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1. Introduction

In 1956 Phillip Cagan published a now-~classic papar on the demand
for money during hyperinflation. In that paper the demand for real ecash
balances is a function of the public’s expectations of the future course of
Inflation. Cagan hypothesized that expectations of future inflation rates are
formed by applying exponentially declining weights to past 1inflation rates
(the "adaptive expectation” hypothesis), Later, Sargent and Wallace (1973)
and Sargent (1977) produced a bivariate statistical model of money growth and
inflation in which Cagan’s portfolio balance equation is satisfied and adapt-
ive expectations are rationmal in Muth’s (1961) sense. Assuming that a given
expectation scheme is ratiomal amounts to providing that scheme with an eco-
nomic rationale. 1In this sense the work of Sargent and Wallace can be‘viewed
as exploring, more fully than did Cagan himself, the implications of Cagan’s
model for the data. (By "Cagan’s model" we mean Cagan’s portfolio balance
equation with adaptive expectations.)}

In this paper we reexamine the problem posed by Sargent and Wallace
and find a family of observationally distinct bivariate models of money growth
and inflation that satisfy both Cagan’s portfolio balance equation and the
requirement that adaptive expectations be ratiomal, Following Hansen and
Sargent (1980b), we shall refer to the problem of deriving the restrictions on
a time series model implied by a given expectations scheme as the "inverse
optimal predictor problem."l! In this terminology, Sargent and Wallace find a
particular solution to a given inverse optimal predictor problem, while we
find the family of solutious. We believe that the results we obtain have
important implications for estimating Cagan’s model along the lines set out by

Sargent and Wallace.
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Sargent and Wallace’s model ('"Model 1" below) appears to be reason-
ably good one for several reasons. First, it 1s consistent with the exo-
geneity pattern between money creation and inflation found in the data. Also,
the model implies that the disturbance term in Cagan’s portfolio blance equa-
tion is highly serially correlated, a finding that is corroborated by other
researchers. (See, e.g., Khan (1975).) Third, as Sargent (1976) has demon-
strated, the model explains the apparantly anomalous empirical results ob-
tained by Jacobs (1975) 4in his work on hyperinflation. Finally, results are
reported in Sargent (1977) which suggest that the model holds up reasonably
well when confronted with the data.

A difficulty in Sargent and Wallace’s model is that the slope para-
meter in the portfolio balance equation is not statistically identifiable. On
the other hand, it was his interest in this parameter that motivated the
empirical part of Cagan’s work in the First place. Be thoped to use a
statistical estimate of the slope parameter to infer whether a government was
issuing money at the long-run revenue-maximizing rate. This, in turn, was
expected to shed light on the causes of hyperinflation. Cagan also was inter-
ested 1In using an empirical estimate of the slope parameter to evaluate
Friedman’s (1956) conjecture that it is stable.

Cognizant of the importance of the slope parameter, Salemi and
Sargent (1979) took the route of dropplng Cagan’s adaptive expectations as-
gumption in their empirical work. They appear to have done so partly on the
nunch that the lack of identifiability of the slope parameter is a conseguence
of the assumption that adaptive expectations are rational. According to
Salemi and Sargent (1979, p. 751): "Sargent (1%977) demonstrated that if
Cagan’s adaptively formed expectations are rational,a is not econometrically

identifiable." (Their emphasis.)



-3 -

In this paper we show that the lack of identifiability of the slope
parameter in Sargent and Wallace’s model is not a consequence of their assump-
tion of rational expectations. Rather, it is a property of the particular
solution to the inverse optimal predictor problem that they happened to
choose, For definiteness, we produce two other parameterizations ('"Models 2
and 3") with the following properties: Cagan’s model is a rational expecta-
tions model, the error term iIn the portfolio balance equation is highly se-—
rially éorrelated, the exogeneity pattern between money and prices just men—
tioned is duplicated, and the slope parameter of interest « is statistically
identifiable. Furthermore, Models 2 and 3 make the same predictions regarding
Jacob’s estimator as does Sargent and Wallace’s, (This fact can easily be
verified by applying the techniques to Sargent (1976) to Model 2. We do not
reproduce these calculations in this paper.} Model 3 has the additional
implication that Cagan’s estimator for the slope parameter in the portfolio
balance equation is consistent.

