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1 Introduction

Recent empirical and theoretical studies on gross job and worker flows have changed the way

we think about the labor market. We now know that market economies exhibit high rates of

reallocation of employment across establishments as well as high rates of worker turnover from

one job to another and between employment and unemployment. We now view the number of

employed or unemployed workers as resulting from a large and continual reallocation process,

and we analyze how changes in the economic environment affect this process. The study of

the gross flows provides valuable insights into how the labor market carries out this continual

reallocation of resources, and at the same time raises many interesting questions: To what

extent are market economies able to perform this reallocation process efficiently? How is this

process affected by labor market policies?

The empirical literature distinguishes between measures of job flows and worker flows. In a

series of influential studies using U.S. manufacturing census data, Davis and Haltiwanger (1992,

1999) and Davis, Haltiwanger and Schuh (1996) measure gross job creation (JCt) as the sum

of employment gains over all plants that expand or start up between dates t−1 and t; gross job
destruction (JDt) as the sum of employment losses over all plants that contract or shut down;

and gross job reallocation as the sum of gross job creation and destruction (JRt = JCt+JDt).

By showing that gross job creation and destruction are both large irrespective of whether

aggregate employment grows or declines, their work highlights the role of heterogeneous forces

that cause employment to expand in some plants and contract in others. Behind these large

job flows, however, are even larger worker flows.

Estimates of worker flows are based on establishment or on worker surveys, and measure

the movements of workers across establishments and labor-market states. Empirical studies

that draw on establishment data often define worker turnover at establishment i (WTit) as the

sum of the number of accessions (new hires) and separations (quits and displacements) between

dates t − 1 and t, and aggregate worker turnover (WTt) as the sum of worker turnover over



establishments.

Alternatively, empirical studies that draw on worker surveys to estimate worker flows often

define worker reallocation (WRt) as the number of workers who change employment states (i.e.,

who change place of employment, find or lose a job, or enter or exit the labor force) between

dates t − 1 and t. Worker turnover measures the number of labor market transitions, while

worker reallocation counts the number of workers who participate in transitions. A worker who

moves from one establishment to another increases the worker reallocation count by one and

the aggregate worker turnover count by two; hence, aggregate worker turnover is larger than

worker reallocation by the number of job-to-job transitions.1

Empirically, worker turnover is significantly larger than job reallocation. Drawing from

different data sources for job and worker flows, Davis and Haltiwanger (1992) estimate that job

creation and job destruction account for no less than one-third and no more than one-half of

quarterly worker turnover in the U.S. manufacturing sector. New evidence from data sets that

incorporate information on the number of accessions and separations at the establishment level

indicates that for most establishments, for most of the time, worker turnover is much larger than

job reallocation. Burgess, Lane and Stevens (2000), for example, refer to the difference between

worker turnover and the net employment change as “churning” (Cit = WTit − |eit − eit−1|,
where eit is employment in establishment i at the end of period t). This notion of churning

measures the number of worker transitions in excess of the minimum needed to achieve the

actual change in employment. Summing over establishments delivers an aggregate measure of

churning: Ct = WTt − JRt. They use quarterly data from all private sector establishments in

the state of Maryland and find that churning flows account for 70% of worker turnover in non-

manufacturing and about 62% in manufacturing (job reallocation accounts for the rest).2 From

1This is the case provided both the worker-side and establishment-side data sets cover the entire economy,
and provided no accessions or separations are reversed within the sample period; else WTt −WRt would be an
upper bound for the number of job-to-job transitions.

2Similarly, based on data derived from the unemployment insurance systems of eight U.S. states, Anderson
and Meyer (1994) report that gross job reallocation accounts for only 24% of quarterly worker turnover in
manufacturing. Drawing from a data set covering the universe of Danish manufacturing plants, Albæk and
Sørensen (1998) report a ratio of quarterly job reallocation to worker turnover of .42 and find that replacement
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an aggregate perspective, the amount of worker turnover in excess of job reallocation depends

not only on the amount of simultaneous hiring and firing that takes place at the establishment

level (e.g., as measured by Cit), but also on the extent to which job-to-job transitions are a

common mechanism through which the market achieves the reallocation of workers. In this

respect, recent studies find that job-to-job flows are also large: Fallick and Fleischman (2001)

estimate that in the United States in 1999, on average 4 million workers changed employers

from one month to the next (about 2.7% of employment), more than twice the number who

transited from employment to unemployment. The fact that worker flows exceed job flows at

the establishment level is evidence of heterogeneity at the level of the employer-worker match–a

layer of heterogeneity over and above the cross-establishment heterogeneity that can be inferred

from the sheer size of the job flows alone.

The image that emerges is that of a labor market continuously reallocating employment

positions across establishments (job reallocation), and workers across existing employment po-

sitions (worker turnover). This grand reallocation process often does not force workers to go

through unemployment in order to switch employers, and does not require employment posi-

tions to become vacant in order to replace a worker. To us, all this suggests that in order to

fully understand the workings of the labor market, we need to pry into the nature of job flows,

worker flows, job-to-job transitions, and replacement hiring.

To this end, in this paper we develop a canonical equilibrium search model that incorporates

job-to-job transitions, exhibits instances of replacement hiring, and conceptually distinguishes

hiring (defined as the sum of accessions minus job creation) is on average 16.5% of manufacturing employment.
They also report interesting cross-establishment observations–for example, that 62% of all separations are
accounted for by plants with employment growth rates in the interval (−0.3, 0.1] and that plants with employment
growth rates in the interval (−0.1, 0.3] account for 56% of all hires. (Burgess, Lane and Stevens (2000) also
present some establishment-level cross-sectional evidence, such as that most of the employers in their data set
have churning rates above 50%. See their Figure 1 on page 483, which reports the distribution of Cit/WTit.)
Hamermesh, Hassink and van Ours (1996) find that job reallocation accounts for only one-third of worker turnover
in a random sample of establishments in the Netherlands. They also find that most mobility is into and out of
existing positions, not to new or from destroyed ones; that a large fraction of all hires (separations) take place
at firms where employment is declining (expanding); and that simultaneous hiring is mostly due to unobservable
heterogeneity in the workforce.
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between gross job and worker flows.3 A situation that arises naturally whenever agents can

continue to search while matched, is one in which a matched agent contacts a new potential

partner (who may also be matched) and each must decide whether to form a new match with

the new partner or to stay with the old one. In a labor-market context, the employer who is

trying to recruit an employed worker may have to face competition from the worker’s current

employer, and in addition, the recruiting employer’s current employee may attempt to discour-

age this employer from replacing him with the new worker (e.g., by accepting a smaller share

of the matching surplus). Natural as they may seem, these generic situations have not been

systematically analyzed in the literature.4 One of the building blocks of our theory–and one of

the contributions of this paper–is a simple and flexible noncooperative bargaining procedure

that allows for competition among all parties taking part in such meetings. The equilibrium

of the bargaining game we propose delivers the division of the gains from matching as well as

privately efficient creation and destruction of matches.

Our second goal in this paper, in addition to developing a model of job and worker turnover,

is to use the theory to explain various features of labor markets. For example, what determines

the amount of worker turnover in excess of job reallocation? Why is it that worker turnover in

Europe is substantially smaller than in the United States, whereas–despite the differences in

labor-market policy regimes–job reallocation is roughly the same?5 Why do displaced workers

tend to experience a significant and persistent fall in incomes? Why do workers stay unemployed

when on-the-job search is at least as effective as off-the-job search? Why are good jobs not only

better paid, but often also more stable? In order to answer these questions we examine how

3Job and worker reallocation are one and the same by construction in the workhorse of much of the recent
macro-labor literature, the matching model of Diamond (1982b), Mortensen and Pissarides (1994) or Pissarides
(2000). And there is no room for replacement hiring in the influential on-the-job search model of Burdett and
Mortensen (1998).

4The first generation of job-search models assumed that agents could only search while unmatched, e.g., see
Lippman and McCall (1976). However, Blau and Robins (1990) find that job-search while employed is no less
effective than while unemployed. In Section 7, we explain how our work fits within the existing search literature
that allows search while matched.

5This fact is documented in Bertola and Rogerson (1997), Blanchard and Portugal (2001), and Pries and
Rogerson (2005).

4



the employment status and wages of individual workers evolve over time, as well as the effects

that labor market institutions and public policy have on the gross job and worker flows.

The rest of the paper is organized as follows. Section 2 lays out the environment and

characterizes the efficient allocations. Section 3 introduces the notion of competitive matching

equilibrium and characterizes its salient features. Section 4 incorporates employment protection

policies, and Section 5 extends the model to allow for free entry of employers. For a special case,

Section 6 provides a fuller characterization of the equilibrium set, discusses the main properties

of the allocations, derives several labor-market implications, and shows how the model can

help to rationalize many of the properties of job and worker flows documented in the empirical

literature. Section 7 discusses the related literature. Section 8 concludes. The Appendix

contains all proofs and explains some properties of the bargaining procedure we propose.

2 The Model

Time is continuous and the horizon is infinite. The economy is populated by a continuum of

fixed and equal numbers of employers and workers. We normalize the size of each population to

unity. Employers and workers are infinitely-lived and risk-neutral. They discount future utility

at rate r > 0, and are ex ante homogeneous in tastes and technology. (Although our main

interest here is in the labor market, our model is applicable to any other setting where bilateral

partnerships are relevant, such as the interactions between spouses, or between a tenant and a

landlord, or between a supplier and the buyer of a customized product.)

A worker meets a randomly chosen employer according to a Poisson process with arrival

rate α. An employer meets a random worker according to the same process.6 Upon meeting,

the employer-worker pair randomly draws a production opportunity of productivity y, which

represents the flow net output each agent will produce while matched. (Thus the pair produces

6 In general we can think of the total meeting rate as being equal to α·(population of employers)·(population
of workers). Here, because the populations of employers and workers are both unity, the rate at which a worker
meets a randomly chosen employer equals the rate at which an employer meets a randomly chosen worker, and
both equal α, the total meeting rate. In this basic setup, employers and workers are completely symmetric.
Below we analyze extensions where they differ in a variety of ways.
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2y.) The random variable y takes one of N distinct values: y1, y2, . . . , yN , where 0 < y1 < y2 <

. . . < yN , and y = yi with probability πi for i = 1, ...,N , and
PN

i=1 πi = 1. The realization of

the random variable y that an employer and a worker draw when they first meet is observed

without delay. We assume y remains constant for the duration of the match.

Matched and unmatched agents meet potential partners at the same rate, so when an

employer and a worker meet and draw a productive opportunity, each of them may or may

not already be matched with an old production partner. Each agent can be in, at most, one

productive partnership at any given time. The productivity of the new potential match as well

as the productivities of the existing matches are public information to all the agents involved,

i.e., the worker and the employer who draw the new productivity and their existing partners, if

they have any. On the other hand, each agent’s history is private information, except for what

is revealed by the current production match.

When an employer and a worker draw a new production opportunity, the pair and their old

partners (if they have any) determine whether or not the new match is formed (and consequently

whether or not the existing matches are destroyed) as well as the once-and-for-all side payments

that each party pays or receives, following a bargaining protocol which we will describe shortly.

Utility is assumed to be transferable among all the agents involved in a meeting. There is no

outside court to enforce any formal contract, so any effective contract must be self-enforcing

among the parties involved. If the parties who made contact decide to form a new partnership,

they leave their existing partners, who then become unmatched. In addition to these endogenous

separations, we assume any match is subject to exogenous separation according to a Poisson

process with arrival rate δ.

We use nit to denote the measure of matches of productivity yi and n0t to denote the

measure of unmatched employers or workers at date t. Let τkijt be the probability that a worker

with current productivity yi and an employer with current productivity yj form a new match

of productivity yk, given that they draw an opportunity to produce yk at time t. (Hereafter,

we will suppress the time subindex when no confusion arises.) The measure of workers in each
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state evolves according to:

ṅi = απi

NX
j=0

NX
k=0

njnkτ
i
jk − αni

NX
j=0

NX
k=1

njπk(τ
k
ij + τkji)− δni (1)

ṅ0 = α
NX
i=0

NX
j=1

NX
k=1

ninjπkτ
k
ij + δ

NX
j=1

nj − αn0

NX
j=0

NX
k=1

njπkτ
k
0j. (2)

The first term on the right side of (1) is the flow of new matches of productivity yi created by all

types of workers and employers. The second term is the total flow of matches with productivity

yi destroyed endogenously when the worker or the employer leaves to form a new match. The

last term is the flow of matches dissolved exogenously. On the right side of equation (2), the

first term is the flow of workers who become unmatched when their employers decide to break

the current match to form a new match with another worker. The second term is the flow of

workers who become unmatched due to the exogenous dissolution of matches. The third term

is the flow of new matches created by employers and unemployed workers.

Before describing the competitive matching equilibrium with bargaining, we solve the so-

cial planner’s problem. The planner chooses τkij ∈ [0, 1] to maximize the discounted value of
aggregate output: Z ∞

0
e−rt

XN

i=1
2yinidt

subject to the flow constraints (1) and (2), and initial conditions for n0 and ni for i = 1, ..., N .

Letting λi be the shadow price of a match with productivity yi at date t, the Hamiltonian is

H =
NX
i=1

2yini − δ
NX
i=1

(λi − λ0)ni + α
NX
i=0

NX
j=0

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) .

The necessary conditions for optimality are

τkij

⎧⎨⎩
= 1 if λk + λ0 > λi + λj
∈ [0, 1] if λk + λ0 = λi + λj
= 0 if λk + λ0 < λi + λj ,

(3)
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together with the Euler equations

rλi − λ̇i = 2yi − δ (λi − λ0) + α
NX
j=0

NX
k=1

njπk(τ
k
ij + τkji) (λk + λ0 − λi − λj) ,

rλ0 − λ̇0 = α
NX
j=0

NX
k=1

njπk(τ
k
0j + τkj0) (λk − λj) ,

and (1) and (2). According to (3), to achieve the optimal allocation, the planner specifies that

a type i worker and type j employer should form a new match of productivity yk for sure if and

only if the sum of the shadow prices of the new match and the unmatched worker and employee

(which the new match would generate) exceeds the sum of the shadow prices of the existing

matches of productivity yi and yj. From (3) we also learn that τkij = τkji, except possibly for

the case of randomized strategies. Intuitively, there is no inherent asymmetry between a worker

and an employer, so the planner treats them symmetrically in the optimal allocation. These

observations allow us to summarize the first order necessary conditions as:

rλi − λ̇i = 2yi − δ (λi − λ0) + 2α
NX
j=0

NX
k=1

njπkmax
τkij

τkij (λk + λ0 − λi − λj) (4)

rλ0 − λ̇0 = 2α
NX
j=0

NX
k=1

njπkmax
τk0j

τk0j (λk − λj) . (5)

Equation (4) says that in the planner’s problem, the flow return of a match of productivity yi

equals the capital gain associated with the change of the shadow price plus the sum of the three

terms on the right side: the flow output generated by the match, minus the expected loss from

an exogenous separation, plus the expected gain from the endogenous creation and destruction

of matches that occur when either of the agents in the match of productivity i meets an agent

in a match of productivity j (which occurs at rate 2αnj) and draws productivity yk (with

probability πk). The flow return of a pair of unmatched agents in (5) is similar but output is

zero and there is no loss resulting from exogenous separation.
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3 Competitive Matching Equilibrium

In a decentralized economy, the creation and destruction of matches depends on how the gains

from trade are divided among the agents who find a new production opportunity and their

old partners (if they have any). In this section we propose a notion of equilibrium where the

prevailing matches are determined, and the gains from trade are apportioned, through the

following bargaining procedure.

