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ABSTRACT

We study a simple model of factor saving technological innovation in a concave framework. Capital
can be used either to reproduce itself or, at additional cost, to produce a higher quality of capital
that requires less labor input. If higher quality capital can be produced quickly, we get a model of
exogenous balanced growth as a special case. If, however, higher quality capital can be produced
slowly, we get a model of endogenous growth in which the growth rate of the economy and the rate
of adoption of new technologies are determined by preferences, technology, and initial conditions.
Moreover, in the latter case, the process of growth is necessarily uneven, exhibiting a natural cycle
with alternating periods of high and low growth. Growth paths and technological innovations also
exhibit dependence upon initial conditions. The model provides a step toward a theory of endogenous
innovation under conditions of perfect competition.
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1 Introduction

We contribute to the debate on the endogeneity of aggregate technological
progress by introducing a concave model of innovation with three properties.
Technological innovations are factor saving; implementable only in discrete
lumps; and endogenous, depending on people’s decisions. We find in such
circumstances that growth can be path-dependent and uneven over time.
In our model, technological innovation takes place through the adoption

of new activities that make use of new qualities of capital. There is a fixed
factor, and more advanced activities are superior in the sense that they make
less use of this fixed factor. This means that technological innovation is biased
or factor saving. For concreteness, we refer to the fixed factor as labor. In
this setting, investment provokes both capital widening, meaning that the
total stock of capital grows larger, and capital deepening, meaning that the
quality of the capital stock is improved. In fact, because of the fixed labor
supply, capital deepening is necessary for capital widening.
Without moving to higher qualities of capital that use less labor per unit

of output, there is no reason to build more capital. Introducing new capital
goods is costly because, for given inputs, the capital deepening technology
yields fewer units of output than the capital widening technology. Hence,
regardless of how long the capital deepening activity has been available, it
will be used only when relative prices make it profitable to do so, that is, when
the labor supply becomes a binding constraint. In this sense, technological
innovation is fully endogenous.
Our model is one of perfect competition with constant returns to scale.

A variety of arguments have been advanced as to why growth models with
increasing returns are superior to those with diminishing or constant returns.
From a theoretical standpoint, the endogenous versus exogenous nature of
economic growth is the principal argument. Romer (1994, p. 12), for exam-
ple, says that the fact that “technological advance comes from things that
people do” and is not merely “a function of elapsed calendar time” argues
against concave models of “exogenous” technological change. In this interpre-
tation, endogeneity means that technological innovations should come from
“things people do.”
In our setting, technical advance clearly comes about because it is prof-

itable for innovators to introduce new technologies into production. This
should clarify that growth can be as endogenous in a concave setting as it
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is when there are externalities, increasing returns, monopoly power, and so
forth. To the best of our knowledge, this is the first time such a result is
clearly proven.
Our equilibrium path distinguishes between growth due to the accumu-

lation of factors and the introduction of new factors and activities, which
we refer to as technological innovation. To be concrete, we will propose that
the growth rate and the rate of technological innovation are endogenous if
they are affected in a nontrivial way by changes in the rate of intertemporal
substitution in consumption. Notice that in the Solow growth model, neither
the growth rate nor the rate of technological innovation is endogenous in this
sense. In Jones and Manuelli’s (1990) and Rebelo’s (1991) AK models, the
growth rate is endogenous, but the rate of technological innovation is not.
On the other hand, in models with increasing returns, such as those of Lucas
(1988) and Romer (1990), not only is the growth rate endogenous, but so is
the rate of technological innovation.
The endogeneity of growth in our model depends on how rapidly it is

possible to produce higher quality capital. If capital of higher quality can be
produced quickly, we get a model identical in essence to the exogenous growth
model of Solow. A new quality of capital is introduced every period, and the
economy grows at a fixed rate independent of the subjective discount factor
and other preference or technology parameters. If new quality capital can
only be produced slowly, the situation changes drastically. Both the growth
rate and the rate of technological innovation are fully endogenous and depend
on the subjective discount factor and other preference parameters.
In our model, technological innovations clearly come from things that peo-

ple do. In fact, contrary to models where externalities carry the day, techno-
logical innovations here come from things that people consciously choose to
do. They introduce new technologies in those periods when they are needed
to relax the labor constraint, and they do not introduce new technologies in
periods in which such need is absent. Note that we do not attempt to model
the reason that technologies become available. We assume that technologies
are available or become available for reasons exogenous to the model. Our
theory of technological innovation is a theory about why those technologies
are actually introduced. A theory of why new technologies become available
in a concave world is presented in Boldrin and Levine (2000).
As we mentioned at the outset, the most striking feature of our model

is that equilibria are path-dependent and do not exhibit a constant growth
rate. Growth follows a natural cycle in which gradual upward increases in
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consumption are interrupted by periodic growth recessions in which consump-
tion remains flat. These periods of creative destruction are those in which
a shift to a new technological paradigm first takes place. The existence of
growth cycles can be extended to models with many goods, sectors, and fac-
tors of production, as long as natural resources are essential in production
and innovation has an impact on many sectors. While it can be argued that
many innovations are cumulative in nature, so that the introduction of a new
technology has only a slight effect on the economy, innumerable important
innovations, such as the use of personal computers, the introduction of elec-
trical power, and the advent of new business methods, are of general purpose
and can be expected to have a substantial impact across many sectors. In the
presence of a sequence of such large innovations, the process of growth will be
uneven, with spurts of growth as the new technology is exploited and periods
of relative stagnation while the new capital good is accumulated for the next
growth spurt. Note that during growth recessions, the economy remains at
full employment; unemployment occurs only in the case of stagnation when
the capital stock becomes too small to employ all existing labor.
In addition to endogenous growth and a natural growth cycle, our econ-

omy exhibits path-dependence, meaning that the long-run growth rate of the
economy can depend on the initial stock of capital. Indeed, a small change
in initial capital can make the difference between long-run innovation and
growth and long-run stagnation and decline. In particular, it is possible for
the economy to grow in the short run, with new technologies and increased
consumption per capita, yet fall back into stagnation in the long run with
declining consumption, rising unemployment, and only the lowest possible
quality technology employed. Again, to the best of our knowledge, we are
not aware of any dynamic model exhibiting this rather frequently observed
pattern.