The approach we take in this paper is the following. We begin by
specifying a fairly general multivariate time series representation for the
variables of Cagan’s model. We then treat‘Cagan's model under rational ex-~
pectations as a set of within- and cross-equations restrictions on the time
series representation. We consider the iﬁverse optimal predictor problem to
be solved when we have found the minimum set of restrictions that the time
series model must satisfy to be consistent with Cagan’s model under rational
expectations. This way of representing ratiomal expectations model was re-
cently spelled out in detail in a paper by Hansen and Sargent (1980a). There
they domonstrate its applicability to many problems besides the one studied
here. The application we consider is an example of what Hansen and Sargent

call a rational expectations model with inexact cross-equations restric-
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tions. The word "inexact' appears because one of the variables of the model~-—
the disturbance term in the portfolie balance queation--is hidden from the

econometrician.

2. Inverse Optimal Predictor Problem

Consider the following portfolic balance eguation.
(1) m, - P, = mnt + us @ < 0.

Here, m, and P, are the money supply, measured in log deviations from the
mean, u,. is a stochastic shock term, and T, 1s the public’s expectation of
Ppy] ~ Pp, the rate of inflation over the next period., Cagan (1956) assumed
that the latter expectation was formed adaptively, according to the following
formula:

1-2

(2) L (T:Tf)(pt-pt-l)’ A<

where L is the lag operator.

The assumption that adaptive expectations are rational amounts to

(3) Ee(Peyyp) = 7

where Et(') ZEE(*p

fms _.38>0), and E is the least squares projection

m
? t-s

t-g?"
operator.
Since we onlv have data on {mt} and {pt}, the inverse optimal pre-

dictor problem we wish to solve is the following: "Assuming all variables are

Gaussian, what is the class of observationally distinct bivariate representa-
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tions for {pt} and {mt} which is consistent with (1) - (3)?" It is convenient
to first derive the family of trivariate representations for {m.}, {p,}, and
{“t} which is consistent with (1) - (3).

Let y(t) = (p(t),m(t),ult))T, Suppose that {y{t)} can be modelled

as
@

y(t) = e(L)a(t), where c(L) = E ciLi. Writing these out in detail,

i=0
p(t) CII(L) ¢, (W c13(L) al(t)
(4a) n(t) = CZI(L) CZZ(L) c23(L) az(t) s
u(t) c31(L) c32(L) c33(L) a3(t)

with a(t) = (al(t),az(t),a3(t))T. Rere,
(4b)  Ea(tla(t-0)T = :

where V is positive semidefinite and svmmetric. Write

‘M %2 %
V=192 %y 93 ‘

¢
13 %3 %33
Condition (3) specifies that {p.} is exogenous in the {y.} pro-
cess. By a trivariate version of Sim’s (1972b) theorem, this implies that two
polynomials in the L operator in the first row of c{L) may be set to zero.
Condition (3) alsc restricts the parameters of the {p(t)} process. Thus, (3)

implies that we can set?/



Y
(5) e =T e @) =0, oy = o

(1-L)

Substituting (2) into (1) yields

L N
m, = Py = ¢(G5p) (1-LIp, F v,

or,

1-AL+a(1-1){(1-L)

(6) m_ -~ u, = ( TN P,

Because (6) and (5) hold for every sample

these restrictions hold in {4) 1if, and only if,

_ 1=Ma(1=3) (1-L)
(1-1)2

(7) c21(L) - c31(L)

and

Can (L) = ¢4, (L)
(8) 22 32
c23(L) = c33(L).

realization of {a(t){,

Equation (7) implies thatr C21(L) and c31(L) can be writtenéj

(9) (1-1)%e,, (L) = [(1=k,)=AL(1-k, Iha(1-ky)=oA( =k, )

- a(1-kHLrar(1-k L] + ‘i’l(L)(l-L)z

and



) (1-L)2c31(L) = =[k,~ALk  ak ,-akk, -ak L+akk6LI+W1(L)(1wL)2

3 & 75
where the scalars kg, 1=l, ..., & and the one-sided polynomial in positive
powers of L, ¥,(L), are arbitrary.

It will be convenient to have equations (9) and (10) in the follow-

ing alternate form:

1= A+D +D2(1-L)+W1(L)(1-L)2

1
(11) (1-L)e, (1) = =3

and

2
Dy#D, (1-L)+¥, (L) (1-L)
(1-L)

(12)  (1-L)ey (L) =

where

D, = ok, = aile, ~ k., - ak, + axk, + ik

1 5 ) 1 3 4 2
(13} Dz = A(l*kz)‘+ a(l—ks) - al(1*k6)

Restrictions (8) are satisfied simply by setting

€y (L) = ca (L) = ¥, (L)

(14)

c23(L) = c33(L) = ?S(L)

where Y,(L) and T3(L) are arbitrary one-sided polynomials in positive powers

of L.

