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1. Introduction

This paper presents a full characterization of the equilibrium value set of a Ramsey tax
model where the government cannot commit to a sequence of tax rates. More gener-
ally, it develops a dynamic programming method for a class of policy games between the
government and a continuum of households.

Starting with the seminal paper of Kydland and Prescott (1977), there is by now a
large body of literature dealing with reputation and credibility of government policies (see,
for example, Chari and Kehoe (1990, 1993a, 1993b), Persson, Persson and Svensson (1987),
Rogoff (1989), and Stokey (1989, 1991)). One of the main thrusts of the paper by Kydland
and Prescott (1977) was that the inability of governments to commit to policies made the
application of optimal control techniques to questions of government policy inappropriate.
Later papers (such as Chari and Kehoe (1990)) argue that a policy problem is better viewed
as a dynamic game between the government and a continuum of households. The strategic
dynamic programming approach of Abreu, Pearce and Stacchetti (1986, 1990) is a natural
starting point to study these policy games. Atkeson (1991) has already demonstrated that
strategic dynamic programming can incorporate the presence of a public state variable (in
his case, the capital held by the single borrower). If capital levels are privately held by
anonymous households, however, tractability becomes a major concern.

In a model with a continuum of households, a direct extension of Abreu, Pearce and
Stacchetti’s approach to the macro policy game requires that each household be assigned
a continuation value after each history. These values provide incentives for conforming
to equilibrium behavior, even once a household has the “wrong” level of personal assets
because it did not conform in the past. This produces a problem that is prohibitively
complex, either for the derivations of interesting properties or for numerical computations.

We propose instead a much simpler accounting system, wherein we only keep track
of the “marginal value of capital” for a household that has never deviated from the equi-
librium, and invoke the “convexity” of the household’s dynamic consumption problem to
ignore totally the incentives of households that have previously deviated. Kydland and
Prescott (1980) and Marcet and Marimon (1994) have demonstrated that keeping track of
the marginal value of capital, the Ramsey problem with commitment has a recursive struc-
ture. We show that a similar result attains in a strategic setting without commitment. The
crucial observation is that since each agent (other than the government) is anonymous and
cannot affect the path of prices, the household’s problem, unlike that of the government,
can be viewed as a standard optimal control problem. By selectively incorporating Euler
conditions into the strategic dynamic programming framework, we wed two technologies
that are usually considered competing alternatives.

Though we develop our method for a specific model, the technique should be useful
for a class of policy games. We consider a one-sector growth model with capital, labor,
and a public good that must be financed by distortionary taxes on capital and labor. The
government is unable to commit to future tax rates. Any tax policy by the government
produces a dynamic economy with a corresponding competitive equilibrium.

In a similar model, Chari and Kehoe (1990) propose a method for checking whether
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an arbitrary tax policy is the outcome of a symmetric sequential equilibrium:1 in every
period the government should not be able to improve the total welfare of a representative
household by changing the current period’s tax rates, if this is then followed by the worst
sequential equilibrium of the ensuing subgame. However, this approach assumes that one
can easily construct a worst equilibrium. For many interesting models (in particular for
ours), a worst equilibrium is not readily available. Their method focuses mainly on the
best sustainable tax policy and provides little guidance on how to generate candidate tax
policies. In contrast, our method deals directly with the entire set of equilibrium values
(and so it does not require that the worst equilibrium be known in advance) and delivers
a recursive algorithm for computing this set.

The characterization of the entire equilibrium value set also facilitates the exam-
ination of other questions. We study the steady state of the best equilibrium without
commitment. A celebrated result of Chamley (1986) and Judd (1985) states that with full
commitment, the optimal capital tax rate converges to 0 in the steady state. In our anony-
mous game, this may not be sustainable, and thus the steady state of the best equilibrium
without commitment may have positive taxes on capital and may lead to a steady state
capital ks, different from that which would attain with full commitment. In this case, we
show that the steady state corresponds to an extreme point of the set of equilibrium values
associated with an initial capital ks. In particular, it has the lowest equilibrium value (and
either the lowest or the highest marginal value of capital) that can be attained from ks.
Moreover, the steady state path is optimal among all steady state paths that are restricted
to maintaining the same steady state capital ks. We present a computed example where a
steady state with zero capital taxes is not sustainable in equilibrium and where the best
equilibrium converges to a steady state with positive taxes on capital.

Three papers related to ours deserve special mention. In an independent work, Chang
(1998) considers a monetary model and derives methods similar to ours. While his policy
game is different, the two games share the common trait that households make anonymous
decisions (and thus, unilateral deviations are not observable). In Chang (1988) the state
variable is money, while here it is capital. Like us, Chang (1988) shows that equilibria
can be characterized in terms of their value to the government and their marginal value
of the private state variable (money). The methods differ in two respects. First, since the
quantity of money, unlike capital, can be renormalized to unity in every period, his is a
repeated game. Second, we exploit the ability to use public randomization in both the
characterization and computation of equilibria.

The works of Benhabib and Rustichini (1997) and Marcet and Marimon (1994) pro-
pose an alternative method for studying policy without commitment. In particular, they
argue that the optimal control approach to policy (as opposed to the game theoretic ap-
proach we employ) is indeed appropriate if additional constraints are imposed to ensure
that the government does not deviate. These methods concentrate on the best policy
without commitment and are particularly efficient if the worst punishment for a deviating
government is known in advance.

We introduce the model and the assumptions in Section 2. Section 3 characterizes

1 Chari and Kehoe (1990) call such an equilibrium a sustainable equilibrium.
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the competitive equilibria of the dynamic economy where the government tax policy is fixed
(but not necessarily stationary). In Section 4 we define a sequential equilibrium for our
anonymous game. In Section 5 we extend the dynamic programming tools developed by
Abreu, Pearce and Stacchetti (1990) for repeated games. We thus are able to characterize
the equilibrium value correspondence. In Section 6 we study the steady state properties
of a best equilibrium of our no-commitment game. Section 7 presents an example, and
Section 8 concludes.

2. The Game

We consider a dynamic game with a benevolent government and a continuum of identical
households. Each household is endowed with 1 unit of labor-leisure every period. There is
a single consumption good that is produced with a constant returns to scale technology.
If capital and labor per capita are K and L, then output per capita is f(K,L). At the
beginning of every period t, the outcome xt of a uniform [0, 1] random variable Xt is
publicly observed. The random variables {Xt} are serially uncorrelated and independent
of any choices made by the government or the households. Next, the government chooses
the capital tax rate τk,t and labor tax rate τ�,t in the interval [τ , τ ]. Finally, the households
simultaneously choose their labor input and the fractions of their current income (from
wages and capital rents) to consume and save (as capital) for production in the next
period. Capital fully depreciates each period.2 The totality of tax revenue is used by
the government to finance a public good period by period, using a linear technology that
transforms each unit of the consumption good into a unit of the public good.

If a household consumes the stream {(
t, ct, Gt)}∞t=0 of labor, consumption good, and
public good per capita, then its total discounted utility is

∞∑
t=0

βt [u(
t, ct) + g(Gt)] ,

where β ∈ (0, 1) is the discount factor. All households have the same preferences and
are strategically anonymous. That is, their individual actions cannot be observed, and
the government can only react to the history of “sunspots” xt, to its own past actions
and to past distributions of consumption, capital and labor, all of which are publicly
observed. The government’s objective is to maximize the expected total discounted utility
of a representative household.

Let Γ(k0) denote the dynamic game between the government and the households
when all the households, except perhaps for a subset of measure 0, are endowed with initial
capital stock k0. As we explain later, since we restrict attention to symmetric strategy
equilibria (where all households make the same choices along the equilibrium path), we
will not need to explicitly consider situations where at the beginning of a period there is

2 We make this assumption to keep the analysis simple; our results can be extended to the case where
the depreciation rate is less than 1 and investments are irreversible. The example in Section 7 assumes
that the depreciation rate is 0.05.
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a nontrivial distribution of capital. Let Γ(k0, x0) denote the subgame of Γ(k0) after the
realization of x0 but before the government sets period 0 taxes.

Assumptions: The following assumptions will be in force throughout the paper:

(A1) 0 ≤ τ < τ < 1.
(A2) g : R+ → R and u : [0, 1)×R+ → R are continuously differentiable, g is concave and

increasing, and u(
, c) is concave (jointly in 
 and c), increasing in c, and decreasing
in 
. Moreover, g(0) = 0, and there exists Uc ∈ R such that for all 
 ∈ [0, 1) and
c ∈ R+,

uc(
, 0) ≤ Uc, inf
�′∈[0,1)

uc(
′, c) > 0, and u�(0, 0) = 0.

(A3) f : R2
+ → R+ is concave and homogeneous of degree 1 and is continuously dif-

ferentiable in the interior of R2
+. For all (k, 
) ∈ int(R2

+), f(0, 
) = f(k, 0) = 0,
fk(k, 
) > 0 and f�(k, 
) > 0. Moreover, for all 
 ∈ [0, 1],

lim
k→0

fk(k, 
) = ∞ and lim
k→∞

fk(k, 
) = 0.