2 The Model

We consider an infinite horizon economy, t = 0, 1, 2, . . . , with a continuum
of homogeneous consumers. Consumers value consumption ct ∈ <+. The
period utility function u(ct) is bounded below, continuously differentiable,
strictly increasing, and strictly concave. It satisfies the Inada conditions
limc→0 u0(c) = +∞ and limc→+∞ u0(c) = 0. Total lifetime utility is given by
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U(c) =
P∞

t=0 δ
tu(ct), where 0 ≤ δ < 1 is the common subjective discount

factor. Let µ = sup{eµkP∞
t=0 δ

tu(eµt) <∞} be the supremum of growth rates
for which utility remains finite. Notice that µ ≥ 1/δ.
Consumption is produced by activities that use labor and capital as

inputs. In addition, capital is produced from capital, and labor repro-
duces itself. Capital comes in an infinite sequence of qualities, indexed by
i = 0, 1, . . . .
We write an input vector as z = (κ, `), where κ is an infinite vector of

capital stocks of different qualities and ` is a scalar denoting labor. The
period input space Z consists of the set of sequences (z1, z2, . . . , zn, . . . ) ≥ 0
for which zn = 0 for all but finitely many n. Note that the technology and
the initial condition are such that in any particular period, it is not possible
to have produced more than a finite number of qualities of capital, so there is
no loss of generality in this restriction. We let χi denote the vector consisting
of one unit of quality i capital and zero units of all other qualities of capital.
So, for example, (χ2, 0) is an input vector with one unit of quality 2 capital
and zero units of everything else. The period commodity space is Z ×<+.
The set of all possible activities a is denoted by A. An activity a ∈ A

can be written as a vector consisting of a triplet [z(a); z+(a); c(a)], where
z(a), z+(a) ∈ Z, and c(a) ∈ <+. Here z(a) = [κ(a), `(a)] represents the input
requirement for activity a in period t, z+(a) = [κ+(a), `+(a)] represents the
output of period t + 1 inputs produced by activity a, and c(a) represents
consumption produced by activity a and available in period t.
Our basic assumption is that capital of quality i can be used to produce

consumption, capital of the same quality, or capital of the next higher quality.
We assume that labor is an input (and also an output) in the production of
consumption, but not in the production of capital. While this is just a
simplifying assumption, as we discuss in the conclusion, it is consistent with
the idea that there is little labor mobility between sectors. In any case, as
we discuss in the conclusion, even if we allowed labor mobility, the general
nature of our results would not change.
Specifically, there is a sequence of activities for producing consumption,

one for each type of capital i. For quality i capital, the activity is represented
by the input and output vectors [χi, 1/γ

i; 0, 1/γi; 1], γ > 1. In other words,
producing a unit of consumption requires a unit of capital (of any quality)
and a number of units of labor that is smaller the higher is the quality of the
capital. The assumption that γ > 1 embodies the notion that technological
innovation is labor saving. Notice that labor appears here both as an input
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and as an output, so that labor used in production today remains available
for production tomorrow.
Two sequences of activities can produce capital. They are [χi, 0; βχi, 0; 0],

β > 1 and [χi, 0; ρχi+1, 0; 0], ρ > 0. This means that the current quality of
capital can be used to produce either β units of the same quality of capital
(capital widening) or ρ units of the next quality of capital (capital deepening).
We set β > ρ, so that introducing the next quality of capital goods instead
of widening the current one is costly because it requires a sacrifice of current
consumption. We assume that µ > min{β, γ}, so maximum utility over
feasible consumption paths is finite. We also assume that there is free disposal
and that there is an activity that produces next-period labor by means of
current-period labor [0, 1; 0, 1; 0]. In conjunction with the assumption that
labor is an output of the activity that produces consumption, the previous
assumptions guarantee that labor reproduces itself in each period; hence,
labor is always available in a constant amount. We can make the labor
supply grow at some rate n < β−1 by modifying the output vectors of these
two activities appropriately. Our results would not change.
The endowment z0 = (κ00χ0, 1) consists of κ

0
0 units of quality 0 capital

and one unit of labor.

2.1 Equilibrium

We call λ ∈ (×∞t=0<A+) a production plan and c ∈ (×∞t=0<+) a consumption
plan. Together they determine an (intertemporal) allocation.

Definition 1. The allocation λ, c is a feasible allocation for the initial con-
dition z0 if for all t ≥ 0

1 ≥
X
a∈A

λ0(a)`(a)

κ00χ0 ≥
X
a∈A

λ0(a)κ(a)X
a∈A

λt(a)z
+(a) ≥

X
a∈A

λt+1(a)z(a).

Definition 2. The allocation λ∗, c∗ solves the social planner problem for
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initial condition z0 if it solves

max
λ,c

U(c)

subject to the feasibility of the allocation.

Notice that in a feasible production plan λt(a) = 0 if a uses as input any
quality of capital greater than t. Denote by At the set of viable activities
which use as input qualities of capital no greater than t.
Let qit denote the price of quality i capital in period t, let q

`
t denote the

price of labor in period t, and let pt denote the price of consumption in period
t. We denote by qt the vector of all input prices in period t, and we let q
and p denote, respectively, the infinite sequence of prices of the two inputs
and consumption starting in period 0. Prices q, p and a feasible allocation
λ, c are a competitive equilibrium if c maximizes U(c) subject to the budget
constraint

∞X
t=0

ptct ≤ q00κ00 + q`0

and activities satisfy the zero-profit condition

qt+1 ·
£
κ+(a), `+(a)

¤
+ ptc(a)− qt · [κ(a), `(a)] ≤ 0, ∀a ∈ At, t = 0, 1, . . .

with equality if λt(a) > 0.

In the appendix, we prove the relevant version of the first and second
welfare theorems:

Theorem 1. Suppose that λ∗, c∗ is a feasible allocation for the initial con-
dition z0. Then λ∗, c∗ solves the social planner problem if and only if we can
find prices q, p such that q, p,λ∗, c∗ are a competitive equilibrium.