Equations (5) and (11) = (14) solve the following inverse optimal

predictor problem: find the class of trivariate representations for v(t) thar



is comnsistent with (1) - (3).

3. Identification

In the previous section we used the condition that {y(t)} satisfy
Cagan’s model to restrict the parameters of (4). In this section we use the
requirement that the parameters be identifiable from the second moment proper-
ties of {mt} and {p,} only to restrict the parameters of (4) even further.

First, since we do not have observations on {u(t)}, we can set W3(L)
identically to =zero without restricting the autocovariances of {pt} and

{m.}. Accordingly, assume
(15) ?3(L) Z 0.

The implication for {u(t)} of this assumption is that (using (4), (12), and

(14)),

D1+D3(1-L)+WI(L)(1_L)2
(1-1) a; (£) + (1-L)Y¥,(L)a,(t).

(16) (1-L)u(t) =
From (5) and (7) we see that {mt} and {pt} must be second-differ-
enced in order to induce stationarity. Write

x(t) (1-L)=(t) x(t) (1-L)p,
(17)

nt
nu

T a-vuey| | u (1-L)m,

Then, the autocovariance generating function of the (x(t),n{t)) process is

(18a)  S(z) = B(z)WB(z 1)T



whare
(1~z)2c11(z) 0 Gll 012
(18b) B(z) = 9 > y W= .
(1=2)7cy () (1-2)%cy, %12 99
Applying (5), (11), and (14), we get
1 ~ Az _ 0 2
(19a) B(z) = ' = B+B.z + B.(z)z
B+ Bz 482 ()22 B%. + Bl s« B2 (2)22 o :
21 T P21 21 22 7 P2 22 2%
where
Bll B12
B = i=10,1,2
i i
Byt P
o . . 1
le =1 A+ D1 4 02 + YO
1 _ 1,1
B21 = (D2+2WO Wl)
2 P U | - 1,2
BZl(z) = (YO 2Y1+Y2(z)) + (?1 2?2(2))2 + Wz(z)z
D 2
(19b) B22 YO
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2 2 2, 42 2 2 2 2
322(2) = (‘Po'zwl‘wz(zn + (‘E’l-Zﬁl’z(z))z + ‘i’z(z)z .

¥, (2) = vh oy oyl

0 12 + ‘P;(z)zz, i=1, 2.

It is well known that the parameters of (B(z),W) fail to be identi-

fiable in two senses. We consider thesge now in turn.
pt 1
Write B(z) = X B,z" . Then,
i
i=0
(20) 3tz = B()wB(z"HT = sez)p tewe (2" Tz 1T = B B~ HT

where P is an arbitrary invertible matrix and B(z) = B(z)Pcl, W = PWP'. Equa-
tion (20) shows that {if we have a likelihood function which is a function only

of é(z), then models (B(z),W) are indistinguishable from (B(z),W).

T

o S° that B

If we take B(z) = B(z‘)la'(;1 and W = BWB = I, then the

0
only invertible matrix P that satisfies

-

8(2)wBz"H 7T = a2y lere e ) Taa !

is P = I. 1In this sense, setting P = By in (20) resolves the identification
difficulty suggested there. For this reason, from here on we work with

the (B(z),W) system. Write B{z) = 1 + B.z + Bz(z)zz. Then, using (19), we

1
get

- 0
X e
-(D2+2\?0—‘PI) + (1"A+D1+D2+‘?n)('—-:;'2—-—) -~ { ?2 )]
0 0
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4] 0
2L By = 1-A4D 4D +¥ B2 (2)
B2, (2) - (———Z- 082 (z) 22
21 ?2 22 ?2
0 0
0 0

52 ) y SaV.
By1(2)  By,(2)

The second identification problem alluded to above is the follow-

ing. In general, a polynomial matrix P(z) can be found where P(z)P(z 1)T = 1

and

32) = BBz )T = Blz)P(yz ) Tip(ypcz " Taez~ 1) T

(22)

= B*(z)W*B*(z-l)T.

