusions regarding the importance of capital-skill
complementarity: all of the elasticities of substitution in this model were quite similar to those in
the benchmark model. The most striking difference between the benchmark model and this third
version was that the fit of the skill premium (and the share of skilled labor income to unskilled labor

income) was much better in the benchmark model—the mean square error of the skill premium
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was about twice as high in the third version. What accounts for the relatively poor performance
of the third version of the model? Estimating the parameters of this version yields a modest dif-
ference in the growth rate of labor quality of the two types (3 percent higher for skilled labor),
versus no trend growth in the benchmark model. This 3 percent difference is chosen only because
it reduces the deviations in the ex ante rate of return equality restriction; the average equipment
rate of return is only about 0.4 percentage point higher than that of structures in this third version.
To assess this change in this version relative to the deterioration of the model’s ability to account
for the skill premium, it is important to note that the ex ante rate of return equality restriction
was introduced as a very simple way of imposing sensible behavior on the difference between the
rates of return on equipment and structures. However, this restriction abstracts from several factors
which may prevent it from being satisfied exactly, including risk aversion on the part of investors
and differences in tax treatment across assets. If investors are risk averse, higher net returns on
equipment may be due to the substantially higher variability of these returns. In addition, we make
the standard assumption that the physical depreciation rates of equipment and structures, which
are key components in calculating net rates of return, are constant. Thus, we abstract from time
variation in depreciation rates that can result from variations in factor intensity use or from changes
in the composition of the capital stock over time. As a result, our rate of return equality restriction
may contain measurement error. For these reasons, it seems sensible to discount the effect of the
3 percent time trend, since it only reduces the error on the rate of return equality restriction and
actually worsens the ability of the model to account for the skill premium.

On the basis of these findings, we conclude that our benchmark model, driven by capital-skill
complementarity and with no changes in unmeasured variables, accounts for most of the historical
variation in the skill premium and provides a reasonable mechanism for interpreting the finding of
skill-biased technological change presented in other studies.?? To gain further insight into how our
theory helps us understand the behavior of the skill premium over this period, we present the results
from two additional exercises. In our first exercise, we present a decomposition of the growth of the
skill premium in our benchmark model into the three components defined in Section 3: the capital-
skill complementarity effect, the relative supply effect, and the relative efficiency effect. Based on this
decomposition, we reconstruct how these three components have affected the skill premium over the

sample period. Recall that since there is no trend growth in labor quality in the benchmark model,
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all fluctuations in the skill premium are due to changes in either the capital-skill complementarity
effect or the relative supply effect. The decomposition is presented in Figure 11: the sum of the
three components gives the logarithm of the model skill premium plotted in the lower right panel.
The levels in the figure are measured in logs, just as in the decomposition. The lower right panel,
which is the skill premium, is the sum of the data presented in the other three panels. This figure
clearly shows that both the relative supply of labor and capital-skill complementarity have had very
large and very different effects on the skill premium over this period. The relative supply effect is
presented in the upper right panel. Given the significant increase in the relative quantity of skilled
labor input over this period, the relative supply effect is consistently negative and can be seen to
have reduced the skill premium by more than 40 percent over the sample. In particular, we find
that the relative supply effect was an important factor in the decline of the skill premium during the
1970s. This finding is consistent with Katz and Murphy (1992). The contribution of the capital-skill
complementarity effect is presented in the upper left panel. This factor is clearly the driving force
behind the increase in the skill premium over the sample period. The total effect of capital-skill
complementarity is to have increased the skill premium by nearly 60 percent over the sample. We
find that this factor was particularly important in the 1960s, increasing the skill premium about 2.5
percent per year on average, and also after 1980, increasing the skill premium by about 2.1 percent
per year. Between 1969 and 1979, however, this factor had a smaller positive effect, increasing the
skill premium only about 1.4 percent per year.

Our final exercise provides further information on the importance of the capital-skill com-
plementarity effect in understanding wage inequality. We use our benchmark model to simulate
the evolution of the skill premium under a counterfactual assumption on the growth rate of capital
equipment. In this counterfactual exercise, the implied skill premium from our benchmark model is
generated under the assumption that the post-1975 average growth rate of capital equipment was
equal to its lower pre-1975 average growth rate. We find that if equipment had grown at its pre-1975
average rate in the post-1975 period, the skill premium would have risen just 2 percent relative to
its value in 1963. This is substantially less than the 18 percent increase predicted by the model

under the actual time path of the stock of equipment.
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5 Summary and Conclusion

Over the last 30 years, the growth rates of labor input quantities and prices have changed
dramatically. The quantity of skilled labor input relative to unskilled labor input has increased
considerably, and relative wages of skilled labor have also grown significantly since 1980. The
conclusion reached by most studies is that observable variables can account for only a small fraction
of increased wage inequality and that implicit trend growth in skill-biased technological change
is the key factor responsible for these changes. Despite this widespread conclusion, there is no
standard theory for interpreting skill-biased technological change, nor are there direct measures of
this object. This paper develops a neoclassical framework in which capital-skill complementarity is
the driving force behind increased wage inequality. Capital-skill complementarity provides a simple,
explicit mechanism for understanding skill-biased technological change: rapid growth in the stock of
capital equipment, combined with the different ways equipment interacts with skilled and unskilled
labor input in the production technology, has increased the marginal product of skilled labor while
decreasing the marginal product of unskilled labor.