Most of these assumptions are standard for the one-sector growth model. Assump-
tions (A3), for instance, imply that competitive prices are equal to marginal products,
that firms make zero profits, and that there exists a maximal sustainable capital stock k
such that k = f(k, 1) and k > f(k, 1) for all k > k. Maximal tax rates are bounded away
from 100% in order to ensure that capital remains bounded away from zero.3 The condi-
tion uc(
, 0) ≤ Uc, however, is not standard. We make it to guarantee that a household’s
transversality condition is satisfied (see Section 3).4

An action for the government at date t is simply a pair of tax rates τt = (τk,t, τ�,t) ∈
[τ , τ ]2. An action at = (
t, θt) ∈ [0, 1]2 for a household at date t includes a labor choice 
t
and a savings choice (as a fraction of current income) θt. Let Kt and Lt be the average
levels of capital and labor, and denote pk,t = fk(Kt, Lt) and p�,t = f�(Kt, Lt). The per
capita government tax revenue is

Gt = τk,tpk,tKt + τ�,tp�,tLt,

3 We do not allow τ < 0. In our model the government cannot borrow or lend, and thus the
government’s revenue must be nonnegative in every period. Hence, if τ < 0, the government could,
for example, subsidize labor with revenues from the capital tax. However, this introduces an additional
difficulty, which we have preferred to avoid. Since tax rates are announced before the households make
their decisions, it is possible that when the government is prepared to subsidize labor (or capital), it doesn’t
collect enough tax revenue to keep up its promise. Thus, to allow for τ < 0, we would have to choose some
form of rationing for those contingencies. This complicates the analysis considerably.

4 This rules out some commonly used utility functions. However, the lemmas of Section 3, including
the appropriate transversality condition, also hold under different assumptions. For example, we can show
that their conclusions are valid for the following pair of utility and production functions:

u(�, c) = v(�) +
c1−ψ

1 − ψ
(0 < ψ < 1), f(k, �) = A[αkρ + (1 − α)�ρ]

1
ρ (A > 0, 0 < α < 1, ρ ≤ 0),

where v : [0, 1) → R is a decreasing, concave function, with lim�→1 v(�) = −∞. Note that when ρ = 0,
f(k, �) = Akα�1−α.
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and the income for a household with capital kt that chooses labor 
t is

yt = (1 − τk,t)pk,tkt + (1 − τ�,t)p�,t
t.

If the household saves a fraction θt, its consumption and capital investment are ct =
(1 − θt)yt and kt+1 = θtyt, respectively. Though the agents’ payoffs in Γ(k0) are affected
by the initial capital stock k0, the actions available to the government and the households
are not. That is, the action spaces for the government and the agents in every period are
independent of the current capital stocks.

With full generality, a public history at date t should include the history of random
outcomes xt = {x0, . . . , xt}, the history of taxes τ t, and the observed distributions of
household actions at. We do not, however, need to specify play after all such histories. In
this paper, we study exclusively symmetric strategy profiles, where all households choose
the same actions along the path of play. Therefore, unless a positive measure of households
deviate, all observed distributions of household actions are degenerate along the path of
play. Since our analysis concerns sequential equilibria only, behavior after simultaneous
deviations is irrelevant for checking the incentives of the players, and thus does not need
to be specified. Hence, we define a public history at the end of period t as a sequence
ht = {h0, . . . , ht} where hs = (xs, τs). Let H = [0, 1] × [τ , τ ]2. Then, for any t ≥ 0, Ht+1

is the set of all possible public histories ht. (Define H0 = {∅}.)
A household’s action in period t should be a function of the public history ht as well

as its private history of play at−1, which determines its date t level of capital. However,
the purpose of specifying off-path play is to ensure that a household has the appropriate
incentives to follow the equilibrium. We argue below that, unlike in more general games,
the convexity of the household’s problem allows us to check for the optimality of on-the-
path household play without specifying the household’s off-the-path behavior. Therefore,
explicitly specifying such off-path behavior is not necessary, and thus we make household
strategies a function of the public history only.

A strategy for the government is a function σG specifying a pair of tax rates τt =
σG(t)(ht−1, xt) for each period t, history ht−1, and random outcome xt. A symmetric
strategy for the households is a function σC specifying an action at = σC(t)(ht) as a
function of the public history ht = (ht−1, xt, τt) after the government’s decision. Both
σG(t) and σC(t) are assumed to be measurable functions. A symmetric strategy profile
for Γ(k0) is a pair of strategies σ = (σC , σG). Let Σ = ΣC × ΣG denote the set of all
symmetric strategy profiles for Γ(k0).

3. Competitive Equilibria

In this section we characterize the competitive equilibria of the dynamic economy in which
a tax policy is arbitrarily specified. Although in our game the government does not have
this commitment power, along the equilibrium path, the households act as if the govern-
ment had established such a policy. Thus, an arbitrary stochastic policy τ = {τt(xt)}∞t=0

produces an auxiliary problem that is useful for characterizing the sequential equilibria of
Γ(k0). Denote this economy Γ(k0 | τ).
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Let q = {(
t, ct, kt+1)(xt)}∞t=0 denote a competitive equilibrium of Γ(k0 | τ) with
corresponding (after tax) prices pk,t(xt) = (1 − τk,t(xt))fk(kt(xt−1), 
t(xt)) and p�,t(xt) =
(1 − τ�,t(xt))f�(kt(xt−1), 
t(xt)). Let

mt+1(xt) = Ext+1

[
pk,t+1(xt+1)uc(
t+1(xt+1), ct+1(xt+1)) | xt

]
. (1)

This quantity represents, in period t, the expected derivative of the houshold’s lifetime
discounted utility from period t+ 1 on with respect to kt+1.

Abreu, Pearce, and Stacchetti (1986, 1990) (hereafter APS) show that a sequential
equilibrium for an infinitely repeated game can be reconstructed by piecing together the
equilibria of a sequence of static games with appropriately augmented payoffs. A similar
result holds for Γ(k0 | τ). Consider the one-period economy where households have initial
capital kt, the government tax rates are τt, and households’ augmented utility function
over consumption, labor, and end-of-period capital is u(
t, ct)+βmt+1kt+1, where mt+1 is
an exogenous parameter. Let CE(kt, τt,mt+1) denote the set of competitive equilibrium
allocations (
t, ct, kt+1) of this static economy. In the rest of the paper, we exploit the fact
that a necessary and sufficient condition for q to be a competitive equilibrium of Γ(k0 | τ)
is that for all t and xt, (
t, ct, kt+1)(xt) ∈ CE(kt(xt−1), τt(xt),mt+1(xt)), where mt+1(xt)
is defined by Equation (1).

The next three lemmas establish the sufficiency of this condition. We first find a
uniform upper bound on {mt(xt−1)} for all policies τ and sequences {xt}. This upper
bound is used to show that a certain transversality condition is satisfied. To construct
such a bound, we first need to find a uniform lower bound k > 0 such that the resulting
capital stock trajectory of the competitive equilibrium of Γ(k0 | τ) is bounded below by k
for all k0 ≥ k and all feasible tax policies τ .

Lemma 1: There exists k > 0 such that for all k0 ∈ [k, k] and tax policies τ , all
competitive equilibria of Γ(k0 | τ) have kt(xt−1) ≥ k for all t ≥ 0 and xt−1 ∈ [0, 1]t.

The proof of Lemma 1 is deferred to the Appendix. In what follows, we will only con-
sider initial endowments above the minimum capital associated with competitive equilibria
and below the maximal sustainable capital:

(A4) k0 ∈ [k, k].

Assumption (A4) ensures that if k0 ∈ [k, k], then for all feasible tax policies τ and
all realizations xt−1, kt(xt−1) ∈ [k, k].

Lemma 2: There exists m < ∞ such that for all k0 ∈ [k, k] and tax policies τ , all
competitive equilibria of Γ(k0 | τ) satisfy mt(xt−1) ≤ m for all t ≥ 0 and xt−1 ∈ [0, 1]t.

Proof: Since f(k, 
) = fk(k, 
)k + f�(k, 
)
, for all t ≥ 0 and xt ∈ [0, 1]t+1,

fk(kt, 
t) ≤
f(kt, 
t)
kt

≤ f(k, 1)
k

= k/k.

By assumption (A2), uc(
t, ct) ≤ Uc. Hence, we can choose

m := (1 − τ)[k/k]Uc.
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Lemma 3: Given a tax policy τ and an initial capital stock k0 ∈ [k, k], suppose that
the sequence q∗ = {(
∗t , c∗t , k∗t+1)(x

t)}∞t=0 is such that for all t and xt, (
∗t , c
∗
t , k

∗
t+1)(x

t) ∈
CE(k∗t (xt−1), τt(xt),m∗

t+1(x
t)), where m∗

t+1(x
t) is defined by Equation (1). Then q∗ (with

prices p∗k,t = (1− τk,t)fk(k∗t , 

∗
t ) and p∗�,t = (1− τ�,t)f�(k∗t , 
∗t )) is a competitive equilibrium

of Γ(k0 | τ).
Proof: All we need to show is that q∗ is an optimal solution of the households’

optimization problem (taking prices as given). Necessary conditions for (
∗t , c
∗
t , k

∗
t+1) ∈

CE(k∗t , τt,m
∗
t+1) are

(u�(
∗t , c
∗
t ) + uc(
∗t , c

∗
t )p

∗
�,t)(
t − 
∗t ) ≤ 0 for all 
t ∈ [0, 1]

(−uc(
∗t , c
∗
t ) + βm∗

t+1)(kt+1 − k∗t+1) ≤ 0 for all kt+1 ∈ [0, p∗k,tk
∗
t + p∗�,t


∗
t ].

