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ABSTRACT

Most economic activity occurs in cities. This creates a tension between local increasing returns,
implied by the existence of cities, and aggregate constant returns, implied by balanced growth.
To address this tension, we develop a general equilibrium theory of economic growth in an urban
environment. In our theory, variation in the urban structure through the growth, birth, and death
of cities is the margin that eliminates local increasing returns to yield constant returns to scale in
the aggregate. We show that, consistent with the data, the theory produces a city size distribution
that is well approximated by Zipf’s Law, but that also displays the observed systematic under-
representation of both very small and very large cities. Using our model, we show that the dispersion
of city sizes is consistent with the dispersion of productivity shocks found in the data.
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1. Introduction
Aggregate economic activity is primarily urban economic activity. For example, in the

U.S. in 2000, 80% of the population lived in urban agglomerations, and they earned around

85% of income. This fact creates a tension. On the one hand, the organization of economic

activity in cities is evidence for the presence of scale effects: there are economic rewards to

the agglomeration of firms and individuals in a city. On the other hand, scale does not appear

to be rewarded in the aggregate, as suggested by the evidence on balanced growth. In this

paper we argue that it is the urban structure — the number and size of cities — that resolves

this tension.

We begin by constructing a theory of economic growth in an urban environment. In

our theory, the size of cities is determined by the trade-off between agglomeration effects and

congestion costs with the strength of these forces implying equilibrium city sizes that vary

with the stock of factors and the level of productivity. As the economy expands keeping

factor proportions and productivity levels constant, each city operates at the equilibrium size

and the economy behaves as if using a constant returns to scale technology by varying the

number of cities. In this way, it is the endogenous evolution of the urban structure that

produces the linear aggregate production functions necessary for balanced growth in a world

with urban scale effects.1 Hence, the first contribution of this paper is to provide a tractable

general equilibrium growth theory that incorporates urban structure.

We then show that this theory is also able to generate a number of well-established

empirical regularities about the size distribution of cities. Perhaps the best known of these

regularities is that the size distribution of cities is well approximated by a Pareto distribution

with coefficient one, also known as Zipf’s Law. First discovered by Auerbach (1913), this

regularity has since been documented using modern data for a wide range of countries by

many authors including Rosen and Resnick (1980), Dobkins and Ioannides (2001), Ioannides

and Overman (2003), and Soo (2005). We can illustrate this regularity graphically by noting

that under a Pareto distribution with coefficient one, the proportion of cities larger than a

1Specifically, the production set of the aggregate economy is, asymptotically, a convex cone. In both
exogenous growth models, and endogenous growth models such as Lucas (1988), scale economies at the
industry level are transformed into constant returns at the aggregate by assuming linear factor accumulation
technologies (see also Jones (1999)).



given size x, is inversely proportional to that size, or P (Cityi > x) =M/x for some constant

M. As a result, if Zipf’s Law holds exactly and we plot lnP (Cityi > x) against the natural

logarithm of a city’s size, we should observe a straight line with a slope of minus one. As

shown in Figure 1 for the United States, Zipf’s Law is a good approximation, and indeed

appears to be as good a description of the size distribution of cities at the turn of the 21st

century as it was at the turn of the 20th.2 Furthermore, as illustrated in Figures 2A and

2B, Zipf’s Law also appears to be a good description of the size distribution of cities across

a broad range of countries today.

Much of the recent empirical work on the size distribution of cities (for example,

Eeckhout (2004) or the survey of Gabaix and Ioannides (2003)) has emphasized a number of

systematic and significant deviations from Zipf’s Law. One of the most robust is the under-

representation of small cities and the absence of very large ones, relative to Zipf’s Law, which

is illustrated in Figure 1 for the U.S. and again in Figure 2 for a wide range of countries.

In the left tail, the plots for all countries appear concave, reflecting the under-representation

of small cities. In the upper tail, where there are fewer observations, some segments of

the plot appear locally convex, especially in the neighborhood of the capital city, which is

often an outlier. However, the tendency for an approximately concave relationship remains,

reflecting the absence of very large cities relative to Zipf’s Law. Figure 2 also displays a second

commonly observed deviation from Zipf’s Law: some countries have a size distribution that

is more or less dispersed than that predicted by Zipf’s Law, which is reflected in flatter or

steeper plots of log-rank against log-size.3

Our theory can match all of these facts. In particular, Zipf’s Law of cities emerges

exactly from some special assumptions on our model. Outside of these special cases, the city

size distribution will tend towards Zipf’s Law, but will always display relatively thin tails.

The overall dispersion of city sizes may be more or less than that predicted by Zipf’s Law.

To see why this is true, note that in our setup, cities result out of the trade-off between

2We thank Yannis Ioannides and Linda Dobkins for providing historical data on the U.S. size distribution
of cities.

3Some studies, like Soo (2005), find that the slope of the Zipf’s relationship is also correlated with income:
less developed countries have a tendency towards flatter plots, reflecting a more dispersed size distribution
than predicted by Zipf’s Law.
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commuting costs and local production externalities in human capital and labor. Industry-

specific externalities imply that cities specialize in an industry, and so the evolution of industry

productivity shocks and the way they are propagated through the accumulation of industry-

specific factors, as summarized by changes in the average product of labor in an industry,

drives variations in the urban structure. For example, in response to a positive productivity

shock, cities grow, and the number of cities in which that industry operates falls.

Under two polar sets of strong assumptions on technology and the evolution of pro-

ductivity, this mechanism produces Gibrat’s Law of cities: the mean and variance of the

growth rate of a city are independent of its size. For example, if the only factors of pro-

duction are labor and human capital both growing at constant rates, the growth rate of the

average product of labor, and hence the size of cities, is driven by the growth rate of total

factor productivity. Therefore, if shocks are permanent, the growth process of cities is scale

independent. Conversely, in an economy in which human capital and labor do not grow and

the production function is linear in capital (an AK model), temporary productivity shocks

imply permanent changes in the capital stock, the average product of labor, and hence also

in the size of cities. For these special cases, we provide a proof that the size distribution

of cities converges to Zipf’s Law. Unlike previous efforts in this regard, our approach works

through the endogenous variation in the number of cities.

Aside from these polar cases, there will be mean reversion in the sizes of cities resulting

from the process of factor accumulation. Essentially, industries with small stocks of specific

capital operate in small cities. For these industries, diminishing returns to physical capital

lead to high rates of return, high incentives to accumulate industry-specific capital, and

hence a high growth rate for cities operating in this industry. This logic implies that growth

rates decrease with size, which almost immediately produces the first deviation — the fact

that, relative to Zipf’s Law, both very small and very large cities are under-represented.

Intuitively, because small cities grow faster, and large cities slower, than required to produce

Zipf’s Law, mass is shifted away from the tails of the distribution. The second deviation —

variation in the dispersion of the size distributions of cities or variation in Zipf’s coefficients

— can be accounted for by variation in the volatility of productivity shocks across countries.4

4This could explain the positive relationship between Zipf coefficients and output, found by Soo (2005), if
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Importantly, and unlike previous theoretical studies of the evolution of the size dis-

tribution of cities, endogenous city creation and destruction is one of the key mechanisms

that generates the results of this paper. This mechanism appears to be very important in

practice. For example, Henderson and Wang (2005) show that the margin of city creation and

destruction has been very active and volatile over the past four decades, even as the relative

size distribution has stayed remarkably constant. In this period, the number of cities has

grown by more than 120%, accounting for 26% of the increase in the world urban population.

They also show that the standard deviation of the growth in the number of cities is more than

twice as large as the mean (0.3 and 0.13, respectively). Note also that, for our purposes, these

numbers are a lower bound for the activity in the margin of city creation and destruction,

as they do not capture the reallocation of industries across existing sites. This is important

since our theory accounts for these reallocations as changes in the number of cities operating

in a particular industry.

This paper draws from four related literatures. The first is the extensive literature

on endogenous growth spawned by Lucas (1988) and Romer (1990). In this literature, as

emphasized by Jones (1999), the treatment of scale effects is crucial, as it is the imposition of

linearity in the aggregate production technology that is necessary for the existence of balanced

growth. Where our paper differs is in its utilization of the urban structure as the vehicle for

obtaining this linearity.

A second related literature is the small number of papers on urban growth. Black and

Henderson (1999) and Eaton and Eckstein (1997) both present deterministic urban growth

models with two types of cities in which, along the balanced growth path, both cities grow

at the same rate. Unlike both of these papers, ours focuses on a stochastic environment and

introduces a rich industrial structure which allows us to characterize the evolution of the entire

size distribution of cities over time. In addition, both of these papers obtain the linearity

of the aggregate production process by assuming knife-edge conditions on production and

externality parameters. In contrast, in our theory the urban structure produces this linearity

without any further conditions on parameter values.

This paper is related to the large number of papers that propose statistical explanations

more developed countries experience less volatile shocks.
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of Zipf’s Law. Including most notably Champernowne (1953), Kalecki (1945), Levy and

Solomon (1996), Malcai, Biham and Solomon (1999), Gabaix (1999a), Blank and Solomon

(2000) and Cordoba (2004), these papers have focused on the role of Gibrat’s Law of city

growth in producing a size distribution of cities that satisfies Zipf’s Law for an economy in

which there is a fixed number of cities. Much attention has also been devoted to the role of

various frictions, or lower bounds, on city sizes in ensuring a thick lower tail of the distribution

of city sizes. In contrast, this paper considers an environment with an endogenous number of

cities and establishes scale independent variation in this extensive margin as a new way of

producing Zipf’s Law.

Finally, the paper is related to the growing economic literature on the size distrib-

ution of cities. Gabaix (1999a,b) and Cordoba (2004) present models in which cities grow

as labor migrates between a fixed number of cities in direct response to city amenity, taste,

or productivity shocks, and show that they can produce Zipf’s Law exactly. In contrast,

this paper generates the existence of cities endogenously, and focuses on the role of factor

accumulation in producing some of the robustly documented deviations from Zipf’s Law. In

two recent papers, Eeckhout (2004) and Duranton (2006) present models with fixed numbers

of cities that generically produce a size distribution of firms with thinner tails than predicted

by Zipf’s Law. In contrast, our theory focuses upon the relationship between factor accu-

mulation, productivity shocks, and the urban structure in producing size distributions that

either exactly match or approximate Zipf’s Law, and produces testable implications for the

way in which observed size distributions should differ from Zipf’s Law. In this sense, it is the

economic structure of our framework that pushes us away from Zipf’s Law and allows our

theory to rationalize a wider set of phenomena on the size distribution of cities and growth.

Importantly, and in contrast to all of these papers, it is endogenous city formation that both

eliminates scale effects in growth and provides a novel theory of the size distribution of cities.

