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Introduction

This paper aims to develop procedures for the rapid numerical com-
putation and convenient methematical representation of a class of multiple
variable, linear stochastic rational expectations models. A variety of
examples from this class of models can be imagined. These include versions

/1like Mortensen's [18)
of interrelated factor demand models formed' by blending the model of Nadiri
and Rosen [ 20 ] with the adjustment cost models of Lucas [?3,1h], Gould {4},
and Treadway [gg,gj]f'models of exhaustible resource extraction along the lines
of Epple and Hansen [ 3 1; and dynamic linear models of interrelated
industries, such as the corn and hog industries, 6ur desire:r for rapid com-
putation and convenient representation are motivated by practical considerations,
since our ultimate goal is to devise methods for estimating multiple-variable,
rational expectations models of time series by versions of the method of maximum
likelihood. Rapid computation of equilibria for different points in the para-
meter space is required for inexpensive maximization of the likelihood functién.
Convenient mathematical representation is valuable for a closely related reason,
since it is desirable to be able to differentiate the likelihood function
analytically in as many directions as possible. For this reason, a goal of the paper
is to get "as close as possible" to a closed form summarizing the (highly ﬁonlinear)
cross-equation restrictions that are the hallmark . of rational expectations
models. It will become clear later what we mean by the phrase "as close as
possible, since we shall indicate why a closed form analytic expression for the
equilibrium cannot, Ln_geﬁeral, be calculated for the multiple endogenous variable
models of the class that we consider.

This paper is a sequel to our earlier paper, Hansen and Sargent { 7 ]. We

extend the methods of estimating and formulating models that we have described



in the single endogenous variable case to the case of several interrelated
endogenous variables. We exploit several results obtained in the previous
paper. Other important precursors to the work we do here include the

work of Nadiri and Rosen [ 20 ], the paper by Lucas and Prescott [ 17 ] on

. ,of Holt, et al [8] and

investment, and the books® Graves and Telser [ 6 ]. Graves and Telser con-
sider a certainty version of a problem close to our "standard problem'". Our
paper proposes a simple method for factoring the spectrai-density-

like matrix encountered in Graves and Telser's problem, and extends the compu-~
tation of equilibria to the stochastic case by using a formula developed by
Hansen and Sargent [ 7 ].

This paper is devoted solely to issues of model formulation. We have
avolded issues of econometric estimation, including models or interpretations
of "error terms', since these issues are extensively discussed in our earlier
paper [ 7 }. The estimation procedures and medels of error terms described
in that paper extend rather directly to the present class of setups. On the
other hand, moving from a single endogenous variable to multiple wvariables
does involve some nontrivial technical complications. It is these that we
concentrate on in this paper.

The paper is organized as follows. Section 1 gives three examples of models
that fall within the general class of models we study. The distinguishing
characteristic of these models is that all are the solutions of quadratic
dynamic optimum problems subject to linear constraints, and that to solve each

one a spectral-density-like matrix must be factored. Section 2 describes the

standard dynamic programming algorithm for solving our general prohblem, while sections
3 and 4 describe algorithms that are "fasterm and "more revealing." Section 5 gives
an example designed to illustrate the relative computation costs associated with

the different algorithms. Section 6 then mentions a certain kind of "identification"

or interpretation problem that can characterize some models of this class.



1. Three Examples

This section contains three examples of models that are included in the
class of models analyzed in subsequent sections. The first two examples are
related and are versions of interrelated factor demand models. We begin with
the simpler of these models first, which is a model at the firm level and
takes as given the factor price random processes and the output price random
process. The secund model then takes into account that, in the aggregate,
firms' decisions iniiuence output price. A third example indicates how the
state and decision variables can be defined to model decisions about depletion
of exhaustible resources.

Example (i): A firm's interrelated demand for factors

Letting Ebbe the mathematical expectation operator conditioned on information
known at time 0, a firm is supposed to maximize

(=]
. e t
(1.1) Eg tfos {Ptyt - Wemy - T 0 k) = |, D {n }

subject to (k_l,n 1) given, and the linear production function
(1.2) y, = d'

where d is a 2x1 vector of positive constants. Here 8 is a discount factor
with 0<8<«1, Pt is product price, kt is the stock of capital, o, the stock of
employment of 1abo;,‘wt the wage rate of labor, Jt the price of capital goods, and
D a positive definite matrix reflecting costs of adjusting factors of production.
The model is a linear decision. rule, quadratic objective function, multiple

factor version of the costly adjustment models of Lucas [13,14], Treadway [26,27],
Gould [ 4 ] and Mortensen [1B]. The positive definite quadratic form in D

represents interrelated costs of adjustment.



The firm maximizes (1.1) by choosing a contingency plan for setting

k
t s t > 0, as a function of information known to become available when
t

period t rolls around. At time t, the firm is supposed to have an informa-
tion set Qt = {Xt’xt~1""}_’ where Xt is a pxl vector (p>3), whose first
three elements are Pt,Jt, and Wt. The vector Xt also contains any other
variables that the firm finds useful to forecast the process (P,J,W). Of
course, at time t, the firm also knows the lagged values k

. £-1° t-1°

, th :
assume that the vector process X follows the r ~ order vector autoregressive: scheme

and n We

X

(1.3) B(L)Xt = Vt

where §(L) = T =- 61L -~ e -6rLr, where E‘Vi Qt-l = 0, and where the roots of

detd(z) = 0 are in modulus all greater than "ﬁ;. The process for X is
assumed to be taken as given by the firm and to be uninfluenced by the firm's
decision process.

Substituting the production function (1.2) into the objective (l.l), and
using summation by parts and the law of iterated projections to rearrange the
expressions in Jt(kt- kt-l) in Ferms Of'(Jf'-BEtJt+1)kt’ the objective function
can be rewritten

e %k Ak L Ak

t t t t
E za{rd' -Woa -Rk - D }+Jk
0 £=0 t n, tt tt Ant Ant 1 -1

where Rt = Jt - BEtJt+1' The variable Rt has an interpretation as the rental

rate on capital at time t,

The solution of this problem is a linear decision rule of the form

k k
el _ t~1
=gyt 81 | g +h Xt + h

X +...h
nt o1 0 t-

1521 r-1%e-r41



where the gj's and hj's are matrices of constants.which are complicated
functions of the parameters of d, D, and &§(L). In subsequent sections, we
describe quick ways of computing the gj's and hj's, and of characterizing
their properties,

Examplg_(ii): Market equilibrium with interrelated demand for factors

Tﬁis-is a linear, multiple factor version of the model proposed hy Lucas
and Prescott [ 17 ]. We retain the objective function (1.1), but change the
assumption about how the firm forms expectations about the product market
price P . In particular, we now take account of the fact that the product
price P follows a law of motion that is influenced by the capital accumulation
decisions of the aggregate of firms in the industry. First, we assume that R,
and W _ are the first two elements of a (pxl) vector Z, (p>2) which is governed

th ,
by the r order autoregressive process

- uZ
(1.4) 9(L)Zt = Vt

where B(L) = I - @L-...-Q 1" , where EVZ = E[vi[ztil,zt_z,...,u 1=0,

SRELCTELY
where U is a demand shock to be described below, and where the roots of det8(z) = 0
are all greater than VB in :modulms.. Note that Pt is excluded from Zt' The firm, which

is now one of m identical firms, takes the process (1.4) governing Z as given.

The industry demand curve is

(1.5) P =A - A Yt + Ut ; A

t 0 1

e T

where Ut is a random process with mean zero and Yt is market output., There
are m identical firms, so we have

k
- iy € '
(1.6) Yt my = md 0 d

l
il



where Kt = mkt and Nt = mnt. Here Kt and Nt are market-wide stocks of

capital and employment, respectively.