These imply for all t and xt−1

Ext [u�(
∗t , c
∗
t )(
t − 
∗t ) + uc(
∗t , c

∗
t )[p

∗
�,t(
t − 
∗t ) − (kt+1 − k∗t+1)] | xt−1]

≤ − Ext [βm
∗
t+1(kt+1 − k∗t+1) | xt−1],

and if we add Ext [uc(
∗t , c
∗
t )p

∗
k,t(kt − k∗t ) | xt−1] = Ext [m

∗
t (kt − k∗t )|xt−1] to both sides of

this inequality, we obtain

Ext [u�(
∗t , c
∗
t )(
t − 
∗t ) + uc(
∗t , c

∗
t )(ct − c∗t ) | xt−1]

≤ Ext [m
∗
t (kt − k∗t ) − βm∗

t+1(kt+1 − k∗t+1) | xt−1].

Also, the concavity of u implies that

u(
t, ct) ≤ u(
∗t , c∗t ) + u�(
∗t , c
∗
t )(
t − 
∗t ) + uc(
∗t , c

∗
t )(ct − c∗t ).

Therefore

D := lim
T→∞

E
[ T∑

t=0

βt[u(
t, ct) − u(
∗t , c∗t )]
]

≤ lim
T→∞

E
[ T∑

t=0

βt[m∗
t (kt − k∗t ) − βm∗

t+1(kt+1 − k∗t+1)]
]

= lim
T→∞

E
[
βT+1m∗

T+1(k
∗
T+1 − kT+1)

]
≤ lim

T→∞
E

[
βT+1m∗

T+1k
∗
T+1

]
,

because k∗0 = k0, and m∗
T+1 and kT+1 are nonnegative. From Lemma 2 we have that

m∗
t ≤ m for all t and xt. Since k∗0 ≤ k, k∗t ≤ k for all t and xt. Therefore, m∗

t k
∗
t ∈ [0,mk]

for each t and xt, and
lim

T→∞
E

[
βTm∗

T k
∗
T

]
= 0.

The latter is the appropriate transversality condition. Hence, D ≤ 0, and the plan q∗ is
optimal.
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4. Sequential Equilibria

We now provide a formal definition of a sequential equilibrium for our policy game. This
is a direct adaptation of the same concept for standard dynamic games, and as stated in
the Introduction, it is the same concept that Chari and Kehoe (1990) call a sustainable
equilibrium.

A symmetric strategy profile σ for Γ(k0) generates a unique random outcome path
{(τt, at)(xt)}∞t=0 and corresponding random allocation process q = {(
t, ct, kt+1)(xt)}∞t=0

as follows. Let h−1 = ∅, and for any sequence of random outcomes {xs}∞s=0, inductively
define for all t ≥ 0

τt(xt) = σG(t)(ht−1(xt−1), xt), at(xt) = σC(t)(ht−1(xt−1), xt, τt(xt)),

yt(xt) = (1 − τk,t(xt))fk(kt(xt−1), 
t(xt))kt(xt−1)

+ (1 − τ�,t(xt))f�(kt(xt−1), 
t(xt))
t(xt),
ct(xt) = (1 − θt(xt))yt(xt), kt+1(xt) = θt(xt)yt(xt),

Gt(xt) = f(kt(xt−1), 
t(xt)) − yt(xt), ht(xt) = (ht−1(xt−1), xt, τt(xt)).

A strategy profile σ ∈ Σ induces after any history ht−1 ∈ Ht a (symmetric) strategy
profile σ|ht−1 ∈ Σ. For all s ≥ 0, ĥs−1 ∈ Hs, x̂s ∈ [0, 1], and τ̂s ∈ [τ , τ ]2,

σG|ht−1(s)(ĥs−1, x̂s) := σG(t+ s)(ht−1, ĥs−1, x̂s)

σC |ht−1(s)(ĥs−1, x̂s, τ̂s) := σC(t+ s)(ht−1, ĥs−1, x̂s, τ̂s).

That is, σ|ht−1 generates in period s, after history ĥs−1 and outcome x̂s, the same actions
as the strategy σ generates in period t + s, after the history ht−1 followed by the history
ĥs−1 and x̂s. We can similarly define σ|(ht−1,xt) as the strategy profile generated by σ
after history ht−1 and realization xt. In particular, for any x0 ∈ [0, 1], σ|x0 is a symmetric
strategy profile for Γ(k0, x0). Sometimes we will also view σ|x0 as the symmetric strategy
profile for Γ(k0) that prescribes σ|x0 after all realizations of X0. That is, we can view σ|x0

as a strategy profile for Γ(k0) that prescribes deterministic actions for the first period.
The value of σ ∈ Σ is the corresponding government’s normalized5 total discounted

payoff:

ΦG(k0, σ) := (1 − β)E
[ ∞∑

t=0

βt [u(
t, ct) + g(Gt)]
]
.

As explained above, for any x0 ∈ [0, 1], we can view σ|x0 as a strategy profile for Γ(k0).
Then we can use the same formula above to compute ΦG(k0, σ|x0). In addition,

ΦG(k0, σ) = Ex0

[
ΦG(k0, σ|x0)

]
.

5 The normalization translates the discounted sum of payoffs into a weighted average, with weights
(1− β)βt that add up to 1. This makes the value of σ comparable with the payoffs received in any period
and simplifies our notation below.
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Definition: A symmetric strategy profile σ is a symmetric sequential equilibrium
(SSE) for Γ(k0) if for any t ≥ 0 , history ht−1 ∈ Ht with corresponding current capital kt,
and xt ∈ [0, 1], the following conditions are satisfied:

(i) For any deviation strategy γ ∈ ΣG for the government,

ΦG(kt, σ|(ht−1,xt)) ≥ ΦG(kt, (σC |(ht−1,xt), γ|xt
)).

(ii) For any τ̂0 ∈ [τ , τ ]2, let (τ̂ , q̂) be the stochastic tax policy-allocation generated by τ̂0
and σ|(ht−1,xt,τ̂0), so that taxes in period t are τ̂0 and taxes in subsequent periods
are determined by σ|(ht−1,xt,τ̂0). Then q̂ is a competitive equilibrium of Γ(kt | τ̂).
Let σ be a strategy for Γ(k0, x0). Then, σ is an SSE for Γ(k0, x0) if and only if when

it is considered as a strategy for Γ(k0) with deterministic period 0 actions, σ is an SSE of
Γ(k0).

Conditions (i) and (ii), respectively, require that the government’s and the house-
holds’ continuation strategies be best responses (to each other) after any history ht−1.
A household’s deviation at time t − 1 is not detectable and cannot affect anybody else’s
future actions (including the government’s). Thus, after such a deviation, the other house-
holds continue to play the competitive equilibrium of Γ(kt | τ̂). This justifies our earlier
assertion that a household need not specify its behavior following its own deviation. What
the household does after a deviation is irrelevant: by Lemma 3, the household can never
recoup the losses incurred at the time of the deviation.

5. Self-Generation

The main idea of APS is that the sequential equilibria of an infinitely repeated game can be
described recursively. A vector of lifetime payoffs is produced by a sequential equilibrium
only if it is the weighted sum of current-period payoffs and a vector of lifetime payoffs
produced by another sequential equilibrium (the continuation equilibrium). The set V of
sequential equilibrium payoffs then becomes the focus of the analysis.

In an N -person repeated game, the equilibrium value set V is a subset of RN .
Atkeson (1991) extends APS to dynamic games with a public state variable k. In an N -
person dynamic game, the set of sequential equilibria depends on the initial state k and
the collection of equilibrium values is represented by an equilibrium value correspondence
V , where V (k) ⊂ RN is the set of all sequential equilibrium values when the initial state
is k.

In our environment, the state variable is the distribution of privately held capital
k. When the distribution of capital is degenerate and almost all households hold the
same amount of capital k, a given sequential equilibrium delivers a lifetime utility v to
the government and to the measure one of households holding k units of capital. It also
delivers a lifetime utility v̂(k̂) for each household holding an off the equilibrium path level
of capital k̂ 
= k (and where v̂(k) = v). A direct extension of APS would require an infinite
dimensional equilibrium value correspondence V . For any k, V (k) would represent the
set of functions v̂(k̂) which can be produced by a sequential equilibrium. Such an infinite
dimensional value correspondence would be difficult to characterize either computationally
or analytically. Thus, a straightforward approach appears problematic.
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In this section, we introduce a more efficient strategic dynamic programming method
than the simplistic extension of APS discussed above. We show that it is sufficient to work
with an equilibrium value correspondence V , where for each k ∈ [k, k], V (k) is a subset of
R2. For each SSE σ of Γ(k), one dimension of V (k) represents the value of σ. The other
dimension is the derivative at k̂ = k of the function v̂(k̂) defined by σ. We call this object
the marginal value of capital.