Our main finding is that capital-skill complementarity is an important missing factor in un-
derstanding historical variation in the skill premium. With moderate capital-skill complementarity,
we find that changes in observed factor quantities can account for the variation in wage inequality
over the last 30 years. Without capital-skill complementarity, we find that the skill premium would
have declined about 45 percent over the period. Moreover, our benchmark model, with capital-skill
complementarity but no changes in unobserved variables, not only accounts for changes in the skill
premium, but is also consistent with other important long-run U.S. growth observations, including
the behavior of aggregate and relative income shares over time, and is consistent with reasonable of
rates of return on capital. These quantitative predictions, together with the simplicity of this model,
suggest that it can be used to study other questions related to capital-skill complementarity. On the
basis of our quantitative analysis, we conclude that the common empirical finding of trend growth
of skill-biased technological change as an important determinant of wage inequality may simply be
serving as a proxy for omitted capital-skill complementarity.

Our findings have important implications for growth and the formulation of economic policy.

While the development of better and cheaper capital equipment benefits the economy as a whole,
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our results quantitatively show how this development can significantly drive down the relative wages
of unskilled workers. As a result, growing wage inequality can be a consequence of economic growth
that is driven by technological progress in the production of new capital equipment. As the gap
between wages for skilled and unskilled workers has increased, a number of economic policies have
been proposed to narrow the wage inequality. One popular policy proposal is to increase trade
barriers and increase the price of imported goods in order to protect domestic unskilled labor from
competition with low-wage foreign labor. However, our findings suggest that these types of policies
will not be very effective, since unskilled labor is competing not only with foreign labor, but also
with persistently cheaper and better capital equipment. Instead, our results suggest that the key
to narrowing inequality may be through increased education and training for unskilled workers. By
improving skills, workers can utilize new equipment and raise their own productivity, rather than

be replaced by new machines.
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Appendix 1. Labor Input Data

The sources of our data are the CPS Annual Demographic Uniform March Files (CPS_UM)
for the years 1964-88 and the CPS Annual Demographic March Files (CPS-M) for the years 1989—
93. The former are just a standardized version of the latter; hence, they are easier to use for
that sample period. Following Katz and Murphy (1992), we drop nonreporting individuals from
the sample, since the Census Bureau changed its imputation methods for nonreporting individuals
midway through our sample.

We have restricted our attention to all people between 16 and 70 years old, excluding the
self-employed. The series for skilled and unskilled labor input and wages are constructed in two
steps. In the first step, several hundred demographic groups are constructed, and some variables are
recorded in each group. In the second step, these few hundred groups are sorted into two categories:
skilled labor and unskilled labor. The key variables are aggregated across groups to obtain category-
specific averages. In the second step, there is some weighting of the variables which goes beyond
the CPS weighting scheme needed for adjusting the sampling probability.

In what follows, we describe how the groups were constructed, what criteria we used to sort
the demographic groups into skilled and unskilled categories, and how the group variables were
aggregated and weighted to construct the measures of skilled and unskilled labor input and wages
used in the paper.

Individual Variables

For each person, we recorded demographic characteristics, such as age, race, sex, and years of
education, as well as the CPS weights. We also recorded current employment status, weeks worked
last year, hours worked last week, and labor income earned last year.?6 In Table A.1, we report
these variables, along with the label used in the paper, and their counterpart and position in the
CPS files. The index 7 is used for workers and the index t for the current year.

Construction of Demographic Groups

All workers in the sample are grouped according to their demographic characteristics. The

groups we consider are distinguished by the following;:

30



e Age. There are 11 five-year groups.
e Race. Race variables are grouped into white, black, and others.
e Sex.

e Education. The education status is grouped as follows:

1. E; < 11: No high school diploma.
2. E; = 12: High school graduate.

. 12 < F; < 15: Some college.

S~

. F; > 15: College graduate and more.

Each worker is assigned to one group defined by age, race, sex, and education. We have 264
of these groups, each of which generates a partition of the population in the sample and which we
denote by g € G. For each one of these partitions, we need to construct an average measure of the
labor input and the labor earnings. For the computation of the group labor input, we must take
into account the labor input of those workers who reported zero hours worked last week. (This can
occur although they worked last year for a positive number of weeks: the week before the survey
they were either unemployed or, if they had a job, they were not at work.) We have made this
correction by assuming that their weekly supply of hours is equal to that of the average worker with
nonzero hours worked belonging to their same group. Hourly wage is just the ratio between last
year’s labor income and last year’s measure of labor input (in hours). First, we obtain the following

measures of individual labor input l;; and hourly wage w;; :

lit—1 = hipwk; 1 if worked last week,

lig—1 = Egtwk:i,t,l if did not work last week,

. _ Yit—1
Wist—1 = 7,

> icg LS sit=€)hit it

where hy =
gt Zieg 1(1fsit=e)pit

. Therefore, for the whole group g, we obtain
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Aggregation of Groups Into Skilled and Unskilled Categories

The next step is to aggregate the set G of 264 groups indexed by ¢ into skilled, that is,
g € Gg, and unskilled, that is, g € Gy, categories and compute measures of the total annual labor
input for skilled workers Ny and of their hourly wage Wy, as well as total annual labor input for
the unskilled N,; and their hourly wage W,;. Skilled workers are those with a minimum number
of years of education. For the first criterion (EDU_COL), skilled workers have at least a college
degree; unskilled workers are all the rest. This partition is time invariant; that is, the groups of G
that belong to the skilled category are always the same.