The following existence and uniqueness result is also proved in the ap-
pendix.

Theorem 2. For given z0, a competitive equilibrium exists, and there is a
unique competitive equilibrium consumption plan c∗.
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We can now use the first-order conditions to give a relatively simple char-
acterization of equilibrium consumption paths. We begin by calculating the
least amount of initial capital needed to produce a given consumption in a
particular period. Given a particular value of ct, observe that either ct ≤ 1
or, for some i > 0, γi−1 < ct ≤ γi. In the former case, define η(ct) = 0; in
the latter, η(ct) = i. In this way, η(c) indexes the highest quality of capital
needed to afford a per capita consumption level equal to c. Define

κ00(ct) =

(
β−tct η(ct) = 0

β−t
³
β
ρ

´η(ct)
γct−γη(ct)

γ−1 + β−t
³
β
ρ

´η(ct)−1
γη(ct)−ct

γ−1 η(ct) > 0.

The latter expression represents the amount of initial capital required to
produce ct when it is produced using only qualities η(ct) and η(ct)−1 capital.
Using this expression, we also define the initial capital requirement to produce
the consumption plan c

κ00(c) =
∞X
t=0

κ00(ct).

Next we define a correspondence that captures the first-order conditions
for an optimal path. Our basic strategy is to find an optimal path for a given
price of initial capital q00 and then back out the initial condition. First we
define the constants

ζ0 = 1

ζ i = (β/ρ)
i−1 [(βγ/ρ)− 1] / (γ − 1) .

For q00 ≥ 0 and t = 0, 1, . . . , we use these constants to define the correspon-
dence c0t ∈ Ct(ct, q00) from ct ∈ [0, γt] into <+

u0(c0t) = (βδ)
−t q00ζη(ct) if ct < γη(ct), η(ct) ≤ t

(βδ)−t q00ζη(ct) ≤ u0(c0t) ≤ (βδ)−t q00ζη(ct)+1 if ct = γη(ct), η(ct) < t

(βδ)−t q00ζη(ct) ≤ u0(c0t) if ct = γη(ct), η(ct) = t.

This correspondence consists of horizontal and vertical line segments
forming the steps of a descending stair as shown in Figure 1.
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Figure 1 - Stairstep Correspondence

Because of its stairstep nature, the correspondence is upper-hemicontin-
uous, convex valued, and nonincreasing. It is immediate to see that, for given
q00 and t, it has only one fixed point, c

∗
t ∈ (0, γt]. Notice that the location of

the stairsteps is always at γi, i = 0, 1, . . . . The stair is always truncated at
γt since no type of capital greater than i = t can be used. For this reason,
as t increases, the end of the stairstep always moves to the right. Whether
the vertices move up or down with t depends on βδ. Notice that u0(·) is a
decreasing function and βδ is raised to a negative power of t. So if βδ > 1,
the stairs get higher; if βδ < 1, the stairs get lower. The figure shows C2, C3
in the case in which βδ > 1. We will exploit these basic observations below
in analyzing equilibrium consumption paths.
The idea behind the C correspondence is to consider that ct determines

the price of consumption through δtu0(ct). Given the price of consumption
and the initial price of capital q00, we can calculate in period t how profitable it
is to use each viable quality of capital to produce consumption. Inspection of
the profit conditions shows that they are concave as a function of the index
i. This means that at most two activities can yield zero profits when all
others yield nonnegative profits. We then plug the prices δtu0(ct), q00 into the
two activities that earn zero profits. Observe that using these two activities
(or one activity) together with full employment yields exactly c0t units of
consumption. Consequently, the correspondence is defined by the condition
that the amount of consumption giving rise to the prices should equal the
amount of consumption generated from the production technology when the
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zero-profit conditions are satisfied. In other words, the key property of the
correspondence C is that its fixed points capture the first-order conditions for
an optimal path. In the appendix, we formally prove the following theorem.

Theorem 3. For given z0, the feasible consumption plan c∗ is an optimum
if and only if there exists a q00 such that

κ00 ≥ κ00(c
∗) with equality unless q00 = 0

c∗t ∈ Ct(c∗t , q00).

Moreover, equilibrium prices are given by the following:

qit = β−t
µ
β

ρ

¶i
q00

wt = γη(c
∗
t )
£
δtu0(c∗t )− βt(β/ρ)ηtq00

¤
and

q`T =
∞X
t=T

wt.

The equilibrium production plan is any feasible plan that produces c∗t using
only capital of quality η(c∗t ) and η(c∗t )− 1 and has full employment whenever
η(c∗t ) > 0.

3 Solow, Growth Cycles, and Stagnation
Here we focus on the long-run behavior of the economy. We show that,
depending on parametric configurations and initial conditions, there are three
possible long-run outcomes.
In the first, a new quality of capital is introduced every period and the

economy grows at the rate γ, independently from preferences and other tech-
nological parameters. We refer to this as the Solow growth path. For the
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technology considered here, the Solow path provides the highest attainable
level of consumption in each single period. At the opposite extreme, only
the lowest quality of capital is used and the capital stock either declines or
remains the same forever. We refer to this second outcome as the stagnation
steady state. While possible in principle, both the Solow growth path and
stagnation are very unlikely outcomes requiring extreme configurations of the
parameter values. Finally, the economy may enter an irregular growth cycle,
in which two qualities of capital are used for a period of time and then the
lower quality capital is dropped and a new quality of capital is introduced
for the first time, and so on. We refer to this as the growth cycle. This is the
main focus of our interest.
We first study the Solow balanced growth path, which is the easiest, and

then the growth cycle, which is the most interesting. We conclude with the
special case of stagnation.