For any σ ∈ Σ and x0 ∈ [0, 1], σ|x0 ’s and σ’s marginal value of capital are, respec-
tively,

ΦC(k0, σ|x0) := (1 − τk,0(x0))fk(k0, 
0(x0))uc(
0(x0), c0(x0))

ΦC(k0, σ) := Ex0

[
ΦC(k0, σ|x0)

]
.

The former represents the increase of a household’s utility had it started with an additional
unit of capital and spent all the additional income on consumption in period 0. Together
with the previously defined value of σ, we now denote Φ(k0, σ) = (ΦC(k0, σ),ΦG(k0, σ)).

Definition: The ex-ante and exp-post equilibrium value correspondences are the
set-valued functions V : [k, k] → R2 and V R : [k, k] → R2 that to each initial capital per
capita k0 and any outcome x0 associate the sets

V (k0) := {Φ(k0, σ) | σ is an SSE for Γ(k0) }.
V R(k0) := {Φ(k0, σ|x0) | σ is an SSE for Γ(k0) }.

That is, V (k0) is the collection of all the pairs (m, v) for which there exists an SSE σ
such that m is its expected marginal value of capital for households in the first period and
v is the lifetime expected payoff for the government (and the representative household).
V R(k0) is the same as V (k0) but where m and v are calculated after the realization x0 of
X0.

For every k0 and x0, x
′
0 ∈ [0, 1], the subgames Γ(k0, x0) and Γ(k0, x′0) are identical.

Therefore it does not matter which outcome x0 is selected to define V R(k0), and V R(k0)
does not depend on x0. That is, the set of possible payoffs after x0 is realized does not
depend on the actual realization of x0. However, under a particular SSE, lifetime payoffs
after the realization of x0 can depend on x0. For instance, an SSE σ of Γ(k0) can select a
(possibly different) SSE of Γ(k0, x0) for each realization x0. For instance, if σ selects the
SSE σ1 of Γ(k0, x0) when x0 ∈ [0, λ] and the SSE σ2 when x0 ∈ (λ, 1], then

Φ(k0, σ) = λΦ(k0, σ1) + (1 − λ)Φ(k0, σ2).

Hence, V (k0) is the convex hull of V R(k0).

Definition: A correspondence W : [k, k] → R2
+ with compact and convex values

is called a value correspondence. If W is a value correspondence, for each k ∈ [k, k], the
upper and lower boundaries of W (k) are represented by the functions

W (k,m) := max
v

{ v | (m, v) ∈W (k) }

W (k,m) := min
v

{ v | (m, v) ∈W (k) }.
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By convention, W (k,m) = −∞ and W (k,m) = +∞ if there does not exist v such that
(m, v) ∈W (k). The lowest value in W (k) is vW (k) = minmW (k,m).

We now derive a recursive characterization of V and V R. Let σ be an SSE of Γ(k0)
and x0 ∈ [0, 1]. The strategy σ|x0 generates period zero path play (τ, 
, c, k+) and on-path
continuation profile σ|h0 , after history h0 = (x0, τ), with value (m+, v+) = Φ(k+, σ|h0).
Since σ|x0 is an SSE of Γ(k0, x0), σ|h0 is an SSE of Γ(k+), and therefore (m+, v+) ∈ V (k+).
Let ξ = (τ, 
, c, k+,m+, v+) ∈ R7 and W be an arbitrary value correspondence. When
W = V , the following definitions of consistency and admissibility capture all the conditions
for (τ, 
, c, k+) to be the period 0 outcome of an SSE σ and for (m+, v+) = Φ(k+, σ|h0).

Definition: A vector ξ = (τ, 
, c, k+,m+, v+) is consistent with respect to the
value correspondence W at endowment k ∈ [k, k] if (
, c, k+) ∈ CE(k, τ,m+), k+ ∈ [k, k],
and (m+, v+) ∈W (k+). The vector ξ’s value and marginal value of capital are6

ΨG(k, ξ) := (1 − β) [u(
, c) + g(τkfk(k, 
)k + τ�f�(k, 
)
)] + βv+
ΨC(k, ξ) := (1 − τk)fk(k, 
)uc(
, c).

For each τ ′ ∈ [τ , τ ]2, let

πW (k, τ ′) := min
(�′,c′,k′

+,m′
+,v′

+)
ΨG(k, ξ′)

s.t. ξ′ = (τ ′, 
′, c′, k′+,m
′
+, v

′
+)

is consistent w.r.t. W at k,

and define
πW (k) := max

τ ′∈[τ,τ ]2
πW (k, τ ′).

The vector ξ is admissible with respect toW at endowment k if it is consistent with respect
to W at k and

ΨG(k, ξ) ≥ πW (k).

Admissibility is the government’s incentive constraint. When the government an-
nounces unexpected tax rates τ ′, the households’ beliefs are manipulated in the ensuing
subgame so as to yield the worst possible payoff for the government. Suppose this entails
the belief that the marginal utility of investment will be m′

+, and that given this belief,
each household saves k′+ for production next period. Since the choice of continuation value
v′+ for next period does not affect the optimization problem of the households this period
(in particular, it does not affect the choice k′+ of capital investment), the worst punish-
ment must choose the continuation value v′+ = W (k′+,m

′
+).7 Thus, as in Abreu’s (1986,

6 For a strategy profile σ of Γ(k), we previously defined its value ΦG(k, σ) and marginal value of
capital ΦC(k, σ). Although Φ and Ψ are similar functions, they are defined on different domains.

7 The only reason to require in the definition of admissibility that the correspondence W be compact-
valued is to guarantee that in the definition of πW (k, τ ′), the minimum is attained. We could define
admissibility for an arbitrary correspondence W if we replace this minimum with an infimum.

11



1988) optimal punishment for firms in a cartel, without loss of generality, the definition of
πW (k, τ ′) considers extreme punishments only.

Definition: For a value correspondence W , let

B(W )(k) = co
(
{Ψ(k, ξ) | ξ is admissible w.r.t. W at k }

)

where co(X) refers to the convex hull of X ⊂ R2. We say a correspondence W is self-
generating if W (k) ⊂ B(W )(k) for all k (which we write simply as W ⊂ B(W )).

For an arbitrary value correspondence W and k, the computation of B(W )(k) can
be divided into two steps. Let

B̂(W )(k) := {Ψ(k, ξ) | ξ is consistent w.r.t. W at k }.

Then,
B(W )(k) = co

(
{ (m, v) ∈ B̂(W )(k) | v ≥ πW (k) }

)
.

Thus, consistency and the government’s incentive constraints are “separable”: the latter
is only required to truncate, for each k, the set of consistent vector values obtained when
the constraint is neglected. The previous observation implies that vB(W )(k) = min { v |
(m, v) ∈ B(W )(k) } = πW (k) for all k. This observation is used in the proof of Theorem 5.

The following theorem is an adaptation of the similar result proven in APS for re-
peated games. For completeness, its proof and the proof of Theorem 2 below are presented
in the Appendix.

Theorem 1: (Self-Generation) Let W be a value correspondence. If W is self-
generating (or W ⊂ B(W )), then B(W ) ⊂ V .

Theorem 2: If W is an upper semicontinuous (usc) value correspondence, then
B(W ) is a usc value correspondence.

Lemma 4: graph(V ) is a bounded set.

Proof: Let σ be any SSE of Γ(k0). The government’s income is always nonnegative,
and a household can choose not to work and not to save in every period, and thus guarantee
itself a total payoff of at least v = u(0, 0) + g(0) in every period. On the other hand, a
household cannot get more than v = u(0, k)+g(k) in any period. Hence v ≤ ΦG(k0, σ) ≤ v.

Now, ΦC(k0, σ) ≥ 0 because for each history ht−1 and outcome xt, τk,t ≤ τ < 1,
the marginal productivity of capital is positive, and the marginal utility of consumption is
positive. Finally, Lemma 2 establishes the bound ΦC(k0, σ) ≤ m. Therefore, graph(V ) ⊂
[k, k] × [0,m] × [v, v], and graph(V ) is bounded.

Similar to APS’s main result, the equilibrium correspondence V is the largest fixed
point of the map B. That is, V = B(V ), andW ⊂ V for any self-generating correspondence
W with compact and convex values.
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Theorem 3: (Factorization) The equilibrium correspondence V is the largest value
correspondence W such that W = B(W ). Moreover, V is usc.

Proof: Let cl(V ) denote the correspondence whose graph is the closure of graph(V ).
Since graph(V ) is bounded, graph(cl(V )) is compact. A correspondence with a compact
graph is usc. Therefore, cl(V ) is usc. Since V (k) is convex, cl(V )(k) is also convex for all
k ∈ [k, k].

Pick any SSE σ of Γ(k0), and let (m, v) := Φ(k0, σ). For each x ∈ [0, 1], let
τ(x) = σG(0)(x) and (
(x), c(x), k+(x)) be the allocation produced by σC(0)(x, τ(x)).
That is, (x, τ(x), 
(x), c(x), k+(x)) is the equilibrium outcome in the first period (when the
realization of the random public device is x). Also define (m+(x), v+(x)) = Φ(k+(x), σ|h0),
where h0 = (x, τ(x)). Then, the vector ξ(x) = (τ(x), 
(x), c(x), k+(x),m+(x), v+(x)) is ad-
missible w.r.t. V at k0, and

(m, v) =
∫ 1

0

Ψ(k, ξ(x)) dx.