Skilled and Unskilled Total Labor Input and Hourly Wage

The key problem, at this stage, is how to aggregate group-specific measures into the broad
classes of skilled and unskilled labor defined by the criteria above. In doing this, we assume that
the groups within a class are perfect substitutes (they simply add), and for the aggregation we use
as weights the group wages of 1980 in very much the same way that real gross domestic product is
computed in the NIPA. Let j = s, u indicate the skilled and the unskilled type, respectively. Then

the total labor input (in hours) for the two categories is

Nijg1= > lgi1wgsopgr-
9€Gjt

The average hourly labor income is, therefore, just

deGjt wg,t—llg,t—lﬂgt
Njt1

ijtil =

Finally, note that we have CPS data for the period 1964-93, but since wages and labor input data

in the survey always refer to one year earlier, our sample spans the period 1963-92.
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Appendix 2. Capital Stock Data

In the model, we have two types of capital: structures and equipment. Central to the model
is the observation that the price of equipment has declined relative to the price of nondurable con-
sumption goods and services and to the price of capital structures. Since, in the data, the behavior
of the two latter prices is very similar, we have assumed a unique price for both consumption and
structures. This price index (P_CONS) is obtained from the implicit price deflators for nondurable
consumption and services. The implied average growth rate of consumption prices for the period
is 5.3 percent. For the measurement of structures, we follow Greenwood, Hercowitz, and Krusell
(1996).

The measurement of capital equipment is a more complex matter, as we are interested in the
efficiency units of equipment that enter as an input of the production function in each period. To
obtain efficiency units, we need to compute their relative prices. Because of the huge improvement
in the quality of equipment goods that has occurred over the last 1015 years, especially for informa-
tion processing equipment, quality-adjusted price indices are needed for a meaningful and reliable
measure of this relative price. Unfortunately, the NIPA series does not contain any adjustment for
improved quality until 1992, when a quality-adjusted price series for computers and peripherals be-
came available starting from 1982. Many economists regard this adjustment as still unsatisfactory,
since the methodology followed—a matching models procedure—is likely to understate the dramatic
price decline which occurred in computers in the 1980s and is ongoing in the 1990s.2” Moreover,
the categories other than computers and peripherals have no adjustment at all. We first present
a breakdown of the producers’ durable equipment (PDE) into categories, as it is in the NIPA, to

introduce some labels we will be using hereafter:

e Office information processing (OIP).

— Office computing and accounting machinery (OCAM).

« Computers and peripherals (COMP).

« Other (OFF).
— Otbher office and information processing (OTHOIP).

« Communications (COMM).
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* Instruments, photocopy, and related equipment (INST).
e General industrial equipment (INDEQ).
e Transportation (TRANSP).

e Others (OTHER).

Figure 12 shows the relative nominal shares of the four main categories, according to the
NIPA. As expected, the share of OIP doubled in the observed period, and all the increase seems to
happen especially between 1979 and 1985.

Quality Adjustment for Prices of Equipment

The price index we have used to aggregate all the quality-adjusted prices for the different
categories of PDE and to obtain a unique corrected price index for capital equipment is a Tornqvist
index (TORN). If we assume that there are N goods, labeled i = 1,..., N, the change of the TORN

price index from ¢ — 1 to t is given by

ATORN, :fjlog< v ) (si +5i1)
i=1 bt 2

where pi is the price level of good i in year t and si is the nominal expenditure share on good i
in year t. This index is an annual chain-weighted index; that is, the nominal value shares used
to aggregate the prices of the categories are not fixed to a given base year, but they change every
year. Chain-weighted indices such as Térnqvist or Divisia provide better approximations than fixed-
weight indices for rapidly changing prices and shares. In cases where there is a fast decrease in the
price of some commodities, as there is in our case, a fixed-weight index would overstate the decline
before, and understate it after, the base year, and, in general, the behavior of the index would
depend heavily on the choice of the base year.

Gordon (1990) computes a quality-adjusted Tornqvist index for PDE for the period 1947-83;
hence, for the sample period up to 1983, we rely on Gordon’s (1990) data. For the sample period
after 1983, we are not aware of any existing quality-adjusted series for the categories above that
can be used, except for computers, for which a fairly large literature on quality-adjustment has

developed recently. Hence, we need to construct the series ourselves. As a first step, we aggregate
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the 16 primary categories used by Gordon (1990) into the four main groups: OCAM, INDEQ),
TRANSP, and OTHER. The price indices for the INDEQ, TRANSP, and OTHER categories did
not change dramatically in the 1980s, unlike computers. It is likely, hence, that the relationship
between the quality-adjusted and the official price indices has stayed approximately stable over time
for these categories. Therefore, we forecast the quality-adjusted prices for 1983-92 using the series
of the official NIPA price indices, which are available up to 1992.