3.1 The Solow Balanced Growth Path

Improving the quality of capital does not change the amount of output that
can be produced from that capital, but it does reduce the labor requirement
for one unit of output. Since there is a fixed supply of labor, the economy can
grow, but only by continually moving to higher qualities of capital that make
it possible to produce increased amounts of output from the existing stock of
labor. When the innovation occurs, ρ units of new capital are produced for
each unit of old capital invested, generating an additional demand of ρ/γ−1
units of labor input. If ρ > γ, the latter quantity is positive and, in each
period, it is possible to shift the entire stock of capital from one quality to the
next without causing labor to be unemployed. If, at a certain point in time,
there is enough capital to employ all available labor and, from that period
onward, a new quality of capital is introduced each period, the capital stock
can grow fast enough that all labor remains employed on capital of the newest
quality. In this case, the rate of technological innovation is independent
of preferences and, also independent of preferences, consumption grows at
the fixed rate γ. We refer to this as the Solow growth path, since this is
the same result as in the Solow growth model with exogenous technological
innovation.
If ρ > γ and the initial capital stock is large enough, then the unique

equilibrium is this Solow growth path beginning with consumption of a unit
in period 1. Notice that if this path is feasible it must be optimal, since it is
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not possible to achieve higher consumption in any period by means of any
other plan.
Recall that κ00 is the initial stock, and let κ

i
t denote the capital stock of

quality i in period t. Along a Solow growth path, at t only κtt is positive.
Suppose that κ00 is larger or equal to the least capital stock needed for the
Solow growth path to be feasible. Then we must have κ11 = γκ00. In addition,
a unit of capital must be used to produce one unit of consumption in period
0, so κ11 = ρ (κ00 − 1). Solving, we find that an initial stock of capital equal,
at least, to

κ00 =
ρ

ρ− γ

is needed to make the Solow path feasible. We summarize this by the follow-
ing theorem.

Theorem 4. If ρ > γ and κ00 ≥ ρ/(ρ − γ), the unique equilibrium is a
balanced growth path in which a new technology is introduced every period,
consumption in period t is γt, capital also grows at the rate γ, and there is
full employment in all periods.

Next we look at the behavior of prices, factor shares, and observable total
factor productivity (TFP) along the Solow path. Notice first that along a
Solow path, ηt = t for all t. Further, for c

∗ = {γt}∞t=0, the initially required
capital stock is κ00(c

∗) = ρ
ρ−γ . Hence, we can take q

0
0 = 0 if κ00 >

ρ
ρ−γ . In

fact, in this Solow case, we can normalize the initial price of capital q00 = 0,
also for κ00 =

ρ
ρ−γ , since utility does not increase with increases in the capital

stock. This implies that the price of all qualities of capital in all periods
is zero. When the marginal utility of income is normalized to ψ = 1, the
consumption prices are

pt = δtu0(γt).

Wages are

wt = γtpt

and the real wage w̃t = wt/pt = γt, so real wages grow exponentially over
time.
Notice that, independently from our normalization of the initial price of

capital, output grows at a constant and exogenous rate γ and factor shares are
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constant at the level determined in the first period. The capital/labor ratio
is also growing at the constant rate γ. Similarly for effective or, as we call it
here, enhanced labor with the productivity of physical labor growing at the
exogenous rate γ. Hence, our golden age is observationally equivalent to the
traditional Solow growth model, with a Cobb-Douglas production function
and exogenous technological innovation.

3.2 The Growth Cycle

When circumstances are not so lucky, that is, when either γ < ρ or the initial
stock of capital κ00 < ρ/(ρ−γ) is too low to make the Solow path immediately
accessible, both the long-run behavior of consumption and the introduction
of new technologies will generally depend upon preferences and in particu-
lar on the subjective discount factor δ. There are two cases, depending on
whether δβ > 1 or δβ ≤ 1. If there were no labor constraint and no endoge-
nous innovation, this would correspond to the case in which the equilibrium
exhibits sustained growth through capital accumulation, or stagnation, with
consumption eventually bounded or decreasing. As we shall see, this remains
the case with a labor constraint. We take the case of a growing economy,
that is, δβ > 1, first.

3.2.1 The General Case

We begin by establishing that δβ > 1 does correspond to sustained growth
in per capita consumption and in the quality of capital. First we observe
that consumption is nondecreasing:

Lemma 1. Suppose that δβ > 1. Then c∗t+1 ≥ c∗t .
Proof. The correspondence C is a stairstep with vertices³

γi, [u0]−1
¡
(βδ)−t q00(β/ρ)

i−1 [(βγ/ρ)− 1] / (γ − 1)¢´ .
Increasing δβ increases the height of the vertex for each γi. In addition, the
upper bound on the domain of the correspondence, γt, grows larger with t
as well. It follows that the fixed point c∗t must be nondecreasing.
An immediate implication is that the technologies used to produce con-

sumption must be improving over time because, with full employment, con-
sumption would otherwise have to decrease. It is also the case that asymp-
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totically, there is no upper bound on the quality of capital used to produce
consumption.

Lemma 2. Suppose that δβ > 1. Then there is no upper bound on the
qualities of capital used to produce consumption.

Proof. Observe that for fixed i, as t→∞,
(βδ)−t q00(β/ρ)

i−1 [(βγ/ρ)− 1]
(γ − 1) → 0.

Hence, for any given i, for large enough t the fixed point of C must lie to the
right of γi, meaning that a higher quality capital than i is used to produce
consumption. (See Figure 1.)
For δβ > 1, the general picture is therefore the following. As t grows

larger, the correspondence C moves up and to the right. Observe that C has
only horizontal and vertical segments. If the correspondence moves upward
sufficiently slowly (which, for a given utility function, is more likely the closer
δβ is to one), then the fixed point will generally lie on the same horizontal
segment for several consecutive periods. This length of time will determine
the rate at which new technologies are introduced and the speed of capital
widening. The exact mechanics can be appreciated by noticing that the
system behaves differently on horizontal and vertical segments. On horizontal
segments, two types of capital are used to produce consumption; one of them
(the highest in quality) is being accumulated while the other is being phased
out. During these periods, consumption grows at a rate determined by the
speed of accumulation of the highest quality capital and the correspondence
C shifts upward. We refer to this as a boom. On vertical segments, only
one type of capital is used to produce consumption, while a new quality
of capital is being introduced by means of the ρ technology. Because the
stock of capital used to produce consumption is not increasing, consumption
remains constant as the correspondence C shifts upward with time. We refer
to this period as a growth recession. In other words, the economy exhibits an
endogenous cycle in technological innovation and, therefore, in the growth
rate of TFP.
One striking fact is that during a growth recession (which corresponds to