We assume that the demand shock U follows the qth order autoregressive

specification
u
(1.7) gL, = v,
_ _ _ _ q u o u
where g£(L) = 1 ETL ces qu , and where E Vt = E[thzt_1,2t_2,...,Ut_],

Ut-2""] = 0. We also assume that the zeroes of det £(z) exceed/B  in modulus.
To complete the model we must specify the firm's beliefs about the motion of K and
N, which influence the evolution of the market price P and which the firm has an
incentive to forecast. We assume that the representative firm believes that

market-wide capital and labor obey the law of motion.

K K1
(1.8) N | = BoFB FCE G2
£ -1
FEQU H e ¥E U

Further, the representative firm is assumed to know Kt- at t.

1 and Ft-i
Now substituting the demand schedule (1.5) and production function (1.6)

into the objective function, the individual firm's problem is to maximize

o K k

t 1 t ' t -
(1.9) 5 28 {ta, - SN Mg EERAL w ] Ve
k] a7
e (AL An J ~-17-1

{1.8) N = B +Gzt+...+c

r—lzt-r+l



(1.4) oz, = Vi
Q.7) E(LU,_ = v‘t1

i t, the firm's known state variables consist of k K
At time t, t-l’nt-l’ t-l’Nf-l and

the - information variables {zt’zt-l""’Ut’Ut-l’"'} . A solution to this

problem is a contingency plan for setting [kt’nt] of the linear form

k k K
t t-1 t-1
(1.10) = b, + b + b { +gZ Feeatg 2
| - 0 1 no1 2{ Nt-l 0t r-1"t-r+l
+ fOUf-k...-+fq_1Ut_q+1.

A rational expectations equilibrium is a pair of functions (1.8) and (1.10)

such that

identically. This equality between the perceived law of motion for (K,N) and

the actual law is readily shown to hold if

(1.11) B, = mb

= (b = : =mf,- .
0 0’ B1 ( 1-+mb2), Gj mgj,Fj m :

The restrictions (1.l1ll) guarantee that the individual firm's perception
of the law of motion of (K,N) turns out to be accurate, i.e., is implied by
optimizing behavior of the individual firms composing the industry, It is to
be emphasized that the individual firms are assumed to behave competitively
with respect to the market price, and to take as given the process governing
the evolution of the market wide stocks of factors, which influence the
evolution of the market price.

Notice how the definition of the rational expectations equilibrium builds

in: (a) accurate perceptions on the part of firms of the laws of motion for the



state processes (K,N,Z2, and U) that are beyond their control, (b) optimiz-
ing behavior of firms, and (c¢) market clearing in the output market.
However, notice that the model does not analyze 'the other side" of the
. . , ) 1/
market for inputs, but simply takes the stochastic process Z as given.,=
The methods that we describe can readily be used to compute the

equilibrium of the model, i.e,, the parameters {BO’Bl’GO""’Gr-l’FO""’Fq-l}
as functions of the underlying parameters d, D, AO, Ay 8(L), and 8§(L). We

give an example of such calculations in Section 5.

Example (iii) Exhaustible resource depletion

Epple and Hansen [ 3 ] have formﬁlated a model for the purpose of studying
the extraction of exhaustible resources, Their model fits a slightly modified
version of the "general problem" that we analyze in sections 2 and 3.

Epple and Hansen study a situation in‘which a vector of resources is
being extracted from a single reservoir or mine. They model the exhaustible
nature of these resources by positing that marginal exploitation costs increase
as a function of the cumulated amount of the resource vector that has been

extracted. Resource extraction cost at time t ig assumed to be given by
1
1 1 ] t —
Aytd + L\.yt st + AytDIAyt +AytD2‘(2Nt+yt_1)

where Ve denotes th? cumulated amount of the resource extracted as of time t,
D1 and D2 are positive definite symmetric mgtrices, dis a

column vector, and S is a vector random process representing shocks to the
extraction process., The exhaustible nature of the resource ig

represented by the presence of the guadratic term A yt'D2 (“;-Ayt+yt_1).

Let Pt be the price vector at time ¢ for the resources. The owner of the

resource is assumed to maximize



o«

Elnt - 1 '
(1.12) E, tfoﬁ {PtAyt Adyld By/ S,

1

subject to Y1 given and subject to the random processes

. = Tx
G(L)xt = Vt
— S
ar(L)St = Vt

where Pt is the first component of the (pxl) vector Xt,
E% Qt—1=D*-'\,,"—*“\Ftlnt—l = 0,and . Qg = {Xt-l’xt-2""’St—l’st-Z’“'}Z The
polynemials in the lag operator &§(L) and g(L) satisfy properties analogous
to those specified in example (i). The solution of the owner's maximum
problem is a linear contingency plan for setting Y. 4s a function of

3
{yt-l’xt,xt-l""’St’st-l""j' In this example, the supplier faces the
random process ¥ as a price taker.

The example could be altered to handle the case where the supplier is a

monopolist facing a flow demand curve of the linear form

(1.13) Pt = A0 - AlA Y, + Ut’ AO’ A1 >0

where Ut is a random shock to demand. Alternatively, the example could be
modified along the lines of example (ii) to be a model of a competitive industry
with a large number .of price taking firms with a market flow demand curve such

as (1.13).
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2. The General Problem
We consider the following setup. Let

Ve be an axl vector of variables, typically stocks of
things that enter an agent's objective function

h "be an mnxl wvector of constants

ﬁ be a discount factor, with 0 <« g < 1

slt be an nxl vector of stochastic processes of mean exponential
order less than 1/1/‘5

51

ét = g be a (px1) vector of stochastic processes of mean exponential
2t

order less than 1/ Vp. Here psn, and S, is the first n rows

of § .
t

H be an ’nxnﬂ positive definite symmetric matrix
D{L) = D0 + D1L4-...4-Dmpm, Dj an nxn matrix, where Dy is of full

rank, j = 0,...,m.

. , t
We assume that the pxl wvector stochastic process § obeys the r h order

autoregression

_ S
St = 6lst_1+ ves &rst_r +Vt
or
. 8
a(L)St = Vt

where &§(L) = 1 -&1L-...- &rLr s where Gjis ‘pxp , and where the zeroces of
det &(z) are assumed to be greater than Vg—in modulus. This condition on the
zeroes of det 8§(z) is equivalent with the condition that § be of mean expo~

tential order less than.(fﬁ)dl.
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Let E be the mathematical expectations operator. We assume

that : i

s

E [thst-l’st-Z""’yt-l’yE-Z""] = 0 for all t.
# s'

E tvt =Et

where Zt is a positive semi-definite matrix for all t.-gﬁm time t, the agent

is assumed to have an information set Qt including at least yt 1""’Yt-m and

St’stll’ Tt ’St-r+l

The problem is then to choose a linear decision rule or contingency plan
for setting Y. as a function of elements in Qt, in order to maximize the
objective function

N .
. t 1 ' ' '
2.1) | lmggE {m+s, 0, -y ny, - DAY, DLy I}

where E_(x) = Exl()t. The maximization is subject to Y_y»+--»¥_, given and

the given law of motion for §

1t
o]
(2.2) B(L)LSZt = Vt ‘

This problem can be solved as follows by using standard dynamic programming
methods for problems with quadratic objectives and linear constraints (e.g.,

see Berisekas [ 1 j, Kushner [ 11}, or Kwakernaak and Sivan [ 12 1}).
Define the state vector

L. ] T f 1) t
Xt = [yt-1’y£-2’""xt-m’1'St'st—1""'st-r+1]'

Define the control vector

Vt = Doyt + D1yt_1 + ev. * Dmyt-m‘

The transition equation for the system is then




1+3
¢8

Z+a-3

£+3-3
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or X

e+l = AXt-!- th+Ut+1 » where A, B and Ut+1 correspond to the matrices

in the line above.