We first estimate a vector autoregression (VAR) for the period 1963-83 on the quality-
adjusted price indices for INDEQ, TRANSP, and OTHER in levels (in order to exploit their possible
cointegration) using their past values, the lagged official NIPA price indices, and a lagged indicator
of the cycle as exogenous regressors.”?® Then we forecast recursively up to 1992, exploiting the fact
that the exogenous variables are observable also for that period. The results of the estimation are
in Table A.2, and the series is shown in Figure 13. Until 1983, the values are from Gordon’s (1990)
series; starting from 1984, values are forecasted. P_.CONS is also plotted for comparison.

The computation of an accurate quality-adjusted series for OIP is a key issue, since this is
the group that recorded the largest change in price and relative share. We first split the OIP group
into COMP and all the OIP categories other than computers and peripherals (OFF, COMM, and
INST). For communication equipment and instruments, we use the same forecasting technique as

before, but we fit two separate equations this time, as the data before 1984 do not show any strong

comovements.
Results of Estimation on P_.COMM and P_INST

Dependent Variable: P_COMM Dependent Variable: P_INST
Variable Coeflicient | t-stat. Variable Coefficient | t-stat.
Constant —0.62 —0.162 c 1.89 3.36
AR(1) 0.90 7.80 AR(1) 0.68 5.63
MA (4) 0.91 2.11 MA(2) —0.64 | —3.27
OP_COMM(-2) —0.32 —2.84 OP_INST(-1) 0.06 0.61
DLAGG(-2) 0.01 2.64 DLAGG(-5) —0.02 4.03

R%? =0.87 R%? =097

Remark: The prefix OP_ indicates the official NIPA series.
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The table above shows the results of the estimation over the 1963—-83 sample period, which
make up the model from which we forecast the quality-adjusted price up to 1992. In Figure 14, the
growth rates in the COMM and INST categories are plotted for the relevant period. The obtained
values have sensible magnitudes, and the fact that they comove significantly after 1983 confirms
the reliability of the forecast. For the OFF category, we take the official NIPA price index, as we
conjecture that the quality-adjustment would not be very relevant.

For computers and peripherals, a large literature on quality-adjusted price indices is avail-
able. We made an effort to reconstruct a meaningful index from some of these pieces of work. The
COMP category is composed of personal computers (PCs), other computers (mainframes, super-
computers, workstations, and midrange computers), and peripherals. Computers and peripherals
held by consumers are not relevant for our measure of capital input; therefore, we consider only
the durables used in the business sector. From the Statistical Abstracts of the United States, we get
that the share of PCs in the business sector increased from 37 percent to 57 percent of the total
expenditure in PCs in the decade considered.?? Assuming that all the other types of computers
are held by the business sector and that peripherals are shared between the home and the business
sectors in the same proportion as computers, we get that the share of workstations, mainframes,
and other computers of the total expenditure on COMP declined from 46 percent to 35 percent,
while the share of PCs increased from 9 percent to 21 percent between 1983 and 1992. The share
of peripherals was constant at around 44 percent of total COMP.

In terms of adjusted price indices associated to these shares, the only existing adjusted price
index for peripherals is computed by Cole et al. (1986) for the period 1972-84. It shows an average
decline of 10 percent, which is lower (in absolute value) by a factor of 1.3 than the corresponding
magnitude for the total adjusted price series for OCAM in the same period, taken from Gordon
(1990). Using the shares of the categories, we compute that the ratio of the decline in the price of
peripherals and to that of PCs and mainframes is 0.65. We assume that this ratio also holds for
the period 1984-92; so, given the adjusted price indices for different types of computers, we can
recover that of peripherals, too. Brown and Greenstein (1995) compute an adjusted series for prices
of mainframes, and they find that in the period 1985-91, their price declined by 30 percent, on
average, every year. We assume that their numbers also hold for all the other types of computers,

except PCs. Berndt, Griliches, and Rappaport (1995) compute a hedonic-adjusted price index for
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PCs from 1989 to 1992 and conclude that the price declined by more than 29 percent a year.
Moreover, they report a result from a previous study that covered 1983-88, for which the average
decline was 22 percent.?0 For the missing years, we assume that the change in price is an average
of the change in the previous and the next year, when the point of the sample is interior, as in 1989
for PCs. Otherwise, we assume that the price change equals that for the closest year for which an
observation was available, as for 1983, 1984, and 1992 for mainframes.

In Figure 15, the resulting price index for computers based on the literature is compared
to the NIPA index—an implicit price deflator (IPD) with a base year of 1987—which is adjusted
for quality, too, as mentioned above. Our results confirm the general impression that the NIPA
index still underestimates the true decline in price for COMP. It is also interesting to note that,
compared with the chain-weighted Térnqvist index, the NIPA index overestimates the decline in the
price index before the base year and underestimates it afterward, as expected, since the so-called
substitution bias is very strong for this group of goods.

Using the above data on price indices and shares, subject to the assumptions made, we can
construct the series for quality-adjusted price indices for the aggregate of OIP with a Toérnqvist
procedure.