The rest of the paper is organized as follows. The next section presents the model.

Section 3 derives the main results of the paper on growth, Zipf’s Law, and deviations from

Zipf’s Law. Section 4 illustrates the results of the model numerically and compares them to

data from several countries. Section 5 concludes. An Appendix contains the basic elements

of the decentralization and proofs of the main propositions.
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2. An Urban Growth Model
Consider an economy in which production occurs at specific locations that we call

cities. Firms set up in a city, hiring capital and employing workers. Agglomeration results

from a positive production externality on labor and human capital. Agents reside in cities and

commute to work. Households are made up of workers who consume, accumulate industry-

specific physical capital to be used in each industry, and devote their time to working and

learning so as to accumulate industry-specific human capital. We follow Henderson (1974)

and postulate the existence of a class of competitive property developers that own each

potential city site and compete to attract workers and firms. These property developers

serve to internalize the local production externality, and guarantee that market outcomes

are efficient.5 Throughout, we assume log-linear preferences and Cobb-Douglas production

functions so that we can solve for the growth path of cities in closed form. The advantage of

closed-form solutions is that it allows us to make analytical statements about the evolution

of individual cities, as well as about the long-run size distribution of cities.

A. Cities

Our approach to modeling cities follows the classic paper of Henderson (1974) and has

been used in the urban growth model of Black and Henderson (1999). We consider a world

in which there are a large number of potential city sites. Cities are monocentric, with all

production occurring at the single, exogenously given, point which we refer to as the central

business district (CBD). It is assumed that every agent that works at the CBD must reside in

the area surrounding the city, so that locations closer to the CBD are more desirable because

they involve a shorter commute to work. We assume that the cost of commuting is linear

in the distance travelled, and let τ be the cost per mile of commuting. For simplicity we

denominate commuting costs solely in terms of the output of the city. However, our results

can be generalized to the case of both monetary and time costs (we return to this in Section

3 below).

All agents consume the services of one unit of land per period. In order for agents to

5Since property developers make zero profits in equilibrium, we would obtain the same results if we allowed
households to own the land.
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be indifferent about where to live in the city, rents differ by the amount of commuting costs,

with rents on the city edge equal to zero. Therefore, in a city of radius z̄, rents at a distance

z from the center must be given by R(z) = τ (z̄ − z) . Hence, total rents in a city of radius z̄

are given by

TR =

Z z̄

0

2πzR(z)dz =
πτ

3
z̄3.

Since everyone in the city lives in one unit of land, a city of population Ñ has a radius of

z̄ =
³
Ñ/π

´ 1
2
and so

TR =
πτ

3

Ã
Ñ

π

! 3
2

=
b

2
Ñ

3
2 ,

where b ≡ 2π− 1
2 τ/3. Total commuting costs are given by

TCC =

Z z̄

0

2πzτzdz = bÑ
3
2 ,

with each resident of the city paying a total of 3bÑ
1
2/2 in terms of rents and commuting

costs. Note that both total and average commuting costs are increasing in city population.

B. Firms

Production occurs in firms that face a constant returns to scale technology. The

production of a representative firm in industry j located in an arbitrary city at any point in

time t has the Cobb-Douglas form

Ãtjk
βj
tj h

αj
tj (utjntj)

1−αj−βj ,

where Ãtj is the total factor productivity of a firm in this particular city given that good j

is produced there, ktj is the amount of industry j specific capital used by that firm, htj is

the amount of human capital, and ntj is the number of workers employed in a firm, each of

whom spends a fraction utj of his or her time at work.

There is a local industry-specific externality in the labour input, so that the produc-
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tivity of any firm in the city depends upon the number of workers in a city and the amount

of human capital they have

Ãtj = AtjH̃
γj
tj Ñ

εj
tj ,

where Atj is an industry-specific productivity shock and H̃tj and Ñtj represent the total stock

of human capital and the total amount of labor in the city. Increasing returns at the city

level cause agglomeration in the model. Firms are assumed to be small, taking the size of

the externality as given. The industry-specific productivity shock is assumed to be first order

Markov with bounded support, and the distribution of its innovations can vary arbitrarily

across industries.

Two comments regarding external effects are in order. First, the external effect is

related to human capital and the number of workers, but not to physical capital. This allows

us to interpret the external effects as knowledge spillovers. Adding an external effect from

physical capital would not change our qualitative results for city dynamics, or the shape of the

size distribution, although it would change its mean. We also assume that the external effect

depends on the number of workers and not the fraction of time they devote to work, u. This

assumption is also for interpretative purposes only but has no effect on our results. Second,

we assumed the externality to be city and industry-specific. Therefore, it is efficient for cities

to specialize in one industry, as this allows agents to economize on commuting costs. In the

unpublished Appendix, we show how the model can be generalized to produce diversified

cities.

The problem of the firm is to hire labor and human and physical capital to maximize

profits, taking as given the total amount of labor input in the city (and hence the size of the

externality term), factor prices, and subsidies. As there are constant returns to scale within

the firm, we can treat each city as though it had a representative firm. If we let ptj , wtj, rtj ,

and stj be the prices and rental rates of labor and physical and human capital, respectively,

written in terms of some numeraire commodity, and τktj and τhtj be the subsidies to physical

and human capital paid by property developers to attract firms to a particular city, then the
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firm’s optimization problem yields

wtj/ptj =
¡
1− αj − βj

¢
Ỹtj/

³
utjÑtj

´
,(1) ¡

1− τktj
¢
rtj/ptj = βjỸtj/K̃tj ,(2) ¡

1− τhtj
¢
stj/ptj = αjỸtj/H̃tj ,(3)

where Ỹtj and K̃tj denote production and physical capital stock in the city.

It will be convenient for the analysis to divide the original set of J industries into

groups with the same basic technology parameters. In particular, within a group, firms in

each industry produce using exactly the same technology, but use industry-specific human and

physical capital, and receive industry-specific productivity shocks. That is, within a group

all factor shares, and in general all parameters, are identical. Across groups, all aspects of

the technology may differ. In line with much of the literature, we see this as a natural way

of organizing the set of products observed in the economy. Some products are distinguished

because they are produced with fundamentally different technologies, while others embody

different designs or fulfill different purposes, but are produced with the same ex-ante technol-

ogy. This assumption, which ensures the homogeneity of technology within a group, implies

that the city evolution process will be the same for all cities within a group. We will then

use this to establish the conditions under which Zipf’s Law holds for each of these groups,

before finally aggregating across groups to obtain Zipf’s Law for the entire economy.

C. Households

The economy is populated by a unit measure of identical small households. The

initial number of people per household is N0, and we assume that the population of each

household grows exogenously at rate gN . Each household starts with the same strictly positive

endowments of industry j specific physical (K0j) and human (H0j) capital, as well as identical

initial financial wealth. The distinction between households and members is useful so that

each household can have members working in all industries which allows the household to

diversify all risk. Hence, even though there are multiple industries there is a representative

household. As a result, in what follows, we focus on allocations in which all households are

treated symmetrically.
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Households order preferences over stochastic sequences of the consumption good ac-

cording to

(1− δ)E0

" ∞X
t=0

δtNt

Ã
JX
j=1

ln

µ
Ctj

Nt

¶!#
,

where δ is a discount factor that lies strictly between zero and 1/ (1 + gN) , and Ctj is a

sequence of state contingent consumption of each good j. Here E0 is an expectation operator

conditional on information available to the household at time zero.

Capital services in industry j are proportional to the stock of industry j-specific capital,

which is accumulated according to the log-linear equation

Kt+1j = K
ωj
tj X

1−ωj
tj .

Investment in industry j, Xj, is assumed to be denominated in terms of that industry’s

consumption good. The assumption of log-linearity for the capital accumulation equation

is introduced so as to allow us to solve for the entire time path of capital accumulation

in closed form. This specification was first introduced by Lucas and Prescott (1971) and

has since been exploited by many others authors including, for example, Hercowitz and

Sampson (1991). This accumulation equation also implies that the higher the capital stock

the larger the needed investments to increase (or maintain) the capital stock. Thus, the

capital accumulation equation is one source of reversion to the mean for the capital stocks in

the model, although not the only one (as we discuss in Section 3).

Each member of the household is endowed with one unit of time in each period, which

can be devoted to either the accumulation of human capital or the provision of labor services

in each of the j industries. In order to work in industry j, a member of the household

must be physically present (at the start of the period) at a location that produces good j.

It is convenient to think of the household as first distributing Nj of its members to each

industry j subject to
P

j Ntj ≤ Nt, in each period, and then allocating the workers across

cities producing each good. In equilibrium all cities end up specializing in the production of

one industry, and all cities in an industry are identical, so that in the symmetric equilibrium,
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the household allocates an equal amount of labor to each city in an industry.

Each worker spends utj amount of time working, with the remainder of each worker’s

time used to produce new human capital according to

Ht+1j = Htj

£
B0
j + (1− utj)B

1
j

¤
,

where B0
j and B1

j are non-negative constants. This specification allows us to nest both

endogenous and exogenous growth within the same framework. If B1
j = 0, then human capital

evolves exogenously at a constant rate B0
j and we have an exogenous growth model. If B

1
j is

positive, then the time allocation of a worker affects the growth rate of the economy, which

results in an endogenous growth model. The assumption of linearity is made for simplicity,

but is not necessary to generate balanced growth in this model since, as we will show below,

the economy exhibits constant returns to scale in the aggregate.

Clearly, households will allocate their labor and human and physical capital services

to the cities with the highest wages and rental rates net of commuting costs, so that in

equilibrium these must be equal across all cities producing a given good. The household’s

sequences of flow budget constraints are given by

JX
j=1

ptj [Ctj +Xtj + [ACCtj +ARtj ]Ntj ](4)

≤
JX

j=1

[wtjNtjutj + rtjKtj + stjHtj + ptjTtjNtj ] ,

where ACCtj and ARtj represent average commuting costs and average rents, and Ttj denotes

transfers to households from property developers.

D. Property Developers

Property developers own land and aim to maximize total rents from their land. In

order to attract firms and workers to the city, developers may subsidize the employment of

all factors of production. Agents derive utility out of consumption of goods that are costlessly

tradable, and so they live in the city if their income, net of commuting costs, is at least as

large as what they could obtain elsewhere. Firms produce in the city as long as profits are
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non-negative. Free entry implies that developers earn zero profits in equilibrium, and so

patterns of land ownership are irrelevant for all of our results. Solving this problem results in

city sizes that are optimal. Given the size of the industry, this means that we must allow for

the possibility of a non-integer number of cities, all of which are identical in size within an

industry. Since developers are fully internalizing the external effect, the equilibrium allocation

is efficient.