Let BXéRXt and vt'_let be the quadratic forms

- -t . }_ ’ ‘ 1. | B . 7
yt..1 PH O e 21'1 0 "2'¢) L ] 0 yt_l
Yy ¢ 0 . 0 0 g -~ 0 Y2
Ve -m 0 0 00 0 o0 0 Yeom
1 %h'o 0 0 Qa0 0 1
0
5, Jo 00 0 0 0 s,
1
St-l -éq)'O 0 ¢ Q o 0 St-l
St-r+1 0o ¢ ,...00 0 0 ... ¢ St-r+1
L .4 ) L A L -
and
' = - r
thvt vtIvt

where " ¢ = [I -0l and“is dimensional. § x P+ Notice that the-
(o) x”(mn) = submatrix in the upper- left. hand édkner-of ~R ~ is'negative
semidefinite by virtue of the assumption that H is positive definite

With these definitions of Xt’Ut’vt’A’B’Q’ and R, the probleie (2,1) becomes

to maximize

(2.3) 1 g tx! ' !
. im E 8 ‘[X R _ + v Qv_.
N 0 =0 t (f t t
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subject to xb given and

(2.4) Xy =AX + By +U

1 L]

The solution of this control problem is a feedback rule of the linear form

{2.5) Ve T -F Xt
where
(2.6) Fas(Q+aB'PB)'1 B'PA

and where P is the "appropriate” solution 3/ of the algebraic matrix Riccati

equation
(2.7) P=5A'PA+R—52A' PB(Q+aB"PA)'IB'PA .

The desired solution of equation (2.7) is obtained by iteratioms on the matrix

Riccati difference equation

A+R - 82 A PkB(Q+BB} pkB)‘l B' P A

(2.8) P, = BA"P Kk

It k

LY

starting from P0 = 0., For our problem, conditions are satisfied that are
sufficient to guarantee that iterations on (2.8) converge to the appropriate

v

solution of the algebraic Riccati equation (2.7). The conditions on our

problem that are sufficient to guarantee this convergence are (i) that the

matrix § is positive definite, and (ii) that the zeroes of det §(z) all
exceed /E in modulus. Furthermore, the conditions on our problem guarantee that
the asymptotic closed loop system matrix (A-BF) has_ all of its eigenvalues

less than 1//B in modulus.é/

Problems like ours have special features, namely the presence of a dis-

tinctive pattern of zeroes in A and B in (2.4), that permit a quicker method

of solving problem (2.3).
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. . [] ] = ! ]
Let us partition the state Xt as Xt {’ﬁt’XZt] where
t - H I = ] ] : N
X, = [yt_1,...,y£_m], X [1’St""’st-p+1]' For applications of the
problems that we will study, the dimension of Xl will generally be much
smaller than the dimension of Xz. That is, bath the number of variables n

being chosen by the "agent', and the number of lags m inherited from the

criterion function, will be small relative to the number of variables p in

S and the order r of the autoregression for § . Partitioning the rest of
the transition equation conformably with [Xit’ X%t]’ we have
A 0 X B
2.9) R | o 1t ) v v,
Xt 22| | %oe 0 ’

This system is in "tontrollability canonical form", under the assumption that
the D0 ig of full rank. This follows from the fact that the pair (All,Bl)
is controllableﬁl, Further, the eigenvalues of A,, are all less than 1/‘V§
by virtue of the assumption that the zeroes of det 8(z) all exceed )[E in
modulus. Now let us partition P and R conformably with the partition (X' ,X' )

1t° 2t
so that

= t
12 P22 | F12 By

where for our problem R22 = 0. Note again that R11 is negative semidefinite

by virtue of the assumption that H is positive definite.
By partitioning the algebraic matrix Riccati equation (2.7), it is possible

to show that Pl1 is the unique negative definite solution of

_ ] . 2 ] ! 1 -1 ]
(2.10) Pru=BA{ Py Ayt Ry - 87 A[ P B (Q+BB P B ) B Pnitn

and that P11 is the limit ag k= of
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(2.11) Pliiel = BA1p Pry Ay + Ry

-1

- ¢ Al1Pry B @ 8B By (BRI R LA

starting from Pll 0= 0. Also, P12 is the stationary point. of the difference
H

equation

(2.12) A

1
Prajitr = B A1 Pip s o R,

-1

l L}
Q+838 ll,kBl) SRITREP,

ﬁ A1]. 11, k 1

Iy = 1 r - 1 @ a
starting from PIZ,O 0, where the "forcing function {Pll,k }k=0 is the
solution of (2.11) starting from P11 o= O.JLJ

)
Now partition the control lew F in (2.5) conformably with [Xit’xét]’ s0

that

-7, F,1 M|
%ot

Then it follows from partitioning (2.6) that

b
1]

(2.13) p = BQ+ 8By 111") By By Ay

-1 _,
(2.14) = BQ+PBI Py B)) TBIE,A,,

e
|

The piece Fl-xit of the control law is sometimes called the "feedback' part
of the control law, while F2 %, is called the "feedforward" part,

From the matrix Riccati equation (2.10) for P.. and from the formula (2.13)

11
for Fl’ it follows that the feedback wmatrix F1 depends only on the matrices
All’ Bl’ and Rll’ and is independent of the parameters characterizing the random

process 5. . Recall that the feedback matrix Fl gives the dependence of the

control law for v, on the initial state variables Xlt = [yt_l, y 2"'°’ytrm]
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From inspection of the Riccati equation (2.10) for P_. and the formula (2.13)

11
for Fl’ it follows that the parameters of Fl are exactly those that come from
solving the following smaller-dimensional, nonstochastic optimization

problem:

o
t
maximize T 8 (Xit Rll Xlt + V::Qvt)
t=0

subject to
Klesr A0 %t B Yy

xlO given .

The solution of this problem is the feedback law

Ve = P X

where F, is given by equation (2.13). Further, notice that (A11-B1FT) is just the

upper left square of (A-BF), which has the block triangular form
Ayq7BeFy 127B4F;

0 A22

A

It follows from the earlier result that the eigenvalues of (A-BF) are bounded
in modulus by 8=12 that the eigenvalues of (A1T'B1F1) are bounded in modulus

- This bound on the modulus of the eigenvalues of (A11-B1F1) is

an important feature of our problem, which we propose to exploit in devising
an alternative solution procedure in the following section of this paper.

In particular, it is this feature of our problem that verifies that the

particular sclution that we choose to the Euler equations described in

the following section is the optimizing ohoice.gf
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Now it happens that given Fl’ the parameters of F2 can be found directly

without the need to use (2.14) and without the need to iterate on (2.12).

This is true because of a certain kind of Symmetry between the feedback and

feedforward parts of the optimal control law, Below, we note this Symmetry

for our problem and show how it can be combined with the Wiener-Kolmogorov

theory of linear least Squares prediction to compute F2 directly from knowledge

of Fl and §(L). There will be computational and other advantages from pur-

suing this strategy,
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3. Solutions Using Wiener-Kolmogorov Formulas

We return to our problem (2.1). We propose to solve the problem by
using the certainty equivalence principle. That is, we shall first solve
a version of the problem assuming that {S1t} is a known sequence, rather
than a stochastic process. We derive an expression for the decision rule
in which Y, depends linearly on lagged ¥'s and actual future S1t+j’j >20.
By the certainty equivalence principle, the correct rule under uncertainty

can be derived from this rule by replacing 8 for j > 1 with E_S

Tt+] ETTt+j?

the linear least squares forecast of S1t+j based on information availabile

al time t. We use earlier results of Hansen and Sargent [7], which are

based on the classic Wiener-Kolmogorov prediction theory, to derive a convenient
operational expression for the part of the decision rule that implieitly
reflects the Et51t+j's' This procedure leads to the optimal linear decision

rule.