When a worker and an employer find a new production opportunity, a move by Nature

first determines, with equal probability, whether the worker(s) or the employer(s) have the

bargaining power. The agents with the new production opportunity then choose whether to

bargain first with the new potential partner or with the old partner, if there is one.7 All

negotiations are bilateral, either between new potential partners or between old partners. Once

the bargaining pairs have been decided, the agent with the bargaining power makes an offer

which consists of a proposal to produce together and a division of surplus to be implemented

through spot side payments. The recipient of the offer chooses whether to accept, reject, or

continue to negotiate with the alternative partner (if there is one), withholding the received

offer as her outside option. An outstanding offer is public information, and cannot be revised

later. If the offer is rejected, then the agent who has an alternative partner will negotiate

without the outside option.

The second round of bilateral bargaining, with or without outside option(s), is similar to

the first round: The agent with the bargaining power makes an offer, and the recipient either

accepts or rejects it. If an offer is rejected, the recipient then makes a final choice of whether to

accept or reject the withheld offer (if she has one). The bargaining ends either when an offer

is accepted, or when there is no alternative partner to bargain with after rejection (in which

case there will be no match for production). The bargaining does not take time: the entire

7 If one of the agents with the option to form a new match chooses to bargain with her old partner first, while
the other one chooses to bargain with his new partner first, then the latter will wait until the former comes to
bargain with him.
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process finishes instantaneously. We specify that as long as neither encounters a new production

opportunity, matched agents split output equally.8 There is no outside court to enforce formal

contracts, so agents can walk away from a match at any time without penalty. (In Section 4 we

introduce a government that imposes a tax on every employer who separates from a worker.)

A competitive matching equilibrium is a set of bargaining strategies specifying a sequencing

of bargaining partners, how much utility to offer bargaining partners in order to produce to-

gether, and whether to accept, reject, or withhold a received offer, together with a population

distribution of partnerships such that: (a) taking the population distribution and the bargain-

ing strategies of the other agents as given, each agent chooses her bargaining strategies in order

to maximize her expected discounted utility; and (b) given the agents’ bargaining strategies,

the population distribution satisfies (1) and (2).

Three different types of meetings can result from the randommatching process: (i) a meeting

between an unmatched worker and an unmatched employer, (ii) a meeting between a matched

agent and an unmatched agent, or (iii) a meeting between a matched worker and a matched

employer. Since creating a new match entails destroying one existing match in situation (ii)

and two existing matches in situation (iii), we follow Diamond and Maskin (1979), and refer to

the former as a “single breach” and to the latter as a “double breach.” Since a worker and an

employer who form a match are inherently symmetric, we will restrict attention to equilibria in

which workers and employers are treated symmetrically and agents are distinguished only by

the productivity of their current match. We will refer to a match of productivity yi as a “type

i match,” and call a worker or an employer in a type i match a “type i agent.” Let Vi be the

value of expected discounted utility of a type i agent, and let V0 be the value of an unmatched

agent. We begin by describing the bargaining outcomes for each of the three types of meetings,

taking Vi and V0 as given. We will then specify how these values are determined in equilibrium.

8Equivalently, we can think of the matched pair without an outside production opportunity as being involved
in continual negotiations by which the expected value of side payments nets out to be zero. (See the proof of
Proposition 3 for more on this.)
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(i). An unmatched worker and an unmatched employer draw an opportunity.

Suppose that an unemployed worker and an employer with a vacancy draw an opportunity

for each to produce yk. Since both are unmatched, the outside option to each agent is V0. This

case is illustrated in Figure 1, where we have named the two agents involved in this meeting A

and B. Let Xk
ij be the value that agent i offers agent j in order to form (or preserve) a match

of productivity yk. Specifically, Xk
ij includes the value of the match plus the net side payment

agent i pays to agent j. The bargaining unfolds as follows. With probability a half, A makes

a take-it-or-leave-it offer Xk
AB to B. Clearly, A will choose this offer in order to maximize her

own utility, subject to the constraint that B will accept. Hence, A offers Xk
AB = V0, and B

accepts. With the same probability, B makes an offer Xk
BA = V0 to A, which is again accepted.

Figure 1: An unmatched employer meets an unmatched worker.

Let Πi be the expected payoff to agent i and Γi be her expected gain. Then, ΠA = ΠB =

1
2V0 +

1
2(2Vk − V0) = Vk, and ΓA = ΓB = Vk − V0. In this symmetric situation the expected

value of the side payment is zero, and both unmatched agents enjoy the same expected capital

gains from forming the new match.

(ii). A matched agent and an unmatched agent draw an opportunity.

Suppose that worker B, who is currently in a match of productivity yi with employer A,
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meets employer C, who has vacancy, and they draw a productive opportunity yk. This situation

is illustrated in Figure 2.

Figure 2: Single breach.

We consider two cases.

Case 1: Vk > Vi. Depending upon Nature’s draw, with equal probability, either worker B

has bargaining power, or employers A and C have bargaining power. When worker B has

bargaining power, B proposes the new partner C to match, offering Xk
BC = V0. Employer C

accepts this offer, and B appropriates all the surplus from the new match, 2Vk − V0. When

instead employers A and C have bargaining power, because the new potential match has higher

value than the existing one, B chooses to bargain with the new employer, C, first. When

choosing Xk
CB, the new employer keeps in mind that B can continue to bargain with his old

employer (A) with Xk
CB as his outside option: the old employer (A) will outbid C as long as

paying Xk
CB to continue matching with B is better than becoming unmatched, i.e., as long as

2Vi − Xk
CB > V0. So in order for C to win B over A, C’s offer has to be at least as large

as 2Vi − V0, therefore Xk
CB = 2Vi − V0 and A cannot outbid C. (If A was to offer B more

than 2Vi − V0, her value of continuing matching with B would be less than the value of being

12



unmatched.) Notice that regardless of which agent(s) have the bargaining power, B’s payoff

from matching with C will be larger than 2Vi − V0, the maximum he can get from matching

with A. Thus, in the equilibrium, B and C create the new match while A becomes unmatched.

The expected gains are:

ΓA = − (Vi − V0)

ΓB =
1

2
[(2Vk − V0) + (2Vi − V0)]− Vi = Vk − V0,

ΓC =
1

2
[V0 + (2Vk − 2Vi + V0)]− V0 = Vk − Vi.

Note that through the side payment of transferable utility, the expected gains to the agents

who form the new match are equal to the capital gains of the new partner instead of their own

capital gains: the gain to B is Vk − V0 and the gain to C is Vk − Vi, so B, who is in a stronger

bargaining position, enjoys a larger gain than C. On the other hand, A suffers a capital loss

from becoming unmatched without receiving any compensation (there is no reason for the new

pair to pay A since B can walk away without any penalty).9

Case 2: Vi > Vk. Again, depending upon Nature’s draw and with equal probability, either

worker B has bargaining power, or employers A and C have bargaining power. When B has

bargaining power, he makes an offer Xi
BA = V0 to A, which is accepted, and B monopolizes

all the surplus, 2Vi − V0. When the employers A and C have bargaining power, B chooses to

bargain with his old employer, A, first, since the old match is better than the new match. The

old employer makes an offer Xi
AB to B, who can continue to bargain with C holding Xi

AB as

9We derived the equilibrium gains under the presumption that B will bargain with “the winner” (in this case
C) first, both when B has bargaining power and when A and C do. Suppose that A and C have bargaining power,
and that B instead chooses to bargain with A first. Since A knows she will lose (because the maximum payoff
she is willing to offer B is 2Vi − V0 while C can bid up to 2Vk − V0), A is indifferent between making any offer
Xi
AB such that Xi

AB ≤ 2Vi − V0. In particular, she may make a “lousy” offer to B, Xi
AB < 2Vi − V0. If A does

this, then B will find himself in a weak bargaining position when he goes on to negotiate with C. Thus B will not
gain from negotiating first with the loser, A, because the most B can receive from A is Xi

AB = 2Vi − V0, which
is the minimum payoff B can get from negotiating first with the winner, C. The upshot is that in every case,
the equilibrium outcomes (match creation and destruction decisions and expected payoffs) are always uniquely
determined, and are those which are induced by the equilibrium in which B always chooses to bargain with the
“winner” first.
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an outside option. When choosing Xi
AB, A takes into account that the new employer, C, will

outbid Xi
AB if and only if paying X

i
AB in order to form the new match with B is better than

remaining unmatched, i.e., if 2Vk−Xi
AB > V0. Thus, in order for A to win B over C, A chooses

to pay Xi
AB = 2Vk−V0. Regardless of which side has bargaining power, B’s payoff from staying

with A is larger than the payoff he can get by matching with C. Therefore, A and B remain

matched, while C stays unmatched. The expected gains are:

ΓA =
1

2
[V0 + (2Vi − 2Vk + V0)]− Vi = −(Vk − V0)

ΓB =
1

2
[(2Vi − V0) + (2Vk − V0)]− Vi = Vk − V0,

ΓC = V0 − V0 = 0.

Although the current match is not destroyed, the old partner, A, has to buy out B’s expected

gains from matching with C (by making a utility side payment with expected value equal to

Vk − V0) in order to persuade B to stay in the current match.10

When we compare the sum of expected payoffs of all agents, we haveΠA+ΠB+ΠC = V0+2Vk

when the new match is formed, and ΠA +ΠB +ΠC = 2Vi + V0 when the old match continues.

In both cases, Vk > Vi and Vi > Vk, the match with higher value prevails in the equilibrium.

Here, with fully transferable utility, the Coase Theorem holds: the total sum of payoffs of all the

agents involved in the meeting is maximized under the bargaining procedure of our competitive

matching equilibrium, for given values of Vjs. The Coase Theorem continues to hold in the

case of double breach, to which we turn next.

(iii). A matched worker and a matched employer draw an opportunity.

Suppose that worker B and employer C meet and draw a productive opportunity yk. The

situation now is that B is currently in a match of productivity yi with employer A, while C is

currently in a match of productivity yj with worker D. This is illustrated in Figure 3.

10 In the above analysis, we have assumed that the matched agent with the outside opportunity to form a
new match is a worker; i.e., B was a worker, and A and C employers. But because workers and employers are
symmetric, the gains from the trade will be the same if instead, A and C are workers and B is an employer.
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Figure 3: Double breach.

Case 1: Vk+V0 > Vi+Vj. Because the sum of the values of the new match and the unmatched

exceeds the sum of the values of the old matches, the agent who does not have bargaining power

chooses to bargain with the new partner first.11 With probability a half, the draw by Nature

determines that the workers, B and D, have bargaining power, so worker B makes an offer

Xk
BC to C. Employer C can continue to bargain with her old worker D with Xk

BC as her

outside option. Worker D will outbid worker B if paying Xk
BC to maintain the old match is

better than becoming unmatched, i.e., if 2Vj −Xk
BC > V0. Therefore, in order for B to win C

over D, B chooses to offer Xk
BC = 2Vj − V0 (the maximum payoff D is willing to pay to C).

Alternatively, with probability a half it is the employers, A and C, who have bargaining power.

In this case C makes an offer Xk
CB to B, and the same reasoning leads to X

k
CB = 2Vi−V0 (the

maximum payoff A is willing to offer B). Note that regardless of who has bargaining power,

if they match together, both B and C receive a payoff that is larger than the maximum they

can get from their old partners. Thus, B and C will form the new match, while A and D will

11The agent who has bargaining power does not have to be careful about the order in which she bargains with
her alternative partners, because she can obtain all the surplus from matching with the new partner in any case.
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become unmatched.12 The expected gains are:

ΓA = − (Vi − V0) ,

ΓB =
1

2
[(2Vi − V0) + (2Vk − 2Vj + V0)]− Vi = Vk − Vj,

ΓC =
1

2
[(2Vk − 2Vi + V0) + (2Vj − V0)]− Vj = Vk − Vi,

ΓD = − (Vj − V0) .

Case 2: Vk + V0 < Vi + Vj. Since the sum of the values of the existing matches exceeds the

sum of the values of the new match and the unmatched, the agent without bargaining power

chooses to bargain with the old partner first. With probability one-half, employers A and C

have bargaining power. In this case, worker B chooses to bargain first with his old employer,

A. When choosing Xi
AB, A takes into account the fact that B can continue to bargain with

the new potential employer, C, withholding Xi
AB as his outside option. A knows that C

will outbid Xi
AB as long as C’s payoff from forming the new match with B by paying Xi

AB,

namely 2Vk −Xi
AB, is higher than C’s payoff from staying matched with D, 2Vj − V0 (since

C has bargaining power). Therefore, in order for A to win B over C, her offer must satisfy

Xi
AB =Max(V0, 2Vk − 2Vj + V0), where V0 is included in Max in order to guarantee that A’s

offer leaves B at least as well off as he would be by becoming unmatched (2Vk − 2Vj + V0 < V0

if Vk < Vj , but A still wants B to accept her offer, because preserving the existing match by

paying V0 is better than becoming unmatched). Alternatively, with probability one half, it is

workers B and D who have bargaining power. In this case, employer C chooses to bargain

with her old worker, D, first. The same argument applies to the bargaining between C and D.

12Here, although in principle A and D can meet, they cannot form a productive match unless they have drawn
a production opportunity together. In other words, to be able to engage in joint production, two agents must
draw a production opportunity in addition to just meeting. In any case, allowing for the possibility that A and
D have a production opportunity simultaneously with B and C’s will not change our result, since the probability
of such an event is negligible relative to that of the event of a single pair having the opportunity.
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Taken together, the expected gains are

ΓA =
1

2
[2Vi −Max(V0, 2Vk − 2Vj + V0) + V0]− V0,

ΓB =
1

2
[Max(V0, 2Vk − 2Vj + V0) + (2Vi − V0)]− Vi,

ΓC =
1

2
[(2Vj − V0) +Max(V0, 2Vk − 2Vi + V0)]− Vj ,

ΓD =
1

2
[V0 + 2Vj −Max(V0, 2Vk − 2Vi + V0)]− V0.

Figure 4 summarizes the expected gains from trade in double-breach situations. (The figure

assumes Vi < Vj , without loss of generality.)

Figure 4: Double breach: expected capital gains.