It is important to stress that in this formulation, developers choose to subsidize human

capital independently of the subsidy to labor, and that this subsidy is on the employment,

but not the accumulation, of human capital. This distinction is important, since free mo-

bility restricts the ability of developers to extract the benefits of subsidies to human capital

accumulation. In practice, some policies that may achieve this goal are subsidies to firms

that employ highly skilled workers, or the provision of local public goods preferred by highly

educated agents (e.g., fine arts).6

Property developers aim to maximize rents net of subsidies paid to firms in order to

attract them, as well as factors of production, to the city. In order for workers to live in the

city, they must receive large enough wages wtj/ptj , such that, net of commuting costs, their

income Itj is at least as large as what they could obtain in any other city producing in this

industry. Free mobility then guarantees that all cities in an industry are identical. In order

to attract firms, the returns to all factors have to be at least as large as the rental rates of

these factors after subsidies. Let μtj denote the number of cities in industry j at time t. All

cities producing good j will be identical, so that if there are μtj cities producing good j, the

amounts of labor and human capital in any one city are given by Htj/μtj and Ntj/μtj. Then

the problem of a property developer is to choose factor inputs in the city Ntj/μtj, Ktj/μtj and

Htj/μtj, and subsidies to factors of production, Ttj, τ
k
tj , τ

h
tj, to maximize

Π = max

"
b

2

µ
Ntj

μtj

¶ 3
2

− Ttj
Ntj

μtj
− τktj

rtj
ptj

Ktj

μtj
− τhtj

stj
ptj

Htj

μtj

#
,

6See Black and Henderson (1999) for a discussion of the difficulties in implementing this type of subsidy.
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subject to

¡
1− τktj

¢
rtj/ptj = βjYtj/Ktj ,¡

1− τhtj
¢
stj/ptj = αjYtj/Htj ,

Itj =
¡
1− αj − βj

¢ Ytj
Ntj

+ Ttj − 3b
2

µ
Ntj

μtj

¶ 1
2

.

Competition from other developers ensures that profits are zero, so

Ttj =
b

2

µ
Ntj

μtj

¶ 1
2

− τktj
rtj
ptj

Ktj

Ntj
− τhtj

stj
ptj

Htj

Ntj
.

As total commuting costs are a convex function of the number of residents, all cities

will be completely specialized in one industry. This follows from the fact that a developer

could increase profits just by splitting a diversified city into several smaller specialized cities:

total production would be identical but residents would face lower commuting costs.

Note also that we are giving developers all the necessary instruments to internalize the

externality, which allows us to show below that the equilibrium allocation will be optimal. If

we were to restrict the instruments that developers can use (for example, allow them only to

provide transfers to agents but no human capital subsidies), the equilibrium allocation will

no longer be efficient. For our purposes, and the results that follow, what is important is

that developers play a coordination role and form cities by maximizing rents. Whether cities

are efficient or not is unimportant for the dynamics of the model and the characteristics of

the size distribution of cities. By postulating the existence of these developers we eliminate

equilibria in which, for example, all agents in an industry agglomerate in one city even though

they could benefit from coordinating and forming more cities. Without property developers,

this could occur given that there are no individual agent incentives to deviate to a new city

since the productivity of an empty site is zero. Property developers serve to eliminate this

multiplicity.

E. Equilibrium

Before we proceed to formally define an equilibrium allocation, it is perhaps useful

to discuss some of the features of the setup we have introduced above. Instead of choosing
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a general specification of technology, factor accumulation, and utility, we have introduced a

particular log-linear specification. This allows us to solve the model in closed form. Almost

any deviation from this specification cannot be solved analytically and so we would need to

rely completely on numerical simulations. This particular setup is simple to solve because

the log-linear specification ensures that income and substitution effects exactly balance. As a

result, investments in physical capital in each industry turn out to be just a constant fraction

of output, while employment in each industry turns out to be a constant fraction of total

population. As we discuss below, the main forces that lead to our main results do not rely

heavily on these features, although the precise formulas do. We prove in the next section

that given the presence of property developers — that internalize external effects within a city

— the equilibrium allocation exists, is unique, and efficient. None of these properties relies on

the particular log-linear specification of the model.

We are now in a position to define a competitive equilibrium for this economy. Given

that all cities in an industry are specialized and identical, we specify the equilibrium in terms

of industry aggregates.

Definition 1 A Competitive Equilibrium for this economy is a set of state contingent se-

quences Ctj ,Xtj, utj, Ntj, μtj ,Htj, Ktj for each industry j and each period t, and a price system

ptj , wtj, rtj, stj and transfers and subsidies Ttj , τ
k
tj , τ

h
tj for each industry j at each period t,

such that

1. given ptj, wtj , rtj, stj and Ttj, households optimize,
2. given ptj , wtj, rtj , stj and τktj, τ

h
tj , firms hire Ktj, Htj and Ntjutj so as to maximize prof-

its,
3. given ptj , wtj, rtj , stj, developers choose Ttj , τ ktj , τ

h
tj and Ntj/μtj, Ktj/μtj ,Htj/μtj to max-

imize profits,
4. aggregate and individual decisions are consistent,
5. free entry implies zero profits for developers, and
6. markets for goods and factors clear:

Ctj +Xtj + bN
3
2
tjμ

− 1
2

tj = Ytj ,

JX
j=1

Ntj = Nt.
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F. Efficient Allocations

As it is efficient for all cities to be identical and specialized, all Pareto efficient allo-

cations are the solution of the following Social Planning Problem: Choose state contingent

sequences
©
Ctj ,Xtj, Ntj, μtj, utj ,Ktj, Htj

ª∞,J

t=0,j=1
to maximize

(5) (1− δ)E0

" ∞X
t=0

δtNt

Ã
JX
i=1

lnCti/Nt

!#

subject to, for all t and j,

(6) Ctj +Xtj + b

µ
Ntj

μtj

¶ 3
2

μtj ≤ Atj

µ
Ktj

μtj

¶βj
µ
Htj

μtj

¶αj+γj
µ
Ntj

μtj

¶1−αj−βj+εj
u
1−αj−βj
tj μtj,

(7) Nt =
JX
j=1

Ntj,

(8) Kt+1j = K
ωj
tj X

1−ωj
tj ,

(9) Ht+1j = Htj

£
B0
j + (1− utj)B

1
j

¤
,

given H0j and K0j. The first constraint states that consumption plus investment plus com-

muting costs has to be less than or equal to production in all cities in the industry.

This is not a convex dynamic optimization problem. However, since the problem of

determining the optimal city size is static, we can solve it separately. This transforms the

problem into a convex dynamic optimization problem. We can then show that the optimal

allocation exists and is unique. The rest of the proof shows that the conditions that determine

an equilibrium allocation are identical to the ones that determine the unique efficient alloca-

tion. This implies that there exists a unique equilibrium allocation, and that the equilibrium

is efficient. Apart from the developers problem, the proof of this proposition is standard.

Note that, because all households are identical, we focus on the symmetric allocation.

Proposition 1. There exists a unique symmetric Pareto efficient allocation. There exists a

unique and efficient symmetric competitive equilibrium.

As we argued above, efficiency is the result of the existence of property developers who
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are able to offer a rich set of subsidies. The main implications of our model are unaffected by

the number of instruments possessed by property developers, and hence also by whether or

not the equilibrium allocation is efficient. Hence, we proceed with the case where developers

can fully internalize the externality.

3. Characterization
With these results in hand, we are free to make use of the solution to the social

planning problem in order to characterize the competitive equilibrium of the model. We now

proceed to derive several properties of the equilibrium allocation. Due to our functional form

assumptions, we are able to solve for the entire equilibrium growth path and size distribution

of cities in closed form.

A. Aggregate Constant Returns

As there are no adjustment costs at the city level, the problem of choosing the optimal

sizes of cities is static. In each period, the planner sets the city size to maximize output net

of commuting costs. We solve this problem first and then, imposing the solution, we solve for

the dynamics. Toward this, we can rewrite the resource constraint in an industry j at time t

as a function of industry-wide variables and the number of cities in an industry,

Ctj +Xtj + bN
3
2
tjμ

− 1
2

tj ≤ AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj μ

−γj−εj
tj ≡ Ytj .

The first order condition with respect to μtj yields the optimal number of cities in industry

j, as a function of output and employment in that industry,

(10) μtj =

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#−2
Ntj ,

and so total commuting costs satisfy

(11) TCCtj = 2
¡
γj + εj

¢
Ytj.

Notice that we need to impose γj + εj < 1/2, in order to guarantee that the solution of

the first order condition attains a maximum (if this condition is not satisfied, the first order
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conditions yield a minimum at which total commuting costs are larger than total output).

To interpret this restriction, write industry output net of total commuting cost as

AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj μ

−γj−εj
tj − bN

3
2
tjμ

− 1
2

tj ,

and notice that if the above condition is not satisfied, as the number of cities decreases, given

industry aggregates, the value of the expression increases unboundedly. This implies that the

above problem has no internal solution: The planner would like to make cities as large as

possible.

Substituting the results for the optimal number of cities and total commuting costs in

the resource constraint implies that

(12) Ctj +Xtj ≤ FjÂtjH
α̂j
tj K

β̂j
tj N

1−α̂j−β̂j
tj u

φ̂j
tj ≡ Ŷtj,

where

Fj = (1− 2 ¡γj + εj
¢
)

"
2
¡
γj + εj

¢
b

# 2(γj+εj)
1−2(γj+εj)

,

Âtj = A

1

1−2(γj+εj)
tj , α̂j =

αj + γj

1− 2 ¡γj + εj
¢ ,

β̂j =
βj

1− 2 ¡γj + εj
¢ , and φ̂j =

1− αj − βj

1− 2 ¡γj + εj
¢ .

Since utj is constant in equilibrium, output net of commuting costs for the optimal city

structure (Ŷtj) is constant returns to scale in industry aggregates. Notice that by equation

(11) output in the industry is also a constant returns to scale function of inputs in the

industry.

The constraint in (12) contains the first main result of our paper: introducing the

margin of the creation of new cities eliminates increasing returns at the urban level from the

aggregate problem. We summarize this result in the following Proposition.

Proposition 2. (Aggregate Constant Returns to Scale) Output in industry j, Ytj , and indus-

try output net of commuting costs, Ŷtj, are constant returns to scale functions of industry-
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specific capital Ktj , industry-specific human capital Htj, and labor Ntj .

The result in this Proposition has implications for the way in which we view the growth

process. First, it allows us to reconcile the coexistence of cities, which implies the existence

of scale economies, with balanced growth. Second, it shows that it is inappropriate to test

for the existence of increasing returns with aggregate data even though increasing returns

are, in fact, present in the production technology. Third, the observed level of aggregate

productivity (the magnitude of Fj in equation (12)) is determined by the way production is

organized in cities, as well as the parameters governing externalities and commuting costs.