periods of technological innovation), the real wage increases together with
the share of labor in national income. Specifically, during a recession, con-
sumption is constant, so its present-value price declines by a factor δ. On
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the other hand, the present value price of each quality of capital declines at
1/β < δ, and in particular the real price of capital falls. Since only one activ-
ity is used to produce consumption, zero profit for this activity implies that
the real wage must increase. This change in relative prices makes economic
sense. During a recession, the real price of higher quality capital declines
and the real wage increases, until it becomes profitable to introduce the next
higher quality of capital in the production of consumption to save on labor.
In this sense, technological innovation is biased in this model because it takes
place to conserve a particular factor when its relative price is high enough to
make the innovation profitable.
One point to emphasize is the endogeneity of technological innovation

in this type of equilibrium. Although the fact that the highest quality of
capital that can be used to produce consumption in period t is exogenously
given, it is not this exogenous constraint that determines which technology
is actually used in that period. Rather, the quality of capital i used to pro-
duce consumption in period t is generally lower than the highest exogenously
available; that is, i < t. The exact quality of capital used in each period is
determined by prices and a profit-and-loss calculation. Technologies are will-
ingly introduced when it becomes profitable to do so for rational economic
agents.

3.3 The Continuous Time Limit

We can get a more accurate picture of the cycle by studying a special case.
We continue to assume that δβ > 1 and suppose that the effective amount
of time ∆ between periods is small. So that the cycle does not depend on
time, assume that, at least for consumption exceeding a minimum amount,
preferences have the CES form

u(ct) = −(1/θ)[ct]−θ.

This assumption, together with the fact that new technologies improve ge-
ometrically, gives rise, when ∆ is small, to a cycle length that is essentially
independent of time. Let us take δ = e−r∆, β = eb∆, so that the assumption
δβ > 1 corresponds to b > r. We also assume that innovations are discrete,
so that the extent to which machine i saves on labor relative to machine i−1
is independent of the time between periods. Hence γ > 1 independently of
∆. We also have ρ = ρ̃ed∆. Since innovations are costly, we assume that
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b > d and that ρ̃ < 1. Because we are interested only in small values of ∆,
we can also assume that ρ = ρ̃ed∆ < γ for ∆ in the range considered here.
We denote calendar time by τ = t∆.
Suppose that at some particular time c∗t = γi−1. Then

u0(c∗t ) = (βδ)
−t q00(β/ρ)

i−1 [(βγ/ρ)− 1] / (γ − 1) .

This corresponds to the beginning of a horizontal segment or a boom. In our
special case, we can write this as

c∗t =

(¡
e(b−r)∆

¢−τ/∆
q00

"µ
e(b−d)∆

ρ̃

¶i−1
γe(b−d)∆ − ρ̃

ρ̃(γ − 1)

#)−1/(θ+1)
.

As τ increases, so does c∗t until eventually c
∗
t = γi, at which point the recession

occurs. We can calculate a good approximation to this length of time by
taking the continuous time limit when ∆→ 0

c∗t =
·
e(r−b)τq00(1/ρ̃)

i−1 (γ/ρ̃)− 1
γ − 1

¸−1/(θ+1)
.

In other words, during the growth period consumption is simply growing at
the rate (b − r)/(θ + 1). The length of the boom τ b is determined by the
amount of time required for consumption to grow by a factor of γ, or

τ b =
θ + 1

b− r ln γ.

The recession, on the other hand, lasts from t to t+ τ r/∆, where

(βδ)−t q00(β/ρ)
i−1 [(βγ/ρ)− 1] / (γ − 1)

= (βδ)(t+τr/∆) q00(β/ρ)
i [(βγ/ρ)− 1] / (γ − 1) .

The continuous time approximation gives

e(r−b)τr
e(b−d)∆

ρ̃
= 1.
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Taking the limit for ∆→ 0 and solving for τ r, we have that

τ r = − lneρ
b− r .

Consider next the length τ c = τ b + τ r of the whole cycle. This is

τ c =
1

b− r
·
ln(

γ1+θ

ρ̃
)

¸
which is increasing in γ, θ, and r and decreasing in b and ρ̃. The shorter the
cycle, the more quickly new technologies are introduced, so we find that the
frequency of innovations responds negatively to the quality of the innovation
γ, the preference parameter θ, and the subjective degree of impatience r.
The most interesting of these is the quality of the innovation γ. Higher
quality innovations in this model lead to less innovation, because they make
it possible to grow for a longer period of time without hitting the labor
constraint. On the other hand, we find that there is more innovation if the
cost of producing capital, as measured by the inverse of either b or ρ̃, goes
down.
The relative length of the two phases, booms and recessions, is

τ b
τ r
= −(1 + θ)

ln γ

ln ρ̃
.

Interestingly enough, neither the productivity of the capital widening
technology nor the degree of impatience affects the relative length of booms
and recessions. Economies where people exhibit low willingness to substitute
consumption over time (high values of θ) have longer (but less rampant)
booms for a given recession length. As we noted above, improved quality
of innovation (high γ) makes it possible to grow for a longer period of time
without hitting the labor constraint. This increases the length of booms, but
not of recessions. Finally, a large cost of innovation is bound to increase the
relative amount of time spent in recession.
The average growth rate of consumption over an entire cycle is the value

of g that solves

γ = exp

·
g · 1

b− r ln
µ
γ1+θ

ρ̃

¶¸
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which is

g =
b− r

1 + θ − ln ρ̃/ ln γ .

Hence, economies where people are more willing to substitute consumption
over time grow faster on average, as do economies able to implement more
substantial innovations.
We already noted above that the real wage grows during a recession.

In fact, we have somehow argued that growth recessions in our model are
brought about by the increase in the real wage relative to the price of new
capital. To save on expensive labor by introducing the relatively cheaper
new machines, resources must temporarily be shifted to the labor saving
innovation, which reduces the growth rate of consumption. Because we have
constructed our model in such a way that there is always full employment,
this implies a countercyclical movement in the labor share of national income.
Over the entire cycle, productivity of labor grows by a factor of γ, the same
for the real wage. Because consumption is constant during recessions, its
price relative to both old and new capital must be increasing then. Overall,
the price of a machine of quality i decreases over time relative to that of
consumption, and the rate of decrease is uniform across qualities.