We first solve the certainty version of our problem,'maximize

N .
. t ' ' '
(3.1) J = lim tEOB {(h+slt) Ye = ¥y Hyp - D@y, ] {D(L)ytl}

where {Slt}:-O 1s regarded as a known sequence, and where the maximization

is over sequences {&t}w‘ . . The initial conditions y_l,...,y_m are
t=0

all given. To solve the problem, we fix N>»m, and consider first the

N-period problem (3.1) with N fixed. We shall obtain a set of first order

necessary conditions for a maximum of (3.1) with N fixed.

Consider first the term

U
M=

L 2 D (L)y, ) D WL)y,)

t=0

it

L}
=

t tt 1 ¥ J ¥
B ly Dy + YeoiPp + eee Ve ol [Doyt tee+Dy 1

t=0
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Differentiating I with raspect to Y, for t = 0,..,,N-m gives

ol

t . £+l , t+m,_ ,
= BDP@)Y, + 5 DDAy, + ... + 8 mDmD(L)yt+m

"

+ 85y, 1w} + a1, b
(3.2) F ol st““m{[n(x,)ytm] 'nm}'

n

25t[D6D(L) + aL-lDiD(L) Feruot amL"mDéD(L)]yt

28" peL oy, -

Therefore, to maximize (3.1) with N taken fixed, we have the Euler equations
J t -1

3.3 = = - - ' -

( ) ayt 3°[(h + Slt) 2Hyt 2D(8L ) D(L)yt] 0

t=0,1, ..., Nem
For the infinite time problem obtained by driving N to infiniﬁy, the Euler
equations (3.3) are also first order necessary conditions. However, as
there exists more than one solution of the Euler equations (3.3) that satisfies
the mxn initial conditions V_qs eees y_m, we need additional conditions
to pick out the unique optimum path of yt. For the certainty version of
our problem, it can be proved that as N -+ ®, the optimum of eriterion function

(3.1} is bounded below.gf This means that the optimum path for Yt satisfies
<0
(3.4) z Bty!';Hyt <+ @
t=0

This condition is shown in the Appendix A uniquely to determine the so0lution
of the Euler equations that our procedure selects. Equivalently, our procedure
is known to be correct because it selects the unique solution of the Euler
equations that gives rise to a closed loop system with zeroes of its character-
istic polynomial that are bounded in modulus by 8_1/2. As indicated in

Section 2, this is known to be a property of the optimal closed loop system.
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Write the Euler equation as
-1 _ l
(3.5) [H+D(BL )'D(L)]y,c = 5(h+5,, ).

The Euler equations (3.5) can be solved subjeet to (3.4) and nem initial

conditions, y_1, ciey ¥ by the following procedure. First, we note that the

-m?
roots of det [H+D(Bzﬁ1)'D(z)] = 0 come in pairs: if z, is a root, so 13{3261. It

is, in general, possible to factor the matrix polynomial H + D(Bz'1)'D(z) 30 that
(3.6) H + D(Bz”')'D(z) = C(Bz"1)'c(2)

where C{(z) ig an mth order, nxn matrix polynomial in nonnegative powers of 1z,
Clz) = CO + C1z + sen * szm, and where all of the roots of det C(z) = 0 in modulus
are greater thanv/B . For each root Zy of det C(z) = 0, there is a rootf%za1 of det
C(Sz—1) = 0. The roots of det C(Bz-1) = 0 in modulus are all less than /B . The
factorization (3.6) is unique up to premultiplication of C(L) by an orthogonal
matrix. These assertions about (3.6) are proved in Appendix B.

Using the factorization (3.6), we can write the Euler equations {3.5) as

'17 __1_
C(BL ") C(L)Yt = 2(h+S1t)-
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The sclution of this equation that satisfies condition (3.4)

is then
(3.7) C(L)y, = l[c( Ly 1
- yt - 2 B ) ] ( + slt)
or
(3.8) Coyt + Clyt~l+"'+cmyt-m: =

1 — -m,=1
S(cy + clBL +...+C$ﬁmL )+ s ).

As shown in Appendix &, condition (3.4) and the initial conditions impel us to
solve the "stable roots backwards and the unstable roots forwards'". Now

premultiplying both sides of (3.8) by Co--1 gives

-1 -1 ~

_]__-- 1 1 "1 1 -m "1‘
5(CaCo + C1CBL™ ™ + ... + cmcoﬁmL } U8 )

From section 2 we have a quick and feasible method of obtaining Fi, which

together with D(L) directly gives the "feedback' polynomial in (3.9), namely

-1 ~1 2 -1 m
(1 + Cq ClL +Ch CLT kL Co CnL I.

Given this polynomial, we shall now describe a method for obtaining a

tractable expression for the "feedforward" part of the solution in (3.9),

namely

R

. [} ] -1 ] -m,-1
By Co + €'CHBL™T + .. + cmcoamL YT+ 5,)

First, by multiplying the polynomials in L, it is established that

m .
con ey = ¥ o where
j=-n
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o
i

I ] m 1
0" COCO + Bﬂlcl Feeat B cmcm

o™
]

= pat ' 4 g1,
1% Cply +8CCy + v % 87 TC 0

T = t ‘ m-2,
(3.10) C, = C4C, + BCICy + ... + B Cr _2Co
T o=
m COCm
E;j = 3303 for 3 =1,...,m .
m .
Similarly, where D(8L 1)'D(L) = Z ‘B.LJ, it is established that
j=m
& 1 m.
Dy = Dby + aolnl + ...+ 3 Dmpm
(3.11)
= Rt
Dm DODm
”:j = 8303, i=1,...,m .

Therefore, given D(L), it is evident from (3.10), (3.11), and (3.6) that

1 — ]
{3.12) Cop €, = Db ¢
Next, since CO- Cl,. .,Coq Cm are all known from the feedback polynomial in
(3.9), we can calculate Céco using (3.6) from '
Vn -1 -1
CoCo = Cocm(c0 Cm)
or
(3.13) ClC. = (D!D )(C. ¢ 3“1
070 0Cm" 70 “m '

'c  in terms of known parameters. Given CéCO, we can

Equation (3.13) expresses C0 0

obtain ¢!C. from
j 0
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-1
1 - -
(3.1%4) CiCq = (7 C)1CHCe, 3 = 1, weuy m.

So equations (3.13) and (3.14) together with the known values of D’D and

C0 C determine all the matrices that appear on the right side of (3.9):
Mgz™") = C4% +CCBz ¥ wCIC 03

In order to compute the equilibrium decision rule (3.9), we shall
need a convenient algorithm for computing the inverse of M(z), since the
inverse of M(BL‘1) appears on the right side of (3.9). We now describe
convenient formulas for computing M(z)"1 via the identity M(z)"1 = adj M(z)/
det M(z). We proceed by describing algorithms for computing both adj M(z)
and det M(z). These calculations ultimately lead to equation (3.18) below.
The intervening calculations are useful technical details which can be
skipped on first reading.

Our procedure is an adaptation of one proposed by Emre and Huseyin

(21. We begin by evaluating det M(z). To accomplish this task we note that

{3.15) 3 det M{z)
2z

3 _detM(z) aM(z)'
) 32

]

trace |

[

det M(z) trace E*égégl'M(Z)nll

~ -1
Let M(z) =(-ﬂ-§-§—)-) M(z) and write its Taylor series expansion about zero as

-~

- _ - 2
M{z) = MD + Mlz + Mﬁz T oaee

Now

M(z)

az

M(z)M(z)

i

m
' t
C;CO + 202602 + .ol + mCmCOZ

Equating coefficients in the Taylor series we know that
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1 = pt = p1et
MCiCq = CIC,  or My = clc)
M.C'C. + M.C'C. = 2C!C. or M = 2ctcr ™t - morerl
1%C0 * MoC1 6o 2%0 1 2%0 0“1

1 M cle = (3 1
P%COCO + ... + MOCjCO {j+1) Cj+1CO or

TR = fan1n ot it S P e A |
. b%vm_(j+1) Cj+1C0 }B~1C1C0 e MOCjCO
where Cj =0 for j » m.