Time Series of Adjusted Price Indices and Efficiency Units of Capital Equipment

At this point, we can use the procedures described in the previous sections of the appendix
to obtain series for relative prices and efficiency units of capital equipment for the whole period
1963-92. First, we aggregate the price indices for the four main categories with the Tornqvist
procedure. The relative price index is constructed by dividing the aggregate TORN price series
through P_CONS. In Figure 2, the growth rates of the relative price index series are compared with
the NIPA series of relative prices obtained by dividing the official IPD of PDE (base year 1987) by
P_CONS.

Investment in capital equipment in efficiency units is constructed by deflating the nominal
series of investment in equipment from the NIPA through our quality-adjusted price index for equip-
ment. The series for capital equipment is obtained starting from a value of capital which matches
the investment-capital ratio in Gordon (1990) (Table 12.6) for 1963 and recursively constructing
capital the next period with investments and the depreciation rate of 0.125 calibrated as described

in Section 5 of the paper. Figure 16 reports our series of growth rates of capital equipment and the
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series implied by the official NIPA data. The following table summarizes the average growth rates

of the relative price and the capital stock in efficiency units for our computation and for the NIPA

data before and after 1980, the key year in the time pattern of the skill premium.

Growth Rate 1963-79 | 1980-92
Rel. Price NIPA —0.003 | —0.026
Rel. Price TORN —0.036 | —0.060
Capital Equip. NIPA 0.046 0.034
Capital Equip. TORN | 0.068 0.074

We report in Table A.3 the Citibase denomination of all the series taken from the NIPA for

the construction of our series on capital equipment and its relative price.

Table A.1: Variables Used For Data On Labor Input and Wages

Variable Label CPS-UM (Position) CPS_M (Position)

Age Qi Age in Years (93) Age in Years (15)

Race T; Race (179) Race (25)

Sex S Sex (183) Sex (20)

Years of Education e Highest Grade (124 and 99) Highest Grade (22 and 24)
Employment Status lfsi Employment Status (107) Labor Force Status (145)

Weeks Worked wk; 1—1 | Weeks Worked Last Year (205) | Weeks Worked Last Year (171)
Weekly Hours Worked | h;+ Hours Worked Last Week (126) | Hours Worked Last Week (76)

Labor Income Yit—1 Person’s Wage and Salary (187) | Total Wage and Salary Earnings (243)
Weight it Person’s Suppl. Weight (281) March Suppl. Person Weights (66)
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Table A.2: VAR Estimation Results

PINDEQ | P_.TRANSP | P.OTHER
c 1.52 1.5 0.44
(1.66) (2.50) (0.43)
P_INDEQ(—1) 0.39 —0.38 0.94
(0.72) (—1.17) (1.8)
P_TRANSP(—1) —0.64 0.28 —0.26
(—2.38) (1.54) (—0.88)
P_OTHER(—1) ~0.40 —0.01 ~0.52
(—0.94) (—0.04) (—1.14)
OP_INDEQ(—1) 3.02 1.88 7.10
(2.30) (1.57) (2.54)
OP_TRANSP(—1) | —0.05 0.26 1.00
(—0.04) (0.31) (0.76)
OP_OTHER(-1) | -0.48 —0.75 —6.51
(-0.24) (-0.56) (—2.98)
DLAGG —0.01 —0.01 —0.00
(—1.27) (—2.65) (—0.11)
[ I [ 099 | 0976 | 0989 |

Table A.3: Variables Used For Data On Equipment

Variable Citibase
Label
PDE GIPD
PDE (in 1987 prices) GIPDQ
Computers and peripherals GIPCP
OCAM GIPOS
Other OCAM GIPOC
Communications GIPCE
Instruments GIPIS
Photocopy and related equipment | GIPPE
Industrial equipment GFINE
Transportations GFINT
Other PDE GFNPO
IPD for nondurable consumption | GDCN
IPD for services GDCS
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Appendix 3. Econometric Technique

For the estimation of our model we use the simulated pseudo maximum likelihood estimation
(SPMLE) algorithm. The theory of pseudo maximum likelihood estimation (PMLE) was developed
by White (1982) and Gouriéroux, Monfort, and Trognon (1984). The PMLE is based on the idea
that one can approximate the unknown or intractable likelihood function with a simpler objective
function constructed from some empirical moments of the dependent variables. When these moments
cannot be obtained analytically, under some fairly general conditions they can be simulated: this
latter extension of the original PMLE method is called SPMLE and is due to Laroque and Salanié
(1989), Laroque and Salanié (1993), and Laroque and Salanié (1994). The two-step version we use
to correct for potential endogeneity is due to White (1994). The notation that follows is the same
as that used in the text.