Here, B*(z) = B{(z)P(z) and W* P(z-l)TWP(z). (See Rozanov (1967) for a

i

rigorous analysis of this source of identification difficulty.) In general,
the number of distinect parameterizations (B*(z)},W*) that satisfy (22) is 2%,
where n is the number of distinct roots of det B*(z). 1In the restricted case

studied in this paper, the problem is less severe, however. From (21), we

have
- ~ . 2?%-?% B§2<z) 5
(23)  det B(z) = By (2)B,,(2) = (I-ha) [I-(———)z + (=271,
WO ?0

From (23) we see that the assumption that Cagan’s model of hyperinflation is a
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rational expectations model restricts one of the roots of det ﬁ(z) to the %u
This, by assumption, lies outside the unit circle (see equation (1)). The
other root(s) (those of ﬁzz(z)) are left unrestricted by the assumption,
Following Rozanov (1967), we restrict the set of admissible P(z) transforms in

(22) to P(z) = I by assuming
(24) 322(2) #0 for z < 1.

We have established that, under (24), the parameters of ﬁ(z) can be
identified from data. ﬁ(z) and ﬁ are the reduced form parameters of the
model. The structural parameters are A, a, k;, i=1, ..., 6, and ?j(L), =1,
2. Clearly--A excepted--these parameters are not all identifiable given
estimates of the reduced form parameters. To identify these, further restric-
tions need to be imposed. In this paper we do not investigate what mininum
set of additional restrictions is necessary to achieve identification of the
structural parameters. Presumably, such a minimum set is not unique, with
each set having a different implication for the identifiablility of the impor-

tant parameter a,

4, Three Examples

In this section we consider three alternative sets of restrictions
on the free structural parameters of the model. As we shall see, the three
sets have different implications for the identifiability of a. 1In the first
case (the one studied by Sargent and Wallace) o fails to be identified. 1In
the case of Models 2 and 3, a is identified.

Model 1 (Sargent-Wallace)

The following case is studied in Sargent and Wallace (1973) and
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Sargent (1977):

(25) kl 1, k2 0, k3 =1, k4 1, k5 =
k=1‘¥(L)=-—L‘!‘(L)=0
6 > T2 1-L* 1 ¢
This implies, by (13) and (19b),
(26) Dy = 0, D, = X -1, Dy = =[1+a(1-})],
2 2 | R | 1 -
BZ].(Z) B22(Z> = 09 \PO - ‘Pl ‘{‘2(2) = 0’
2 2 _ 2 .1
TO ?1 = 1, T2(L) T
Substituting (26) into (21), we get
" ~A 0 a 0 0
{27a) B, = {,_ , B (2) =
1 1-i i 2 0 o
so that ﬁj
{1-L)Yx(t) al(t) r‘.1--?tL 0 al(t)
(27b) = (I+BIL) =
(1-L)u(r) 2, (t) (1~-A)L  (1-L) az(t)

where (a, (t), az(t))T =~ B_(a (), az(t))T and B_ 1s defined in (19a).

Also, from (16),
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{28) {(1-L)u(tr) = -(1+a(1-l))al(t) + az(t).

Two features of the model are the following. First, o cannot be 1dentifiéd
from ﬁ(z) because it does not appear in (27a). Second, {u(t)} in (28) follows
a random walk. As 1t happens, the former is a consequence of the latter.
This is easily demonstrated. From (16) we have that necessary and sufficient
conditions for {u(t)} to follow a random walk are that

Kl K

T L) = Dy =0

2

with Kk, and K, arbitrary constants. (Note, this means that Wé = ?i = Ky
K
and W;(z) =-T%E for i=I, 2.) Substituting (29) intoe (21), we obtain (27), as

asserted. 1t follows that, if a is to be identified from the coefficients
%(z), then {u(t)} must not be specified to follow a random walk, In the case
of Model 1, & cannot be identified at all since an estimate of W also provides
no information on a. This is because Bo = T, so that & = W, {(Sargent (1977)
succeeds in identifying o from W by imposing further ad hoc restrictions on
the parameters of Model 1.} In the rest of this section we consider one case
("Model 2") where a can be identified from %(z) and another {"Model 3"} in

which @ 1{s not identifiable from %(z), although it can be recovered from an

estimate of W,

Model 2

Let k3 and k4 be arbitrary and set

(30) ke =k, =0, k, =32 Kk, = ~A(a~1) - ak

6 3 1 + ulké,

3
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1+51L
‘{’l(L) = 0, ‘Fz(L) = g5