This suggests the possibility that differences in the pattern of urbanization are the source of

differences in total factor productivity across countries.7

B. City Sizes

To understand the process of city size determination, rewrite the first order condition

for the number of cities, μtj, as

b

2

µ
Ntj

μtj

¶− 1
2

=
¡
γj + εj

¢ Ytj/Ntj

Ntj/μtj
.

That is, the planner increases the number of people in the city until the change in commuting

costs per person for current residents (left-hand side) is equal to the change in earnings per

person for current residents (right-hand side).

From this equation it is easy to see that anything that increases the level of the

average product of labor increases the average size of the city. For example, consider the

effect of an increase in productivity. Everything else equal, output per worker increases and

the planner finds it optimal to attract more workers to the city. If the productivity increase

is permanent, the city will be permanently larger. The growth model presented above is,

in essence, a mechanism for producing persistence in the average product of labor in a city,

while at the same time remaining consistent with aggregate growth facts.

Our mechanism relies on city sizes that respond to factor accumulation and produc-

tivity shocks. This is the case as long as average commuting costs do not rise by exactly the

7Au and Henderson (2004) examine this possibility for the particular case of China.
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same amount as the average product of labor. If commuting costs were to rise by less, or

even more, than the average product of labor, the basic result that productivity shocks are

translated into fluctuations in city sizes remains. However, one combination of assumptions

that does not work is if commuting costs are denominated purely in units of time, and workers

supply labor inelastically, and the production function is Cobb-Douglas. In this knife-edge

case, marginal and average products are proportional and hence commuting costs measured

as forgone wages rise at exactly the same rate as the average product of labor. More gener-

ally, any combination of time and material cost of commuting yields the necessary response

of city sizes to productivity shocks. In the model above we focus on a simple case in which

commuting costs within a city are denominated in terms of the output of that city. The

results are analogous if we include time costs of commuting as well.

C. Growth Rates

To solve for the dynamics of factor accumulation, note that after substituting for the

optimal number of cities we obtain a standard dynamic problem with constant returns to

scale production technology. In particular, our problem becomes one of choosing {Ctj, Xtj ,

Ntj, utj , Ktj, Htj}∞,J
t=0,j=1 so as to maximize (5) subject to (12), (7), (8), and (9). The value

function of the planner has the form

(13) V ({Htj , Ktj , Atj}Jj=1) = D0 +
JX

j=1

£
DH

j ln(Htj) +DK
j ln(Ktj) +DA

j ln (Atj)
¤
,

which is the result of the particular log-linear specification we have assumed. We could set

up a more general model at the cost of losing the ability to solve the model analytically. The

details of the solution are entirely standard and so are relegated to the Appendix. Three

basic results come out of solving the planner’s problem. The share of population working in

each industry is constant. Investment is a constant share of output net of commuting costs

Xtj = xjŶtj, for some constant xj , and the fraction of time used for production is constant

at u∗j .

Note that the model is capable of producing growth, either exogenously or endoge-

nously. More importantly, the model delivers two properties not present in most other urban
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growth models: a balanced growth path exists without knife-edge assumptions on the size

of externalities, and growth is positive even in the absence of population growth. On the

balanced growth path (with no uncertainty) we know that the growth rates of capital (gKj),

human capital (gHj), and output net of commuting costs (gŶj) are constant, so

gKt+1j ≡ lnKt+1j − lnKtj = (1− ωj)
h
ln xj + ln Ŷtj

i
− (1− ωj) lnKtj.

Hence, on the balanced growth path ln Ŷtj − lnKtj is constant. The growth rate of human

capital is given by gHj
= B0

j + (1− u∗j)B
1
j . For income, when β̂j < 1, on the balanced growth

path8 (with no uncertainty),

gŶj =
α̂jgHj +

³
1− α̂j − β̂j

´
gN

1− β̂j
.

That is, in the long run, growth is driven by endogenous human capital accumulation (if

B1
j > 0) and exogenous population growth.

Notice that in this model linearity in human capital accumulation implies that growth

rates are constant in the long run, even with increasing returns in the aggregate production

function. In general, this type of linearity plays two different roles in growth models: It is a

source of endogenous growth, and it prevents growth rates from diverging to infinity. In this

paper, this linearity serves the first, and not the second, purpose. We use it to show that

our results do not depend on the source of growth and, in particular, whether it is exogenous

or endogenous. To illustrate this point, suppose we set 1 < αj + βj + γj for all j, and we

let human capital accumulate exactly as physical capital. Then, without cities, due to the

presence of aggregate increasing returns, growth rates would diverge to infinity. However,

with this type of increasing returns at the city level, the mechanism we have introduced in

this paper would yield constant returns in the aggregate and therefore a balanced growth

path in which gŶj = gN .

8For the case when β̂j = 1, gN = gH = 0, and ω = 0 (the AK model), gŶt+1j = lnxj + ln (FjAtj) .
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D. Gibrat’s and Zipf’s Laws

Given the evolution of output in each industry, we can study the evolution of the size

distribution of cities. The growth rate of a city in industry j is given by

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j [ln (Kt+1j)− ln (Ktj)] .

Recursively substituting for capital growth, we get an expression for the long-run growth rate

of cities:9

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
=

2α̂j

1− β̂j
[gHj − gN ] + 2 [ln (At+1j)− ln (Atj)]

+2 (1− ωj) β̂j

⎡⎢⎣ln(Atj)−
∞X
s=1

³
ωj + (1− ωj) β̂j

´s−1
³
1−

³
ωj + (1− ωj) β̂j

´´−1 ln(At−sj)

⎤⎥⎦ .(14)

Equation (14) is the key equation for characterizing city dynamics. From this equation

we can deduce conditions under which Gibrat’s Law is guaranteed for each group of industries.

In order to generate Gibrat’s Law we need the growth processes at the city level to be

independent of scale. As labor is perfectly mobile across cities and industries, this in turn

requires that the marginal product of labor be independent of scale. The proposition below

outlines two scenarios in which this is exactly the case: the first is one in which current

productivity shocks are the only stochastic force in growth and are permanent, thus producing

permanent increases in the level of the marginal product of labor, so that the growth rate of

the marginal product is independent of scale. These assumptions eliminate the third term

in equation (14) and therefore all scale dependence. This result is invariant to whether the

engine of growth is endogenous or exogenous. The second case is one in which productivity

shocks are temporary, but have a permanent effect on the marginal product of labor through

the linear accumulation of physical capital. This amounts to transforming the model into an

9For the details on how to derive this expression, see the solution to the planner’s problem in the appendix.
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AK model with no human capital and 100 percent depreciation. In this context, both last

period output and capital react linearly to last period shocks. These two effects cancel out,

and the only remaining source of uncertainty is the contemporaneous productivity shock.10

We then show that Gibrat’s Law implies Zipf’s Law in our framework. Note that in

our framework we need to consider the entry and exit of new cities. As a consequence we

cannot simply apply previous results in the literature which rely on a fixed number of cities

(Gabaix 1999a,b, Cordoba 2004 and Eeckhout 2004).11 The next proposition provides a new

proof of the relationship between Gibrat’s and Zipf’s Law in our framework, based on some

results by Levy and Solomon (1996) and Malcai, Biham and Solomon (1999). In the proof of

the proposition, we use the assumption that our industries can be divided into groups with

similar technologies to first prove that Zipf’s Law holds for each group. We then aggregate

across groups to show Zipf’s Law for the entire economy. The proof of this result requires us

to impose an arbitrarily small lower bound on the size of a city (as in Gabaix 1999a). All

proofs are relegated to the appendix.

Proposition 3. (Exact Gibrat’s Law and Zipf’s Law) The growth process of city sizes satisfies

Gibrat’s Law if and only if one of the following two conditions is satisfied:

1. (No physical capital) There is no physical capital
³
β̂j = 0 or ωj = 1

´
, and productivity

shocks are permanent.
2. (AK model) City production is linear in physical capital and there is no human capital³

α̂j = 0, β̂j = 1
´
, depreciation is 100% (ωj = 0) , and productivity shocks are temporary.

If the growth process satisfies Gibrat’s Law and city sizes are bounded below by f, the invariant

distribution for city sizes satisfies Zipf’s Law as f → 0.

E. Scale Dependence

Obviously, the conditions outlined in Proposition 3 are restrictive. Reality surely

lies between these two extremes: capital is a factor of production, but not the only one.

10Note that if we were to allow infinite order Markov processes for Aj , we could fine tune the specification
of the process so as to yield Gibrat’s Law exactly for any parameter set.
11Gabaix (1999a) and Cordoba (2004) impose lower bounds on city sizes and a particular structure on the

shocks that leads to an urban structure described by a Pareto distribution with coefficient one. Eeckhout
(2004) has permanent productivity shocks that lead, without a lower bound via the Central Limit Theorem,
to a log-normal distribution for city sizes. The economic interpretation of the shocks differs in all three cases.
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The question that arises is: Between these two extremes, how close are the predictions of

the model to observed urban structures? As mentioned in the introduction, an extensive

empirical literature (surveyed in Gabaix and Ioannides (2003)) has uncovered two systematic

departures from Zipf’s Law. First, plots of log-rank against log-size are concave, reflecting

the fact that small cities are under-represented and that big cities are not “big enough.”

Second, there is variation in cross country estimates of Zipf’s coefficients (Soo (2005)).

In the next two propositions we argue that, in general, the model can account for these

same deviations from Zipf’s Law. First we show that if a city is relatively large because it

operates in an industry that experienced a history of above average productivity shocks, it

can be expected to grow slower than average in the future, while the opposite is true of small

cities. Intuitively, since β̂ < 1, diminishing returns to capital imply that industries with high

capital stocks have a lower return to capital than industries with low capital stocks, and so

cities in industries with relatively low stocks of physical capital grow faster. This effect is

emphasized by the fact that when ωj > 0 for all j, in order to keep physical capital constant,

industry investments have to be higher in industries with large capital stocks and lower in

industries with low capital stocks. Urban growth rates exhibit reversion to the mean. This

implies that the log rank-size relationship will in general (apart from particular realizations

of the shocks) be concave or, in other words, that the invariant distribution for city sizes has

thinner tails than a Pareto distribution with coefficient one. Eeckhout (2004) emphasizes

exactly this feature of the data.