This provides us with recursive formulaskfﬁrkfﬂé yj's. Let k = m*n and

write

- ~ k
det M({z) d0 + dlz + .0, + dkz .

Differentiating with respect to z we obtain

8detM(z) . 4 4 94,z 4 ... + kd, 251
3z 1 2 k

We can rewrite equation (3.153) as

z + trace M z2+...] .

jiggﬁj!£§)=,de£ M(z) [trace Mb + trace Ml 9

Jz

Again we equate coefficients to obtain

-~

1 d0 trace M

xY
)

0

- ~ 1 - -
2d2 d0 trace Hi + dl trace MO or d2 = E{do trace M1+dl trace MO)

-

d0 trace Mk-l + ... F dk~1 trace M

i

kdk ar

0

-~

-1 y
dk = k(do trace Mk—l T dk—l trace MO)
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Noting that d0 = det(CéCO) we have now derived recursive formulas for
the dj's. and thus the polynomial coefficients for detM(z). Using these

coefficients and a numerical factorization algorithm we can express

det M{z) = dk(z~zl)(Zﬂzz)...(z-zk) .

Where zl,...,zk are the roots of detM(z). These roots are greater

than VB in magnitude.

In order to proceed to the second step of the inversion of M(z),

we shall write

-1 - adi M{z)
(3.16) M(z) 4, (z-2.) (z~2,) .. (a2

10

where adj M{(z) 1s the adjoint of M(z). Thus our second step involves
deriving a formula for adj M(z). The Taylor series expansion about zero

for adj M(z) can be written

- k'-m
adj M(z) Mo + M{z + ... + M] j:A

»

Notice that [adj M(z)IM{z) = [det M(z}1I; equating coefficients of the Taylor

series expansion of both sides of this equation gives

* 9 = * - t -1
M CAC, d,I or M, = dO(COCO)

* L] * f = * - ] -1 * ] -1
MOClC0 + M1COCO dlI or Ml = dl(COCO) - MOClCO

*
MOCﬁ-mCO + e + Mk-mC6CO = dk-mI

or

Yosa (cre)t - Mier ot M erget,
Mk—m T Tk-mt 7070 0 k=m0 re kK-m-1"1
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*
This provides us with recursive formulas for the Mj's.

The third step in our inversion formula for M(z) amounts to

expanding (3.16) by matrix partial fractions to obtain

N N
-1 1 k
. —_—t ...
(3.17) M(z) (z-2) * (z-z,)
where Nj = dk 7 (zj_zi) {MO + M1zj ¥ oeue + Mk_m(zj) ].
1#1 ‘ |
1<i<k
Equation (3.17) can be rewritten
1 - 1
-1 lel h szk
(3.18) M(z) =7 S TS i
(1-; z) (1—; z)
1 k
Finally, substituting Bz-l for z gives
-1~1 .., ) -1 ' m -m, -1
(3.19) M(Bz ") = (€aCy + CiCoPz ~ + il + CCofz™)
J1g _ 1y
z, 1 z, "k
_ 1 k
= i ) + .. 1 Y
1-= 8z I- = 82
“1 Zx

Applying equation (3.19) to the right side of (3.9) gives the decision rule

for Vet
(3.20) +c. e + oY =
* Ye 0 “1Ye-p oo 0 "Wetem -
k -A.N
2 s — h+5,.)
j=1 1-1.8L
J
where ). = 1
] z



-27-

Using the expansion {1 - (Aj) BL-ljl"l= b (Ajﬂ)iL*l, (3.20) can be written

i=0
(3.21) ¥y = -{C 'lc:y + +c‘1Cy
. t 0 "17e-1 T e ¥ Gy Oy
1 K g i
- = AN Z O (AB)7(s + h)
2 3=1 3 i=0 2| 1e+i

vector sequence 81.

It is now a simple step to add uncertainty, Where § is a random process
obeying the assumptions we have imposed above, the optimal rule is obtained

by replacing s with E § in (3.21):

lt+4 tle4-1

L1 . -1
(3.22) Ve =Gy Oy v i+ Cy, )
15 5 3
- = T lN,[E()\ﬁ)(ES + h
i t 1t l

By using a formula of Hansen and Sargent [ 7 ], the geometric sum in

expected S1t+i 's can be written
@ r~1 :
-1 , s}
(3.23) Z(y8) g 51 *tb&(k B iz g . (, gyt éi]L FS
G0 ¢ s= 1 i=s+1

where ¢ is an nxp matrix of the form [10]. The Classic Wiener-Kolmogorov
prediction formulas are embecddad in (3.23), as described by Hansen and

Sargent (7], Substituting (3.23) into (3.22), we obtain the decision rule
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3.24 -1 '
( ) (‘?@ Yeag Fooee # Cy cmyt_@)
1k -1 r - |
"7 Z et ia s (5 g 5,1L° 3
j=1 s=1 kg4l J i)
K
1 . 1
-5 T OAN (—Yoyn
2 . - y

Equation (3.24) expresses the optimal choice of Y. 8s a function of m lagged
v's and current and (r-1) lagged values of §. The "state' variables thus
match up with the setup of section 2.

In Section 5, we shall exhibit speeds of caleulating a particular
numerical example of a Lucas-Prescott équilibrium of investment uncertainty,
using both the method of Section 2 and the method leading up to (3.24).

This will give the reader some sense of how much quicker the method of

this section can be than the earlier one. Before proceeding to this example,
in the next section we describe a modification of the present procedure
which differs in that it factors the matrix H + D(BL—1)'D(L) by a different

method.
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4. Another Soluti;n Procedure

The previous two sections have indicated two different but related
methods for solving our general problem. The first method involved casting
the problem in the form of a "stochastic linear optimal regulator" problem,
and solving it by iterating on the matrix Riccati difference equation.

This approach in effect solved the "optimization" and "prediction" pieces

of the problem jointly. The second method explicitly separated the optimiza-
tion and the prediction problems, used the recursive methed to factor the
spectral density-like matrix [ﬁ~+D(8L-l)D(L)} involved in the "optimization"
piece of the problem, but used analytic, nonrecursive formulas to solve the
"prediction" aspects of the problem,

A third procedure is also available in principle, and it is practical in
sufficiently small systems (n and m should he small). The method involves using
the procedure described by Rozanov [ 21 ] to factor [H~+D(SL-1)’D(L}].19/ By
using this procedure, the requirement for nonanalytic procedures (i.e., numerical
or recursive procedures) can be reduced to the minimum extent possible, namely,
to the need to find the roots of several univariate polynomials. In general,
the procedure can be described as follows. The matrix characteristic polynomial
for the Buler equations can be represented, as in Appendix B, as

1

(4.1) H+DEL D 'DL) =~ B+D (VL hH ' 5 ¢ A2

where 5j = Dj(\/é)J - We use Rozanov's procedure to factor the 'spectral

density" matrix
sl s -1,
(4.2) B+D(z ")' D(z) = G(z ") ¢(z)

m :

where G, = X szJ, and the roots of det G(z) = 0 are all outside the unit cirecle,
i=0

As in Appendix B, the Euler equations for the certainty version of our problem
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can be wyritten as
“.3) cVer ™ty g Loy - Lwss)
or
N 1
(4.4) C(BL ) C(L)yt =3 (h+8..)

1t

1
where Cj = *7;ij. Once C(L) bhas been obtained, the solution for thé feedback
B

rule can be obtained exactly as described in Section 3.