By (13) and (19b), (30) implies

(31) D, =0, D

for all i,

9 146

Substituting (31) into (21) we get

- -A 0
Bl =
—a61 + (l—l)(l-él) 61-1

(32a)

) 0 0

Bz(Z) = 3

(1-X+a)61 ~61

so that

(1-L)x(t) a, (t)
(32b) - (I+BLL+B2L2)

(1-Lyn(e) "’z(t)

Also, from (16)

2 o, D3 Ala=1), 321(2) 0, 322(2} = =6

1 1
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(33) (1-L)u(t) = A(o-Da,(t) + (1+8,L)a,(t).

Substituting (31) into (23), we see that the roots of det %(z) in (32) are %-,

1 and —-%*. By the argument given in the previous section, 1f we add the
1
constraint that

(34 o+ >,

1
then %1 and %2 in (32b) are unigquely identified from the second moments of
((1-L)x(t), (1-L)n({t)). But, by inspection of (32a), we see that if the ele~
ments of ﬁ(z) are identified, then A, ¢, and 61 are too. This example shows
that the assumption that adaptive expectations are rational does not imply
that the slope parameter in Cagan’s portfolio balance'equation falls to he
identified.

Now consider the following model:
Model 3

Let kq and k, be arbitrary and set

r ~ ~ - -4
2 g'i') k’s - k6 ~ 0) “pl(L) 0, wz(L) -

k, = —ak, + ark, + 1, k -

1 3 4

By (13) and (19b), this implies
D, =0, D, =A~r +a(l-\), B2 (2)=BZ.(z)=0, ¥
1 r T2 * 21 22 S ]
2

=0 all i, ¢g =] = L.

Substituting the latter into (21), we get
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BI = ‘ . 32(2) = .

Evidently, @ fails to be identifiable from estimates of ﬁ(z).

Note that from (19),

1 0

B = L ]
© 1 -+ a(l-}) 1

Consequently,

al(t) al(t)

azft) {1 -r+ a(l—l))al(t) + az(t)

. 12

Let W = + Then,

“12 922

012/011 = {1 =t + a(l-2)) + UIZ/GII

I+ G(I“A),

~ -~

because 012 = (1 r + a(l—k))cll, 011 = 011 and (alz/cll) = r. Thus, since A

is didentifiable from E(z), @ can be ideatified by exploiting the fact

!

that o = ((012/011) - 1)/{1 - X) in Model 2.
Since Model 3 satisfies (29), we conclude that the lack of idenrifi-
ability of the parameter o is not a consequence of Sargent and Wallace’s

assumtion that {u(t))} follows a random walk.,
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5. (In) consistency of Cagan’s Estimator for o

In this section we compute the population projection of {u(t)=x(t)

on {x(t)} under the assumption that Cagan’s model of hyperinflation is a
rational expectations model. We then use a formula due to Sims (1972a) to
evaluate the consistency of Cagan’s estimator under alternative specifications
of the "true" rational expectations model., We confirm Sargent and Wallace’s
results that when Model 1 is the true model, then Caéan's estimator for XA is
consistent, while his estimator for o is inconsistent. We then show that when
Model 3 obtains, the regression Cagan computed is a projection equation, so
that his estimator for a is consistant,

From (5), (11), and (15) we have

x(t) - ';:-E%Ii 0 a.l(t)
1-A+D1+Dz(1~L)+w1(L)(1-L)2
(35) n(t) s (1-L)Y (L) \ay(e)

-

= F(L)al(t),

say, where al(t) = (al(t),az(t))T. The éutocovariance generating function of

this process is

-
SXX(Z) SXU(Z)

(36) $(z) = , = F(z)vF(z D)7,
8 (2) Syu(®)

Substituting from (35) into (36), we get
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-1
{(1-Az)(1-2z )Ull

)

SKX(Z) B

(1=z)(1~z"}

[1-A+Dl+nz(1-z)+w1(z)(1-z)2]cl1[1-xz‘11
i

(37) S (z) = {
Hx (1~z)(l~z 3

(1-2)%,(2)0 ., (1-x2 ")

)

(1-z~

The projection of {u(t)} on {x(t)} is defined as
(38) u(t) = h(L)x(t) + v(r)

where Ex(t)v(t-s) = 0 for all s, It may be shown that

S (%)