Proposition 4. (Concavity) If conditions 1 and 2 in Proposition 3 are not satisfied, the

growth rate of cities exhibits reversion to the mean. If productivity levels are bounded for all

industries (there exist uniform bounds such that Atj ∈
£
Aj, Aj

¤
for all t, j), then there exists

a unique invariant distribution of city sizes with thinner tails than a Pareto distribution with

coefficient one.

Unless the conditions of Proposition 3 are satisfied, variation in the standard deviation

of productivity shocks affects the distribution of city sizes. Intuitively, given capital stocks, a

larger standard deviation of shocks directly implies a larger standard deviation of city sizes.

Moreover, it also implies a larger standard deviation of investments, which in turn implies

23



a more dispersed distribution of capital stocks. We formalize this intuition in the following

proposition.

Proposition 5. If Conditions 1 and 2 in Proposition 3 are not satisfied, the standard devi-

ation of city sizes increases with the standard deviation of industry shocks.

Proposition 5 points to the standard deviation of productivity shocks as the key pa-

rameter linking our model with the observed urban structure. In the next section we explore

whether the international evidence on Zipf’s coefficients is consistent with the evidence on

the volatility of industry productivity shocks.

4. Numerical Exercises
In the previous section, we established analytically the conditions under which our

theory produces Zipf’s Law exactly, and showed that away from these special cases the city

size distribution always has thinner tails than implied by Zipf’s law, and that the amount of

dispersion in the distribution increases with the volatility of industry shocks. In this section,

we supplement these results with numerical simulations designed to show that the theory

can robustly generate size distributions in line with the data for a wide range of plausible

parameter values.

To illustrate the deviations from Zipf’s Law that result in our model when we move

away from the assumptions in Proposition 3 and how they relate to the data, we begin

with Figure 3 which contains data on the city size distribution, defining cities as MSAs, in

2002 for the United States, Belgium and Saudi Arabia. Alongside the actual data for these

countries, we also present the results of numerical simulations of the model. Each simulation

has been run for 10,000 periods, after which the simulated distribution of city sizes is not

changing significantly through time. We used relatively standard values for most parameters.

The discount factor δ was set to 0.95 which is consistent with annual rates of return. The

production parameters for the firm were all set to one third, or α = β = φ = 1/3, while the

externality parameters were set to one-tenth, or γ = ε = 0.1. Human capital accumulation is

parameterized so that there is no exogenous accumulation of human capital, or B0 = 1 with

B1 = 0.2, while population growth is 2%, or gN = 1.02. We set commuting costs to ten per

unit of distance τ = 10. One non-standard parameter is ω which governs the importance of
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existing capital to the accumulation of future capital. This parameter controls the extent to

which capital depreciates and so we set it to 0.9. However, it turns out that changing the level

of ω has only a modest effect on the quantitative behavior of the model. To see this, note

that as we increase ω, on one hand, the mean reversion caused by the capital accumulation

equation increases since the share of investment in tomorrow’s capital production (1− ω)

decreases. On the other hand, less capital is accumulated and so the stock of human capital is

lower which reduces this effect. Finally, we need to set the stochastic process for productivity

shocks. Given that we are interested in the long-run distribution, we directly parameterize

the long-run shock process to fit the U.S. urban structure. In particular, we set m = 0 and

sd = 0.5, that denote the mean and standard deviation of the normal distribution from which

the logarithms of the long-run transitory shocks are drawn.

As one can see in Figure 3, the model does very well — arguably better than Zipf’s Law

— in matching the U.S. data. In particular, and as expected given Proposition 4, the curve is

slightly concave, as in the data. That is, large cities are too small, and there are not enough

small cities. Note also, given that this plot is the result of one particular sample of shocks,

at the top end there are some portions of local convexity. Nonetheless, the overall picture is

of an approximately concave plot.

Empirical studies have found that Zipf’s Law fits the data well across a wide variety

of countries and over long periods of time. Therefore, fitting the distribution for one partic-

ular country at a single point in time is not helpful in explaining this general phenomenon.

Instead, we want to focus on the robustness of the model’s predictions to variations in the

underlying key parameters. Proposition 5 tells us that one key parameter is the standard

deviation of industry shocks. Otherwise, the model seems to be relatively robust (although

not invariant) to all other parameter values.12 This justifies our focus on the standard de-

viations: the model has identified this parameter as the main source of variation in Zipf’s

Law coefficients. We illustrate the urban distributions resulting from different assumptions

on the standard deviation by fitting the distribution of Belgium and Saudi Arabia. These two

countries exhibit city size distributions that are either extremely concentrated or extremely

12Except the discount factor, δ, that is related to the standard deviation, sd, via the period length, which
is calibrated to one year.
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dispersed, relative to other countries. The rank size relationship in Belgium is very steep

with a Zipf’s coefficient of 1.59. The standard deviation of long-run shocks that yields a city

size distribution consistent with the Belgian data is 0.31. We perform the same exercise for

Saudi Arabia that exhibits a very flat rank size relationship. Saudi Arabia’s cities are very

distinct in terms of population sizes, with a Zipf’s coefficient of 0.78. The standard deviation

used in the numerical simulation is sd = 0.73.13

To assess whether or not this range of standard deviations is plausible, we can use

the model to compare the international evidence on urban structures with evidence on the

range of observed industry productivity shock variances. To begin, note that Belgium and

Saudi Arabia provide a range of standard deviations that would imply city size distributions

consistent with what we observe in the data. We first ask whether this range is in line

with measures of productivity shocks by industry. Horvath (2000) measures the standard

deviation and persistence of industry shocks in the United States for 36 industries, from

which we calculate long-run standard deviations. As the United States is the world’s largest

economy, and is relatively diversified across industries, we will take these data to represent the

universe of possible productivity shock processes. We then ask what proportion of industries

have productivity shock processes within the implied interval. In interpreting the result of

this test, it is important to stress that this comparison puts a heavy burden on our theory.

To understand this, consider a situation where all of the standard deviations of productivity

shocks are inside the intervals implied by the range of Zipf’s coefficients. That would mean

that if a country were to have industries that faced only the least variable productivity

shocks, it would still exhibit a Zipf’s coefficient within the range of international evidence.

However, we know that all countries produce in a variety of industries that face shocks that

differ in their standard deviations. That is, there is no country that produces only in the

most volatile industry. Therefore, it is impossible for all industries’ volatilities to be inside

the implied range. Conversely, if none of the standard deviations were inside the implied

13There are a few countries that exhibit Zipf’s coefficients that are higher or lower than Belgium and
Saudi Arabia. The reason we do not use them is that typically they have only very few cities. For example,
Guatemala, with 13 cities, has a Zipf’s coefficient of 0.728, while Kuwait, with 28 cities, has a Zipf’s coefficient
of 1.720. Using these countries would only improve the performance of the model in the comparisons that
follow.
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range, it would be evidence against our theory. It turns out that, under this calculation, 50%

of the industry long-run standard deviations estimated by Horvath lie within the bounds

implied by our model. We interpret this as a substantial success for our model. We can

also do the reverse exercise and calculate the range of Zipf’s coefficients that our model

can produce given Horvath’s productivity numbers. The resulting range is wide enough to

include the urban size distribution of all countries. Thus, variation in the standard deviation

of industry productivity shocks can go a long way in explaining the observed variation in

Zipf’s coefficients.14

5. Conclusions
We have proposed a tractable general equilibrium urban growth theory. It emphasizes

the role of the accumulation of specific factors across industries in determining the evolution

of the urban structure. In this theory, cities arise endogenously out of a trade-off between

agglomeration forces and congestion costs. It is the size distribution of cities itself, and

its evolution through the birth, growth and death of cities, that leads to a reconciliation

between increasing returns at the local level and constant returns at the aggregate level. The

urban structure of the economy prevents growth rates from diverging. Moreover, this same

urban structure displays many of the features observed in actual city size distributions across

countries and over time.

An advantage of the simple specification we adopted above is that it allows us to

identify analytically the standard deviation of industry productivity shocks as the crucial

factor determining cross-country differences in urban structure. An empirical analysis of

this parameter is, we believe, an important part of any systematic empirical evaluation of

cross-country differences in the size distribution of cities.

One of the limitations of this simple specification is that cities specialize in only one

industry. We can introduce diversified cities using either cross-industry spillovers or non-

traded consumption goods. In these cases cities will produce goods in multiple industries,

14Soo (2005) finds that the coefficients in absolute value tend to be smaller (more unequal distribution
of cities) in Africa, South America and Asia than in Europe, North America and Oceania. Since most of
the developed economies are in the last group of continents, and presumably these are the countries that
experience less volatility of income (that is, smaller industry shocks), we view the response of the model to
changes in sd as potentially identifying the source of the differences in Zipf’s coefficients observed in the data.
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but city dynamics and the characteristic of the cross-sectional distribution of cities, as well

as the aggregate properties of the model, will remain unchanged.

Finally, our theory points to differences in the efficiency at which cities are organized

as a potential explanation of the observed differences in total factor productivity across

countries. In our theory, we justified focusing on cities that are organized efficiently by

postulating the existence of property developers with access to a sophisticated range of policy

instruments. Restricting the range of policy instruments available to these developers, for

example by eliminating subsidies on human capital, does not affect the main results of our

theory, but translates into lower observed levels of total factor productivity. The varying

ability of local governments in different countries to use these policies is, potentially, an

important determinant of income levels. These policies are particularly important for cities,

given that urban scale economies are unlikely to have been fully internalized. We hope

that future research will examine the empirical relationship between local government policy,

urban structure, and aggregate total factor productivity levels across countries.
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Appendix

A1. Appendix
A1. Solution of Social Planner’s Problem

Our first task is to solve the planning problem. This social planner’s problem is to

choose state contingent sequences {Ctj ,Xtj, Ntj , utj, Ktj , Htj}∞,J
t=0,j=1 to maximize (5) subject

to, for all t and j, (8), (9), (7), and

FjAtjH
α̂j
tj K

β̂j
tj N

1−α̂j−β̂j
tj u

φ̂j
tj = Ctj +Xtj.

To solve this problem, we can verify that the value function of the problem takes the

form given by (13). This leads to

C∗tj =
(1− δ)

δDK
j (1− ωj) + (1− δ)

Ŷtj ,

which implies that

X∗
tj =

δDK
j (1− ωj)

δDK
j (1− ωj) + (1− δ)

Ŷtj ≡ xjŶtj.

We can use this result to obtain expressions for utj and N∗
tj,

u∗j =
φ̂j
¡
B0
j +B1

j

¢ £
δDK

j (1− ωj) + (1− δ)
¤

δDH
j B

1
j + φ̂jB

1
j

£
δDK

j (1− ωj) + (1− δ)
¤ ,

N∗
tj =

³
1− α̂j − β̂j

´ ¡
δDK

j (1− ωj) + (1− δ)
¢

PJ
j=1

h³
1− α̂j − β̂j

´ ¡
δDK

j (1− ωj) + (1− δ)
¢iNt ≡ njNt,

where

DK
j =

(1− δ)β̂j

1− δωj − δ (1− ωj) β̂j
, and

DH
j = α̂j +

δβ̂j (1− ωj) α̂j

1− δωj − δ (1− ωj) β̂j
.