This implies that V ⊂ B(cl(V )) (since cl(V ) is a value correspondence, B(cl(V )) is well
defined). By Theorem 2, graph(B(cl(V ))) is compact, and therefore cl(V ) ⊂ B(cl(V )).
That is, cl(V ) is self-generating, and by Theorem 1, we must have that B(cl(V )) ⊂ V .
Hence cl(V ) ⊂ V , and V has a closed graph. That is, V = cl(V ). Moreover, the previous
inclusions imply that V ⊂ B(V ) ⊂ V , so V = B(V ). Finally, if a value correspondence W
satisfies W ⊂ B(W ), Theorem 1 imples that W ⊂ V .

The previous theorem establishes that for each k ∈ [k, k] and m in the appropriate
range, there exists an (worst) equilibrium σ for Γ(k) such that ΦG(k, σ) = V (k,m), and
thus the extreme punishments invoked in the definition of admissibility can be delivered
in equilibrium.

We finally extend the algorithm introduced by APS for repeated games to compute
the equilibrium value correspondence. It is easy to see that B is monotone. That is, if W
and W ′ are two value correspondences such that W ⊂W ′, then B(W ) ⊂ B(W ′). Suppose
that W0 is a value correspondence, such that V ⊂ W0 and W0 ⊃ B(W0). Construct the
sequence of value correspondences {Wn}∞n=0 inductively as follows:

Wn+1 = B(Wn) for all n ≥ 0.

Then Wn ⊃ Wn+1 ⊃ V for all n ≥ 0. Since the sequence is decreasing (in the sense of set
inclusion), it has a limit W∞. That is, W∞ is the value correspondence defined by

W∞(k) = lim
n→∞

Wn(k) =
⋂
n≥0

Wn(k)

for each k ∈ [k, k]. By a simple limit argument we can establish the following result.

Theorem 4: W∞ = V .

We use this algorithm to compute the solution to an example in Section 7.
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6. Best Equilibria and Steady States

We now study general properties of equilibria. In particular, we focus on best equilibria
(given an initial capital stock k and marginal value of capital m) and on long run behavior.
As in Chamley (1986) and Judd (1985), we study the steady state of best equilibria and
compare it with the steady state of the optimal policy with commitment. Although our
model is simpler than that of Chamley, the steady state of the optimal tax policy with
commitment (if it exists) exhibits the same properties: the tax on capital is 0. Without
commitment, this is not always the case. Nevertheless, we obtain a sharp characterization
of the steady state of the best equilibrium when its corresponding tax rate on capital is
positive. First, the steady state delivers the best equilibrium payoff associated with the
steady state level of capital ks and the steady state marginal value of capital ms. That
is, its vector value is on the upper boundary of the set V (ks). Second, the steady state
delivers the worst equilibrium payoff associated with the level of capital ks. So its value is
also on the lower boundary of V (ks).

We say that an SSE σ of Γ(k0) is a best SSE if its vector value Φ(k0, σ) is on the
upper boundary of V (k0). The next lemma establishes that if σ is a best SSE, then all
its equilibrium continuation strategies are best SSE’s. That is, for any equilibrium path
history ht−1, the vector value of σ|ht−1 is on the upper boundary of V (kt) (where kt is the
corresponding capital stock associated with ht−1).

Lemma 5: If the vector ξ = (τ, 
, c, k+,m+, v+) is admissible with respect to V at
k and ΨG(k, ξ) = V (k,m) for some m, then v+ = V (k+,m+).

Proof: Suppose not. Choose v̂+ such that v+ < v̂+ ≤ V (k+,m+). Since the
government’s incentives are strengthened when its continuation value is increased, ξ̂ =
(τ, 
, c, k+,m+, v̂+) is also admissible w.r.t. V at k, and ΨG(k, ξ̂) > ΨG(k, ξ). This con-
tradicts ΨG(k, ξ) = V (k,m).

For completeness, we briefly discuss the characteristics of a worst equilibrium. In
every period, there are two instances where it is relevant to construct worst equilibria: at
the beginning of the period (before the outcome of the random device is observed) and after
the government chooses tax rates. By symmetry, we say that σ is a worst SSE of Γ(k0) if
Φ(k0, σ) is on the lower boundary of V (k0). We discussed the nature of a worst equilibrium
(or punishment) after the government moves when we defined πV (k0). A worst punishment
at that juncture involves manipulating the beliefs of the households (the value of m1) so
that they coordinate in a relatively bad outcome for the current period and capital stock
k1 for the next period. The continuation of such a worst punishment is indeed a worst
SSE of Γ(k1) with value V (k1,m1).

However, in general, the continuation of a worst SSE of Γ(k0) is not a worst SSE
of Γ(k1). This holds because in a worst equilibrium (one that attains V (k0,m0)), the
incentive constraint on the government typically binds. That is, if ξ = (τ, 
, c, k1,m1, v1)
is an admissible vector w.r.t. V at k0 representing a worst SSE of Γ(k0) and m0 =
ΨC(k0, ξ), then ΨG(k0, ξ) = V (k0,m0) = πV (k0). Therefore, usually, there exist consistent
vectors ξ̂ = (τ, 
, c, k1,m1, v̂1) with V (k1,m1) ≤ v̂1 < v1. But, since lowering continuation
utility v1 lowers present utility, these consistent vectors violate the government incentive
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constraint and thus cannot be used to lower the government’s utility even further.
We say that ξs = (τ s, 
s, cs, ks,ms, vs) is a steady state vector if

(
s, cs, ks) ∈ CE(ks, τs,ms) and (ms, vs) = Ψ(ks, ξs).

That is, ξs is a steady state vector if households choosing (
s, cs, ks) in every period is a
competitive equilibrium of Γ(ks | {τ s}) (the economy starting from ks with taxes equal
to τ s at all dates). If a steady state vector ξs is also admissible (i.e., the government’s
incentive constraint is satisfied), then ξs describes the constant path of play of an SSE of
Γ(ks) (or ξs is an equilibrium steady state vector).

The next theorem characterizes the steady state of a best equilibrium. We show
that if a best equilibrium reaches a steady state with corresponding vector ξs, then in the
steady state, either capital taxes are zero or the steady state represents a worst equilibrium
for Γ(ks).

Theorem 5: Let σ be an SSE for Γ(k0). Suppose that ΦG(k0, σ) = V (k0,ΦC(k0, σ))
and that σ converges to the steady state vector ξs = (τ s, 
s, cs, ks,ms, vs). Then either
(1) τ s

k = 0 or (2) vs = vV (ks).

Before proceeding to the proof, we note some implications. Since Φ(k0, σ) is on the
upper boundary of V (k0), along the outcome path, Φ(kt, σ|ht−1) is on the upper boundary
of V (kt), for the corresponding capital stock kt, for all t ≥ 0. Thus, by continuity, (ms, vs)
is on the upper boundary of V (ks). That is, vs = V (ks,ms). When τ s

k > 0, the theorem
asserts that vs = vV (k). Therefore, if τ s

k > 0, ms must be either the lowest or highest
marginal value of capital possible in V (ks) and (ms, vs) is at the intersection of the upper
and lower boundaries of V (ks).

Proof: To simplify the notation, we write the proof for the game Γ(k0) without
public randomization. Alternatively, assume that the equilibrium value correspondence
of the game without public randomization is convex valued (and thus the randomization
device is superfluous). For any (deterministic) outcome path q = {(τk,t, τ�,t, 
t, ct, kt+1)}∞t=0

and any t ≥ 0, let

St(q) = (1 − β)
∞∑

i=0

βi[u(
t+i, ct+i) + g(Gt+i)],

where Gt = τk,tfk(kt, 
t)kt + τ�,tf�(kt, 
t)
t. Following Chamley, we can view the govern-
ment choices of taxes to be equivalent to the choices of after-tax wage wt and “interest
rate” on capital rt, where

1 + rt := (1 − τk,t)fk(kt, 
t) and wt := (1 − τ�,t)f�(kt, 
t).

We also use the standard notation of u�,t and uc,t for u�(
t, ct) and uc(
t, ct), respectively.
Then if ΦG(k0, σ) = V (k0,ΦC(k0, σ)),

ΦG(k0, σ) = max
q

S0(q)

s.t. (1 + r0)uc,0 = ΦC(k0, σ)
(
t, ct, kt+1) ∈ CE(kt, τt(wt, rt, kt, 
t), (1 + rt+1)uc,t+1)
ct + kt+1 +Gt ≤ f(kt, 
t)
St(q) ≥ πV (kt),
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where τt(wt, rt, kt, 
t) refers to the tax pair implied by rt and wt given kt and 
t. The
first constraint requires that the initial marginal value of capital be delivered. The second
requires that the trajectory of labor, consumption and savings constitutes a competitive
equilibrium of the dynamic economy that arises when the government fixes its tax policy at
τ . The third constraint is the resource constraint. The final is the government’s incentive
constraint. It says that what the government expects in equilibrium from period t onward
has to be no less than the worst punishment value for the game Γ(kt).