Description of the Estimation Method

The simplest way of conducting the analysis would be to assume that the left side variables
in the equations (the factor shares and expected rates of return) are endogenous and that the factor
inputs are exogenous. This simple approach implicitly assumes that labor supply is predetermined
at any point in time and thus abstracts from the potential effect of the i.i.d. labor quality shocks
on hours worked. To allow for the possible dependence of hours worked on shocks, we use the
two-step SPMLE procedure developed by White (1994), which is similar in spirit to two-stage least
squares. We therefore treat skilled and unskilled labor input as endogenous, and we project these
variables onto a constant, current, and lagged stock of capital equipment; current stock of capital
structures; the lagged relative price of capital equipment; a time trend; and the lagged value of the
Commerce Department’s composite index of business cycle indicators. The fitted (instrumented)
values of skilled and unskilled labor input from this first-stage regression are then used in a second-
stage analysis described below. We define the vector X; as consisting of the stocks of equipment
and structures and of the instrumented values of skilled and unskilled labor input. While we allow
for dependence of the labor input on shocks, we treat the capital stocks as predetermined variables.
We argue that this is a reasonable approach, since the stocks of capital evolve very slowly over time,
and thus will tend not to respond much to these i.i.d. shocks.

In the second stage of the analysis, we use the instruments and instrumented values of the
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labor input series with the SPMLE. This proceeds as follows: given the distributional assumptions
on the error terms, for each year ¢ observation we generate S realizations of the dependent variables

each indexed by i, by following two steps:

Step 1: ¢! = @ + vt + w}.

Step 2:  Zi = f(Xy, ¢, €l 9).

In Step 1, a realization of w; is drawn from its distribution and used to construct a year ¢
value for ¢;. In Step 2, this realization of ¢y, together with a draw of €, allows us to generate a
realization of Z;.

By simulating the model through (A1), we can obtain the first and second moments of Z;:

mS(Xﬁ ¢) = % Ziszl f(Xtv 9011;7 EIZ;; ¢)

Vs(Xi:0) = 55 550 (% — 1K dhoci0)) (20— 1K dacio)

On the basis of these moments constructed for each ¢t = 1,...,T we can write the objective

function as

(s(ZT, X7 0) = & é { (2~ ms(X: )] (Vs(Xi:0)) " [2— ms(Xe; )

(A2)
+ logdet (Vs(Xi:9)) } -

The SPML estimator ¢g7 is defined simply as the maximizer of (A2). Note that throughout
the maximization procedure of the objective function, the same set of (T x S) random numbers for
each component of the three-dimensional vector of shocks must be used to prevent the likelihood
from becoming a random function.

Properties of the SPMLE Method

The SPMLE method has intrinsically two sources of bias. One comes from the approximation
of the objective function: instead of the intractable original likelihood, we use a simpler objective

function. The other originates from the fact that the true moments are replaced by the simulated
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ones, inducing some simulation uncertainty. In our application, there is a third potential source of
bias due to the small sample.

Laroque and Salanié (1989) proved that the original consistency result of Gouriéroux, Mon-
fort, and Trognon (1984) extends to an environment where the moments of the endogenous variable
need to be simulated. Under stationarity of the series, if the pseudo distribution belongs to the
quadratic exponential family, as in our specification, then there is no approximation bias and the

SPMLE is consistent and asymptotically normal so, as S — oo, T' — o0, andﬁg — 0,

VT (quST - ¢0) =N (0, ngfngl) (A3)

where Iy = Ej {8€(ngt’¢) ag(zéz;,(t’@} and Jy = Ey {—%}. We use Ej to denote the expec-
tation with respect to Z; and X; taken under ¢, the true parameter value. As far as the simulation
bias is concerned, Laroque and Salanié (1994) prove that this bias has the order of % and, according
to their Monte Carlo experiments, for S = 20 the bias is already extremely small.

These theoretical results on the SPMLE are asymptotic and hold for stationary environments.
In our analysis, however, the regressors and the latent variables have trends and the sample size is
small. To investigate the performance of this estimator in small samples and with trending processes,
we conducted in Ohanian et al. (1996) a Monte Carlo analysis on the properties of this estimator
under these conditions. In particular, we took a version of our production function with capital-skill
complementarity, simulated generated data from the model under assumed parameter values, and
then estimated the parameters using the SPMLE. We analyzed the case in which the data were
both trend stationary and difference stationary. We found that for trend stationary processes, there
is very little mean and median bias in the estimated parameters of the model even for S = 10.
This finding is consistent with the results of Laroque and Salanié (1994), who considered a different
model. For S = 50, we found that the mean bias is essentially zero in our model for the key curvature
parameters ¢ and p.

One could, in principle, improve on the SPMLE by running indirect inference with the
SPMLE as a first-step estimator. This procedure, given the presumed consistency of the first-
step estimation method, would provide a correction for the potential small-sample bias, as pointed

out by Gouriéroux, Renault, and Touzi (1995). We have experimented with indirect inference cor-
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rection, and we conclude that it does not make any significant improvement on the SPML estimator.
The initial bias of the first step is so small that a correction would probably require such a large
number of simulations that the indirect inference algorithm would become infeasible.

Practical Implementation

An important choice in the practical implementation of the SPMLE is the number of sim-
ulations, S. Our estimation algorithm was run with S = 500. We chose this number since, after
this point, changes in the estimated parameter vector due to simulation uncertainty were negligible.
Our Monte Carlo experiment also suggests that this number of simulations is a reasonable choice.