We would like to find out what these results imply for the law of motion of physical
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and human capital. For this, notice that

lnHtj = lnH0j + t ln
¡
B0
j + (1− u∗j)B

1
j

¢
,

lnKtj = ωj lnKt−1j + (1− ωj)
h
ln xj + ln Ŷt−1j

i
.

Of course,

ln Ŷtj = ln(Fj) + ln(Atj) + α̂j ln (Htj) + β̂j ln (Ktj) +
³
1− α̂j − β̂j

´
ln
¡
N∗

tj

¢
+ φ̂j ln

¡
u∗j
¢
,

so

lnKtj = ωj lnKt−1j + (1− ωj) [ln xj + ln(Fj) + ln(At−1j) + α̂j ln (Ht−1j)

+β̂j ln (Kt−1j) +
³
1− α̂j − β̂j

´
ln
¡
N∗

t−1j
¢
+ φ̂j ln

¡
u∗j
¢i

.

Given that we are interested in characterizing the solution with shocks, we want to

determine the invariant distribution of the model. For this, we want to characterize first

limt→∞ lnKtj − lnKt−1j . Taking differences, recursively substituting, assuming that β̂j < 1

and that population growth is constant, so that Nt = (gN )
tN0, we obtain

lim
t→∞

[lnKtj − lnKt−1j ] =

(1− ωj) lim
t→∞

⎡⎢⎣ln(At−1j)−
t−1X
T=1

³
ωj + (1− ωj) β̂j

´t−1−T
³
1−

³
ωj + (1− ωj) β̂j

´´−1 ln(AT−1j)

⎤⎥⎦
+

1

1− β̂j

h³
1− α̂j − β̂j

´
gN + α̂j ln

¡
B0
j + (1− u∗j)B

1
j

¢i
.

The size of the city is given by

Ntj

μtj
=

"
2
¡
εj + γj

¢
b

Ytj
njNt

#2
,

30



so

ln

µ
Ntj

μtj

¶
= 2

"
ln

Ã
2
¡
εj + γj

¢
bnj

!
+ ln (Ytj)− ln(Nt)

#

= 2

⎡⎣ln
⎛⎝ njFj2

¡
εj + γj

¢
bn

α̂j+β̂j
j (1− 2 ¡εj + γj

¢
)

⎞⎠+ ln (Atj) + α̂j ln (Htj)

+ β̂j ln (Ktj)−
³
α̂j + β̂j

´
ln(Nt) + φ̂j ln

¡
u∗j
¢i

.

Hence,

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j [ln (Kt+1j)− ln (Ktj)] ,

where the expression for ln (Kt+1j)− ln (Ktj) is given above. Taking limits,

lim
t→∞

∙
ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶¸
= 2 lim

t→∞

h
[ln (At+1j)− ln (Atj)]−

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

i
+2α̂j ln

¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j lim

t→∞
[ln (Kt+1j)− ln (Ktj)] .

Imposing constant population growth,

lim
t→∞

∙
ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶¸
= 2 lim

t→∞
[ln (At+1j)− ln (Atj)]

+2 (1− ωj) β̂j lim
t→∞

⎡⎢⎣ln(Atj)−
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
³
1−

³
ωj + (1− ωj) β̂j

´´−1 ln(AT−1j)

⎤⎥⎦
− 2α̂j

1− β̂j
gN +

2α̂j

1− β̂j

£
ln
¡
B0
j + (1− u∗j)B

1
j

¢¤
.

A2. Proofs of Propositions

Proof of Proposition 1. We start with the proof that there exists a unique Pareto efficient

allocation. As the number of cities of each type μtj enters only into the resource constraint,
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the optimal choice of the number of cities is static and maximizes

(A1) AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj μ

−εj−γj
tj − bN

3
2
tjμ

− 1
2

tj .

We will study the properties of this expression for given strictly positive values ofKtj, Htj , utj

and Ntj . Let

A (Ktj ,Htj, utj, Ntj) ≡ AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj .

Then it is easy to see that

A (Ktj, Htj, utj, Ntj)

bN
3
2
tj

μ
1
2
−γj

tj ,

under our assumption that εj + γj < 1/2, is strictly increasing in μtj, equals zero when

μtj = 0, and is unbounded as μtj tends to positive infinity. Hence, there exists a μ
∗ such that

for all μ ≤ μ∗, the expression in (A1) is negative, while for all other μ it is strictly positive.

Moreover, in the limit as μ goes to infinity, the expression in (A1) goes to zero. Hence, as

the expression is continuous in μ, it possesses a maximum on [μ∗,+∞), which from the first

order necessary condition satisfies (11). Rearranging the first order condition we also find

that the optimal number of cities is given as a function of output and employment in the

industry, so (10) holds.

If we substitute these expressions into the above optimization problem, we get the

augmented social planning problem described above. This problem is convex, and as the

objective function is strictly concave, it possesses a unique solution. As a result of the

functional form assumptions, the solution has strictly positive levels for physical and human

capital, employment and hours worked at every date and in every state of the world. Hence

the solution of the adjusted programming problem also satisfies the constraints of the social

planning problem, and hence it is also the unique solution to the social planning problem.

To show the equivalence of the competitive equilibrium and social optimum, we begin

with the solution of the Social Planner’s Problem (SPP). We know that this solution is the

unique allocation satisfying the first order condition of the SPP to choose state contingent
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sequences
©
Ctj, Xtj, Ntj , μtj, utj ,Ktj, Htj

ª∞,J

t=0,j=1
to maximize (5) subject to, for all t and j,

(8)—(7). If we let the multipliers on the constraints be denoted respectively by λSPtj , γSPKtj, γ
SP
Htj

and γSPNt , the first order conditions are

(1− δ) δtNt
1

Ctj
= λSPtj

γSPKtj (1− ωj)K
ωj
tj X

−ωj
tj = λSPtj

λSPtj
¡
1− αj − βj

¢ Ytj
utj

= γSPHtjB
1
jHtj

λSPtj

"¡
1− αj − βj + εj

¢ Ytj
Ntj

− 3b
2

µ
Ntj

μtj

¶ 1
2

#
= γSPNt

λSPtj

"
b

2

µ
Ntj

μtj

¶ 3
2

− ¡εj + γj
¢ Ytj
μtj

#
= 0

Et

½
λSPt+1jβj

Yt+1j
Kt+1j

+ γSPKt+1jωjK
ωj−1
t+1 X

1−ωj
t+1j

¾
= γSPKtj

Et

½
λSPt+1j

¡
αj + γj

¢ Yt+1j
Ht+1j

+ γSPHt+1j

£
B0
j + (1− ut+1j)B

1
j

¤¾
= γSPHtj.

To show that this allocation is equivalent to the one attained in the competitive equi-

librium, we need to compare this set of conditions with the corresponding set of conditions

for the competitive equilibrium. This is what we turn to next.

1. Households optimize: The household’s problem is to maximize (5) subject to se-

quences of flow budget constraints (4). The laws of motion for human and physical capital,

(8) and (9) and the constraint on labor allocation, (7).

Letting λHH
t be the multipliers on budget constraints, γHH

Ktj and γHH
Htj be those on

physical and human capital accumulation, and γHH
Nt be that on labor supply, the first order
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conditions of the household are

(1− δ) δtNt
1

Ctj
= λHH

t ptj

γHH
Ktj (1− ωj)K

ωj
tj X

−ωj
tj = λHH

t ptj

λHH
t wtjNtj = γHH

HtjB
1
jHtj

λHH
t {ptj [Ttj − ACCtj − ARtj] + wtjutj} = γHH

Nt

Et

n
λHH
t+1 rt+1j + γHH

Kt+1jωjK
ωj−1
t+1j X

1−ωj
t+1j

o
= γHH

Ktj

Et

©
λHH
t+1 st+1j + γHH

Ht+1j

£
B0
j + (1− ut+1j)B

1
j

¤ª
= γHH

Htj .

2. Firms optimize: So equations (1)—(3) hold.

3. Developer choices and free entry: The relevant first order conditions from the

developer’s problem after some rearranging can be expressed as

τktj
rtj
ptj

= 0,

τhtj
stj
ptj

= γj
Ytj
Htj

,

Ttj = εj
Ytj
Ntj

.

Notice that, as expected, the subsidy on capital is zero since there is no externality on capital.

The zero profit condition is then given by

Ttj =
b

2

µ
Ntj

μtj

¶ 1
2

− γj
Ytj
Ntj

.

Substituting the last first order condition, we obtain

b

2

µ
Ntj

μtj

¶ 1
2

=
¡
εj + γj

¢ Ytj
Ntj

,

which is exactly the first order condition of the social planner’s problem with respect to μtj.

Using the second first order condition and the fact that firms choose human capital optimally,

we know that τhtj = γj/
¡
αj + γj

¢
.

34



4. Markets clear: So (7) and

Ctj +Xtj + bN
3
2
tjμ

− 1
2

tj = Ytj,

are satisfied. In order to establish the equivalence, it is sufficient to establish that the first

order conditions of each set of problems are multiples of each other (that is, it is sufficient

to establish the existence of the appropriate set of Lagrange multipliers in each case). The

equivalences follow easily. Comparing the social planner’s first order condition in Ctj with that

of the household, we must have λSPtj = λHH
t Ptj . Looking at first order conditions in investment,

we get λSPtj /γSPKtj = λHH
t ptj/γ

HH
Ktj , which, using the first equivalence, implies γ

SP
Ktj = γHH

Ktj .

Looking at the first order condition in utj we get from the household’s equation B1
jHtj =¡

λHH
t /γHH

Htj

¢
wtjNtj. Substituting for wtj and rearranging, this implies γSPHtj = γHH

Htj .

Using these results along with the first order condition of the firm, we can easily

establish the equivalence of the first order condition with respect to capital. In order to

establish the equivalence of the human capital Euler equation of the planner’s and household’s

problem, substitute in the latter the first order condition of the developer’s problem. All that

remains is to establish the city part of the problem. From the SP problem we have the first

order conditions in Ntj and μtj. From the competitive problem we have the household’s first

order condition in Ntj combined with the developer’s free entry and optimality conditions.

From the household’s first order condition, imposing free entry of developers, we get

wtj

ptj
utj − ACCtj − γj

Ytj
Ntj

=
γHH
Nt

ptjλ
HH
t

.