Suppose that the solution converges to the steady state represented by the vector
ξs = (τ s

k , τ
s
� , 


s, cs, ks,ms, vs). Then ks ≥ k > 0. It is easy to see that 
s > 0; otherwise,
f(ks, 
s) = 0, which is incompatible with the government’s incentive constraint. Since
ks > 0 and 
s > 0, we must also have that cs > 0 (otherwise the household could increase its
utility by decreasing its savings). If 
s < 1 (so that the household’s choices are “interior”),
the competitive equilibrium requirement for t sufficiently large is equivalent to the first
order conditions

u�,t + wtuc,t = 0, uc,t = β(1 + rt+1)uc,t+1, and ct + kt+1 = (1 + rt)kt + wt
t.

For simplicity, assume that the household’s trajectory is “interior” (the alternative
case, when 
s = 1 can be dealt with in a similar fashion). Then, we can replace the
competitive equilibrium requirement with its corresponding first-order conditions to obtain

ΦG(k0, σ) = max
q

S0(q)

s.t. (1 + r0)uc,0 = ΦC(k0, σ)
u�,t + wtuc,t = 0
uc,t = β(1 + rt+1)uc,t+1

ct + kt+1 = (1 + rt)kt + wt
t

ct + kt+1 +Gt ≤ f(kt, 
t)
St(q) ≥ πV (kt).

Let λtβ
t, µtβ

t, and γtβ
t be the Lagrange multipliers corresponding to the last three con-

straints (which must hold for all t). It is easy to see that the resource constraint must be
active for all t ≥ 0. If the government’s incentive constraint in period t is not active, then
γt = 0 and the optimality condition associated with kt is

0 = λt−1 − λtβ(1 + rt) + µt−1 − µtβfk,t.

Assume first that the government’s incentive constraint is not active in the limit,
that is, that

u(
s, cs) + g(Gs) > πV (ks).

Then, by continuity, St(q) > πV (kt) for all t sufficiently large. In the limit, the second
constraint implies that β(1 + rs) = 1. Therefore, in the limit, the optimality condition for
kt implies that 1 − βfk(ks, 
s) = 0. The last two equalities imply that 1 + rs = fk(ks, 
s),
or that τ s

k = 0. This is the Chamley result (and proof).8

8 Judd (1985) proves a similar result in a continuous time model.
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Recall from Section 5 that for all k and W , vB(W )(k) = πW (k). Hence, since
V = B(V ), πV (ks) = vV (ks) = minm V (ks,m). Thus, if the government’s incentive
constraint is active in the limit, we have

lim
t→∞

Φ(kt+1, σ|ht) = lim
t→∞

St(q) = u(
s, cs) + g(Gs) = min
m
V (ks,m).

Whether Chamley’s result attains without commitment depends on the discount
factor β (and on τ as well). In equilibrium, the government’s temptation to deviate to a
higher capital tax and lower labor tax in the first period, for example, is deterred by a
lower continuation value for the government. But, if the discount factor is low, the former
effect dominates, and the government cannot resist the temptation. In this case, the steady
state associated with zero capital taxes is not sustainable.

For each k ∈ [k, k], let L(k) denote the locus of vector values Ψ(k, ξ) for steady state
vectors ξ = (τ, 
, c, k,m, v). That is, L(k) represents the vector values of all steady states
that maintain the same level of capital stock k. For some k’s, the collection of steady
states and L(k) is empty. But, other k’s admit multiple steady state vectors and L(k) is
a curve in R2.

In our computed examples (see Section 7 below), when the best SSE converges to a
steady state with capital ks, where the government’s constraint is binding (so Chamley’s
result does not attain), V (ks) and L(ks) are tangent, and the point of tangency corresponds
to the highest point in L(ks) (that is, the point with the highest value for the government).
From Theorem 5 then this tangency point is at the intersection of the upper and lower
boundaries of V (ks) and the cusp of L(ks). The next lemma establishes that for an
arbitrary k, if V (k) and L(k) are tangent, then the highest point in L(k) must be a
tangency point. Hence, if the tangency point between V (k) and L(k) is unique, it must
coincide with the highest point in L(k).

Lemma 6: Let k ∈ [k, k] and (m̂, v̂) be such that v̂ = max { v | (m, v) ∈ L(k) }.
Suppose that V (k) ∩ L(k) 
= ∅. Then (m̂, v̂) ∈ V (k).

Proof: Let ξ̂ = (τ̂ , 
̂, ĉ, k, m̂, v̂) and ξ = (τ, 
, c, k,m, v) be two steady state vectors
such that Ψ(ξ) = (m, v) ∈ V (k). Then Ψ(k, ξ̂) = (m̂, v̂) and v̂ ≥ v ≥ vV (k). Therefore ξ̂
represents the stationary outcome path of an SSE of Γ(k) and (m̂, v̂) ∈ V (k).

For each k, let v̂(k) denote the highest value for the government in L(k). The previous
lemma implies that V (k) ∩ L(k) 
= ∅ for all k such that v̂(k) ≥ vV (k). Our computational
results also show that when the government’s incentive constraint is binding in the limit
steady state of the best SSE, then the corresponding limit capital stock is the largest k
such that v̂(k) ≥ vV (k).

7. An Example

In this section we present an example. We have implemented the algorithm described
in Section 5 (Theorem 4) in a computer program. We use this program to compute nu-
merically the equilibrium value correspondence of the example. We have also implemented
a numerical algorithm to compute the steady states and corresponding vector values for
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each capital stock. We are thus able to identify the Chamley-Judd (full commitment with
distortionary taxes) and no-commitment steady state outcomes.

In the example we have made the following choices:

u(
, c) = 2
√
c− (1 − 
1.1).9, g(G) = 2

√
G, and β = 0.9,

f(k, 
) = k.3
.7, and δ = 0.05,

where δ represents the capital depreciation rate. As we explained in footnote 2, we make
the assumption of full depreciation (i.e., δ = 1) throughout the paper for convenience only.
Our results also apply to the case in which δ < 1.9 To reduce the size of the numerical
problem, we assume that values for τk and τ� are restricted to be in the discrete grid
{0, .1, .2, .25, .26, . . . , .29, .3, .4, . . . , .9}. This can be viewed as an institutional constraint,
where the government is not allowed other intermediate values of taxes. From .25 to .30
we made the grid finer to allow a closer approximation of the steady state.

The equation k = (1− δ)k+ f(k, 1) implies k = 2010/7. But this upper bound is too
generous. We set instead k = 1.57, which is the largest capital stock that can be sustained
in a steady state with full commitment (when τk,t = τ�,t = 0 for all t ≥ 0). Similarly, we
set k = 0.0044, which is the smallest capital stock sustained in a steady state with full
commitment (when τk,t = τ�,t = .9 for all t ≥ 0). We choose a grid for k with 315 points
uniformly spaced between k and k (or approximately every .005 units).
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Figure 1: Equilibrium Value Correspondence and Steady States for k = 1.178

Figure 1 displays V (1.178) (the set in the upper left of the figure) and the locus
L(1.178) (the arc in the lower right of the figure). The value k = 1.178 is the capital in
the steady state of the solution to the Ramsey problem with commitment – the “Chamley-
Judd” steady state. The uppermost point of the arc is obtained when τk = 0 and τ� = .28.
As can be seen in the figure, the Chamley-Judd steady state cannot be supported as an

9 Since investments are irreversible, the household’s problem must now include the constraint kt+1 ≥
(1 − δ)kt for all t ≥ 0. Also, the definition of the marginal value of capital must be changed to mt =

E[
∑∞

s=t
(β(1 − δ))s−t(1 − τk,s)fk(ks, �s)uc(�s, cs)] or, recursively, mt = E[(1 − τk,t)fk(kt, �t)uc(�t, ct) +

β(1 − δ)mt+1].
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SSE. In particular, this implies that for any initial capital, the solution to the Ramsey
problem with commitment cannot be supported as an SSE for the parameters we have
chosen.

Figure 2 displays, as a function of the initial capital k, the value v̂(k) of the best
steady state and the value vV (k) of the worst equilibrium. At k = .743 these functions
intersect. For k > .743 the worst equilibrium has a greater value than the best steady
state and thus these k values cannot be sustained as a steady state.10 (This is likewise
true for k < .065.)
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Figure 2: Value of Best Steady State and Worst Equilibrium
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Figure 3: Equilibrium Value Correspondence and Steady States for k = .743

Figure 3 displays V (0.743) and L(0.743) (the arc touching the lower right of the
set). The leftmost point of L(0.743) attains when τk,t = 0.38 and τ�,t = 0 for all t ≥ 0,

10 Benhabib and Rustichini (1997) conjecture that allowing capital subsidies would allow the sus-
tainability of steady state capital levels greater than the Chamley-Judd level even if the Chamley-Judd
level is not sustainable as a steady state. For these parameters and all others we examined, allowing
capital subsidies does not alter the relationship between these two curves. In particular, the curves do not
intersect again at k > 1.178 as would be necessary for their conjecture to hold in our environment.
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and the rightmost point attains when τk,t = 0 and τ�,t = 0.54 for all t ≥ 0. The only
point of intersection between V (0.743) and L(0.743) represents the steady state of the best
equilibrium without commitment (from any initial capital) and is attained when τk,t = 0.27
and τ�,t = 0.26 for all t ≥ 0. As stated in Theorem 5, this intersection coincides with the
right corner of V (0.743), where the upper and lower boundaries of V (0.743) intersect, and
the peak of the locus L(0.743).