If Vi+Vj−V0 < Vk, then B and C form a new match. The equilibrium expected side payment

between them is such that the expected gains to each of them is equal to the capital gains to

the new partner, instead of their own capital gain.13 When Vj < Vk < Vi + Vj − V0, although

13 If B and C were to form a new match and there were no side payments, then B would gain Vk − Vi and C
would gain Vk−Vj , but the equilibrium side payments imply that these gains are swapped: B gains Vk−Vj and
C gains Vk − Vi. So when a new match is formed, the agent who is currently in the better match enjoys a larger
capital gain.
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the existing matches continue, the old partner must, on average, pay his current partner her

opportunity cost of giving up the option to form a new match. When Vi < Vk < Vj, because

the value of the new potential match is not as large as the value of the existing match between

C and D, on average, A does not have to pay a side payment to B in order to persuade him

to stay in the existing match. But in expectation, D still needs to pay a side payment to C in

order to preserve their valuable match. When Vk < Vi, the value of the new potential match

between B and C is so small that on average, A does not have to make a side payment to B,

and D does not have to make a side payment to C.

We summarize the main features of the bargaining outcomes in Proposition 1. The proof of

parts (a) and (b) follows from the above discussion. Part (c) is proved in the Appendix, which

also provides a graphical analysis of the bargaining procedure.

Proposition 1 For given value functions, the matching decisions and side payments are uniquely

determined in the symmetric competitive matching equilibrium through the sequence of bilateral

bargaining. Moreover,

(a) When two agents find an opportunity to form a new match, they form the new match and

displace their existing partners (if they have any) if and only if the sum of the values of the new

match and the unmatched exceeds the total value of the existing matches.

(b) Through the side payment, the expected net gain to the agent who forms a new match is

equal to the capital gains of the new partner (instead of her own capital gains).

(c) The equilibrium outcomes (and expected outcomes) induced by the sequence of bilateral bar-

gaining lie in the core.

The bulk of the search and matching literature follows the seminal work of Diamond and

Maskin (1979), Diamond (1982a), and Pissarides (1984) in assuming that agents share rents

according to the axiomatic Nash solution. But the explicit bargaining procedure we propose

seems more appealing for environments with richer interactions among agents (such as double

breaches) in which the equilibrium match-formation decisions and the agents’ outside options
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are not obvious, since our procedure determines them endogenously along with the surplus

sharing.14 In an environment with limited commitment like the one we analyze, this bargaining

procedure is also more appealing than some popular cooperative solution concepts such as the

Shapley value. According to the Shapley value, the winning pair generally leaves some surplus

to the losing partner(s), which is not rational for the winners since they can walk away from

their current matches without penalty.

There is a strand of the matching literature with on-the-job search that considers the special

case of single breach in which two employers compete for a single worker. This literature

assumes that when these situations arise, employers engage in Bertrand competition for the

worker (e.g., Dey and Flinn (2005), Postel-Vinay and Robin (2002)). For this special case, the

equilibrium outcomes of the bargaining procedure we propose coincide with the ones implied by

Bertrand competition. But in addition, our bargaining game can resolve situations with richer

interactions among agents, such as double breaches.15

In equilibrium, individual agents’ expected payoffs satisfy the following Bellman equations:

rVi − V̇i = yi + α
NX
j=0

NX
k=1

njπk

h
φkij(Vk + skij − Vi) + (1− φkij)z

k
ij

i

−α
NX
j=0

NX
k=1

njπk

h
φkji (Vi − V0) + (1− φkji)z

k
ij

i
− δ (Vi − V0) (6)

for i = 1, ..., N , and

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπkφ
k
0j(Vk + sk0j − V0). (7)

14See footnote 17 below for more on this.
15 In a previous version of this paper we devised a notion of equilibrium based on a variant of Bertrand compe-

tition that can be applied to all our matching situations, including double breaches. To illustrate, consider the
situation depicted in Figure 3. The structure of the competition we considered specified that with probability
one-half, A and C have bargaining power. In this case, A makes a take-it-or-leave-it offer to B, and simultane-
ously, C makes an offer to B and to D–with C’s offer to D being contingent on B’s rejection. (Alternatively,
with probability one-half B and D have bargaining power, etc.) The equilibrium match-creation and destruction
decisions and the expected payoffs induced by this Bertrand-like scheme turn out to be identical to those induced
by the bargaining procedure we have adopted here. We favor the sequential bilateral bargaining procedure where
agents can hold outside offers for two reasons. First, it seems to more closely resemble actual negotiations involv-
ing offers and counter-offers. Second, the Bertrand scheme relies on the agents’ ability to make two simultaneous
offers (even though they can match with only one of the candidates), with one of the offers being conditional on
the other offer being rejected–a feature that is not characteristic of actual employment offers.
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Consider, for example, the most general situation illustrated in Figure 3. The return of agent

B, who is in a match of type i with agent A, in equation (6) includes his share of the flow output

generated by the match, yi, plus the expected capital gains he experiences when meeting other

potential partners, minus the expected capital losses he suffers when his partner meets other

potential partners, or when the match is destroyed exogenously. The choice of a worker in

a match of type i and an employer in a match of type j to form a new match of type k is

represented by φkij ∈ [0, 1]. Conditional on B having met a new partner, nj is the probability

that this new partner is in a match of type j, and πk is the probability that the employer-worker

pair draws an opportunity of type k. If the new match is formed, then B gains Vk − Vi plus

skij, which denotes the expected (net) side payment that B receives from the new partner to

form a new match of type k, implied by the bargaining procedure we outlined earlier. (Thus,

skij = −skji.) If the match is not formed, then B may receive an expected side payment zkij from

his current partner, A. The collection of negative terms are the expected losses B experiences

when A contacts other agents. For instance, if A meets another agent currently in a match of

type j and they decide to form a new match of type k (which they do with probability φkji),

then B gets displaced and loses Vi−V0. Alternatively, B may be able to persuade A to stay in

the current match by paying her a side payment with expected value zkij.
16

From part (a) of Proposition 1 we know that φkij = φkji, and φkij (Vk + V0 − Vi − Vj) =

maxφkij
φkij (Vk + V0 − Vi − Vj), and from part (b) that Vk + skij − Vi = Vk − Vj, so the value

functions (6) and (7) reduce to

rVi − V̇i = yi − δ (Vi − V0) + α
NX
j=0

NX
k=1

njπkmax
φkij

φkij (Vk + V0 − Vi − Vj)

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπkmax
φk0j

φk0j (Vk − Vj) ,

16Strictly speaking, our convention to use φkij to denote the probability that a worker in a match of type i
and an employer in a match of type j choose to form a new match of type k means that (6) and (7) are the
value functions of a worker. The value functions corresponding to the employer are the same, except that φij is
replaced by φji everywhere on the right-hand sides of (6) and (7).
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and the value of a match to the pair, λci = 2Vi, satisfies

rλci − λ̇
c
i = 2yi − δ(λci − λc0) + α

NX
j=0

NX
k=1

njπkmax
φkij

φkij(λ
c
k + λc0 − λci − λcj) (8)

rλc0 − λ̇
c
0 = α

NX
j=0

NX
k=1

njπkmax
φk0j

φk0j(λ
c
k − λcj). (9)

With this notation, part (a) of Proposition 1 can be written as:

φkij

⎧⎨⎩
= 1 if λck + λc0 > λci + λcj
∈ [0, 1] if λck + λc0 = λci + λcj
= 0 if λck + λc0 < λci + λcj.

(10)

The competitive matching equilibrium can now be summarized by a list (λci , φ
k
ij , ni) for i, j =

0, ...,N and k = 1, ...,N that satisfies the Bellman equations (8) and (9), the match formation

conditions (10) and the laws of motion (1) and (2).

Notice the similarity between the equilibrium conditions and the planner’s optimality con-

ditions. Comparing (10) and (3) we see that the competitive matching equilibrium shares a

key feature with the social optimum: match formation is privately efficient. That is, under

the bargaining procedure we proposed, for given values of λci ’s, the individual agents’ utility

maximizing matching decisions imply that a new match is formed only in the cases when doing

so is efficient from the point of view of all the agents involved in the meeting.17

17 In contrast, the surplus splitting rule in Diamond and Maskin (1979, 1981) implies that match creation and
destruction is privately inefficient in the absence of exogenous government policy. To understand their result,
consider a simple special case of the double breach illustrated in Figure 3, where C and D are also in a match
of type i, so the situation between B and C is symmetric. Diamond and Maskin propose that B and C split
their matching rents by solving maxs (Vk − s− Vi) (Vk + s− Vi). Clearly, symmetry implies that s = 0 and
that their respective gains from matching equal Vk − Vi. Therefore, they will choose to leave their partners to
form a new match if Vk − Vi > 0. Note that their decision to match generates 2Vk + 2V0 and destroys 4Vi.
So, there will be instances–specifically, those where Vk + V0 − 2Vi < 0–in which B and C “leave money on
the table” from the point of view of the four agents involved in the meeting: There is too much breach in the
equilibrium where agents are free to walk away from their partners. Diamond and Maskin point out that private
efficiency can be restored if agents are forced to pay what lawyers call “compensatory damages”; i.e., if in order
to separate from their current partners, B and C are required to pay each of them T = Vi − V0. Rents are
now split by solving maxs (Vk − s− Vi − T ) (Vk + s− Vi − T ), so the respective gains to B and C if they match
equal Vk + V0 − 2Vi. The payment of compensatory damages forces B and C to internalize the effect that their
match-formation decisions have on their current partners, and consequently the decentralized equilibrium with
this policy generates privately efficient separations. In our bilateral bargaining procedure, the outside option of
B (and C) reflects what A (and D) is willing to pay, at most 2Vi − V0 (instead of Vi), and thus our competitive
matching equilibrium implements privately efficient separations without the need for government policy.
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The equilibrium values of the match to the pair satisfy very similar conditions to the ones

that the shadow prices of the match must satisfy in a social optimum. In fact, conditions

(8) and (9) would be identical to (4) and (5), were it not for the fact that in the optimality

conditions there is a “2” in front of the contact rate α. This difference is due to a search (or

match-formation) externality: in the decentralized economy, an individual agent does not take

into account the impact that her decisions to form and destroy matches have on the arrival of

opportunities of the other agents. Although the arrival rate of any new opportunity is constant

here, the arrival rate of a new opportunity with a particular type of agent is proportional to

the measure of agents of that type. Also, whether or not a new match is formed depends not

only on the quality of the new potential match, but also on the types of the existing matches.

Therefore, the relevant meeting rate is quadratic, because the total number of contacts between

type i agents and type j agents is equal to αninj.18

The relationship between the equilibrium match values and the planner’s shadow prices can

also be recast as follows. Define µi = λi − λ0 and µci = λci − λc0. Then from (4), (5), (8) and

(9), we have:

(r + δ)µi − µ̇i = 2yi + 2α
NX
j=0

NX
k=1

njπk max
τkij ,τ

k
0j

h
τkij
¡
µk − µi − µj

¢− τk0j
¡
µk − µj

¢i
(11)

2 (r + δ)µci − 2µ̇ci = 4yi + 2α
NX
j=0

NX
k=1

njπk max
φkij ,φ

k
0j

h
φkij(µ

c
k − µci − µcj)− φk0j(µ

c
k − µcj)

i
. (12)

Observe that if we modify the planner’s problem by replacing r in (11) with r0 = 2r + δ, then

the first order conditions of this modified planner’s problem are identical to the equilibrium

conditions for the competitive matching equilibrium in the steady state (µ̇i = µ̇ci = 0), except

that the flow outputs yi all appear multiplied by half for the planner. But a proportional

change of all output levels yi just induces a proportional change in the paths of the µi’s that
18Mortensen (1982) shows that “mating models” in which an agent’s decisions affect other agents’ meeting

probabilities typically fail to achieve the socially optimal allocation due to a search externality. This search
externality may be avoided in an environment with “directed search,” in which workers in matches of productivity
yi look for employers who are in matches of productivity yj , in the designated “i− j island” (e.g., see Felli and
Roberts (2001)). However, we consider the random search framework to be more suitable for our economy, where
every worker and every employer is ex ante homogeneous and productivity differences are match-specific.
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solve (11), which does not change the choices of {τkij, τk0j} nor the resulting distribution {ni}Ni=1.
We summarize this result as follows:

Proposition 2 A competitive matching equilibrium exists. Moreover, all steady-state competi-

tive matching equilibria satisfy the first order conditions of a modified social planner’s problem,

in which the subjective discount rate, r, is replaced by the higher rate r0 = 2r + δ, where δ is

the exogenous destruction rate of any match. The allocation that solves the modified planner’s

problem can be decentralized as a competitive matching equilibrium.

4 Employment Protection

In this section we introduce employment protection policies and characterize their effects on

the equilibrium allocations and payoffs. The class of policies we consider specifies that when

an employer breaks a match of type i, she must pay severance compensation Si ≤ Vi − V0 to

the worker she separates from, and a firing tax Ti to the government.19 Note that the policies

apply to separations initiated by employers (“dismissals”) but not to those initiated by workers

(“quits”) and therefore break the symmetry between employers and workers. For this reason

we now let Vi be the value of a worker, Ji the value of an employer, and Mi = Ji + Vi the

value of a match of type i in the equilibrium. Because the employer and the worker in a

match are no longer symmetric, we think of the matched pair without an outside production

opportunity as being involved in continual negotiations, instead of simply splitting the output

equally. Proposition 3, which we prove in the appendix, summarizes the effects that employment

protection policies have on the outcomes of the different bargaining situations.

Proposition 3 (a) An unmatched employer and an unemployed worker who draw a new pro-

duction opportunity yk always choose to match, and the expected gain to each equals 12 (Mk −M0).

(b) A worker in a match of quality i and an unmatched employer who draw a new production

19 In what follows, we will skirt the issue of exactly how a government may be able to collect taxes from agents
in a random-matching economy, as well as why the same government is unable to facilitate the matching process.
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opportunity yk choose to form the new match iffMk > Mi. The expected gains to the worker and

the new employer equal 12 max (Mk −M0 − Si, 0) and 1
2 max (Mk −Mi, 0), respectively. The old

employer’s capital gain equals −12 {max [min (Mk,Mi)−M0 − Si, 0]}.
(c) An employer in a match of quality i and an unemployed worker who draw a new production

opportunity yk choose to form the new match iff M 0
k ≡ Mk − Ti > Mi. The expected gains

to the employer and the new worker equal 12 max (M
0
k −M0 − Si, 0) and 1

2 max (M
0
k −Mi, 0),

respectively. The old worker’s capital gain equals −12 {max [min (M 0
k,Mi)−M0 − Si, 0]}.

(d) An employer in a match of quality i and a worker in a match of quality j who draw

a new production opportunity yk choose to form the new match iff M 0
k + M0 > Mi + Mj.

The expected gains to the employer and the worker with the new matching opportunity equal

1
2 max (M

0
k −Mj − Si, 0) and 1

2 max (M
0
k −Mi − Sj , 0), respectively. The expected gains to the

old employer and the old worker are −12 {max [min (M 0
k −Mi,Mj −M0)− Sj , 0]} and

−12 {max [min (M 0
k −Mj ,Mi −M0)− Si, 0]}.

For given value functions, imposing firing taxes Ti on employers tends to make existing

matches more stable. The reason is that individual creation and destruction decisions depend

on the sum of the payoffs of all the agents involved in a meeting. Forcing employers to pay

firing taxes to an outside party reduces the total surplus associated with double breaches and

employer-initiated single breaches, so both become less likely. As another corollary to Propo-

sition 3, note that–as one might expect from the Coase Theorem–forcing employers to make

severance payments Si to a worker upon dismissal has no effect on the match creation and

destruction decisions, given the value functions. More subtle is the effect that these policies

may have on the value functions themselves, which we turn to next.