Substituting for real wages and the result of the property developer’s problem, we obtain

¡
1− αj − βj − εj

¢ Ytj
Ntj

− 3b
2

µ
Ntj

μtj

¶ 1
2

=
γHH
Nt

ptjλ
HH
t

.

This latter equation is the same as the first order condition for Ntj from the social planner’s

problem under the equivalence γHH
Nt /

¡
ptjλ

HH
t

¢
= γSPNt /λ

SP
tj .

Proof of Proposition 3. To show that the growth process of city sizes satisfies Gibrat’s Law,
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note that in the first case, we have that

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2α̂j [ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
,

which varies with j but is independent of city size, as E [ln (At+1j) | ln (Atj)] is independent

of ln (Atj) .

In the second case, we have

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 [ln (At+1j)− ln (Atj)] + 2 [ln (Kt+1j)− ln (Ktj)] ,

but under these conditions Kt+1j = Xtj = xjYtj = xjFjAtjKtju
φ̂j
tj , which implies, as Ntj is

constant, that

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 ln (At+1j) + 2 ln

µ
xjFju

φ̂j
tj

¶
.

This process is independent of city size. Hence, if the conditions in either case one or two are

satisfied, city growth satisfies Gibrat’s Law.

To show the converse, note that if the growth process satisfies Gibrat’s law, it must

be of form ln
¡
Nt+1j/μt+1j

¢ − ln ¡Ntj/μtj
¢
= CG + ln εt, where εt is i.i.d. Given the growth

process of city sizes derived in the text, this implies that we must be in one of the two cases

described in the proposition.

To show that if the growth process satisfies Gibrat’s Law the size distribution of

cities satisfies Zipf’s Law, start with the process ln
¡
Nt+1j/μt+1j

¢ − ln ¡Ntj/μtj
¢
= ξj. This

summarizes the growth processes derived for both cases above when ξj is i.i.d. In order to

prove convergence to a unique invariant distribution, we impose a lower bound, fj , on the

normalized process of city growth, sj (as in Gabaix (1999a) among others). We study the

invariant distribution that results as the lower bound tends to zero. Specifically, let

st+1j = max

½
Nt+1j

μt+1j
/s̄tj, fj

¾
,
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where

s̄tj =
1

Gj

GjX
i=1

Ntj

μtj
,

and Gj is the number of industries with the same ex-ante technology as industry j. Since this

argument holds for all industries in this group, we suppress j in the notation whenever it is

clear by the context. Then st+1 = stξ, and letting ŝ = ln s, this implies ŝt+1 = ŝt+ln ξ. Hence

if q(s) is the stationary probability of a representative city in the industry having size s, the

stationary probability of a representative city having log size ŝ is given by q̂ (ŝ) = eŝq
¡
eŝ
¢
.

The master equation for this probability distribution, above the lower bound, is of the

form

q̂ (ŝ, t+ 1)− q̂ (ŝ, t) =

Z
ξ

qξ (ξ) q̂ (ŝ− ln ξ, t) dξ − q̂ (ŝ, t) ,

where qξ (ξ) denotes the probability of the growth rate taking the value ξ, and q̂ (ŝ, t) denotes

the distribution of ŝ at time t. Standard results (see for example Levy and Solomon (1996) and

Malcai, Biham and Solomon (1999)) then imply that the only asymptotic stationary solution

of the master equation is of the form q̂ (ŝ) = Me−ηŝ, for some M and η to be determined.

This implies that q (s) =Ms−1−η. Using the normalization

Z G

f

sq (s) ds = 1,

and the fact that q (s) is a probability distribution,

Z G

f

q (s) ds = 1,

we can derive an implicit equation that determines η given by

G =
η − 1
η

" ¡
f
G

¢η − 1¡
f
G

¢η − ¡ f
G

¢# .
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For finite G, and sufficiently small values of f, the above expression is well approximated by

G ' 1− η

η

µ
f

G

¶−η
.

Taking natural logarithms and rearranging, we obtain

η '
lnG− ln

³
1−η
η

´
ln
³
G
f

´ ,

and so as the barrier f goes to zero, η converges to zero. To understand the last step suppose,

on the contrary, that |limf→0 η| = η̄ <∞ where η̄ 6= 1. Then limf→0 ln
³
1−η
η

´
= ln

³
1−η̄
η̄

´
<

∞ and so by the previous equation limf→0 η = 0: A contradiction. Hence, either η̄ = 0 or

1, but for η̄ = 1, G ' 1−η
η

¡
f
G

¢−η
implies G = 0: A contradiction. Hence, η̄ = 0. Thus, we

obtain that q (s) =M/s.

So far we have only considered the size distribution of representative cities within a

group. To get the size distribution of cities within a group, we need to consider that each

industry may have many cities. In particular, given s̄j and Nj for a group, an industry with

representative city size normalized to sj has Nj s̄j/sj cities. The term Nj s̄j is constant across

industries within a group, and hence the size distribution of cities, not representative cities,

is given by qCity (ς) = M̂/ς2, for some M̂ finite. The cumulative distribution function is then

given by

QCity (ς > ς̄) =

Z ς̄

0

M̂
1

ς2
dς =

M̂

ς̄
,

which is a statement of Zipf’s Law for that group.

To obtain the size distribution of cities for the economy as a whole, notice first that

the argument above implies that the cumulative distribution of cities in that group is given

by QCity
i (ς > ς̄) = M̂i/ς̄, where i indexes industry groups (assume the total number of groups

is given by Ḡ). Using this, and if λi is the proportion of cities in group i, the cumulative
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distribution function for the economy is

QCity (ς > ς̄) =

ḠX
i=1

λi
M̂i

ς̄
=

"
ḠX
i=1

λiM̂i

#
1

ς̄
,

which is a statement of Zipf’s Law for the economy.

Proof of Proposition 4. We have that city growth rates are given by

ln

µ
Nt+1j

μt+1j

¶
− ln

µ
Ntj

μtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j [ln (Kt+1j)− ln (Ktj)] .

The only places that productivity shocks enter this equation is through their contemporaneous

effects on output and through the accumulation of past capital. If we examine the equation

for capital accumulation, recursively substituting, we find, ignoring all other terms, that the

effect of productivity shocks is given by

2
h
ln (At+1j) +

³
β̂j (1− ωj)− 1

´
ln (Atj)

−β̂j
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
³
1−

³
ωj + (1− ωj) β̂j

´´−1 (1− ωj) ln(AT−1j)

⎤⎥⎦
= 2

h
ln (At+1j) +

³
β̂j (1− ωj)− 1

´
ln (Atj)

−β̂j
³
1−

³
ωj + (1− ωj) β̂j

´´
(1− ωj)

tX
T=1

³
ωj + (1− ωj) β̂j

´t−T
ln(AT−1j)

#
.

Now if we examine only the weights on the lagged productivity shocks, we find that

β̂j

³
1−

³
ωj + (1− ωj) β̂j

´´
(1− ωj)

tX
T=1

³
ωj + (1− ωj) β̂j

´t−T
= β̂j

µ
1−

³
ωj + (1− ωj) β̂j

´t−1¶
(1− ωj) .

If we take limits into the infinite past, so as to remove the effect of initial conditions, this

expression reduces to β̂j (1− ωj) , so that the weights on past productivity shocks sum to

minus one.
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From this we can conclude that if the city type is of average size, defined as having

experienced a sequence of past shocks whose weighted average is E (lnA) , then the expected

growth rate of the city is zero. By contrast, if the past shocks have a weighted average greater

than (less than) E (lnA) , then the expected growth rates are negative (positive).

We next turn to the proof of existence of an invariant distribution. The first step is to

bound the space of city sizes. For this, first note that city sizes depend on output per capita,

and given Atj, Ytj/Ntj is bounded only if human capital and labor do not grow permanently.

So normalize city size by the amount of human capital in the industry and population, or

alternatively, let gHj + gN = 0. Then, in steady state the growth rate of output per capita in

all industries is zero. Denote by ySSj (A) steady state output per capita in industry j given a

sequence of productivity shocks all equal to A. Then city sizes are such that there exists a

t∗ (ε) such that for t > t∗ (ε) .

ln

µ
Ntj

μtj

¶
∈ £cÑ + ln ySSj ¡

Aj

¢− ε, cÑ + ln y
SS
j

¡
Aj

¢
+ ε
¤ ≡ LN,

where cÑ is some constant that depends on the parameters of the model. For what follows,

without loss of generality assume that t > t∗ (ε). To simplify notation let Ntj/μtj = Ñtj.

Since the argument can be made industry by industry we also drop the industry sub-index.

Define the function g (·) using the evolution of Ñ as

g
³
Ñ ,At, At+1

´
≡ ln Ñ + 2 [ln (At+1)− ln (At)]

+2 (1− ω) β̂

⎡⎢⎣ln(At)−
∞X
s=1

³
ω + (1− ω) β̂

´s−1
³
1−

³
ω + (1− ω) β̂

´´−1 ln(At−s)

⎤⎥⎦ .(A2)

This lies in the compact set LN defined above. Let φ be the probability measure over

A. Then, the probability of a transition from a point Ñ to a set S is given by

Q
³
Ñ , S

´
= φ

³
A : g

³
Ñ, At, A

´
∈ S

´
,

where At denotes the sequence of productivity levels up to t. For any function f : LN → R
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define the operator T by

(Tf)
³
Ñ
´
=

Z
LN

f
³
Ñ 0
´
Q
³
Ñ , dÑ 0

´
=

AZ
A

f
³
g(Ñ ,At+1)

´
dφt+1

¡
At+1

¢
.

where φt+1 (At+1) denotes the probability measure of a sequenceAt+1. Define also the operator

T ∗, that maps the probability of being in a set S next period given the current distribution,

say λ, as

(T ∗λ) (S) =
Z
LN

Q
³
Ñ , S

´
λ
³
dÑ
´
.

Since the set LN is compact, we are able to use Theorem 12.12 in Stokey, Lucas and

Prescott (1989) to prove that there exists a unique invariant distribution, if we can show that

the transition probability function Q satisfies the Feller property, is monotone, and satisfies

the mixing condition.

To see that it satisfies the Feller Property, note that the function g is continuous in

ln Ñ , and lnAt+1. Since g is continuous and bounded, if f is continuous and bounded, f (g(·))
will be continuous and bounded and therefore so is Tf . Hence T maps the space of bounded

continuous functions into itself, T : C(S̄) → C(S̄). To see that it is monotone, we need to

prove that if f : LN → R is a non-decreasing function, then so is Tf. But this follows from

the fact that the g is non-decreasing in Ñ . Hence f
³
g(Ñ, At+1)

´
is non-decreasing in Ñ and

therefore so is Tf.