3.4 Stagnation

Finally, we turn to the case in which δβ ≤ 1. In the absence of a labor
constraint, this would imply that the economy remains stagnant, either with
constant consumption if δβ = 1 or with declining consumption if δβ < 1.
With the labor constraint, if ρ > γ and κ00 ≥ ρ/(ρ−γ), we have already indi-
cated that the equilibrium is the Solow path of exogenous sustained growth
regardless of whether δβ ≤ 1. In this case, introducing a labor constraint and
the possibility of factor saving technological innovation, changes a stagnant
economy in which consumption never grows into an expanding economy in
which consumption grows forever and new technologies are introduced ev-
ery period. When labor saving innovations are feasible, the addition of a
labor constraint can be seen as the incentive toward adopting technological
innovations that lead to higher consumption.
On the other hand, the next theorem shows that if either the Solow path

does not exist because ρ < γ or there is insufficient initial capital, then the
picture is indeed one of a stagnant economy in the long run. There is an
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upper limit on the highest quality of capital ever produced, and ultimately
consumption either stops growing (δβ = 1) or declines (δβ < 1).

Theorem 5. Suppose that either ρ < γ or κ00 < ρ/(ρ− γ). If δβ ≤ 1, there
exists a technology I such that no quality of capital greater than I is ever
produced and a period T such that for all t ≥ T, the following are true.

• If δβ = 1, c∗t = c∗T .
• If δβ < 1, c∗t+1 < c∗t < 1.
• Only the lowest quality capital is used to produce consumption.

Proof. Under the conditions given, it follows that q00 > 0. As i → ∞,
the Inada condition for c→∞ implies that

[u0]−1
¡
(δβ)−tq00(β/ρ)

i−1 [(βγ/ρ)− 1] / (γ − 1)¢
≤ [u0]−1 ¡q00(β/ρ)i−1 [(βγ/ρ)− 1] / (γ − 1)¢→ 0.

It follows that there is some technology I for which, for all t,

[u0]−1
¡
(δβ)−tq00(β/ρ)

I−1 [(βγ/ρ)− 1] / (γ − 1)¢ < γI .

Consequently, no technology i ≥ I is used to produce consumption. It
follows that the optimal consumption plan does not ever produce any capital
of quality i ≥ I.
For δβ = 1, the correspondence C does not increase or decrease, it

simply shifts to the right; once t ≥ I, it follows that there is a unique
and time-independent fixed point of C. For δβ < 1, as t → ∞ we have
[u0]−1 ((δβ)−tq00)→ 0, so eventually the fixed point of C must lie below one.
Since [u0]−1 ((δβ)−tq00) is also strictly decreasing, so is c

∗
t . Since the fixed point

of C is going to zero, it must eventually fall below one, with the implication
that only the lowest possible quality technology is used to produce consump-
tion.

This theorem demonstrates another important possibility in this econ-
omy: path-dependence. That is, suppose that δβ < 1 and ρ > γ. Then if
initial capital exceeds the level κ00 ≥ ρ/(ρ−γ) needed for the Solow path, the

18



long-run possibility is one of technological innovation and sustained growth.
On the other hand, if initial capital falls a bit short of the threshold, so that
κ00 < ρ/(ρ − γ) in the long run, only the lowest possible quality capital is
used, there is unemployment, and consumption continually falls. In particu-
lar, if we compare two economies with different initial capital endowments,
one above and one below the threshold, we discover that they do not converge
to the same long-run growth path.
Finally, we point out a further interesting property of our economy: con-

sumption and growth paths that, depending upon initial conditions, may be
strictly nonmonotone. More precisely, even when κ00 < ρ/(ρ − γ), the econ-
omy may innovate and grow for some period of time, before falling back into
stagnation. For economies of this kind, relatively rich at the beginning but
highly impatient or not very efficient at reproducing already existing capital,
consumption will grow at a rate γ > 1 for a while and then decline forever.
Because the decline is governed by the stairstep correspondence C, the de-
cline is uneven until only the lowest possible quality of capital is employed,
at which time (in the CES case) consumption declines geometrically. It is as
if the airplane gets off the runway, then falls back to the ground. Figure 2
illustrates three cases, associated with different initial stocks of capital and
ρ > γ. The black monotone upward sloping curve describes the consumption
path associated to the Solow case. The combination of the first portion of
the Solow consumption path with either one of the downward sloping curves
represents different cases of transient growth followed by decline and eventual
stagnation. Obviously, in the latter two cases, the initial amount of capital
has to be lower than ρ/(ρ− γ) because, when ρ > γ, if the initial amount of
capital is sufficiently high, the economy reaches the Solow growth path and
remains there forever.
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Figure 2 - Stagnation Consumption Paths

4 Conclusion
We have examined a model in which an essential input cannot be increased at
the same speed as other inputs. Hence, growth in per capita consumption can
take place if and only if factor saving innovations are possible. An innovation,
such as a new machine, is factor saving when it reduces the input requirement
of some factor per unit of output. Machines which, for given output levels,
need fewer inputs than other machines must be more expensive. Hence,
factor saving innovations necessarily induce a nontrivial trade-off between
capital widening and capital deepening. Capital widening is less costly, but
eventually hits a factor constraint (labor in our example), forcing growth
through capital deepening. Consequently, the rate at which new technologies
are introduced becomes endogenous, depending on, among other things, the
rate of intertemporal substitution in consumption, the technology, and the
economy’s initial conditions. As in other models of endogenous growth, the
rate of growth of consumption is also endogenous in the same sense.
At least since Hicks’ (1932) seminal writings, economists have been de-

bating about factor saving innovations that are biased. The term indicates
that technological innovation augments productivity for some factor or fac-
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tors more than for others and that it does so because of relative price incen-
tives. We have built a general equilibrium model capturing this intuition and
looked at its implications. Our main finding is that, in these circumstances,
technological innovation is likely to be endogenous and, indeed, affected by
relative prices and initial conditions. Further, we have proved that when
technological innovation is factor saving, it must come in cycles unless very
special circumstances occur.
We have chosen to model the factor constraint as binding in the con-