Lemma 1 In an equilibrium with employment protection policies, the value of a match of
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quality i = 1, . . . ,N satisfies

rMi − Ṁi = 2yi − δ (Mi −M0) + αn0

NX
k=1

πk max
φki0,φ

k
0i

³
φki0

Mk−Mi
2 + φk0i

Mk−Mi−Ti
2

´
+α

NX
j=1

NX
k=1

njπk max
φkij ,φ

k
ji

³
φkij

Mk+M0−Mi−Mj−Tj
2 + φkji

Mk+M0−Mi−Mj−Ti
2

´
,(13)

and the sum of the values of an unmatched employer and an unemployed worker satisfies

rM0−Ṁ0 = αn0

NX
k=1

πk (Mk −M0)+α
NX
j=1

NX
k=1

njπk max
φk0j ,φ

k
j0

³
φk0j

Mk−Mj−Tj
2 + φkj0

Mk−Mj

2

´
. (14)

(Lemma 1 is proved in the appendix.) Note that if we set Ti = 0 for all i, (13) and (14)

reduce to (8) and (9), and the break-up conditions in Proposition 3 are equivalent to (10).

Interestingly, the value functions are always independent of severance pay, Si. Thus, severance

pay is neutral: it has no effect on the equilibrium allocations or the value of the match (even if

it affects the way the worker and the employer split that value).20

5 Free Entry

So far we have been assuming constant and equal populations of employers and workers. In

this section we generalize the formulation by allowing free entry of employers. (The results

corresponding to the alternative formulation with fixed and different population sizes will be

obtained as a special case.) Let mj be the number of employers in matches of productivity

yj. We still use ni to denote number of workers employed in matches of productivity yi. Since

matching is one-to-one,mi = ni for all i ≥ 1, butm0 (the number of unmatched employers) may

be larger or smaller than n0 (the number of unemployed workers). We assume that a worker

contacts an employer who is currently in a match of type j at rate αmj , while an employer

20The idea that government-mandated transfers between the employer and the worker can be offset by private
contracts between the parties goes back to Lazear (1990). Lazear also notes that severance pay effects are neutral
only when the payment made by the employer is received by the worker, and not if third-party intermediaries
receive or make any of the payments.
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contacts a random worker in a match of type i at rate αni.21 We also assume that unmatched

employers incur a total flow cost C (m0) of posting vacancies, with C0 ≥ 0 and C00 > 0 and

C0 (0) = 0.

We begin by solving the planner’s problem. The planner chooses τkij ∈ [0, 1] and m0 ≥ 0 to
maximize the discounted value of aggregate outputZ

e−rt
"

NX
i=1

2yini −C (m0)

#
dt,

subject to the flow constraints

ṅi = απi

NX
j=0

NX
k=0

njmkτ
i
jk − αni

NX
j=0

NX
k=1

mjπkτ
k
ij − αmi

NX
j=0

NX
k=1

njπkτ
k
ji − δni, (15)

ṅ0 = α
NX
i=0

NX
j=1

NX
k=1

nimjπkτ
k
ij + δ

NX
j=1

nj − αn0

NX
j=0

NX
k=1

mjπkτ
k
0j , (16)

and initial conditions for ni, i = 0, ...,N . Let λi be the shadow price of a match with produc-

tivity yi at date t. The Hamiltonian is

H =
NX
i=1

2yini −C (m0)− δ
NX
i=1

ni (λi − λ0) + α
NX
i=0

NX
j=0

NX
k=1

nimjπkτ
k
ij (λk + λ0 − λi − λj) .

The optimality conditions for τkij are still given by (3), while the choice of m0 satisfies

C 0 (m0) = α
NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi) . (17)

The left-hand side of condition (17) is the marginal cost of an unmatched employer (or the

marginal cost of “maintaining a vacancy”), and the right side is the expected return from

having an additional unmatched employer (λk − λi is the capital gain to the planner from

creating a new match of productivity yk by matching an unmatched employer to a worker

employed in a match of productivity yi, while αniπkτki0 is the arrival rate of this capital gain).

21 In other words, the total number of meetings is given by a quadratic matching technology, αmn, where m is
the total number of employers and n the total number of workers. In our formulation, n = 1 and m = 1−n0+m0.
In the Appendix we also work out the optimality conditions for the case in which the aggregate meeting technology
is instead given by a function ξ (m,n) which is monotonic in both arguments and homogeneous of degree one.
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The Euler equations are:

rλi − λ̇i = 2yi − δ (λi − λ0) + αm0

NX
k=1

πkτ
k
i0 (λk − λi) + αn0

NX
k=1

πkτ
k
0i (λk − λi)

+α
NX
j=1

NX
k=1

njπk(τ
k
ij + τkji) (λk + λ0 − λi − λj) ,

for i = 1, . . . ,N , and

rλ0 − λ̇0 = αm0

NX
k=1

πkτ
k
00 (λk − λ0) + α

NX
j=1

NX
k=1

njπkτ
k
0j (λk − λj) .

We can use the optimality conditions (3) and (17) to rewrite the Euler equations:

rλi − λ̇i = 2yi − δ (λi − λ0) + α (m0 + n0)
NX
k=1

πkmax
τki0

τki0 (λk − λi)

+2α
NX
j=1

NX
k=1

njπkmax
τkij

τkij (λk + λ0 − λi − λj) (18)

rλ0 − λ̇0 = −C 0 (m0) + α (m0 + n0)
NX
k=1

πkmax
τk00

τk00 (λk − λ0)

+2α
NX
j=1

NX
k=1

njπkmax
τk0j

τk0j (λk − λj) . (19)

Conditions (18) and (19) are very similar to those for the model with constant and equal

populations of employers and workers. In particular, note that they reduce to (4) and (5)

respectively if we set C 0 = 0 and m0 = n0. Alternatively, we can set C0 = 0 but treat the

initial condition for m0 parametrically, to obtain a formulation with fixed but not necessarily

equal populations of employers and workers. In the model with free entry we have an additional

unknown at each date, and (17) provides the additional optimality condition.

Next, we characterize the competitive matching equilibrium using the bargaining procedure

we described in Section 3. Here, we also allow for the employment protection policies introduced

in Section 4, and as in that section, we will let Vi be the value of a worker, Ji the value of an

employer, and Mi = Ji + Vi the value of a match of type i in the equilibrium. Each employer
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who posts a vacancy pays c = C 0 (m0), while filled employers do not have to pay anything (e.g.,

because production itself is free advertisement to attract workers).22 The equilibrium outcomes

in the different types of bargaining situations are still described by Proposition 3.

As before, the choice of a worker in a match of type i and an employer in a match of type

j to form a new match of type k is represented by φkij ∈ [0, 1]. Given the outcomes of the
bargaining procedure, we have:

Lemma 2 In an equilibrium with employment protection polices and possibly different popula-

tion sizes of employers and workers, the value of a match of quality i = 1, . . . ,N satisfies

rMi − Ṁi = 2yi − δ (Mi −M0) + α
NX
k=1

πk max
φki0,φ

k
0i

³
m0φ

k
i0
Mk−Mi

2 + n0φ
k
0i
Mk−Mi−Ti

2

´
+α

NX
j=1

NX
k=1

njπk max
φkij ,φ

k
ji

³
φkij

Mk+M0−Mi−Mj−Tj
2 + φkji

Mk+M0−Mi−Mj−Ti
2

´
,(20)

and the sum of the values of an unmatched employer and an unemployed worker satisfies

rM0 − Ṁ0 = −c+ α (m0 + n0)
NX
k=1

πk
Mk−M0

2

+α
NX
j=1

NX
k=1

njπk max
φk0j ,φ

k
j0

³
φk0j

Mk−Mj−Tj
2 + φkj0

Mk−Mj

2

´
, (21)

where c = C 0 (m0).

(Lemma 2 is proved in the appendix.) Since there is free entry of employers, any equilibrium

with a positive measure of unmatched employers must be such that the expected return to an

unmatched employer is just enough to cover the entry cost:

c = α
NX
i=0

NX
k=1

niπkφ
k
i0
Mk−Mi

2 . (22)

If we set Ti = 0 for all i, and then compare (20), (21) and (22) with (18), (19) and (17),

we see that–just as in the case with fixed and equal populations of employers and workers–

the planner’s first-order conditions and the equilibrium conditions in the steady state differ
22 If C (m0) is strictly convex, profit cm0 − C (m0) is distributed to the owners of the scarce factor in the

vacancy-posting technology. This profit will not affect the labor market because the utility function is linear.
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only in that in his calculations, the planner imputes an “effective” contact rate equal to 2α

instead of just α, the contact rate of an individual agent. So following the same logic that

led to Proposition 2, if we replace the subjective discount rate of the social planner, r, with

r0 = 2r + δ, then again, in the steady state the first order conditions corresponding to the

modified planner’s problem correspond to ones of the competitive matching equilibria. And if

the equilibrium is unique, then the equilibrium allocation is identical to that of the modified

social planner’s economy.

6 Further Analysis and Labor Market Implications

In this section we lay out a version of the model with two productivity levels (N = 2) and

restrict our attention to the class of stationary equilibria. Our motivation is twofold. First, we

want to illustrate some of the theoretical results derived in the previous sections, such as the

inefficiency of the competitive matching equilibrium (Proposition 2). Second, we want to show

how the theory relates to several strands of the macro-labor literature, and in particular how

it can help conceptualize many of the empirical studies of gross job and worker flows.

We begin by considering the model of Section 3, where there is no government policy, and

the numbers of employers and workers are fixed, equal, and normalized to unity. For this case,

(1) and (2) reduce to

ṅ2 = απ
¡
n20 + 2n0n1 + n21φ

¢− δn2 (23)

ṅ1 = α (1− π)n20 − 2απn0n1 − 2απn21φ− δn1 (24)

ṅ0 = δ (n1 + n2) + απn21φ− αn20. (25)

As long as the value function is increasing in the productivity of the current match (V0 < V1 <

V2)–which will be the case–we know that φ20j = 1 for j = 0, 1 and that φ
k
i2 = 0 for all i and

k. Thus the only non-trivial choice occurs when a worker employed in a match of productivity

y1 meets an employer who is in a match of productivity y1, and they draw an opportunity

to produce y2. To simplify notation, we let φ = φ211 and π = π2 (so π1 = 1 − π). Figure 5
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illustrates the worker flows and Lemma 3 in the appendix establishes that a unique steady state

distribution of workers exists for any given φ ∈ [0, 1].

Figure 5: Worker flows for the case of N = 2.

In a stationary equilibrium the value functions satisfy:

rV2 = y2 − δ (V2 − V0)

rV1 = y1 − δ (V1 − V0) + αn0π (V2 − V1) + αn1πφ (V2 + V0 − 2V1)

rV0 = αn0 [π (V2 − V0) + (1− π) (V1 − V0)] + αn1π (V2 − V1) .

From Proposition 1 we know that φ = 1 with certainty if and only if V2 + V0 − 2V1 > 0. We

can use the Bellman equations to write this inequality as

y2
y1

> 2− α [πn1 + (1− π)n0]

r + δ + α (n0 + πn1)
, (26)

where n0 and n1 are the steady state numbers of matches, i.e., n0 and n1 satisfy (23)—(25) with

ṅ2 = ṅ1 = ṅ0 = 0 (see Lemma 3 for details). Since the right side of (26) is bounded, it is clear

that φ = 1 with certainty for y2/y1 large enough. In these cases, the agents involved will destroy

two middle-productivity matches in order to form a single high-productivity match whenever the
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opportunity arises. Perhaps more surprisingly, notice that there is always some x > 0 such that

φ = 1 for all y2/y1 > 2−x. That is, there is always a range of the productivity differential y2/y1
for which two middle-productivity matches are destroyed to form a single high-productivity

match even if this entails a reduction in current output. To find a stationary equilibrium, let

ni (φ) denote the steady state number of matches of productivity yi as characterized in Lemma

3. Define the best-response map Φ (φ) = y2
y1
+ α[πn1(φ)+(1−π)n0(φ)]

r+δ+α[n0(φ)+πn1(φ)]
− 2. From this we see that

φ = 1 is an equilibrium if Φ (1) > 0, φ = 0 is an equilibrium if Φ (0) < 0, and φ∗ ∈ [0, 1]
is an equilibrium if Φ (φ∗) = 0. The map Φ is continuous on [0, 1], so there always exists a

stationary equilibrium. However, an equilibrium is not always unique, leading to the possibility

of coordination failure.23

Given (26), Proposition 2 tells us that the social planner chooses to destroy a pair of matches

of productivity y1 to create a single match of productivity y2 if and only if

y2
y1

> 2− 2α [πn1 + (1− π)n0]

r + δ + 2α (n0 + πn1)
, (27)

with n0 and n1 again given by Lemma 3. Notice that here there also are instances in which the

planner chooses to destroy two matches of productivity y1 to create a single match of produc-

tivity y2 at the cost of reducing current output. From a static point of view, this may come as

a surprise, since unmatched agents are unproductive; but from the planner’s dynamic perspec-

tive, unmatched agents are a valued input in the matching process because the unmatched pair

helps other agents climb the productivity ladder. Hence, for some parametrizations (e.g., y2/y1

slightly below 2), the planner may choose to reduce current output as a form of investment, in

order to increase future output with a larger number of high productivity matches. This intu-

ition can be formalized by noticing that the right-hand side of (27) approaches 2 as r becomes

large. The higher the degree of impatience, the less willing the planner is to trade off current

for future production.
23The coordination failure may arise here, because the matching technology is effectively quadratic, and exhibits

increasing returns-to-scale. See Diamond (1982b) and Mortensen (1989) for more on this type of coordination
failure. We can show that π ≥ 1

3 is a sufficient condition for the uniqueness of the steady state competitive
equilibrium with N = 2. In what follows, we continue the discussion for the case of unique equilibrium.
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From (26) and (27) we also learn that failing to internalize the search externality makes

atomistic agents less willing to destroy middle matches relative to the planner. To understand

why this is the case, recall that from Proposition 2 we know that the competitive matching

equilibrium corresponds to a modified planner’s economy with a higher discount rate r0 = 2r+δ.

Thus the modified planner is less willing to trade off current for future output. Consequently,

the modified planner is (agents in the competitive matching equilibrium are) less willing to

trade two matches of productivity y1 for two agents in a match of productivity y2 and two

unmatched agents.

Figure 6 illustrates the difference between the relevant destruction margins in the efficient

and the competitive solutions. On the horizontal axis is r, the discount rate, and on the

vertical axis y2/y1, the relevant measure of inequality in instantaneous productivities. Notice

that the (n0, n1) pair that appears in (26) is identical to that in (27), both satisfy (23)—(25)

with ṅ2 = ṅ1 = ṅ0 = 0, and are independent of y1, y2 and r. The solid lines with the higher and

lower intercepts are conditions (26) and (27), respectively, at equality. As in the competitive

economy, we know that for the social planner’s economy τ20j = 1 for j = 0, 1, and that τ
k
i2 = 0 for

all i and k, and therefore we use τ to denote τ211, the only nontrivial decision. Double breaches

occur in the competitive equilibrium only for parametrizations that lie above the higher solid

line. In contrast, the planner implements double breaches for parametrizations that lie above

the lower solid line. For any given degree of impatience r, the competitive and the efficient

allocations coincide only if the flow productivity differential y2/y1 is either large enough (i.e.,

above the higher solid line) or small enough (below the lower solid line). For intermediate

values the allocations differ relative to the efficient benchmark: matches of productivity y1 are

too stable in the competitive economy.