The advantage of using the methed described by Rozanov over the methods of

sections 2 and 3 is that

Rozanov's delivers closed form expressions (or "nearly"

closed form expressions, depending on the size of m and n). The disadvantage

of Rozanov's method vis a vis using the recursive method of section 3 ig

that the algebraic calculations required for Rozanov's method are tedious.
In Appendix C, we report explicit closed term formulas for factoring

H-#ﬁ(z)'ﬁ(z) for the case in which n =2, m = 1. These formulas were derived

by following the instructions provided by Rozanov {21 ]. When combined with

formulas (3.15) -(3.24), the formulas in Appendix ¢ give a completely closed

form expression for the decision-rule ‘in.-the n =-2, m = 1 case.
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5. 4&n Illustration
We illustrate these computational methods by computing the equilibrium

of a multiple factor version of the Lucas-Prescott model, which was the second

example in Section 1. Recall that the firm is assumed to maximize

(5.1) E ?st{rd'[k‘: -~ W.on - Rk
’ 0 2o t nt] tt tt
Akt bk,
~ [, "1'"D L, "1}
Ant Ant
subject to
(5.2) L AY 4+ U
K Kes -
(5.3) [N]t = BO1+ Bl[Nc-1] + Gy, * ... F Gr—lzt-r+l
+FU 4 e Fq—lut—q+1
Z
(5.4) e(L)zt vt
|
(5.5) &:(L)Ut =V,

where the rentals Rt and Wt are the first two elements of the {p x1)
vector process Zt. At time t, the firm 1s assumed to know the state
variables {kt_l, n._1» Kt—l’ Nt—l} and the information variables

{Zt, Zt—l""’ut’ Ut_l,...}. The firm knows the parameters of the laws

of motion for (K, W)', Z, and U, and alse the parameters of the demand

schedule,
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To compute the equilibrium law of motion for (Kt’Nt) = (mkt,mnt), we follow Lucas

and Prescott [17] or Sargent [23) and solve the following social planning

problem: to maximizell/

w

kt k

K
t 1, 2.t t
(5.6) E, ) B {Amar{ “1 - ZA m°[ “Jr'ad'[ ]
Otzo 0 n, 2™ n, n,
K R,
+md'[ 10, - nl b1 Y
¢ t M
kewkeoq Kok
b m(n -n )'D(n -n )}
v -1 t70t-1

In (5.6), the maximization is over contingency plans for‘[kt,nt] given the laws
of motion (5.4) and (5.5), and given [kt-1’nt-1’2t'zt-1’"”Ut’Ut-1""]' Once
the contingency plan for the representative firm's stocks [kt’nt] that maximizes
(5.6) has been obtained, the competitive equilibrium for [Kt’Nt] can be obtained

by multiplying by m, that is, by using [Kt’Nt] z [mkt,mn It should be noted

t]'
that the contingency plan for [kt’nt] that maximizes the social planning criter-
ion (5.6) is not the optimum contingency plan (1.10) of the representative firm
of section 1, but is simply m"1 times the equilibrium law of motion (1.8) for
[K,N]. That the competitive equilibrium described in section 1 implicitly maxi-
mizes (5.6) can be verified directly by using an argument analogous to that of
Sargent [22].

Using each of our three methods, we have calculated a rational expec-

tations equilibrium by maximizing (5.6). For the Z process (5.4) we assumed

Rt _ l6 .2 Rt—1 N -'-2 ‘3 Rt-2
Wt .7 "01 Wt_1 ‘1 -tI Wt—2
-1 = /’Rt_3 1.0 R,
+ + V:
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For (5.5), we assumed for simplicity that Ut = 0, so that demand shocks are
suppressed. (It would be very cheap to include demand shocks with our second and
third computational methods, somewhat more expensive with the first method.} We

assumed that A1 = 00005, m = 1000, § = .9, and 4' = (.25, .75). We chose D %o

2 1
mD = .
1 1.5

To mateh the objective function (5.6) of the social planning problem with the

obey

objective function (2.1) of the general optimization problem described in sec-

tion 2 above, we set

- lan?
H = zA.m"dd’,
h = Aomd,
DLy oLy, = (Y ey ISt ey
L A Ty~ 0e o
and
R
St = S“: = -m[wt].

Also, we set AO = 0, which amounts to setting constant terms in the equilibrium
[K,N] process to zero. The resulting equilibrium should then be thought of as
describing variables measured in deviations from their means.12/

We calculated the equilibrium three ways: with the method of section 2
which invélves iterating on the full matrix Riccati difference equation (2.8),
with the "short" method of section 3, and with the "shorter" method of section 4,

The equilibrium can be written as
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Ko\ f1.1021  L3068\/Xe-1
(5.7) n, )" \-.3404  -.0213)\n,

~. 4977 L0627 mRt .0815 .0378 mRt_‘_1
+ +
THT -.0542 th -.0275 -.0122 mwt_1
. -.0139 . 1960 mRt_2 A ~.0493 .0094 mRt_3
.0053 ~-.0661 th_z 0167 -.0036 mwt_3

To express the equilibrium in terms of [Kt’Nt]’ simply multiply both sides of
(5.7) by m = 1000.

To implement the first two computational methods, which are iterative,
a convergence criterion had to be adopted. We used the following convergence

ceriterion. We calculated successive iterates on the feedback law, namely,
-1
- ] t
F‘k = B{Q+BB PkB) B PkA,

where iterations on the matrix Riccati difference equation (2.7) were started
from PO = 0. Then we computed the norm defined as the maximum absolute value over
elements of (Fk+1-Fk)‘ For convergence, we insisted that this norm had to be
less than 10‘5. For the [kt,nt] law that maximized (5.6), all three methods gave
identical answers to at least five digits, as expected. (The results for the

third method involve no iteration and are exact.)
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Table 1 gives the time taken for each method in central Processor

time on the Cyber 172 at the University of Minnesota. Generally, we would
eéxpect the relative spead advantage of the shorter methods in calculating
the equilibrium to increase the closer is g to unity and the larger is
the dimensionality of the § Process both in terms of the number of lags
in its autoregression, and the number of variables in §S. TFor our example,
since central processor time costs about eight cents per second, one
evaluation of the equilibrium costs about half a penny by the short methods,
about 25 cents by the full Riccati method. The relative costliness of these

computational procedures clearly will vary from problem to Problem,



~35-

Table 1

Central Processor Time to Calculate Rational Expectations Equilibrium,

*
in Seconds

Method Time
Full Riccati (sectiom 2) 3.247
Short Riccati (section 3) .075
Spectral Factorization (section 4) .052

*
On Cyber 172 Computer, University of Minnesota
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6. A Possible Identification Problem

Let us represent the decision rule (3.24), using (3.8) in the

compact form

-1

1 -1
(6.1) @)y, = B fzleB T o+ s )

where G(L)St = v:. Here it is understood that Et stapds for the expectétion
or linear projection conditioned on {St’st—l""} .

Suppose the econometrician sees enough of the .(y,S? process to permit
him to estimate the parameters of C(L) and h. Let us pose the following
question. Is it possible to work backwards to obtain a unique H and D(L)

such that
-1, -1.,
H+D(BL 7)' D(L) = C(B’L ) C(L)?

In other words,can we identify the criterion function parameters H and D(L)
from the decision rule parameters C(L)? First of all, there is a relatively
trivial sense in which the answer to this question is no. Both C(L) and

D(L) are identified omnly up to a premultiplication by a unitary matrix.

From the standpoint of criterion function identification, this problem is not
particularly interesting because premultiplication of D(L) by an orthogonal

matrik does not effect the term

[D(L)yt}' [D(L)yt]

that enters into the criterion function. In other words if A is an orthogonal'

matrix conformable with D(L), then
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(DL, 1" [AD(L)y, ]

[D(L)y, JA'AID(L)y, ]

[D(L)Yt] ! {D(L)ytl .