sumption sector only and to concentrate on the case of just one fixed factor.
However, the basic message remains the same regardless of such simplifying
restrictions. Obviously, when the scarce factor can grow at a rate n, the
whole analysis can be replicated for β > 1 + n. When more than one scarce
factor exists, factor saving innovations can take place along different direc-
tions. While this can complicate the model and its equilibrium dynamics,
providing an interesting topic for future extensions, the basic message about
the oscillatory nature of factor saving technological innovation would only
be strengthened. Finally, the basic message does not depend on the sector
in which the constraint binds or on whether labor is perfectly mobile be-
tween the two sectors. Indeed, we worked out preliminary versions of the
case of perfect labor mobility between the two sectors, without qualitatively
different results. Notice, incidentally, that our example does not require that
there be no labor used in the production of capital, just that there is labor
immobility between the two sectors and that the labor constraint binds first
in the consumption sector. This particular example is a useful starting point
because of its simplicity and the stark results it delivers. In addition, we do
not think the assumption of perfect labor mobility between the two sectors is
especially more plausible than complete immobility between the two sectors.

Appendix
Here we prove Theorems 1, 2, and 3 from the preceding paper. We start with
the following lemma.

Lemma A. A consumption plan c, with ct > 0 for all t, maximizes U(c)
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subject to the budget constraint if and only if for some ψ ≥ 0,
pt = ψδtu0(ct)

∞X
t=0

ptct = q
0
0κ
0
0 + q

`
0.

Proof. This is standard.

Proof of Theorem 1. That a competitive equilibrium solves the social
planner problem is a standard first welfare theorem proof. To prove the
second, we need to show that we can find prices that support a solution to
the social planner problem.
Suppose that λ, c∗ is a solution to the planner problem for the initial

condition z0. Let z∗ be the corresponding inputs. Let zT+1 denote a vector
of labor and capital of quality i ≤ T+1. Let V T+1(zT+1) denote the maximum
utility, discounted at t = 0, of beginning with the endowment zT+1 in period
T + 1 and continuing forward. Let UT (c) =

PT
t=0 δ

tu(ct). Observe that
λ∗, c∗ solves the problems of maximizing UT (c) + V T+1(zT+1) subject to
social feasibility. This is a finite-dimensional problem. By standard finite-
dimensional arguments, we can find finite-dimensional price vectors qT , pT so
that the zero-profit conditions are satisfied for viable activities up to T + 1.
By the same standard arguments, the vector c∗t , t = 0, . . . , T and the scalar
z∗T+1 are optimal for the consumer under the budget constraint

PT
t=0 p

T
t ct +

qTT+1zT+1 = q
κT
0 κ00 + q

`T
0 .

Now we can normalize prices so that pt = δtu0(c∗t ). Let Q
T denote the set

of all (nonnegative) infinite-dimensional price sequences for which the projec-
tion on <T+ ×<2×(T+1)+ is a supporting price vector for the finite-dimensional
problem above. Observe that QT ⊇ QT+1 and that these are closed spaces.
It follows that Q = ∩T→∞QT is closed, although possibly empty.
Next observe that qTt+1 is a supergradient of V

t+1(zt+1) at z∗t+1. Notice
that qTt+1 is bounded below by zero and above by some finite two-dimensional
vector as qTt+1z

∗
t+1 + V

t+1(0) ≤ V t+1(z∗t+1) and that the latter is finite. It
follows that the intersection Q is nonempty.
Let q be in Q. By construction q and p (which is uniquely defined from

the first-order condition) satisfy the zero-profits condition. From the con-
sumer budget constraint in the truncated problems, we have

PT
t=0 ptc

∗
t +

qT+1z
∗
T+1 = qκ0κ

0
0 + q

`
0. Since qt+1 is a gradient of V

t+1(zt+1) at z∗t+1, we
have qT+1z∗T+1 + V

T+1(0) ≤ V T+1(z∗t+1). Also V T+1(0) = δT+1u(0)/(1 − δ)
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and V T+1(z∗T+1) =
P∞

t=T+2 δ
tu(c∗t ). Since

P∞
t=0 δ

tu(c∗t ) < ∞, it follows that
limT→∞ V T+1(z∗T+1) → 0 and so qT+1z∗T+1 → 0, which gives

P∞
t=0 ptc

∗
t =

q00κ
0
0+ q

`
0. ¥

Proof of Theorem 2. Since U(c) is bounded above on the feasible set of
feasible consumption paths, it is continuous in the product topology. Since
this set is compact in the product topology, an optimum exists; it is unique
since U is strictly concave. ¥
Define a simple plan to be a pair of sequences of integers (ν, η) = (ν0, η0,ν1,

η1, . . . ), where νt ∈ {1, 2}, ν0 = 1; t ≥ ηt ≥ 0; and ηt > 0 if νt = 2. A pro-
duction plan (λ, k) is consistent with the simple plan (ν, η) if the following
are true.

1. Exactly νt different qualities of capital are employed in period t to
produce consumption.

2. When νt = 1, the quality of capital employed to produce consumption
is ηt.

3. When νt = 2, the two qualities of capital used to produce consumption
are ηt, ηt − 1.

We say that a production plan exhibits full employment if there is unemploy-
ment only in periods where no quality of capital other than zero is used to
produce consumption. We say that a simple plan (ν, η) and a consumption
stream c are consistent if there is a full-employment production plan (λ, k)
consistent with the simple plan that yields the output c. If νt = 1 and ηt = 0,
then (λ, k) uses exactly κ

ηt
t = ct ≤ 1 units of quality 0 capital. If νt = 1

and ηt > 0, then the plan uses κ
ηt
t = γηt units of quality ηt capital for full

employment, so ct = γηt. If νt = 2, then the plan uses exactly κ
ηt
t units of

quality ηt capital and exactly κ
ηt−1
t units of quality ηt−1 capital, where these

are the unique solutions of κηtt /γ
ηt+κ

ηt−1
t /γηt−1 = 1 and κ

ηt
t +κ

ηt−1
t = ct. For

convenience, we now replicate the definitions from the text. For any given
value of ct, observe that either ct ≤ 1 or for some i > 0, γi−1 < ct ≤ γi. In
the former case, define η(ct) = 0; in the latter, η(ct) = i. Let

κ00(ct) =

(
β−tct η(ct) = 0

β−t
³
β
ρ

´η(ct)
γct−γη(ct)

γ−1 + β−t
³
β
ρ

´η(ct)−1
γη(ct)−ct

γ−1 η(ct) > 0
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and

κ00(c) =
∞X
t=0

κ00(ct).