Standard deviations of the SPML estimator were computed on the basis of this asymptotic

result in (A3). The sample counterparts of Iy and Jy for the 2S estimator are

5 0U(Z4; X1, bs1) OU(Z4; X1,
[ST:%ZZ;I{ (ta(;(z’ST) (t8¢€¢ST)}

(A4)

7 BQZZ;)A(: ,A
Jsr =231, {_W} ‘

The main practical difficulty encountered in the estimation procedure was to pin down the
variance of the latent state. In fact, when 7, was estimated together with the other parameters, the
algorithm would always tend to quickly increase the estimated variance generating an implausibly
large high-frequency variability in the implied simulated paths of the wage premium and the labor
share. Therefore, in the estimation, we restricted 7, to belong to an interval for which the volatility
of the model wage premium and the labor share are similar to their data counterpart.

With such a large parameter space and with simulation-based estimation techniques, there is
uncertainty about whether the maximum found is local or global. To assess the global nature of the
optimum, we used Veall (1990)’s test based on de Haan (1981)’s asymptotic confidence interval for
the first-order statistics. Call ¢ the value of the objective function at the optimum, and call /! and
¢? the highest two values of a vector of M random evaluations of the likelihood in the parameter
space. We reject the null hypothesis that the optimum is not a global maximum at the (1 — p) level
of confidence if /P > f, where P = (1 4 (61 — 62) / (p%z — 1) and k is the dimension of the parameter
space. We performed M = 60,000 random evaluations of the likelihood in the parameter space.3!

We found that we could reject the null hypothesis only for p = 0.185. Therefore, at a conventional
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confidence level (10 percent or 5 percent), the hypothesis is not rejected.

In addition, we used the information collected through these random evaluations for a further
check. We identified among the M evaluations those points far from our estimate of QEST where the
likelihood was relatively high, and we restarted the maximization routine at those new initial guesses,

but we found only lower local maxima.
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Footnotes

'Bound and Johnson (1992), among others, conclude that much of the variation in the skill
premium is attributed to a residual trend component that is often called skill-biased technological
change. These authors evaluate a number of explanations in the literature for the increase in wage
inequality. Murphy and Welch (1992) emphasize the loss of high-wage manufacturing jobs associated
with increased foreign competition and a higher trade deficit. Bluestone and Harrison (1988) stress
the decline in the ability of labor unions to negotiate high wages.

2 The Gordon (1990) data cover the sample period until 1984. The computation of the stock
of capital equipment and its relative price for the post-1983 period is described in detail in Appendix
2.

3 Investment as a share of total output has remained roughly constant over the sample period.
For more details on the index construction, see Appendix 1.

4 The ratio of skilled to unskilled labor input for other education-based skill definitions shows
a similar trend. For example, if skilled labor is defined as requiring at least high school completion
(12 years or more of education), the ratio of skilled to unskilled labor hours rises by a factor of more
than six.

®See Greenwood, Hercowitz, and Krusell (1996) for details.

6Goldin and Katz (1995) analyze historical data on the premium to education for office workers
and find that technological progress was a factor in increasing the demand for skill during the early
parts of this century. Goldin and Katz (1995) document a decrease in the education premium and
argue that it was mainly due to the increased supply of educated workers (high school graduates).
Goldin and Katz (1996) qualitatively discuss the origins of capital-skill complementarity in terms
of a three-factor production function that is a special case of one we consider. They conclude that
long-run historical data support their specification. It is interesting to note that the specification
advocated by Goldin and Katz on historical grounds is consistent with the preferred nesting of our
model.

"Goldin and Katz (1996) have interpreted this general type of production function along the
following lines. Production takes place in two stages: machine maintenance and assembly. In
the first stage, skilled workers adopt new technologies and ensure that they work efficiently in
the organization. In the second stage, assembly involves the product of machine maintenance and
unskilled labor, and it is the more mechanical part of the production process. For illustration,
Goldin and Katz (1996) suggest that machine maintenance is Leontief in skilled labor and total
capital and that assembly is a Cobb-Douglas structure.

8 Note that this expression is an approximation, since we make use of the approximation
In(1 + z) ~ x. As we discuss below, in the estimation of the model, we need to fix the scale, and
we do this by restricting the initial value for the skilled labor efficiency. We are, therefore, free to
select a value that makes the above expression very accurate.

9A steady-state growth path exists in this model either if p = o = 0 or if the long-run growth
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rates of all inputs in efficiency units are the same (g, = gs = gk, ). If these conditions are not satisfied,
an asymptotic steady-state growth path exists, with either one or two factors having relatively little
importance in the long run. Since we have abstracted from modeling household choices, our analysis
does not have predictions for the long-run growth rates of these inputs.

10 Recall from the previous section the substantial difference in the growth rate of equipment
relative to structures over this period.

1 For an estimation of the labor efficiency factors based on input share differences across
sectors, see Kahn and Lim (1997).

12Neutral technological progress will not be treated as an additional latent state variable, but
rather can be identified using our production function and measures of output. Output is taken to
be the domestic product of the private sector, excluding the housing and the farm sectors.

13We have explored the implications of this assumption and found that it does not affect our
results in any significant way. This is described in Subsection D.