It is possible to design policies that bring the competitive allocation in line with the plan-

ner’s. For example, suppose every agent receives a payoff b > 0 while unmatched, and that

this transfer is paid for by levying a tax Te from every matched agent. The balanced-budget
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Figure 6: Destruction regions for the case with N = 2.

condition is bn0 = Te (n1 + n2). The Bellman equations for the competitive economy become

rV̂2 = y2 − Te − δ(V̂2 − V̂0)

rV̂1 = y1 − Te − δ(V̂1 − V̂0) + αn0π(V̂2 − V̂1) + αn1πφ(V̂2 + V̂0 − 2V̂1)

rV̂0 = b+ αn0

h
π(V̂2 − V̂0) + (1− π) (V̂1 − V̂0)

i
+ αn1π(V̂2 − V̂1).

Notice that this policy can only affect the flow equations (23)—(25) indirectly through their

effect on the separation decision φ. So for a given φ, the stationary distribution of agents

across states is still described by Lemma 3. However, now φ = 1 with certainty if and only if

V̂2 + V̂0 − 2V̂1 > 0, which, using the government budget constraint, can be written as
y2 − Te

n0

y1 − Te
n0

> 2− α [πn1 + (1− π)n0]

r + δ + α (n0 + πn1)
. (28)

Observe that if we let Te = T ∗e , where

T ∗e =
αn0 (r + δ) [πn1 + (1− π)n0]

[r + δ + 2α (n0 + πn1)] (r + δ + απn0)
y1,
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then (28) coincides with (27). In other words, the compensation b∗ = n1+n2
n0

T ∗e makes agents

internalize the search externality in the competitive matching equilibrium and implements the

planner’s match creation and destruction decisions.24

To explore the effects of employment protection policies, we now turn to the more general

formulation of Section 5. We introduce employment protection policies akin to the ones observed

in many actual economies and allow for the number of unmatched employers (m0) to differ from

the number of unemployed workers (n0). We now use T to denote the firing tax that an employer

who breaks a match must pay to the government.25 The laws of motion for the numbers of

workers in each type of match are

ṅ2 = απ
¡
m0n0 + ψn0n1 +m0n1 + φn21

¢− δn2

ṅ1 = α (1− π)m0n0 − δn1 − απ
¡
ψn0n1 +m0n1 + 2φn

2
1

¢
ṅ0 = απφn21 + δ (n1 + n2)− αm0n0,

where φ = φ211 is the probability of a double breach, and ψ = φ201 denotes the probability that

an employer in a low productivity match initiates a single breach.26 The values of a match to

the pair in the stationary equilibrium satisfy:

rM2 = 2y2 − δ (M2 −M0)

rM1 = 2y1 − δ (M1 −M0) + απ
£
m0

M2−M1
2 + n0ψ

M2−M1−T
2 + n1φ (M2 +M0 − 2M1 − T )

¤
rM0 = −c+ α (m0 + n0)

£
πM2−M0

2 + (1− π) M1−M0
2

¤
+ αn1π

£
ψM2−M1−T

2 + M2−M1
2

¤
,

where c = C 0 (m0).

From Proposition 3 we know that ψ = 1 if and only ifM2−M1−T > 0. Using the Bellman

24Here, the subsidy to the unmatched agents is beneficial because it internalizes search externalities and not
because it provides insurance. A single subsidy and tax rate are enough to achieve the efficient allocation in this
case with N = 2, but this need not be the case with more heterogeneity of matches (N > 2).
25We do not specify any severance payments here, because they have no effect on match formation and

destruction decisions, which is what we focus on hereafter.
26These are the only nontrivial decisions in this setting, since φk00 = 1 for k = 1, 2, φ210 = 1, and φkij = 0 if

either i ≥ k or j ≥ k.
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equations, we find that this inequality holds if and only if

y2
y1

> 1 +
r + δ + α

2πm0

2y1
T.

Also, from Proposition 3 we know that φ = 1 if and only if M2 +M0 − 2M1 − T > 0, and this

inequality holds if and only if

y2 − c

y1 − c
> 2− α

£
πn1 + (1− π) m0+n0

2

¤
r + δ + α

¡
m0+n0
2 + πn1

¢ +ΩT (29)

where

Ω ≡ (r+δ)2+(r+δ)α
2
[m0+n0+π(m0−n0+n1)]+(α2 )

2
π[(m0+n0)(m0−πn0)+πn1(m0−n0)]

2(y1−c)[r+δ+α
2
(m0+n0+2πn1)]

.

Note that if we set m0 = n0 and c = T = 0, then (29) reduces to (26), the condition for double

breaches to occur in the model with equal population sizes and no employment protection.

Condition (29) is harder to satisfy for larger T : higher firing taxes make double breaches less

likely. In general, there will be two cutoffs, Tφ and Tψ, with Tφ < Tψ, such that neither double

breaches nor employer-initiated single breaches take place if T > Tψ, single but no double

breaches occur if Tφ < T < Tψ, and the match formation and destruction decisions are as in

the model with no taxes if T < Tφ.

The model has clear predictions regarding individual agents’ employment histories, the

various attributes of different types of jobs, and how they are affected by policy. For example,

consider a job of productivity y2 (a “good job”) and another of productivity y1 (a “bad job”).

Then, good jobs are not only better paid, but also more stable. Good jobs are more stable

than bad jobs in the sense that the expected time until a worker gets displaced is 1δ for the job

of productivity y2 and 1
δ+απ(ψn0+φn1)

for the job of productivity y1.27 Employment protection

policies (e.g., T > Tψ) could induce φ = ψ = 0 and render type 1 matches just as stable as type

2 matches. When displaced from a job of productivity i, the worker suffers a capital loss equal

to Vi − V0, and it will typically take him some time to climb back up to a job of productivity
27 Instead of measuring how stable a match is in terms of the expected time it takes the worker to get fired,

we could measure it in terms of the expected time it takes the worker to first find himself unemployed, which is
δ+απ(m0+φn1)

δ[δ+απ(m0+ψn0+2φn1)]
for a worker in a match of productivity y1 and 1

δ
for one in a match of productivity y2.
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equal to or higher than the one he was displaced from. So the model is also consistent with the

basic fact that displaced workers suffer significant and persistent income losses (see Jacobson

et al. (1993) or Violante (2002)).28

As we mentioned earlier, there is a large body of empirical work that studies the properties

of job and worker flows. One strand of this literature documents the sheer size of these flows,

while another focuses on cross-country differences and tries to relate them to differences in

labor market regulations.29 Our model can help organize many of the empirical findings. To

illustrate, we first carry out in the theory, the same gross flows accounting exercises as Davis

and Haltiwanger have pioneered with actual data.

Figure 7 displays the five types of transitions that an employer and a worker can find

themselves in, and summarizes the basic calculations involved in computing the theoretical,

“real-time” counterparts of the gross flows.30 Let JC(t) and JD(t) denote gross job creation

and destruction over a period of length t. Then

JC(t) = α (m0n0 + πm0n1) t,

JD(t) =
£
απ
¡
m0n1 + φn21

¢
+ δ (n1 + n2)

¤
t,

and job reallocation is JR(t) = JC(t) + JD(t).

Let H(t) denote the number of hires, L(t) the number of layoffs (employer-initiated sep-

arations plus matches destroyed exogenously) and Q(t) the number of quits (worker-initiated

28For example, suppose a worker is displaced from a job of productivity y1 (i.e., either his match is hit by the
exogenous destruction shock δ, or his employer fires him in order to form a new match of productivity y2 with
another worker). The expected time it takes this worker to find himself in a job that pays at least as well as the
one he lost is 1

α(m0+πψn1)
. And it takes a worker who gets displaced from a job of productivity y2 even longer

to see his income recover to the pre-displacement level; on average, precisely

δ+α[(1−π)m0+πψn0+2πφn1]
απ{δ(m0+ψn1)+α[π(m0+ψn1)(m0+ψn0+2φn1)+(1−π)(m0+φn1)m0]} .

29The first strand stems from the work of Davis and Haltiwanger (1992), while examples of the second include
Millard and Mortensen (1997), Bertola and Rogerson (1997), Ljungqvist and Sargent (1998), Mortensen and
Pissarides (1999), Blanchard and Portugal (2001), and Pries and Rogerson (2005).
30The actual data used to construct the empirical job flows are collected rather infrequently, usually quarterly.

Since our model economy is set in continuous time, we can compute all flows in “real time.” We do this first,
and address the issue of time-aggregation below. Also, empirical flows are usually normalized by a measure of
the average employment level, but we omit this normalization to simplify the exposition.
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Figure 7: Job and worker flows accounting.

separations) that occur over a period of length t. We have

H(t) = α
£
m0n0 + π

¡
m0n1 + ψn1n0 + φn21

¢¤
t,

L(t) =
£
απ
¡
ψn1n0 + φn21

¢
+ δ (n1 + n2)

¤
t,

Q(t) = απ
¡
m0n1 + φn21

¢
t,

and total separations are S(t) = L(t) + Q(t). The empirical studies typically focus on worker

turnover, WT (t) = H(t) + S(t), or on worker reallocation, WR(t), as measures of gross worker

flows. According to the theory,

WR(t) = α
£
m0n0 + π

¡
m0n1 + 2ψn1n0 + 2φn

2
1

¢
+ δ (n1 + n2)

¤
t.

In the model, workers only quit to take better jobs, so the number of job-to-job transitions
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over a period of length t is JJ(t) = Q(t). Since employers can also search while matched, they

can make “worker-to-worker” transitions, the natural counterpart to the workers’ job-to-job

transitions. In fact, as we discussed in the introduction, the available evidence indicates that

those types of transitions, often referred to as “replacement hiring” in the empirical literature,

are actually quite prevalent in actual economies. In the model, replacement hiring in the

aggregate, over a period of length t, is

RH(t) = απn1 (ψn0 + φn1) t. (30)

Intuitively, RH(t) conveys how frequently employers churn their workers, while JJ(t) is a mea-

sure of how frequently workers churn their employers.31

Having exact theoretical counterparts to all the empirical notions of job and worker flows

makes it easier to appreciate the relationships between the different measures used in the liter-

ature.32 For example, job-to-job transitions account for the difference between worker turnover

and worker reallocation: WT (t) −WR(t) = JJ(t). Perhaps a more common measure of worker

flows in excess of job flows is the difference between worker turnover and job reallocation (e.g.,

this is the notion of churning used by Burgess, Lane and Stevens (2000)):

WT (t) − JR(t) = 2RH(t). (31)

So in the model–as in the data–worker turnover is larger than gross job reallocation.33 In-

stances of replacement hiring lie behind this discrepancy, since job creation and destruction are

unchanged when a firm fires a worker to replace him with an unemployed one, yet these events

add two transitions (one for each worker involved) to the worker turnover count.

31 In fact, RH(t) − JJ(t) = απn1 (ψn0 −m0) t, so in general the difference depends on policy as well as on
the relative numbers of unmatched employers and unemployed workers. For example, job-to-job transitions will
exceed replacement hiring if T > Tψ, and the magnitude of the difference is larger the greater the number of
unmatched employers. Admittedly, capacity constraints are rather stark in our model (i.e., each employer can
be matched with one worker), and perhaps overemphasize replacement hiring. We leave to future research the
challenging–but potentially rewarding–analysis of a formulation with more general decreasing returns-to-scale.
32This is not a minor point. For example, Davis and Haltiwanger (1999, p. 82) point out that some studies

have failed to appreciate the conceptual differences between gross worker reallocation and total turnover.
33See Davis and Haltiwanger (1992, 1999), Anderson and Meyer (1994), Hamermesh, Hassink and van Ours

(1996), Davis, Haltiwanger and Schuh (1996), Albæk and Sørensen (1998), and Burgess, Lane and Stevens (2000).
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Some recent cross-country empirical studies have found that job reallocation turns out to

be roughly similar across countries with very different labor market policies. Instead, the differ-

ences are in worker turnover.34 This seems to indicate that understanding the nature of worker

turnover, and in particular, what determines worker turnover in excess of job reallocation, is

key to understanding the role of policy in shaping labor market outcomes. Addressing these

issues requires a theory that distinguishes between job and worker flows, a distinction which

is absent from the bulk of the vast existing literature that uses matching models to assess the

effects of labor market policy.

Combining (30) and (31) makes it clear how employment protection policies determine the

amount of worker turnover in excess of job reallocation: for example, they will not differ much

under very stringent regulations (e.g., T close to Tψ). As can be seen in Figure 7, employment

protection policies hinder precisely the kinds of transitions that generate worker flows in excess

of job flows (those in the third and fourth rows in the figure). Along these lines, Blanchard and

Portugal (2001) find that relative to the United States, worker flows are smaller in Portugal

even for given job flows. For instance, they estimate the flow of workers out of employment to

be roughly between 1.5 and 2 times larger than job destruction in the United States, while in

Portugal that flow barely exceeds job destruction. In our model, all workers exiting employment

flow into unemployment; let L(t) denote these layoffs. We find L(t) − JD(t) = RH(t) − JJ(t).

Policy affects this magnitude directly through its effects on the single breach decision ψ, and

indirectly through its effect on the composition of the population, m0, n0, and n1.

So far our theoretical accounting exercise has implicitly assumed access to real-time data.

But many data are only available at a point in time, e.g., we know the employment level of a

given establishment at dates t and t+1, but have no information on what happened during the

time interval (t, t+ 1). Any attempt to measure employment-to-employment transitions, for

34Bertola and Rogerson (1997) were the first to note the fact that job reallocation rates do not vary much
across countries with very different employment protection policies, such as Italy, Germany, France, the United
Kingdom, and the United States. They also pointed out that average job tenures seem to be longer in regulated
countries, suggesting that policy differences manifest themselves in worker turnover rates. See Pries and Rogerson
(2005) for a summary of more recent evidence.
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instance, faces this time-aggregation problem and as a result may include as a single job-to-job

transition an employer change, while there was an intervening period of nonemployment or even

multiple employers between survey dates. There is usually no way of knowing the size or even

the sign of this bias.35

In order to have an exact mapping between the accounting in the theory and that done

for actual economies, next we will subject the theoretical accounting exercise to the same data

limitations empirical researchers face. Lemma 4 in the appendix shows that the stochastic

process that rules the evolution of a worker’s state can be summarized by a matrix [p(t)ij ]. For

the simple case of N = 2 the matrix is 3×3, and p(t)ij represents the probability that the worker
finds himself in state j at date t0+ t given that he was in state i at date t0. Arguments similar

to those that lead to Lemma 4 can be used to show that the stochastic process that rules the

evolution of an employer’s state can be summarized by a matrix [p̂(t)ij ], where p̂
(t)
ij represents the

probability that an employer finds herself in state j at date t0 + t, given she was in state i at

date t0. With the matrices [p
(t)
ij ] and [p̂

(t)
ij ] in hand, and given our economy is set in continuous

time, we can compute any variable of interest and subject it to an arbitrary degree of time-

aggregation. For example, suppose that a period of length t elapses between worker surveys.