This suggests that all we should really care about is identification of D{L)
up to a premultiplication by an'orthpgonél'matrik since‘elémengs‘i@‘ﬁﬁi&:class
of D(L)'s all give rise to the same criteriom funetionm. )

It turns out that there is another semse in which the eriterion function
parameters cannot be identified from the decision rule parameters. Using the
procedure suggested in section 4 and Appendix C, we see the link between
factoring a spectral density function and solving for C(L) from D(L) and H.
Appealing to linear prediction theory and using the development provided in
Appendix B it is possible to show that a whole family of H's #ad D(L)'s
lead to the same decision rule. This turns out to be a simple corollary to
the result that a covariance stationary stochastic process has multiple moving
average representations.li/ Thus, without further restrictions there is a whole
family of objective functions that are consistent with decision rule (6.1).

In absence of additional restrictions we cannot hope completely to identify the
objective function parameters.

Fortunately, for many purposes, the fact that only a class of objective
functions can be identified is of no practical concern. The reason is that
all objective functions that imply the same decision rule give rise to exactly
the same predictions about the response of economic agents to interventions
in the form of changes in §(L). For econometric policy evaluation, then, it
is enough to identify the decision rule without having completely to id?pt;fy

the objective function.
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In circumstances in which either more data are available or in which
& priori restrictions are imposed on D(L) it is often possible sub-
stantially to reduce the family of objective functions consistent with C{(L).

For example, the econometrician may have observations on "output" 9, which

obeys
- 1 - '
(6.2) % = (B #+5,,)', -y 'Hy,

where 81 iz not observed by the econometrician, The idea here is that
observations on q. permit estimation of H via (6.2), 1In addition it is
supposed that the cost term [D(L)yt]' [D(L)yt] in 2.1 represents costs that
are "internal' to the firm or the unit whose decisions are being modeled, so
that D(L) cannot be estimated from direct observations on inputs and outputs.
In this example,H is uniquely identified; however, D(L) cannot necessarily be

completely pinned down from estimates of C(L). A different example is where the

form of D(L) is restricted so that
- LIS - = 1
vy = v B Iy, -y, ] D@y J" by 1 .

Even without observations on 9 it is possible to recover both B and H from

C(L) and hence the objective function parameters are all identified.
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Conclusions

This paper has been devoted to describing quick and revealing ways of
calculating optimal decision rules or dynamic equilibria for lipear
stochastic rational expectations models. The full value of guch methods
becomes evident only when we recall that our purpose is ultimately to
estimate models of this class by using interpretations of the errors and
estimators along the lines described in our earlier paper (Hansen and
Sargent [ 7 ]). For example, there we describe maximum likelihood pro-
cedures for the estimation of single-endogenous variable, dynamic models of
the class considered hevre. For the purposes of implementing maximum likeli-
hood metheds, it is a substantial advantage to have quick algorithms for eval-
uating the likelihood function, which requires evaluating the optimal
decision rule or equilibrium stochastic process. It is also an advantage to
have formulas as close to being in closed form as possible, since this
facilitates computing analytic derivatives of the likelihood function. The
general principles of estimation and interpretation of error terms described
in our earlier paper extend in a fairly straightforward way to the present

context.
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Aggendix A

In this appendix we examine the solutions to discrete time Euler
equations for the infinite time problem. We take the following steps in order to

characterize these solutions. First, write the Euler equations

(A.1) [H+D<BL‘1)'D(L)]yt =St for t =0, 1, ...,

Second, obtain a partial fractions decomposition of [H+D([3z'1)'D(z)]-1 of the

form
1 L Gy
[H+D(Bz" ") 'D(2)] " = Foee. 4+ -
z-2, Z-Z
k
¥ *
a7 i
1 + e + -1
z-Bz1 z—sz
where z

1# =2 2, are assumed to be distinct and are greater than vB in modulus.

We assume that (Hl—)tst-+ 0as t + @». Third, we obtain a particular soclution to
(4.1) of the form

~G¥ o -G

p 1 -J < -3
Yo = (z,) “s¥ .~ .., (z ) "S¥ .+
t z, jZO 1 t-j Z) jgo k -3
B3 E (g2 ') Ist + cEE T CENRRES,
1j-0 1 t+3+1 e kj-O k b+ j+1

for t = -m, -m+1, ... where Sg =0 for j< 0. Let A?, e, A B?, «es, B¥ be n

dimensional nonzero vectors such that

I
o

-1, .
[H+D(sz ) D(zj):hl\‘j

]
<

-1
B+D{z )'D(gz" B
[H+D( J) (B 3 )1 3
The general solution to the homogenous equation is

h_ ¥,-t ®o
yt = e1ATz1 + .+ OkAka

t
+

-1.-t =-1,.=t
* *
Jf‘.qu(Bz1 ) e + kak(sz )
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where Cqs reey Cs fT’ erny fk are arbitrary scaler constants. Fifth, obtain a
general representation of the solutions to (8.1) by adding yg and y?.
We have m x n = k initial conditions Yog0 Y o1 eoes Yo We also have

the requirement that
¢t

(A.2) 18 Y 'Hy, < o
t=0

where H is positive definite. Note that for nonzerqg fj

tZOB Ehd

Yy=2tpeigpe
J J

is not finite. Thus, (A.2) is satisfied only if fj =0 for j=1, ..., k. The

initial condition vectors V_qs eens ¥ uniquely‘determine'cl, srer Cpe "The

-m

solution provided in the text corresponds to the solution for yt described above.
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Appendix B

This appendix proves the assertions in the text about the factorization
of the characteristic polynomial associated with the system of Euler

equations. We state the assertions in the form of the following
Lemma: The matrix polynomial in z,fﬁ + D(Bg—l)'D(zj}, has a representation
(B1) H + D(Bz-l)'b(z)-* C'(éz"%;’C(Z)
where C(z) = Eocjz s each C is an (nxn) matrix, and all the roots of :
J

det C(z) = Q in modulus are not less.tharn VB. .The ‘factorization (B1) is unigque

up to premultiplication of C(z) by an orthogonal matrix,

Proof: Define the polynomial in z

J(z) = 8 + D(82"Y) 'p(z)
1
{B2) EH+D ( V—z‘l)'ﬁ(\/—“;z)
m . mn
where D(z) = I p. 27 = =D (\f—u)J ( 1’_‘2)
=07 4-0J
m

So we have defined D(z) = X ﬁsz where Dj = Dj( \fé)J. Notice that
j=0

pBetyr < EOD»;(\/E)J' VB 27
i=

— -

=5 ¢ :
- 1
Also D(z) = D('“é— z).

Now consider the funection F(z) defined as
- .,.1 =
F(z) = 8 + D(z Y''n(z) .,

The function F(z) is the matrix Cross covariance generating function of the
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n~dimensional covariance stationmary stochastic process W defined by

W o=
Yt+Xc

t
where
H 8=(
EY Y =
t t-s 0 s#0
EYt-"-O
- T '
Xt = P(L) Ht
EU1:= O
'—-
EUtlﬂ:* I
E Ytut-s = {0 for ail s.

It follows from the factorization theorem for spectral density matrices (see

Romanov { 211) that we have the factorization of F(z),

(B3) H+ 5z 55 () = ¢z™H) ¢ (2)

where the roots of G(z) do not lie inside the unit circle., The factorization

is unique up to premultiplication of G(z) by an orthoéﬁﬁéi ﬁatrix. It immediately

follows from (B2) that

-1 roo=1 1
H+D(Bz ")'D(z) = G( YB z ) G -= z)
Vé

csz™ty ecz)

]

(B4)

i
~
Q
N

[

where C(z)



uy

and

c.= (=g .

t

-

m
[

From the spectral factorization theorem we know that
det G(z) = p,d(l -p.lz)...(l = by z)

where s & mm, and where’u.jjs 1. Thus,

(B5) det C(z) = det G( ——\;7 z) = u.o(l-p.l —1,: 2)...(1 ~ By "‘.1::' z).
B g

Y8
From (B5)we know that the roots of det C(z):are not less than /B in
modulus. It also follows that the roots of det C(ﬂzkl) do not exceed Vﬁ

in modulus. This concludes the proof of the lemma.
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Appendix ¢

This appendix provides expliecit formulas for factoring H + E(Z“i)'ﬁ(z)

where n = 2 and m = 1. Let H + 3(2'1)'3(2) = F(z), where we write

£o,(2z) £..(2)
F(z) = 11 12
f21(z) fez(z)

where we let
f11(z) =%ty + o,z
f22(2) = Bz + By + B4z
F12(3) = ¥4z +vg + vq2
for(2) = vz +yg vy 42
The factorization procedure involves the following three steps:
Step 1: Set f,.(2) = p0(1-p1z)(1-p1z_1), [p1| <1, py> 0.