14To simplify the analysis further, we assume that next period’s realizations of neutral tech-
nological change (As4+1) and labor efficiency (1;41) are known when investment decisions are made.
Thus, the only uncertainty in this equation is that gs11 is unknown at date t. This information
assumption simplifies the estimation of the model substantially, because it allows us to abstract
from specifying a separate stochastic process for neutral technological change (A;). A specification
that estimates the parameters of this process is much more complicated: it involves more param-
eters to be estimated, is computationally more intensive, and results in fewer degrees of freedom.
Moreover, it requires an additional assumption of measurement error, since the output from the
model under this specification will, in general, deviate from output in the data. For some of the
model specifications, we estimated this more complicated version and found that the results changed
in only minor ways. The main difference was that the estimation of this specification of the model
was much slower.

15We specify an ARIMA model for forecasting the relative price of capital. This specification
is detailed in Subsection D.

16 Since &; enters in only the third equation, the first two elements of the vector are identically
Z€ero.

17 The parameter 7. is estimated as (1 — &) times the standard error of the residuals of a
linear regression of qtq—Jtrl on the variables in the information set &. The results are robust to different
specifications of the conditional mean. The estimated equation is ¢ = 0.5 — 0.005¢ + 0.48G;_1 —
1.07e4_1 + €4, where i1 = 242 with R? = 0.49 and 6. = 0.023.

qt
18 By symmetry, the elasticity of substitution between unskilled labor and skilled labor is also

1.67. This estimate is near the benchmark value cited in Subsection A.

19 Recall that our proxy condition for missing rental prices of structures and equipment equated
the expected rate of return on investment to these two types of capital in our model, as opposed to
the ex post returns shown in Figure 9.

20The large increase in the relative price is evident in both the official National Income and
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Product Accounts (NIPA) equipment price index and in Gordon’s (1990) quality-adjusted data.

21 In addition to the effect of a few influential observations, particularly the 17 percent return
in 1974, other factors may account for the difference between the average returns on equipment and
structures. In particular, equipment may yield a higher rate of return than structures, given that
the volatility of equipment returns is so much higher. This outcome could occur if investors were
risk averse.

22 We also used two-step SPMLE to estimate the parameters of the model. These estimates
were similar to the OLS estimates.

23 In conducting our analysis, we found that the difference between the trend growth rates
of skilled and unskilled labor quality was important, rather than the absolute levels. Therefore, we
normalize unskilled labor quality to have no trend growth in quality and, thus, estimate one less
parameter. This reduced computation time significantly when we estimated versions of our model
using the two-step SPMLE.

24 We also estimated the parameters using the two-step SPMLE. The estimates were o = 0.280
and s — v, = 0.090.

Z5We assessed the robustness of our results by considering two changes to our model. First,
we used an alternative definition of skill, in which skilled workers were those with at least some
college education (13 years of school or more). The basic findings were similar, with the elasticity
of substitution between skilled labor and equipment very similar to that in the benchmark case and
a moderately higher elasticity of substitution between unskilled labor and equipment (1.89 versus
1.67 in the benchmark model). Second, we assessed the sensitivity of our results to differential
tax treatment of structures and equipment. There are two sources of differences in tax treatment:
different depreciation allowances and the use of the investment tax credit (ITC), which applies only
to equipment purchases. Cummins, Hassett, and Hubbard (1994) construct annual time series on
the ITC and the present value of depreciation allowances for equipment and structures over the
1953-88 period. We incorporated the ITC into our analysis, but we could not use their data on
depreciation allowances directly, since it would require us to keep track of the entire distribution of
equipment and structures. Thus, a comprehensive analysis of tax differences across assets is beyond
the scope of this paper. Adding the ITC to our analysis did not change the findings in any important
way. The results were very similar to the benchmark model—the elasticities of substitution were
nearly identical to those in the benchmark case. (The parameters were not strictly comparable to
those reported in Subsection E, since the model with the ITC could be estimated only through
1988.) Given the tax benefit of the ITC, the average net ex post rate of return on equipment was
about 3 percent higher than that on structures, versus 2 percent higher in the benchmark model.
We concluded that explicitly accounting for the ITC would not materially change our findings.

26 No correction has been made for top-coded earnings. For instance, Juhn, Murphy, and
Pierce (1993) impute earnings as 1.33 times the top-coded value, but they report that their results
are not sensitive to this correction.

27 See, for instance, Triplett (1992) or Berndt, Griliches, and Rappaport (1995). The latter
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paper reports that the price index based on the matching models procedure largely underestimates
the decline in the price of PCs—compared with hedonic price methods.

21t is a composite index of seven lagged indicators, named DLAGG in the Citibase data set.

2 See Statistical Abstract of the United States (1991, Tables 1273, 1274, 1277, pp. 754-55)
and Statistical Abstract of the United States (1992, Tables 1256 and 1258, p. 771) for the share of
different types of computers, the share of peripherals, and the fraction sold to business.

30 See Berndt, Griliches, and Rappaport (1995), footnote 2, p. 245.

31 Tt is not immediately obvious what the optimal ratio M/k should be. Veall (1990) finds
that in some cases with 3 parameters, 10 random draws would deliver satisfactory results in terms
of test power, but other examples with only 1 parameter needed at least 200 draws.
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