Then, in the model, the time-aggregated number of job-to-job transitions is

JJ
(t)
=
³
p
(t)
22 − e−δt

´
n2 +

³
p
(t)
11 − e−[δ+απ(m0+ψn0+2φn1)]t

´
n1 + p

(t)
21n2 + p

(t)
12n1, (32)

in contrast to the exact measure, JJ(t) = απ
¡
m0n1 + φn21

¢
t. The first term on the right of

(32) is the flow of workers who transit from a match of productivity y2 to another match of

productivity y2 during a time interval of length t (after subtracting those who never left the

same match, with probability e−δt). The second term is the similar worker flow from a match

of productivity y1 to another match of productivity y1.

Now consider again the basic empirical finding that worker turnover is much larger than

35Fallick and Fleischman (2001), for example, explicitly acknowledge this problem and choose to classify all
workers who report different employers in the two months they were surveyed as having had a (single) job-to-job
transition.
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job reallocation. Since the former is calculated as the sum of all hires and separations over a

given time interval, while job creation and job destruction are constructed from point-in-time

employment data, one may wonder to what extent the amount of worker turnover in excess

of job reallocation is a mere artifact of a time-aggregation bias. To answer this question,

suppose employment data is only available at intervals of length t, and compute the time-

aggregated theoretical measures of job creation, job destruction, and job reallocation: JC
(t)
=

m0[p̂
(t)
01 + p̂

(t)
02 ], JD

(t)
= n1p̂

(t)
10 + n2p̂

(t)
20 , and JR

(t)
= JC

(t)
+ JD

(t)
. Using the theory, the

difference between measured worker turnover and job reallocation can be written as

WT (t) − JR
(t)
= 2RH(t) +

h
JR(t) − JR

(t)
i
. (33)

The amount of worker turnover in excess of what would be needed to accommodate the reallo-

cation of jobs across establishments is composed of two parts, a “genuine” churning component,

and another component which is purely due to a time-aggregation bias in job flows. A parame-

trized version of the model can be used to assess how the relative sizes of the genuine churning

component and the component due to time-aggregation depend upon the data frequency, say

monthly versus quarterly–another example of how the theory can serve as a guide to under-

standing the nature of job and worker flows.36

7 Related Literature

In this section we discuss how our paper relates to the existing literature on labor-market match-

ing models with on-the-job search. Burdett (1978) adds on-the-job search to the single-agent
36To be clear, the empirical observation that worker flows exceed job flows at the establishment level is not,

per se, unquestionable evidence supporting the empirical relevance of the employer-initiated separations in our
theory. That is, the transitions that account for the excess worker turnover may not be exclusively due to the
fact that, in order to hire a new worker with whom he has a more productive opportunity, the employer must fire
an existing employee due to capacity constraints. In principle, the observation is also consistent with separations
that occur for other reasons (e.g., as captured by the δ-shock in the model) but are followed by a relatively
quick replacement. Our view on this issue is that, from a theoretical standpoint, it is desirable to allow for the
possibility that employers churn their workers (by engaging in replacement hiring), just as we allow workers to
churn their employers (by engaging in job-to-job transitions). But also from an empirical standpoint, there are
advantages to having a theory which exhibits both replacement hiring as well as separations followed by quick
replacement. For one thing, as (33) suggests, such a theory can be used to extract more information from the
available data in order to uncover what lies behind the excess worker reallocation at the micro level.
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search decision problem faced by a worker who samples wages from an exogenous distribution.

Mortensen (1978) studies the relationship between the nature of the wage bargaining problem

between a worker and an employer and their choices of on-the-job search intensities. He ob-

serves that the search intensities the employer and worker choose in a Nash equilibrium of the

noncooperative game are too high relative to those that would be chosen jointly to maximize

the value of the match.37

Diamond and Maskin (1979) extend Mortensen (1978) by embedding the search problem

of the single partnership in an equilibrium model with many potential partnerships. They

study the steady-state equilibria of a model in which agents are randomly paired in a costly

search process to carry out a single productive project. As in our setup, agents are ex ante

homogeneous, but matches are heterogeneous ex post and utility is transferable. The two

key differences in our frameworks are that in that model (i) agents always split the match

surplus symmetrically, and (ii) in anticipation of possible breaches, contracts may provide

for compensation or “damages” to be paid to the breached-against partner, which requires

that agents have the ability to commit to future actions or else that “courts” exogenously

enforce these contracts. Diamond and Maskin show that if the partner who breaks the match

is required to fully compensate the breached-against partner for the loss she suffers, then, as

in our competitive matching equilibrium, the two individuals with the option to form a new

match find it in their interest to breach precisely when by doing so they increase the sum

of the expected payoffs of the four parties involved in the meeting. The difference is that

our competitive matching equilibrium achieves this outcome through a more flexible bargaining

process involving side payments, without requiring that agents be able to commit to compensate

37Mortensen explores the ability of two alternative mechanisms to improve efficiency when agents choose their
search strategies noncooperatively. The mechanisms do not require direct monitoring, but rely on both agents’
ability to commit to future actions. The first is an ex ante agreement by each partner to make a counteroffer
when the other receives an attractive alternative matching opportunity. The second is an ex ante agreement to
fully compensate the other partner as a precondition for separation. Relative to the joint wealth maximizing
strategy, both partners search too much in the noncooperative Nash equilibrium under the mechanism with
commitment to counteroffer. But under the commitment to fully compensate the partner in case of separation,
the Nash noncooperative equilibrium delivers the pair of search strategies that maximize the joint surplus.
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their partners in case of future breaches.38

Wolinski (1987) also studies a matching model in which agents form bilateral relationships

and can search for alternative partners while matched. The model builds on Diamond and

Maskin (1979), but differs in that instead of assuming the axiomatic Nash solution, the surplus

split between matched agents is determined by an explicit noncooperative bargaining game.

In this sense, our work is similar to Wolinski’s. However, the key difference between his work

and ours is that he maintains the assumption that an agent cannot negotiate with two or more

partners at the same time: upon meeting an alternative partner, a matched agent has to decide

immediately whether to withdraw from his current match and form the new match or to reject

the new opportunity to continue with the ongoing bargaining process.

The model in Burdett, Imai and Wright (2004) has ex ante homogeneous agents, ex post

heterogeneous matches, costly search, and agents who, while matched, decide whether to search

or not. They consider two setups. In the first setup, they assume that once two agents make

contact, they cannot observe the realization of their prospective match productivity unless they

drop their current partners (if they have any).39 Utility may be interpreted to be transferable

or not in this setup. For this version of the model they provide a full characterization of the

equilibrium set and its welfare properties. The second setup allows agents to keep the option

to stay with their current partners after observing the realization of the match quality with

a prospective partner. They lay out the model with two types of matches and argue that

their main results (e.g., multiplicity and efficiency properties of equilibria) are robust to this

38 In Diamond and Maskin (1979) agents match to produce once and for all. In some unpublished notes,
Diamond and Maskin (1981) extend that framework to allow for continuous production. Their physical envi-
ronment corresponds to the special case of our economy with N = 2. In this version they continue to assume
that partners split the matching surplus symmetrically and that when a partner separates, she must pay the
breached-against partner compensatory damages, and explore some properties of a steady-state equilibrium in
which single breaches occur but double breaches do not.
39This assumption makes their model extremely tractable by eliminating “composition effects”: The gains

from forming a match of a given quality are the same regardless of the state of the other partner, so the value
functions are independent of the endogenous distribution of match qualities among actual relationships. The fact
that payoffs depend on the distribution of characteristics of potential partners is a feature that arises naturally
in our model and in many other matching models, both with ex post match heterogeneity and on-the-job search
(e.g., Diamond and Maskin (1979, 1981)) and with ex ante heterogeneity, even with no on-the-job search (e.g.,
Burdett and Coles (1997) and Shimer and Smith (2000, 2001)).
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generalization. This second setup relies on the assumption that utility is nontransferable.40

This must be so because if utility were transferable, then matched agents would attempt to

counter their partners’ outside offers just as they do in our model. So, although the physical

environment of Burdett, Imai and Wright (2004) is close to ours, their analysis is quite different

because they make assumptions that rule out the multilateral breach situations that are an

essential part of our notion of equilibrium.

Burdett and Mortensen (1998) develop an influential on-the-job search model with ex ante

homogeneous populations of employers and workers.41 Employers are assumed to post and

commit to wages, have access to a constant returns-to-scale production technology, and may

employ any number of workers at the posted wage. Whenever an employed worker meets an

employer with a posted wage higher than her current wage, she quits to join the new employer’s

workforce. Therefore, employers who post low wages experience high quit rates and have smaller

workforces in the steady state. By requiring that steady-state profit be equated across firms,

Burdett and Mortensen derive a nondegenerate equilibrium wage distribution. Note that there

is an extreme notion of commitment at work in this model: once the employer has chosen a

wage to offer its employees, the assumption is that it cannot be changed. It cannot be raised

to counter a worker’s outside offer, and it cannot be cut down once the outside offer is gone.

Postel-Vinay and Robin (2002) work out an extension of Burdett and Mortensen (1998)

with ex ante heterogeneous employers and workers. Employers still have the power to make

take-it-or-leave-it offers to workers but are, in addition, allowed to counter the offers that their

workers receive from competing employers.42 Relative to Burdett—Mortensen, the extension of

40The on-the-job search model of Cornelius (2003) also assumes utility is nontransferable, but differs from
Burdett, Imai and Wright (2004) in that agents are ex ante heterogeneous, search is costless both on and off the
job, and the meeting technology is quadratic.
41The Burdett-Mortensen model was originally developed to explain wage dispersion among homogeneous

workers and relate it to employer size, but has by now been extended in many ways and applied to study a wide
range of issues, both empirical and theoretical. Van den Berg and Ridder (1998) and Bontemps, Robin and van
den Berg (1999, 2000) are examples of papers that have structurally estimated the model. Theoretical extensions
and applications include Burdett and Coles (2003) and Burdett, Lagos and Wright (2004). See Manning (2003)
and Mortensen (2003) for other applications and more references.
42 Instead of giving the firm the power to make a worker take-it-or-leave-it offers, Dey and Flinn (2005) assume

employers and workers in continuing relationships split the match surplus according to the Nash cooperative
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Postel-Vinay and Robin (2002) assumes a weaker form of commitment: Firms still commit not

to reduce wages in the future, but can counter outside offers. In a different way, the extension

of Coles (2001) also assumes a weaker form of commitment, this time by assuming firms cannot

respond to outside offers but can change wages during times when their workforce has no outside

offers outstanding. From this perspective, our paper differs from the literature in that neither

employers nor workers can commit to any future actions.

Another relevant difference is that in the Burdett—Mortensen approach, each employer oper-

ates a constant returns-to-scale production technology that can, in principle, employ the whole

population of workers. So if there are heterogeneous employers, it would be desirable–and

technologically feasible–to have all workers matched to the highest-productivity employer. In

contrast, we study the consequences of the opposite assumption to constant returns by as-

suming that each employer can hire at most one worker. This extreme version of decreasing

returns enriches the sets of transitions that employers and workers can engage in, with no loss

of tractability. For example, the model delivers endogenous “firing” in addition to endoge-

nous “quits.” Also, the limited-capacity assumption allows the model to exhibit instances of

replacement hiring as well as situations in which–in the language of the empirical labor flows

literature–job reallocation induces worker reallocation and vice versa.

In Pissarides (1994, 2000), employed workers can search on the job, but employers do not

(so all quits involve workers taking jobs that were previously vacant), and the wage is assumed

to be determined according to a linear surplus splitting rule at all times. Relative to what we

do here, a key difference is that both in Pissarides (1994, 2000) and in Shimer (2004), matched

employers are not allowed to offer side payments to counter their worker’s outside offers, and

similarly, a vacant employer who contacts an employed worker cannot make side payments

to persuade the worker to quit. Competition involving side payments among all the parties

involved in a typical on-the-job search meeting is an essential feature of the equilibrium in the

model we develop here. Also, we propose a competitive bargaining procedure to split the gains

solution.
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from trade instead of relying on surplus splitting rules or the Nash axiomatic approach.43

Our labor-market analysis in Section 6 was partly motivated by the evidence in Bertola

and Rogerson (1997) and Blanchard and Portugal (2001), i.e., by the observation that worker

turnover in Europe is substantially smaller than in the United States, whereas–despite the dif-

ferences in labor-market policy regimes–job reallocation is roughly the same. With Blanchard

and Portugal (2001) and Pries and Rogerson (2005) we share this observation as a motivation

for developing a model that can help us understand the nature and the distinct allocative roles

played by job flows and worker flows. Blanchard and Portugal (2001) argue that policies that

increase unemployment durations decrease worker turnover by discouraging quits to unemploy-

ment. Pries and Rogerson (2005) develop a matching model that combines features of the

Jovanovic (1979) learning model with the matching model of Pissarides (1985).44

In terms of distinguishing between job flows and worker flows, the key difference with

Pries and Rogerson (2005) is that they abstract from on-the-job search for both employers and

workers. For this reason, an employer who wishes to replace a worker is forced to become

vacant before re-matching, and similarly, a worker is forced to go through unemployment in

order to switch jobs. Thus, if an accountant were to survey this employer and this worker right

after their separation, she would record an instance of job destruction as well as a transition

toward the worker-turnover count. In other words, conceptually, that model is not able to

distinguish between job and worker flows in real-time data.45 In contrast, in our continuous-

time model where both employers and workers continue to search while matched, instances of

replacement hiring will generate worker flows in excess of job flows in real time, even without

time-aggregation in the job flows. We showed how theory can be used to measure which fraction

43Shimer (2004) points out that in the context of the on-the-job search model of Pissarides (1994, 2000), a
simple linear surplus splitting rule is in general not equivalent to the Nash bargaining solution and that adopting
the former may lead to pair-wise inefficient outcomes.
44 In their model, when an employer and a worker meet, they observe a signal about the match’s true quality

prior to deciding whether to form the match, and matches are formed only if the signal exceeds a threshold value.
The true quality of the match is revealed over time but through production, only if the match is formed. They
then analyze how various labor-market regulations affect hiring through their effects on the threshold signal.
45Time-aggregation is the only reason why labor-market policies may affect job reallocation and worker turnover

differently in that setup.
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of the worker flows in excess of job flows is due to workers churning over existing jobs, as opposed

to the result of time-aggregation.

8 Concluding Remarks

We have developed a model of on-the-job search that has many of the stylized properties

of actual labor markets. Worker flows exceed job flows, displaced agents suffer persistent

reductions in permanent incomes, job-to-job transitions are common, and firms often engage

in simultaneous hiring and firing. We have proposed and analyzed a notion of competitive

equilibrium based on a particular bargaining procedure and explored its efficiency properties.