This is accomplished by setting

2 2
-~ & o . 4
o = 0 % -y subject to [, | < 1
.
2u1
o = -t
0 P4

Step 2: Form det F(z) and find the factorization

det F(z) = x0(1mx1zJ(1-K2z)(1-K1z“)(1~nzz'1)

where K, > 0, IK1] < 1, |K2| < 1. This is accomplished as follows. Let



If a

If a

£0

=0

Step 3:

i

Set

?

A

1}

)
1]

Compute G(z) where G{z~')'G(z)

G(z)

2
_ 2
El El H(Eg 2)
a, 22 T e
2
A i~ -
Ky * /Ky ~ Ut
2
-~ ~
K+{K2-f4
2 -~ NP
2

K

172

0

2 .2
-a0 * . ag - 4a1
2a

1
L2
<,
2

h hg21(z) &5, (2)

subject to [ic,| < 1

subject to [ke[ < 1

subject to ]K2| <1

= F(Z), where
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We compute G(z) as follows.

Define

- 2
Yot YRy * YRy

'ai
<
1

J K0(1-K1p1)(1-K2p1)
5

e 2
= EO + ET

wrr
s
1]

Y
N
!

Yo = £o/%;

=
—
1

=&/

14

=(ky*ky)

Then

n

Yo po(2-0y)

“by oy (1-p,2)

Yo¥_q * Vv Ry + (WY o+p oy 0,0, Ko*¢1‘J%BK3)Z
VP

gq,(2)

g21(z)

n

8415(2)

1

-1 —
VY=g VG + (D 1¥g+b_yPy by JEB“3"¢0 1KgPq )2

PoP1

By,(2) =
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Footnotes

The model could be extended in various Wways to model the determination of Jt
and Wt in terms of the demands for factors generated here interacting with

supply curves for these factors.

To insure that there is a sense in which the eriterion function is well

defined as N+, we could impose the weak reatriction onz " that
tim sup B trace Et z 0
o

It turns out that even this weak restriction on zt could be relaxed if we
adopt a suitable modification of the criterion function (2.1) below. For
example, replacing (2.1} with

lim iE g st{(ms )y -—y"Hy -y, 1vip(Lyy. 1}

Nooo N 0t=0 1t t 7tV t t°?
would yield the same decision rule, buﬁ permit weakening the above condition

on 1,

For problems with negative semidefinite matrixes R, the "appropriate” soly~
tion of (2.5) is the unique negative definite solution P. For our problem,
R fails to be negative semidefinite, and so does the appropriate solution of
(2.5). However, the sub-matrix 311 defined below is negative semidefinite,
and se is the associated P11. This is enough to make our problem well

bosed, and to support the claims about appropriate solutions that are made

in the text. These claims are proved in Sargent [22].
For details, see Sargent [22].

This can be established as follows., In (2.3), define the transfermed

variables Xt =B tfext, and Ve =B tjzvt. Problem (2.3) is equivalent to the

undiscounted linear regulator problem, to maximize
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N L. L.
lim Eotgo{xEﬂxt+v£Qvt}

Nerco

8 1/2

. “ 1/2.° i)/2 . R
subject to Xt+1 = Axt + B /Bth + B(t+ ) €t+1' The optimizer is a

~ r s

control law vt =‘FXt, from which the optimizer of the original problem v_ =
Ext can be calculated. For 4, B, R, and Q defined as in éhe text, it can be
verified that the pair @ /%4,87/2p) is stabilizable, Further, letting the
rank of R be r, choose a matrix G with r rows sueh that G'G = R. Then for
our problem, it can be verified that the pair &31/2A,G) is detectable. The
stabilizability of (824, 8'/28) and the detectability of (8"28,6) 1mp1y
that the closed loop system matrix (81/2A—81(EB§5 has all of its eigenvalues
less than unity in modulus. From this and the observation that E = F, it
follows that the eigenvalues of (A-BF) are bounded by’8"1/2 in modulus. For
a8 more detailed treatment, see Sargent [22]. Kwakernaak and Sivan [12] and
Kailath [9] are good references on the results from ilinear optimal control

theory we are appealing to.

Necessary and sufficient conditions for iterations on (2.6) to converge are
readily stated in terms of the controllability canonical form (2.9). The
necessary and sufficient conditons are (a), that the pair (A11,B1) be
controllable, and (b) that the eigenvalues of the matrix A22 have moduli all
less than 1//E. The necessary and sufficient condition for control-
lability is that the matrix [51,A1151,...,AT2"1

the number of lags in D(L) and n is the dimension of Yo Condition (b) on

B1] have rank mn, where m is

the eigenvalues of A22 1s guaranteed by our assumption that the roots of det
§(z) = 0 are al} greater than /B in modulus. These conditions are derived
mainly by adapting results summarized by Kwakernaak and Sivan [9] for the

undiscounted case to the discounted case, See Sargent [22] for details.

Again, for details see Sargent [22].
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The assumption that H is pesitive definite, and not only semidefinite, plays
a role in deli&ering the bound of‘8'1/2 on the modulus of the eigenvalues of
A]1—BTF1. If H were only assumed to be positive semidefinite, more restric-
tions than have been imposed above on D{(L) would be required to assure that
the eigenvalues of (A11-B1F1) are bounded in modulus by 8'1/2. In par-
ticular, sufficient conditions would have to be imposed to satisfy the

detectability condition described in footnote 5.

This follows from the stabilizability and detectability of the transformed
System (see footnote 5) and from results in linear optimal control Ltheory

(see Kwakernaak and Sivan [12] and sargent {22]).

The procedure suggested by Rozanov [21] involves obtaining an intial non- _
invertible triangular factorization and then multiplying by appropriate
Blaschke factor matrices in order to shift roots from inside the unit circle
to outside the unit circle. An alternative procedure for factoring a vector
moving average, discrete time spectral density matrix, has been offered by
Whittle [28] and more recently by Murthy {19]. It amounts to inverting the
spectral density, thus converting a vector mOving average problem into a
vector autoregressive problem. The orthogonality conditions associated
with the vector autoregression are then used to determine the invertible
factorization. From the standpoint of this paper, we are concerned only
with the factorization of spectral densities of vector moving average
processeas. However, the procedures discussed by Rozanov, Whittle, and

Murthy are appropriate for arbitrary rational spectral densities,

Note that in this example the matrix H = A1m?dd’, and so is pesitive semi-
definite but not positive definite. However, it can be verified that the

problem does satisfy sufficient conditions for the closed loop system
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matrix (A;,~B.F.) to have eigenvalues bounded in modulus by g "V/2, 1,
particular, the zeroes of what torresponds to the matrix polynomial det b(z)
of Section 3 are less than g~'/2 i, modulus, which delivers the required

detectability condition (see footnote 5).

We did not carry along the constant terms in the demand function or compute
them for the equilibrium. The latter constants would be easy to compute

given the former.

Multiple moving average representations can be obtained both by "flipping®
roots inside and outside the unit circle via multiplication by Blaschke
factors and by altering the number of underlying orthogonal white noise

processes employed in the representation. See Rozanov f211 ror details.
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