Set

ζ0 = 1

ζ i = (β/ρ)
i−1 [(βγ/ρ)− 1] / (γ − 1) .

Define the correspondence c0t ∈ Ct(ct, q00) by
u0(c0t) = (βδ)

−t q00ζη(ct) if ct < γη(ct), η(ct) ≤ t
(βδ)−t q00ζη(ct) ≤ u0(c0t) ≤ (βδ)−t q00ζη(ct)+1 if ct = γη(ct), η(ct) < t

(βδ)−t q00ζη(ct) ≤ u0(c0t) if ct = γη(ct), η(ct) = t.

This correspondence is upper-hemicontinuous, convex valued, and nonin-
creasing.

Proof of Theorem 3. For given z0, suppose that the feasible consumption
plan c∗ is an optimum. We first claim that there is an initial price of capital
q00, a nonnegative sequence of wages w = (w0, w1, . . . ), and a simple plan
(ν, η) consistent with c∗ such that the following conditions hold.
(1) δtu0(c∗t )− β−t(β/ρ)ηtq00 − wt/γηt = 0.
(2) If νt = 2, then δtu0(c∗t )− β−t(β/ρ)ηt−1q00 − wt/γηt−1 = 0.
(3) If νt = 1 and ηt < t, then δtu0(c∗t )− β−t(β/ρ)ηt+1q00 − wt/γηt+1 ≤ 0.
(4) If νt = 1 and ηt > 0, then δtu0(c∗t )− β−t(β/ρ)ηt−1q00 − wt/γηt−1 ≤ 0.
(5) wt = 0 if there is unemployment at t.
First observe that if capital of quality i > 0 is used to produce consump-

tion for period t and there is unemployment, strictly greater consumption in
that period can be had by replacing quality i capital in period t with quality
0 capital. The full-employment condition is consequently necessary for an
optimum along any path that uses capital of quality other than i = 0.
We now apply the zero-profit conditions for competitive equilibrium. Let

qit denote the price of quality i capital in period t, and let q
`
t denote the price

of labor. If we begin with one unit of quality 0 capital in period 0, then we
need i quality upgrades producing ρ units of capital each and t − i periods
producing β units of capital to get from quality 0 in period 0 to quality i in
period t, for all possible i ≤ t. The order in which the ρ and β phases come
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does not matter. It follows then, from the zero-profit condition applied to
the capital-producing activities only, that if i ≤ t, then

qit =
q00

ρiβt−i
= β−t

µ
β

ρ

¶i
q00.

From the fact that labor can always reproduce itself, we have

q`t ≥ q`t+1
with equality if there is unemployment in period t. So we can define the wage
rate as

wt = q
`
t − q`t+1 ≥ 0.

We can then write the profits from the activity that in period t produces
consumption ct+1 from quality i capital as

πit = δtu0(ct)− β−t(β/ρ)iq00 − wt/γi.
Recall that in equilibrium profits must be nonpositive. Observe that this
function is strictly concave as a function of i for fixed values of ct, q00, and wt.
It follows that if this function is nonpositive for all i ≤ t, it is zero for at most
two activities, in which case it is strictly negative for all other activities. If
it is zero for one activity, it is sufficient that it be nonpositive for the next
highest and next lowest activities to be nonpositive for all activities. So since
in equilibrium pt = δtu0(c∗t ) conditions (1)-(5) are indeed necessary.
Next we observe that c∗t ∈ Ct(c∗t , q00) if and only if (1)-(4) hold. In the

case ct < γη(ct), full employment requires that ct be produced using qualities
γη(ct), γη(ct)−1 of capital. Then vt = 2, and (1) and (2) must hold. Solving
yields u0(c∗t ) = (βδ)

−t q00ζη(c∗t ) and

wt =
β−t

£
(β/ρ)η(c

∗
t ) − (β/ρ)η(c∗t )−1¤ q00

1/γη(c
∗
t )−1 − 1/γη(c∗t )

which is nonnegative since β/ρ ≥ 1 and 1/γ < 1.
Turning to ct = γη(ct), we have (1), (3), and (4):

δtu0(c∗t )− β−t(β/ρ)η(c
∗
t )q00 − wt/γη(c

∗
t ) = 0

δtu0(c∗t )− β−t(β/ρ)η(c
∗
t )+1q00 − wt/γη(c

∗
t )+1 ≤ 0

δtu0(c∗t )− β−t(β/ρ)η(c
∗
t )−1q00 − wt/γη(c

∗
t )−1 ≤ 0.
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We can solve the first equation for wt. Substituting into the second in-
equality, we see that it is satisfied if and only if u0(c∗) ≤ (βδ)−t q00ζη(ct), and
the first if and only if (βδ)−t q00ζη(ct)−1 ≤ u0(c∗). It is easy to check that these
two inequalities also imply that wt ≥ 0.
Finally, observe that κ00 ≥ κ00(c

∗) with equality unless q00 = 0 since oth-
erwise it would be possible to produce c∗ with less than the initial capital
stock.
This proves that the conditions of Theorem 3 are necessary for an equilib-

rium. To show that they are also sufficient, observe that the Inada conditions
imply that u0(·) maps [0,∞) onto itself; hence, for every q00 > 0, there is a κ00
for which q00 is the equilibrium price of capital. Let c∗ be the corresponding
optimal consumption. This satisfies the necessary conditions c∗t ∈ Ct(c∗t , q00)
and κ00 = κ00(c

∗). Since c∗t ∈ Ct(c∗t , q00) has a unique solution, it follows that
these conditions are sufficient as well. ¥
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