Several extensions seem worth pursuing. First, motivated by the observations in Bertola

and Rogerson (1997) and Blanchard and Portugal (2001), the model could be used to quantify

the effects that employment protection policies have on the amount of worker reallocation in

excess of job reallocation. Bertola and Rogerson find that despite higher employment protection

in Europe than in the United States, European job turnover rates are not that different from

those in the United States, yet there is evidence that worker turnover is lower in Europe. Our

model suggests a simple explanation for these observations: Employment protection policies

censor precisely the transitions that cause worker turnover in excess of job turnover, namely,

separations resulting from double breaches and from employer-initiated single breaches.46

A related issue is that, given the empirical relevance of job-to-job flows, an appropriate

assessment of the welfare effects of employment protection policies calls for a model with on-

the-job search, perhaps along the lines we have proposed here. Calculating the welfare effects

of employment protection policies with a model that does not allow for job-to-job transitions is

likely to understate the welfare losses from these policies, since they affect the overall efficiency

of job-worker matches through their effects on worker flows in addition to their effects on job

flows.
46This would complement the work of Pries and Rogerson (2005), who study this question from another angle,

by focusing on the effect that labor market policies have on hiring practices.
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At a deeper level, we would also like to understand why employment protection policies

exist. In our framework with one-employer-to-one-worker matching and transferable utility,

workers and employers are inherently symmetric (even if allowing for free entry of employers

or certain policies introduces a slight asymmetry), and employment protection policies result

in no efficiency gains. To explore the rationale behind employment protection policies, perhaps

we have to introduce some fundamental asymmetry, such as that each worker works for one

employer while each employer hires several workers. This extension would also be useful to

study issues related to the size distribution of firms, including the relationship between firm

size and job and worker flows.
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A Appendix

Bargaining outcomes and the core.

Before proving part (c) of Proposition 1 we introduce some notation and define the core in

our model. Let I denote the set of agents who are directly or indirectly (i.e., through a partner)

involved in a meeting. For example, I = {A,B,C,D} in the situation illustrated in Figure 3.
Within the context of a meeting, an allocation is a collection of partnerships. For example, there

are two possible allocations for the meeting in Figure 3: h(A,B) , (C,D)i and h(B,C) , (A,D)i.
The first represents the case in which A remains matched to B while C remains matched to D.

The second corresponds to the case in which B and C form a new match while A and D become

unmatched (or become matched to each other but in state 0).47 Let Aj denote the set of all

possible allocations in a meeting that concerns j agents. Then, A2 = {h(A,B)i , h(A) , (B)i},
A3 = {h(A,B) , (C)i , h(A) , (B,C)i} and A4 = {h(A,B) , (C,D)i , h(B,C) , (A,D)i}. An alloca-
tion a ∈ Aj together with a payoff profile Π ∈ Rj constitute an outcome [a,Π]. For example,

[h(A) , (B)i , (ΠA,ΠB)] with ΠA = ΠB = V0 is the outcome corresponding to a situation in

which two unmatched agents meet and no match is formed. For any given meeting, a non-

empty subset S ⊆ I is called a coalition. Let v denote a function that assigns a real number

to each coalition S. The number v (S) is called the worth of coalition S. Since utility is fully

transferable, v (S) summarizes the utility possibility set of coalition S. Intuitively, v (S) is the

total utility available to the coalition, which can then be distributed among the coalition mem-

bers in any way. An outcome [a,Π] is blocked by a coalition S if there exists a payoff profile Π̃

with
P

i∈S Π̃i ≤ v (S) such that Π̃i > Πi for all i ∈ S. With transferable utility, an outcome

[a,Π] is blocked by S iff
P

i∈S Πi < v (S). An outcome [a,Π] that is feasible for the grand

coalition (i.e., such that
P

i∈I Πi ≤ v (I)) is in the core if there is no coalition S that blocks

this outcome. With transferable utility, an outcome [a,Π] is in the core iff
P

i∈S Πi ≥ v (S) for

47We ignore other feasible allocations such as h(A,C) , (B,D)i, which would correspond to “break up both
matches without forming a new one” because they will play no role in the analysis that follows.
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all S ⊆ I and
P

i∈I Πi ≤ v (I).48

Proof of part (c) of Proposition 1. The proof proceeds in three steps.

(Step 1). First consider the case illustrated in Figure 1, where an unemployed worker A and

an unmatched employer B meet and have the opportunity to form a match of productivity yk >

0. For this case we have I = {A,B}, and the list of all possible coalitions is {A,B}, {A}, {B}.
The worth of the grand coalition is v (I) = max (2V0, 2Vk) = 2Vk, while v ({A}) = v ({B}) = V0.

A vector of payoffs (ΠA,ΠB) lies in the core if and only if (i) ΠA+ΠB = 2Vk; and (ii) Πj ≥ V0

for j = A,B. We refer to the subgame that starts with A making a take-it-or-leave-it offer to

B as “subgame 1.” Figure 8 shows the core: it is the segment on the ΠA +ΠB = 2Vk line that

lies between the equilibrium payoffs of subgames 1 and 2 of the bilateral bargaining procedure.

Both equilibrium payoffs as well as the expected payoff lie in the core.

(Step 2). Next consider the case illustrated in Figure 2: agent B, who is currently in a

match of productivity yi with agent A, meets unmatched agent C and they draw a productive

opportunity yk. Here I = {A,B,C} and the list of all possible coalitions is {A,B,C}, {A,B},
{A,C}, {B,C}, {A}, {B}, {C}. The corresponding values are v (I) = max (2Vi + V0, 2Vk + V0),

v ({A,B}) = 2Vi, v ({A,C}) = 2V0, v ({B,C}) = 2Vk, v ({A}) = v ({B}) = v ({C}) = V0.

Hence, a payoff profile Π = (ΠA,ΠB,ΠC) belongs to the core if and only if: (i) ΠA+ΠB+ΠC =

max (2Vi + V0, 2Vk + V0); (ii) ΠA + ΠB ≥ 2Vi; (iii) ΠB + ΠC ≥ 2Vk; and (iv) Πj ≥ V0 for

j = A,B,C. If Vk > Vi, the four conditions can be rewritten as: (1) ΠA = V0; (2) ΠB ≥ 2Vi−V0;
(3) ΠB +ΠC = 2Vk; and (4) ΠC ≥ V0. The first panel of Figure 9 illustrates the core for this

case; it consists of all the payoffs (V0,ΠB,ΠC) such that (ΠB,ΠC) lie on the segment of the

ΠB + ΠC = 2Vk line between the equilibrium payoffs of subgames 1 and 2 of the bilateral

bargaining procedure (subgame 1 is the one that obtains when B makes a take-it-or-leave-it

offer to C, while subgame 2 is the one where C makes the offer to B). From the figure it is clear

48Notice that in our random matching environment, the core is defined with respect to I, the set of agents
who are involved in a meeting. (Since there is no central meeting place, the notion of a grand coalition of all the
agents in the economy is meaningless here.)
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that the equilibrium payoffs of both subgames and the expected payoff all belong to the core.

Conversely, if Vk < Vi, then the four conditions reduce to: (1’) ΠA ≥ V0; (2’) ΠB ≥ 2Vk − V0;

(3’) ΠA + ΠB = 2Vi; and (4’) ΠC = V0. The second panel of Figure 9 illustrates the core for

this case; it consists of all the payoffs (ΠA,ΠB, V0) such that (ΠA,ΠB) lie on the segment of

the ΠA + ΠB = 2Vi line between the equilibrium payoffs of subgames 1 and 2 of the bilateral

bargaining procedure (here subgame 1 is the one that obtains when B makes a take-it-or-leave-

it offer to A, while subgame 2 is the one where A makes the offer to B). From the figure it is

again clear that the equilibrium payoffs of both subgames and the expected payoff all belong

to the core.

(Step 3). Finally, consider the case illustrated in Figure 3: while A and B are in a match

of productivity yi and C and D are in a match of productivity yj , agents B and C meet

and draw a productive opportunity yk. Here I = {A,B,C,D} and the list of all possi-
ble coalitions is: {A,B,C,D}, {A,B,C}, {A,B,D}, {B,C,D}, {A,C,D}, {A,B}, {C,D},
{A,C}, {B,D}, {B,C}, {A,D}, {A}, {B}, {C}, {D}. The corresponding values are v (I) =
max (2Vk + 2V0, 2Vi + 2Vj), v ({A,B,C}) = max (2Vi + V0, 2Vk + V0), v ({A,B,D}) = 2Vi +

V0, v ({B,C,D}) = max (2Vj + V0, 2Vk + V0), v ({A,C,D}) = 2Vj + V0, v ({A,B}) = 2Vi,

v ({C,D}) = 2Vj, v ({A,C}) = v {{B,D}} = v {{A,D}} = 2V0, v ({A}) = v ({B}) =
v ({C}) = v ({D}) = V0. A payoff profile Π = (ΠA,ΠB,ΠC ,ΠD) is in the core if and only

if it satisfies the following inequalities: ΠA + ΠB + ΠC + ΠD = max (2Vk + 2V0, 2Vi + 2Vj),

ΠA +ΠB +ΠC ≥ max (2Vi + V0, 2Vk + V0), ΠB +ΠC +ΠD ≥ max (2Vj + V0, 2Vk + V0), ΠA +

ΠB+ΠD ≥ 2Vi+V0, ΠA+ΠC+ΠD ≥ 2Vj+V0, ΠA+ΠB ≥ 2Vi, ΠC+ΠD ≥ 2Vj , ΠB+ΠC ≥ 2Vk,
ΠA+ΠC ≥ 2V0, ΠB+ΠD ≥ 2V0, ΠA+ΠD ≥ 2V0, Πj ≥ V0 for j = A,B,C,D. It is straightfor-

ward to verify that the equilibrium and expected payoffs of the bilateral bargaining procedure

satisfy these fifteen inequalities.

Proof of Proposition 3. First consider the case of a continuing match when neither partner

has an outside production opportunity. Every instant, with probability a half, the draw by
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Nature gives the bargaining power to the worker, who offers the employer J0 (and keepsMi−J0).
With the same probability Nature gives the bargaining power to the employer, who offers

the worker V0 + Si (and keeps Mi − V0 − Si). As a result, utility is continuously divided

among the partners in such a way so that the worker’s expected continuation payoff is Vi =

V0 +
1
2 (Mi −M0 + Si), and the employer’s is Ji = J0 +

1
2 (Mi −M0 − Si). Next, we consider

each of the bargaining situations listed in the statement of the proposition.

(a). An unmatched employer and an unemployed worker draw a new opportunity yk.

With probability a half the worker has bargaining power, offers J0, and the employer accepts.

With the same probability the employer offers the worker V0, and the worker accepts. The new

match is formed regardless of who makes the offer and the expected payoffs are V0+ 1
2 (Mk −M0)

for the worker and J0 +
1
2 (Mk −M0) for the employer. The individual expected capital gains

to the worker and the employer each equal 12 (Mk −M0).

(b). An unmatched employer and an employed worker draw a new opportunity.

Suppose that worker B, who is currently employed in a match of quality i with employer

A, draws a new productive opportunity yk with an unmatched employer, C. We consider three

cases.

Case 1: Mi < Mk. With probability a half the worker, B, has bargaining power. In this

case he chooses to offer the new employer, C, Xk
BC = J0, and she accepts. Thus, B is able to

appropriate Mk − J0, the whole surplus from the new match. With probability another half,

the employers A and C have bargaining power. In this case B again chooses to bargain with

C first, who offers him Xk
CB = Mi − J0, which is the maximum payoff A is willing to offer

B, so B accepts C’s offer. Regardless of whether the worker or the employers have bargaining

power, the payoffs to B and C from forming a new match are larger than or equal to what they

would obtain if A and B were to stay matched, and therefore the equilibrium outcome is that

B and C form the new match. The expected payoffs are ΠA = J0, ΠB = 1
2 (Mk +Mi) − J0,

and ΠC = J0 +
1
2 (Mk −Mi). The expected capital gains are ΓA = −12 (Mi −M0 − Si), ΓB =

1
2 (Mk −M0 − Si), and ΓC = 1

2 (Mk −Mi).
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Case 2: M0 + Si < Mk < Mi. With probability a half the worker, B, has bargaining

power. In this case B offers his old employer, A, Xi
BA = J0, and she accepts. With the same

probability, the employers, A and C, have bargaining power. In this case, B also chooses to

bargain with A first, who makes B an offer Xi
AB = Mk − J0, the maximum C can offer, and

B accepts to stay matched with A. Regardless of whether the worker or the employers have

bargaining power, the equilibrium outcome will be that B chooses to stay matched with A.

The equilibrium expected payoffs are ΠA = J0 +
1
2 (Mi −Mk), ΠB = 1

2 (Mi +Mk) − J0, and

ΠC = J0. The expected gains are ΓB = −ΓA = 1
2 (Mk −M0 − Si) and ΓC = 0.

Case 3: Mk < M0 + Si. With probability a half the worker, B, has bargaining power, he

offers A Xi
BA = J0, and they stay matched. With probability a half, the employers (A and C)

have bargaining power, and B chooses to bargain with A first. The fact that Mk < M0 + Si

means that A only needs to offer B payoff Xi
AB = V0 + Si to convince him to stay in the

match. Thus, regardless of whether the worker or the employers have bargaining power, B

stays matched to A. The equilibrium expected payoffs are ΠA = Ji, ΠB = Vi, and ΠC = J0,

and the expected gains are ΓA = ΓB = ΓC = 0.

(c). A matched employer and an unemployed worker draw a new opportunity.

Suppose that employer B, who is currently in a match of quality i with worker A, draws a

new production opportunity yk with an unemployed worker C. In order for B and C to form

the new match, they have to pay Ti to the government. Thus the total value of the new match

to the agents in the bargaining (A, B, and C) is M 0
k ≡ Mk − Ti instead of Mk. By the same

reasoning used in (b) above, and replacingMk withM 0
k, we obtain the following expected gains

from trade:

Case 1:Mi < M 0
k. ΓA = −12 (Mi −M0 − Si), ΓB = 1

2 (M
0
k −M0 − Si) and ΓC = 1

2 (M
0
k −Mi).

Case 2: M0 + Si < M 0
k < Mi. ΓB = −ΓA = 1

2 (M
0
k −M0 − Si) and ΓC = 0.

Case 3: M 0
k < M0 + Si. ΓA = ΓB = ΓC = 0.

(d). A matched employer and an employed worker draw a new opportunity.

Suppose that employer B and worker C meet and draw a productive opportunity yk. The
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situation now is that B is currently in a match of productivity yi with worker A, while C is

currently in a match of productivity yj with employer D. We divide the analysis into four cases

and assume, without loss of generality, that Mi + Sj ≤Mj + Si.