Finally, to show that it satisfies the mixing condition, we need to show that there

exists c ∈ LN, T and η > 0 such that

QT
¡
cÑ + ln y

SS
j

¡
Aj

¢− ε,
£
c, cÑ + ln y

SS
j

¡
Aj

¢
+ ε
¤¢ ≥ η,

and

QT
¡
cÑ + ln y

SS
j

¡
Aj

¢
+ ε,

£
cÑ + ln y

SS
j

¡
Aj

¢
, c
¤¢ ≥ η,
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where the superindex T denotes the number of steps. Let c = cÑ + ln y
SS
j

¡¡
Aj +Aj

¢
/2
¢
+ ε.

As g is continuous and increasing in A, there exists a sequence of identical shocks A0 >¡
Aj +Aj

¢
/2 of length T 0, large enough, such that gT

0
³
Ñ, At, A0t+T

0
´
> c. This, since we

know that gT
³
Ñ , At, A0t+T

0
´
converges to cÑ + ln y

SS
j (A0) + ε > c when T −→ ∞. Let

η0 = φT
0
(A0) > 0. Similarly there exists a sequence of shocks of A00 <

¡
Aj +Aj

¢
/2 of

length T 00 such that gT
00
³
Ñ , At, A00t+T

00
´
< c. Let η00 = φT

00
(A00). Then if η = min {η0, η00}

and T = max {T 0, T 00} . Then c, T and η guarantee that the mixing condition holds. Theorem
12.12 in Stokey, Lucas and Prescott (1989) then guarantees that there exists a unique invariant

distribution, and that the iterates of T ∗ converge weakly to that invariant distribution.

The final step is to prove that the invariant distribution has thinner tails than a Pareto

distribution with coefficient one. But this is immediate from Proposition 3 and the fact that

outside those cases the city growth process exhibits reversion to the mean (Proposition 4).

Hence, in this cases the operator T ∗ maps the Pareto distribution with coefficient one into

distributions with thinner tails, and so its fixed point must have thinner tails too.

Proof of Proposition 5. If Conditions 1 and 2 in Proposition 3 are not satisfied, the variance

of the log of city sizes is given by

V0

∙
ln

µ
Ntj

μtj

¶¸
= o

³
V0 [ln (Atj)] + β̂

2

jV0 [ln (Ktj)]
´
,

where o is a constant that depends on the parameters of the model, and

V0 [lnKtj ] = V0

"
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
(1− ωj) ln(AT−1j)

#
.

If shocks are i.i.d. with variance v, we obtain

V0 [lnKtj ] = v

"
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
(1− ωj)

#2

or as t → ∞, V0 [lnKtj ] = v/
³
1 + β̂j

´2
, so that the variance of the long-run city size
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distribution is given by

V0

∙
ln

µ
Ntj

μtj

¶¸
= ov

⎡⎢⎣1 + β̂
2

j³
1 + β̂j

´2
⎤⎥⎦ ,

which is increasing in v, thereby proving the result.

If shocks are not i.i.d., a higher unconditional variance implies that V0 [lnKtj ] is larger,

since
³
ωj + (1− ωj) β̂j

´t−T
is positive for every 1 > ωj > 0 and 1 > β̂j > 0. Higher uncondi-

tional variance implies that V0 [ln (Atj)] is larger for every t, and so the variance of city sizes

increases.

A3. Extensions
Diversified Cities

In the simple version of the model presented in Sections 2 and 3 above, we made

assumptions designed to ensure that cities would perfectly specialize in terms of the industries

producing in them. This assumption was for the purposes of simplicity, but also served to

capture the idea that there are substantial differences in the industry composition across cities.

Nevertheless, cities are not perfectly specialized, and in this subsection we demonstrate two

methods via which the above analysis could be extended to allow for multi-industry cities.

Industry Spillovers One way to make cities diversify in this model is to allow for cross

industry production spillovers that are urban in scope. As a simple example, suppose that

within each sector, industries can be grouped according to the existence of spillovers. We

might motivate this in terms of spillovers between the production of automobile bodies, and

automobile parts, which are distinct SIC industries, but are often found to be located in the

same MSAs.

In particular, suppose that for a set of industries jϕ, ϕ = 1, ..., Gj, across which there

are spillovers, the productivity level for firms in these industries in a city is defined as

Ãtj = Atj

GjX
ϕ=1

³
H̃

γj
tjϕÑ

εj
tjϕ

´1/Gj

,
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and note that by the assumption that all industries are in the same sector (or industry group),

the parameters γj and εj are the same across all industries. Suppose further that all these

industries begin time with the same stocks of industry specific factors.

Under these assumptions, industry pairs will covary perfectly, and it is as if we have

redefined the notion of an industry to consist of a set of industries with spillovers. All of

the results for cities derived above, now carry over for these industry groups. In particular,

employment in one of the industries of each group in a city will be 1/G the level derived

above, or

Ntj

μtj
=
1

G

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#2
,

so that the total size of such a city is exactly equal to the level found above. Note that this

result applies for different sizes of industry groups across sectors. Importantly, in each case

the dynamics of city sizes, as well as their predicted invariant distributions, are unchanged.

Non-traded Consumption Goods Another way in which cities are naturally diversified

is as a result of the importance of the consumption of non-traded goods, like some types of

services. Every city must employ some people in the production of these goods as they cannot

be transported across cities. To capture this in our model, we assume that preferences are

now given by

max(1− δ)E0

" ∞X
t=0

δtNt

Ã
JX
i=1

ln
Cti

Nt

+ ln
CtNT

Nt

!#
.

where denotes consumption of the non-traded good. Non-traded goods are produced using

a constant returns to scale production technology that uses raw labor alone, and can be

produced anywhere in the city (that is, they do not have to be produced at the CBD). For

simplicity we assume that one unit of labor devoted to non-tradeables production produces

one unit of these non-traded goods, so CtNT = NtNT . In terms of city structure, this means

non-tradeable goods providers will be spread uniformly throughout a city and will live where

they produce, much like the pattern observed for small service providers. The new labor
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market equilibrium condition then becomes

Nt =
JX
j=1

Ntj +NtNT .

It is then straightforward to show that the proportion of the labor force allocated to

producing non-tradeable goods is a constant proportion of the aggregate labor force nNT ,

where

N∗
tNT =

Nt

1 +
PJ

j=1

h³
1− α̂j − β̂j

´ ¡
δDK

j (1− ωj) + (1− δ)
¢i ≡ nNTNt,

and DK
j is the same constant that we solved for in the case without non-tradable goods (see

appendix). This means that total commuting costs are now

TCC = b

µ
1

1− nNT

¶ 1
2
µ
Ntj

μtj

¶ 3
2

and so the size of a city in industry j must now be

µ
1

1− nNT

¶
Ntj

μtj
=

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#2
.

All cities are of the same size as before once we count workers in the non-tradable industry.

Workers in the non-traded industry do not commute, but occupy space, thereby increasing

total commuting costs, which reduces the number of agents working in industry j in the city.

This decrease exactly compensates the increase of workers in the non-tradable sector, leaving

the total size of the city unchanged. The key result is, however, that city size is proportional

to the expression we derived without non-traded goods, and so all our results go through.

Sub-optimal Cities

In Sections 2 and 3 above, we assumed the existence of competitive property developers

that own city sites and that can subsidize factor employment at a site. As these city developers

are large, relative to the scope of the externalities at a site, and as they are able to subsidize the
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employment of both labor and human capital in a city, they can act to internalize externalities

in the urban level. As a result, each city operates at a socially optimal scale, and the

equilibrium allocation is efficient (as we prove in Proposition 1).

However, it is also important to stress that this efficiency result is not essential to the

ability of our model to match the growth and city facts mentioned in the introduction to the

paper. In particular, it is possible to model cities in other ways that lead to an inefficient

allocation of resources while still preserving the main implications of the theory for growth

and the size distribution of cities. As one example, suppose that city developers exist, but that

they are unable to subsidize the employment of human capital in the city. We can motivate

this restriction by the idea that it is difficult to isolate human capital from raw labor through

subsidies, as emphasized by Black and Henderson (1999). Under these assumptions, with free

entry of city developers, the competitive equilibrium size of cities in industry j will be given

by

Ntj

μtj
=

µ
εj

γj + εj

¶2 "2 ¡γj + εj
¢

b

Ytj
Ntj

#2
,

which is smaller than the socially optimal city size because developers have not internalized

the human capital externality in production.

Note that with suboptimal cities, we cannot use a social planner’s problem to char-

acterize the competitive equilibrium allocation of the model. However, for our model it is

possible to use a pseudo-planner problem that is equivalent to the equilibrium allocation

and has a unique solution. For example, if we do not allow developers to subsidize human

capital, the pseudo-planner problem would be identical to the one above but with a resource

constraint given by

Ctj +Xtj + bÑ
3
2
tjμtj ≤ ÃtjK̃

βj
tj H̃

αj
tj Ñ

1−αj−βj+εj
tj u

1−αj−βj
tj μtj,

where Ãtj is given for the planner and equal to Ãtj = AH̃
γj
tj . Hence in this way one can

show that, independently of the instruments that the developers can use to internalize the

externalities, an equilibrium allocation exists and is unique, although in this case it is not
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efficient. Moreover, it is easy to show that all the results for the efficient version of the model

are retained with only a simple adjustment to the constant terms in the model. In particular,

the qualitative behavior of the growth rates of cities and their invariant distribution are

unaffected. As stated before, what is important is the coordination role that developers play.

The main implications of our model are unaltered by how many instruments developers have,

and so we proceed with the case where developers can fully internalize the externality.

The idea that there is some force that acts to partially, but not perfectly, internalize

externalities at an urban level has other interesting implications. One possibility is that these

sorts of inefficiencies may be important in explaining cross country income differences. To see

this, suppose that cities are systematically organized at a suboptimal size, either too large or

too small, captured by a parameter κj 6= 1, such that

Ntj

μtj
= κj

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#2
.

Obviously, for the case in which developers cannot subsidize human capital employment in the

city, κj = ε2j/
¡
γj + εj

¢2
. With suboptimal cities, a development accounting exercise would

estimate the level of total factor productivity at an aggregate level to be

Fj =

"
√
κj
2
¡
γj + εj

¢
b

# 2(γj+εj)
1−2(γj+εj)

.

Interestingly, because the socially optimal size of cities maximizes output net of commuting

costs, output itself is not maximized. Hence, a distortion to optimal city sizes can have

first order effects on the estimated level of total factor productivity. Indeed, countries with

inefficiently large cities will be estimated to have higher levels of total factor productivity.
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Zipf’s Law for the U.S.A.
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