Figure 4 displays the time path of capital and Figure 5 the time path of τk for three
different initial capital stocks, k0 = .054, k0 = .743, and k0 = 1.178. (The last two are the
steady states of the no-commitment and full commitment environments). The three paths
converge to the same level of capital stock (.743) and the same capital tax (.27). In the three
paths, the capital tax is initially maximal. From the low initial capital, capital taxes start
at the maximal value, become lower than their steady state value (presumably to cause
faster capital accumulation) and then converge (subject to small grid induced fluctations)
to their steady state value. From higher capital stocks, capital taxes are maximal longer
and the steady state capital stock is approached from below.
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Figure 4: Time Paths of Capital from k = {.054, .743, 1.178}
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Figure 5: Time Paths of Capital Taxes from k = {.054, .743, 1.178}
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8. Conclusion

We have elaborated a method for studying dynamic games with anonymous players. This
class of games includes many standard “policy games”, where the government chooses a
policy (taxes, debt, or inflation) and there is a continuum of agents (households). The
method uses the idea that since each household’s actions are unobservable and do not
affect prices, the household’s intertemporal incentives can be captured completely by a
single parameter (the marginal value of capital in our model). Although we have developed
these ideas in the context of a dynamic game (with the capital stock as a state variable),
a similar method would apply to a simpler class of infinitely repeated anonymous games.

The high complexity of these games often makes it impossible to find analytic so-
lutions. However, the extension of the algorithm proposed by APS produces a sequence
of approximations to the equilibrium correspondence that converges monotonically and
provides a practical method for constructing the equilibrium correspondence.

9. Appendix

Proof of Lemma 1: If the hypothesis is false, then for all k̂0 > 0, there exists
k0 ≥ k̂0, xt−1 ∈ [0, 1]t, a stochastic tax policy τ , and a period t such that kt(xt−1) < k̂0
in some competitive equilibrium of Γ(k0 | τ). Since the continuation of a competitive
equilibrium is itself a competitive equilibrium, without loss of generality, we can assume
that t = 1. Thus, by contradiction, let us assume that the decreasing sequence {k̂n

0 }∞n=0,
with limn→∞ k̂n

0 = 0, is such that for each n there exist k0 > k̂n
0 , tax policy τn, {xn

t }∞t=0,
and competitive equilibrium {(
nt , cnt , kn

t+1)}∞t=0 of Γ(k0 | τn) for which kn
1 (xn

0 ) < k̂n
0 .

For the rest of the proof we omit the random outcomes. Thus, for example, we write
kn
1 instead of kn

1 (xn
0 ) and 
n1 instead of 
n1 (xn

0 , x
n
1 ).

Claim 1: For t = 0 or t = 1, there does not exist a subsequence {nr} such that
limr→∞ 


nr
t = 0 and limr→∞ 


nr
t /k

nr
t < +∞.

Proof of Claim 1: By contradiction, suppose that subsequence {nr} is such that
limr→∞ 


nr
t = 0 and limr→∞ 


nr
t /k

nr
t = R < +∞. Since f� is homogeneous of degree 0, we

have that
f�(knr

t , 

nr
t ) = f�(1, 
nr

t /k
nr
t ) → f�(1, R) > 0.

Labor taxes are uniformly bounded above by τ < 1, so after-tax wages in period t are
bounded below by (1 − τ)f�(1, R)/2 > 0, say, for nr sufficiently large. By (A2), 
nr

t → 0
implies that u�(
nr

t , c
nr
t ) → 0. Therefore, for any positive constant γ, −u�(
nr

t , c
nr
t ) <

γ(1 − τ)f�(1, R)/2, for nr sufficiently large. Let

γ := inf
�∈[0,1)

uc(
, k)

(where k = f(k, 1)), which is positive by assumption. Suppose the household works a little
harder in period t and immediately consumes the additional income. Then, its total utility
increases by

uc(
nr
t , c

nr
t )(1 − τnr

�,t )f�(knr
t , 


nr
t ) + u�(
nr

t , c
nr
t ) > γ(1 − τ)f�(1, R)/2 + u�(
nr

t , c
nr
t ) > 0,
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which is a contradiction. This completes the proof of Claim 1.
Since kn

1 → 0, Claim 1 implies that limn→∞ 
n1/k
n
1 = ∞. Otherwise, there would

be a subsequence {nr} such that limr→∞ 

nr
1 /k

nr
1 = R < +∞. But this implies that

limr→∞ 

nr
t = 0, contradicting Claim 1. Since limn→∞ 
n1/k

n
1 = ∞, we also have that

fk(ks
1, 


s
1) = fk(ks

1/

s
1, 1) → ∞.

Suppose lim supn→∞ k
n
0 > 0. Since τn

k,0 ≤ τ < 1, either

lim inf
n→∞

(1 − τn
k,0)fk(kn

0 , 

n
0 )kn

0 > 0

(and thus household income at date zero is bounded away from zero) or there exists a
subsequence {nr} such that 
nr

0 → 0 (so that by (A3), fk(knr
0 , 


nr
0 ) = fk(knr

0 /

nr
0 , 1) → 0).

Either case is a contradiction. The latter implies that 
nr
0 /k

nr
0 → 0, which contradicts

Claim 1. In the former case, since kn
1 → 0, cn0 is uniformly bounded away from 0. But,

for n large enough, the household would prefer to save more in period 0 and consume the
additional income in period 1. For each additional dollar it saves, its utility decreases by
at most Uc in period 0. Each additional dollar invested increases the household’s utility
in period 1 by at least (1 − τ)fk(kn

1 , 

n
1 )γ, which tends to ∞ as n → ∞, for all {xn

t }∞t=0.
Therefore kn

0 → 0.
Since kn

0 → 0, Claim 1 again implies that 
n0/k
n
0 → ∞. Consumption cn0 at date zero

can be expressed

cn0 = (1 − τn
k,0)fk(kn

0 , 

n
0 )kn

0 + (1 − τn
�,0)f�(k

n
0 , 


n
0 )
n0 − kn

1

≥ (1 − τn
k,0)fk(kn

0 , 

n
0 )kn

0 − kn
1

> [(1 − τ)fk(kn
0 /


n
0 , 1) − 1]kn

1 ≥ 0,

where the strict inequality is a consequence of kn
0 > k̂

n
0 > k

n
1 and the last inequality is

implied by fk(kn
0 /


n
0 , 1) → ∞. Hence, for large enough n, cn0 > 0. As before, this leads to

a contradiction: for large enough n, the household would prefer to save more in period 0
and consume the additional income in period 1.

Proof of Theorem 1: By definition, for each k ∈ [k, k] and (m, v) ∈ B(W )(k),
there exist functions τk, τ�, 
, c, k+,m+, v+ : [0, 1] → R such that for each x ∈ [0, 1], the
vector ξ(x) = (τk, τ�, 
, c, k+,m+, v+)(x) is admissible w.r.t. W at k and

(m, v) =
∫ 1

0

Ψ(k, ξ(x)) dx.

Moreover, these functions can be assumed to be measurable, and so the expected value is
well defined. Let A be a map that for each (k,m, v) ∈ graph (B(W )) selects a function
A(k,m, v) : [0, 1] → R7 such that for each x ∈ [0, 1], A(k,m, v)(x) is an admissible vector
w.r.t. W at k and

(m, v) =
∫ 1

0

Ψ(k,A(k,m, v)(x)) dx.
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The first coordinate of A(k,m, v)(x), for example, is denoted by A1(k,m, v)(x), and as
usual it represents the corresponding capital tax rate τk(x).

For each (k0,m0, v0) ∈ graph(B(W )) we now construct a symmetric strategy profile
σ̂(k0,m0, v0) recursively as follows. At date t = 0, for each x0 ∈ [0, 1], let

τ∗0 (x0) = (A1, A2)(k0,m0, v0)(x0)

∗0(x0) = A3(k0,m0, v0)(x0)
y∗0(x0) = (1 − τ∗k,0(x0))fk(k0, 
∗0(x0))k0 + (1 − τ∗�,0(x0))f�(k0, 
∗0(x0))
∗0(x0)

θ∗0(x0) = A5(k0,m0, v0)/y∗0(x0).

Then define
σ̂G(k0,m0, v0)(0)(x0) = τ∗0 (x0)
σ̂C(k0,m0, v0)(0)(x0, τ

∗
0 (x0)) := (
∗0(x0), θ∗0(x0)).

For τ0 = (τk,0, τ�,0) 
= (τ∗k,0, τ
∗
�,0)(x0), let (
′, c′, k′+,m

′
+) be a solution to

min
(�,c,k+,m+)

(1 − β) [u(c, 
) + g(τk,0fk(k0, 
)k0 + τ�,0f�(k0, 
)
)] + βW (k+,m+)

s.t. (
, c, k+) ∈ CE(k0, τ0,m+)

and y′ = (1 − τk,0)fk(k0, 
′0)k0 + (1 − τ�,0)f�(k0, 
′)
′. Then, let

σ̂C(k0,m0, v0)(0)(x0, τk,0, τ�,0) := (
′, k′+/y
′).