Case 1: Mi +Mj −M0 < Mk − Ti ≡M 0
k. Because the sum of the values of the new match

(net of taxes) and the unmatched exceeds the sum of the values of the existing matches, the

agent who does not have bargaining power chooses to bargain with the new partner first. With

probability a half the employers (B and D) have bargaining power. In this case, B and C

negotiate first, and B offers him Xk
BC . To determine her offer, B must take into account that C

can then go on to bargain with D holding Xk
BC as his outside option. Employer D will be able

to outbid B’s offer as long as Mj −Xk
BC > J0. Thus, B can ensure that C will want to match

with her by offering Xk
BC =Mj−J0. A similar reasoning implies that with probability another

half, when the workers A and C have bargaining power, B and C bargain first, and C will offer

Xk
CB =Mi − V0 − Si to B. In both situations, when the employers have bargaining power and

when the workers have bargaining power, B and C are better off by leaving their partners and

matching with each other. The expected payoffs are ΠA = V0+Si, ΠB = Ji+
1
2 (M

0
k −Mj − Si),

ΠC = Vj +
1
2 (M

0
k −Mi − Sj), and ΠD = J0. The expected gains are ΓA = −12 (Mi −M0 − Si),

ΓB =
1
2 (M

0
k −Mj − Si), ΓC = 1

2 (M
0
k −Mi − Sj), and ΓD = −12 (Mj −M0 − Sj).

Case 2: Mj + Si < M 0
k < Mi +Mj −M0. Since the sum of the values of the existing

matches exceeds the sum of the values of the new match (net of taxes) and the unmatched, the

agent without bargaining power chooses to bargain with the old partner first. With probability

a half, the workers (A and C) have bargaining power. Then B chooses to first bargain with

A. When choosing his offer Xi
AB, worker A takes into account the fact that B can continue

to bargain with the new worker, C, holding Xi
AB as her outside option. A knows that C will

outbid Xi
AB as long as C’s payoff from forming the new match with B by paying Xi

AB, namely

M 0
k −Xi

AB − Si is higher than C’s payoff from staying matched with D, namely Mj − J0. So

in order for A to win B over C, A needs to offer B a payoff Xi
AB = M 0

k −Mj + J0 − Si.

This leaves A with payoff Mi − (M 0
k −Mj + J0 − Si) > V0 + Si, so A and B stay matched.

54



Worker C also stays matched to his old employer, D, and since he has bargaining power, B

captures the whole surplus of that match (Mj − J0) for himself. Similar arguments imply that

when, with probability another half, employers B and D have bargaining power, C chooses

to bargain with D first, D offers C Xj
DC = M 0

k −Mi + V0, and C accepts to stay matched

to D. Also, B stays matched to A and captures the whole surplus, Mi − V0 − Si. In every

case the equilibrium outcome is that B and C each decide to stay in the current match. The

equilibrium expected payoffs are ΠA = Vi − 1
2 (M

0
k −Mj − Si), ΠB = Ji +

1
2 (M

0
k −Mj − Si),

ΠC = Vj +
1
2 (M

0
k −Mi − Sj), and ΠD = Jj − 1

2 (M
0
k −Mi − Sj). The corresponding capital

gains are ΓB = −ΓA = 1
2 (M

0
k −Mj − Si), and ΓC = −ΓD = 1

2 (M
0
k −Mi − Sj).

Case 3: Mi+Sj < M 0
k < Mj +Si. As in the previous case, if the employers (B and D) have

bargaining power, then C chooses to bargain with D first, and D offers Xj
DC =M 0

k −Mi + V0.

(As in the previous case, this is the minimum offer that guarantees that D will not be outbid by

B.) In the event that the workers (A and C) have bargaining power, B chooses to bargain with

A first. But in this case, A only needs to offer B payoff Xi
AB = J0 to convince her to stay in

the match. (The reason is that if B were to continue to bargain with C, the most that C would

be willing to offer B in order to form a new match is M 0
k −Mj + J0 − Si < J0; therefore when

making his offer, A can effectively ignore the fact that B has the option to continue to bargain

with C.) Again, the equilibrium outcome is that B and C stay with their current partners,

but this time C is able to extract a side payment from D while B gets no side payment from

A. The equilibrium expected payoffs are ΠA = Vi, ΠB = Ji, ΠC = Vj +
1
2 (M

0
k −Mi − Sj),

and ΠD = Jj − 1
2 (M

0
k −Mi − Sj). The capital gains are ΓA = ΓB = 0, and ΓC = −ΓD =

1
2 (M

0
k −Mi − Sj).

Case 4: M 0
k < Mi+Sj. Using a reasoning similar to the one we used above, in this case the

productivity of the new match is so low relative to the current matches, that the option to form

a new match allows neither B nor C to extract side-payments from their current partners. The

outcome is that B and C stay matched to their old partners, the equilibrium expected payoffs

are ΠA = Vi, ΠB = Ji, ΠC = Vj, and ΠD = Jj , and the expected gains are nil to all.
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Proof of Lemma 1. The values of an unemployed worker and an unmatched employer solve

rV0 − V̇0 = αn0

NX
k=1

πkφ
k
00

Mk−M0
2 + α

NX
j=1

NX
k=1

njπkφ
k
0j

Mk−Mj−Tj
2

rJ0 − J̇0 = αn0

NX
k=1

πkφ
k
00

Mk−M0
2 + α

NX
j=1

NX
k=1

njπkφ
k
j0

Mk−Mj

2 .

Adding these expressions and using Proposition 3 leads to (14). A worker employed in a match

of type i earns wage wi and his expected payoff satisfies

rVi − V̇i = wi − δ (Vi − V0)

+αn0

NX
k=1

πk

h
φki0

Mk−M0−Si
2 + (1− φki0)max

³
Mk−M0−Si

2 , 0
´i

−αn0
NX
k=1

πk

h
φk0i

Mi−M0−Si
2 + (1− φk0i)max

³
Mk−M0−Si−Ti

2 , 0
´i

+α
NX
j=1

NX
k=1

njπk

h
φkij

Mk−Mj−Si−Tj
2 + (1− φkij)max

³
Mk−Mj−Si−Tj

2 , 0
´i

−α
NX
j=1

NX
k=1

njπk
h
φkji

Mi−M0−Si
2 + (1− φkji)max

³
Mk−Mj−Si−Ti

2 , 0
´i

.

Similarly, the value of an employer in a match of productivity yi is:

rJi − J̇i = 2yi −wi − δ (Ji − J0)

+αn0

NX
k=1

πk

h
φk0i

Mk−M0−Si−Ti
2 + (1− φk0i)max

³
Mk−M0−Si−Ti

2 , 0
´i

−αn0
NX
k=1

πk

h
φki0

Mi−M0−Si
2 + (1− φki0)max

³
Mk−M0−Si

2 , 0
´i

+α
NX
j=1

NX
k=1

njπk

h
φkji

Mk−Mj−Si−Ti
2 + (1− φkji)max

³
Mk−Mj−Si−Ti

2 , 0
´i

−α
NX
j=1

NX
k=1

njπk

h
φkij

Mi−M0−Si
2 + (1− φkij)max

³
Mk−Mj−Si−Tj

2 , 0
´i

.

Adding the last two expressions and using Proposition 3 lead to (13).
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Proof of Lemma 2. The values of an unemployed worker and an unmatched employer solve

rV0 − V̇0 = αm0

NX
k=1

πkφ
k
00

Mk−M0
2 + α

NX
j=1

NX
k=1

njπkφ
k
0j

Mk−Mj−Tj
2 (34)

rJ0 − J̇0 = −c+ αn0

NX
k=1

πkφ
k
00

Mk−M0
2 + α

NX
j=1

NX
k=1

njπkφ
k
j0

Mk−Mj

2 . (35)

A worker employed in a match of type i earns wage wi and his expected payoff satisfies

rVi − V̇i = wi − δ (Vi − V0)

+αm0

NX
k=1

πk

h
φki0

Mk−M0−Si
2 + (1− φki0)max

³
Mk−M0−Si

2 , 0
´i

−αn0
NX
k=1

πk

h
φk0i

Mi−M0−Si
2 + (1− φk0i)max

³
Mk−M0−Si−Ti

2 , 0
´i

+α
NX
j=1

NX
k=1

njπk
h
φkij

Mk−Mj−Si−Tj
2 + (1− φkij)max

³
Mk−Mj−Si−Tj

2 , 0
´i

−α
NX
j=1

NX
k=1

njπk

h
φkji

Mi−M0−Si
2 + (1− φkji)max

³
Mk−Mj−Si−Ti

2 , 0
´i

. (36)

Similarly, the value of an employer in a match of productivity yi is:

rJi − J̇i = 2yi −wi − δ (Ji − J0)

+αn0

NX
k=1

πk

h
φk0i

Mk−M0−Si−Ti
2 + (1− φk0i)max

³
Mk−M0−Si−Ti

2 , 0
´i

−αm0

NX
k=1

πk
h
φki0

Mi−M0−Si
2 + (1− φki0)max

³
Mk−M0−Si

2 , 0
´i

+α
NX
j=1

NX
k=1

njπk

h
φkji

Mk−Mj−Si−Ti
2 + (1− φkji)max

³
Mk−Mj−Si−Ti

2 , 0
´i

−α
NX
j=1

NX
k=1

njπk
h
φkij

Mi−M0−Si
2 + (1− φkij)max

³
Mk−Mj−Si−Tj

2 , 0
´i

. (37)

The expressions in the statement of the lemma result from using Proposition 3, and adding

(36) to (37), and (34) to (35).

57



Free entry with constant returns meeting technology.

Suppose the aggregate meeting technology is given by a function ξ (m,n), which is monotonic

in both arguments and homogeneous of degree one. Since n = 1, in this alternative formulation

an employer contacts a random worker at rate α (m) ≡ ξ (1, 1/m) and a worker contacts a

random employer at rate mα (m). So the probability an employer meets a worker who is

employed in a match of type i is α (m)ni, and the probability a worker meets an employer who

is in a match of type i is α (m)mj . Therefore, if we replace α with α (m), the Hamiltonian,

the flow equations (15) and (16), and the optimality conditions for τkij are all unchanged, while

since m = 1− n0 +m0, condition (17) becomes

C0 (m0) = α (m)
NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi) + α0 (m)m0

NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi)

+α0 (m)
NX
i=0

NX
j=1

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) . (38)

The Euler equations associated with ni for i = 1, ..., n are as in Section 5 (again, after

replacing α with α (m)), but since α (m) = α (1− n0 +m0), the one associated with n0 is now

rλ0 − λ̇0 = α (m)m0

NX
k=1

πkτ
k
00 (λk − λ0) + α (m)

NX
j=1

NX
k=1

njπkτ
k
0j (λk − λj)

−α0 (m)m0

NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi)

−α0 (m)
NX
i=0

NX
j=1

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) .

Using (38), which holds as long as m0 > 0, and collecting terms, this last condition becomes

rλ0 − λ̇0 = −C0 (m0) + α (m) (m0 + n0)
NX
k=1

πkτ
k
00 (λk − λ0)

+α (m)
NX
j=1

NX
k=1

njπk(τ
k
0j + τkj0) (λk − λj) . (39)

Summarizing, the optimality conditions for the economy with a constant returns meeting tech-

nology are (3) and (38), together with (18) and (19), but with α = α (m). Comparing these
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optimal conditions with the conditions for the competitive matching equilibrium: (15), (16),

(20), (21), and (22)–which remain unchanged–we learn that the constant-returns-to-scale ag-

gregate matching function fails to solve the inefficiency associated with the search externality.

(See footnote 14.)

Lemma 3 A unique steady state distribution of workers exists for any given φ ∈ [0, 1]. The
number of unemployed workers, n0, solves

£
αn20 − δ (1− n0)

¤
(δ + 2απn0)

2 − φαπ
£
2δ (1− n0)− α (1 + π)n20

¤2
= 0.

The number of workers employed in matches with productivity y1 is n1 =
2δ(1−n0)−α(1+π)n20

δ+2απn0
, and

the number of workers employed in matches with productivity y2 is n2 = 1− n0 − n1.

Proof of Lemma 3. Combining the ṅ2 = 0 and ṅ0 = 0 conditions, we find that n1 = f (n0),

where f (n0) ≡ 2δ(1−n0)−α(1+π)n20
δ+2απn0

. It can be shown that f 0 (n0) < 0 on [0, 1], so to each n0 ∈ [0, 1]
corresponds a unique n1. In addition, f (n0) ≥ 0 if n0 ≤ η0 and f (n0) ≤ 1 if n0 ≥η0, where
η0 =

√
δ2+2αδ(1+π)−δ

α(1+π) and η0 =

√
(δ+απ)2+αδ(1+π)−(δ+απ)

α(1+π) , with 0 < η0 < η0 < 1. Substituting

n1 = f (n0) back into the ṅ0 = 0 condition delivers a single equation in n0 which can be written

as G (n0;φ) = 0, where

G (n0;φ) ≡
£
αn20 − δ (1− n0)

¤
(δ + 2απn0)

2 − απφ
£
2δ (1− n0)− α (1 + π)n20

¤2
.

Direct calculations reveal that G(η0;φ) = αη20 − δ(1 − η0) > 0 for all φ ∈ [0, 1], and also that
G(η0;φ, ψ) has the same sign as αη0

2 − δ(1 − η0) − απφ. Note that an increase in φ causes

G to shift down uniformly, so to ensure G(η0;φ) < 0 for all φ, it suffices to guarantee that

G(η0; 0) < 0. This condition can be written as αη0
2 − δ(1− η0) < 0, a parametric restriction

that is always satisfied. So a steady state exists. Finally, note that ∂G(n0;φ)
∂n0

¯̄̄
G(n0;φ)=0

> 0,

which together with the fact that f 0 (n0) < 0 implies that the steady state is unique.
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Lemma 4 The transition function for the stochastic process that rules a worker’s state is

[p
(t)
ij ] =

∞X
n=0

(at)n e−at

n!
Kn, (40)

where a ≡ 2α+ δ, and

K =

⎡⎢⎣
δ+α(2−m0−πψn1)

2α+δ
α(1−π)m0

2α+δ
απ(m0+ψn1)

2α+δ
δ+απ(ψn0+φn1)

2α+δ
α[2−π(m0+ψn0+2φn1)]

2α+δ
απ(m0+φn1)

2α+δ
δ

2α+δ 0 2α
2α+δ

⎤⎥⎦ .
Proof of Lemma 4. Each match is subject to three independent Poisson processes: one with

arrival rate δ (the exogenous destruction process), and two with arrival rate α (the process

according to which the employer meets other workers and the one according to which the

worker meets other employers). Conditional on the arrival of one of these Poisson events, the

worker transits from state i to state j according to K = δ
aKδ +

α
aK

e
α +

α
aK

w
α , where

Kδ =

⎡⎣ 1 0 0
1 0 0
1 0 0

⎤⎦
Ke
α =

⎡⎣ 1 0 0
π (ψn0 + φn1) 1− π (ψn0 + φn1) 0

0 0 1

⎤⎦
Kw
α =

⎡⎣ 1−m0 − πψn1 (1− π)m0 π (m0 + ψn1)
0 1− π (m0 + φn1) π (m0 + φn1)
0 0 1

⎤⎦ .
Then, given the number of arrivals over a period of length t follows a Poisson distribution with

parameter at, (40) follows. See Cox and Miller (1965) for more details.
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Figure 8: Core payoffs for a meeting involving two agents.

Figure 9: Core payoffs for a meeting involving three agents.
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