This specifies the period t = 0 strategies. For t = 1 and arbitrary history h0 = (x0, τ0),
define (m1, v1)(h0) as follows. If the government has not deviated (that is, if τ0 =
(τ∗k,0, τ

∗
�,0)(x0)), let

(m1, v1)(h0) := (A6, A7)(k0,m0, v0)(x0).

If τ0 
= (τ∗k,0, τ
∗
�,0)(x0), let

(m1, v1)(h0) = (m′
+,W (k1,m′

+)),

where, as defined before, (
′, c′, k′+,m
′
+) is an optimal solution to the previous optimization

problem.
Note that since A(k0,m0, v0)(x0) is an admissible vector w.r.t. W by construction

and W ⊂ B(W ) by assumption, we have that (k1,m1, v1)(h0) ∈ graph(B(W )), and thus
A((k1,m1, v1)(h0)) is also well defined. Hence, we can specify the actions for the gov-
ernment and the households at t = 1 for each (k1,m1, v1)(h0), h0 ∈ [0, 1] × [τ , τ ]2, in a
similar fashion. Continuing this way, we can roll out the entire strategy σ̂(k0,m0, v0). This
recursive procedure effectively defines a family of symmetric strategy profiles, one for each
(k0,m0, v0) ∈ graph(B(W )).

By construction, for all ht = (ht−1, xt, τt) (both on and off the path of play),
(
t, ct, kt+1)(ht) ∈ CE(kt(ht−1), τt,mt+1(ht)). Therefore, by Lemma 3, σ̂(k0,m0, v0) sat-
isfies condition (ii) of an SSE for all (k0,m0, v0) ∈ graph(B(W )).

23



We next show that (m0, v0) = Φ(k0, σ̂(k0,m0, v0)) for all (k0,m0, v0) ∈ graph(B(W )).
Fix (k0,m0, v0) ∈ graph(B(W )), and for each x0 ∈ [0, 1], let

(τk,0, τ�,0, 
0, c0, k1,m1, v1)(x0) = A(k0,m0, v0)(x0) and
G(x0) = τk,0(x0)fk(k0, 
0(x0))k0 + τ�,0(x0)f�(k0, 
0(x0))
0(x0).

By construction

v0 =
∫ 1

0

{(1 − β)[u(
0(x0), c0(x0)) + g(G(x0))] + βv1(x0)} dx0 and

m0 =
∫ 1

0

(1 − τk,0(x0))fk(k0, 
0(x0))uc(
0(x0), c0(x0)) dx0 = ΦC(k0, σ̂(k0,m0, v0)).

Also,

ΦG(k0, σ̂(k0,m0, v0)) =
∫ 1

0

{(1 − β)[u(
0(x0), c0(x0)) + g(G(x0))]

+ βΦG(k1(x0), σ̂(k1(x0),m1(x0), v1(x0)))} dx0.

Hence,

| v0 − ΦG(k0, σ̂(k0,m0, v0)) |≤ max
(k+,m+,v+)∈graph(W )

β | v+ − ΦG(k+, σ̂(k+,m+, v+)) | .

Since W ⊂ B(W ) and this inequality holds for all (k0,m0, v0) ∈ B(W ),

max { | v0 − ΦG(k0, σ̂(k0,m0, v0)) |
∣∣ (k0,m0, v0) ∈ graph(B(W )) }

≤ βmax { | v+ − ΦG(k+, σ̂(k+,m+, v+)) |
∣∣ (k+,m+, v+) ∈ graph(B(W )) }.

Therefore, v0 = ΦG(k0, σ̂(k0,m0, v0)) for all (k0,m0, v0) ∈ graph(B(W )).
Finally, admissibility implies that the government constraints (condition (i) of an

SSE) are satisfied.

We next prove two lemmas, which combined establish Theorem 2. Fix once and for
all an arbitrary uscW with compact and convex values. Since graph(W ) is compact, there
exist m̂, w,w ∈ R such that

W (k) ⊂ [0, m̂] × [w,w] for all k ∈ [k, k].

Lemma 6: graph(B(W )) is bounded.

Proof: Pick any k ∈ [k, k] and any vector ξ = (τk, τ�, 
, c, k+,m+, v+) admissible
w.r.t. W at k. From Lemma 2, we have that ΨC(k, ξ) ∈ [0,m].
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Since ξ is an admissible vector w.r.t.W , (
, c, k+) ∈ CE(k, τ,m+). Sincem+ ≥ 0 and
not working, not consuming, and not saving are feasible, household optimization implies

u(
, c) ≥ u(0, 0) − β m̂ k.

Hence ΨG(k, ξ) ∈ [w+, w+], where

w+ := (1 − β)[u(0, 0) − β m̂ k + g(0)] + β w

w+ := (1 − β)[u(0, k) + g(τk)] + β w.

Therefore, graph(B(W )) ⊂ [k, k] × [0,m] × [w+, w+].

Lemma 7: graph(B(W )) is closed.

Proof: Let BR(W )(k) = {Ψ(k, ξ) | ξ is admissible w.r.t.W at k } and thus
B(W )(k) = co(BR(W )(k)). Pick any sequence {(kα,mα, vα)}α such that (mα, vα) ∈
BR(W )(kα) for each α and (kα,mα, vα) → (k∗,m∗, v∗). By definition, for each α there
exists a vector ξα = (τα

k , τ
α
� , 


α, cα, kα
+,m

α
+, v

α
+) admissible w.r.t. W at kα, such that

(mα, vα) = Ψ(kα, ξα). Since {ξα}α ⊂ [τ , τ ]2× [0, 1]× [k, k]2× [0, m̂]× [w,w], we can assume
without loss of generality that this sequence converges to a vector ξ∗ = (τ∗k , τ

∗
� , 


∗, c∗, k∗+,
m∗

+, v
∗
+). By continuity, it is easy to verify that ξ∗ is admissible w.r.t. W at k∗ and that

(m∗, v∗) = Ψ(k, ξ∗). Hence, (k∗,m∗, v∗) ∈ graph(BR(W )) and thus graph(BR(W )) is
closed. Since the convex hull of a closed set is a closed set, graph(B(W )) is closed.

The previous two lemmas establish that graph(B(W )) is compact. Hence B(W ) is
usc, which establishes Theorem 2.

References

Abreu, D. (1986): “Extremal Equilibria of Oligopolistic Supergames,” Journal of Economic
Theory, 39, 191 – 225.

Abreu, D. (1990): “On the Theory of Infinitely repeated Games with Discounting,” Econo-
metrica, 56, 383 – 396.

Abreu, D., D. Pearce, and E. Stacchetti (1986): “Optimal Cartel Equilibria with Imperfect
Monitoring,” Journal of Economic Theory, 39, 251–269.

25



Abreu, D., D. Pearce, and E. Stacchetti (1990): “Toward a Theory of Discounted Repeated
Games with Imperfect Monitoring,” Econometrica, 58, 1041–1063.

Atkeson, A. (1991): “International Lending with Moral Hazard and Risk of Repudiation,”
Econometrica, 59, 1069–1090.

Benhabib, J. and A. Rustichini (1997): “Optimal Taxes Without Commitment,” Journal
of Economic Theory, 77(2), 231–59.

Chamley, C. (1986): “Optimal Taxation of Capital Income in General Equilibrium with
Infinite Lives,” Econometrica, 54, 607–622.

Chang, R. (1998): “Credible Monetary Policy with Long Lived Agents: Recursive Ap-
proaches,” Journal of Economic Theory, 81(2), 431–67.

Chari, V. and P. Kehoe (1990): “Sustainable Plans,” Journal of Political Economy, 98,
783–802.

Chari, V. and P. Kehoe (1993a): “Sustainable Plans and Debt,” Journal of Economic
Theory, 61, 230–261.

Chari, V. and P. Kehoe (1993b): “Sustainable Plans and Mutual Default,” Review of
Economic Studies, 60, 175–195.

Judd, K. (1985): “Redistributive Taxation in a Simple Perfect Foresight Model,” Journal
of Public Economics, 28, 59–83.

Kydland, F. and E. Prescott (1977): “Rules Rather than Discretion: The Inconsistency of
Optimal Plans,” Journal of Political Economy, 87, 473–492.

Kydland, F. and E. Prescott (1980): “Dynamic Optimal Taxation, Rational Expectations,
and Optimal Control,” Journal of Economic Dynamics and Control, 2, 79–91.

Marcet, A. and R. Marimon (1994): “Recursive Contracts,” mimeo, European University
Institute.

Persson, M., T. Persson, and L.E.O. Svensson (1987): “Time Consistency of Fiscal and
Monetary Policy,” Econometrica, 55, 1419–1431.

Rogoff, K. (1989): “Reputation, Coordination, and Monetary Policy,” in Modern Business
Cycle Theory, ed. R. Barro. Cambridge: Harvard University Press, 236 – 264.

Stokey, N. (1989): “Reputation and Time Consistency,” American Economic Review, 79,
134–139.

Stokey, N. (1991): “Credible Public Policy,” Journal of Economic Dynamics and Control,
15, 627–657.

26