I S
(39 h(z) = Sxx(z). =/

To get the projection of {p(t)-x(t)} on {x(t)}, subtract x(t) from both sides

of (39) to get
(40) p(e) - x(t) = bP(LIx(L) + v(r)

where bP(L) = h(L) - 1. Substituting (37) into (39) and using the definition

of bP(z), we get

1=X4D 4D, (1-2) (¥ (2)+r¥ ) (2)) (1-2)
1=-Az

(41) vP(z) = -1

where r = GIZ/GII“QJ (The fact that bp(z} is one sided in positive powers of
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z 1s a consequence of the exogeneity of {x(t)}.) Least squares regression of

{u(t)-x(t)} on {x(t)} gives consistent estimates of {bP

i,;gp}, where b(z) =

-]
Z bpzi. Cagan estimated {bc,i>0} in
120 i i*7=

(42) ult) - x{t) = bS(LIx(e) +v&(¢)

subject to the following {(nonlinear) constraints

c c c c cy~1
(43) bc(z) - uc(1~lc)( 1 z ) = a (1=-A7) + 2 (1-A")(1-(A") )’
1-2%2z ¢ 1-1%¢,
or,
¢ c ¢
bO = a (1-A7)
b = a®1-ASa - LS, 1y o,
i A&

Sims” formula asserts that in large samples, when bP(z) is the true
distributed lag and b®(z) is the one imposed by the econometrician, then least

squares pilcks the free parameters of b%(z) to minimize
T i e I T R

We use this formula to evaluate the consistency properties of Cagan’s esti-

mators for A and a, Consider the following case.

Model 1

Under the Sargent-Wallace parameterization, we have, substituting

(13) and (25) futo (41),
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-1
Prry o (1oL o, o r=l . (r=1)(1-2"h
(45) b (L) (-l—_'ﬁ:)(l’ 1) = i\ + =31 ’
so that,
Por-

) = (=D (-2 Y, 1> o,

Substituting (37), (43), and (45) into (44), we get

~1lw -iw -t
1=e l-e ¢ ¢, 2 1-2e 2

I‘JT ( ' )(r_l)....(____.__.._..__)a (l"-)t ) — g dlﬂ,

o 1-}e iw 1-kce iw l_e—iw il

ar,
¢ ¢
-1 a {(1-1") 2 ~-{w 2

fw .3 - ¢ 1-ie o dw,

o I-Ae'im l—kce iw 11

The unique minimzer of the above integral is A = X and a® = {(r-1)/(1-1). It

follows that, in the case of Model 1, Cagan’s estimator for a (af) is incon—

sistent, while his estimator for A (A®) is consistent.

Now, suppose that {u(t)} follows a random walk. In Section 4 we

showed that this 1s equivalent with (29). Substituting (29) into (41), we get

(46) bP(z) = l“izcnz-xﬂ

= +rK2).

i

Substituting (43) and (46) into (44), we get
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[ [
IIH 2 1 2 _a(l-x") 2 l—le”im 2U duw.

N 1

In this case A® = X and of = (Dy=A +r6,)/(1-1) are the unique minimizers.
Evidently, the estimator for A, A%, is consistent. The estimator for a 1is

consistent i{f, and only if,

a(l=2) =D, - A+ x_ + re.,

2 1 2

Substituting from (13), we see that this 1s equivalent with

{(&47) D, + k. + rx. = 0.

Now, when {u(t)} follows a random walk, (29) applies and
(1-L)u(t) = (D3~+~Kl)a1(t) + Kzaz(t).

Using the above relation, it is easy to verify that the condition E(1-L)u(t)
a;(t-s) = 0 for all s is equivalent with (47). This in turn is equivalent
with the condition E(l-L)u(t);(t—s) = 0 for all s and (comparing (1) with
(42)) with the condition (1-L)u(t) = v&(t). Since the parameters of Model 3
satisfy (47), we conclude the following: the assumption that Cagan’s model is

a rational expectations model fails to imply that his estimator for a is

inconsistent.
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6. Conclusion

What we have shown in this paper is that Sargent and Wallace’s model
is only one of a family of observationally distinct time series representa-
tions of money growth and inflation in which Cagan’s model is a rational
expectations model. The slope parameter in Cagan’s portfolio balance equation
is 1dentified in some of these models, and in others it 1is not. We have
brought no evidence to bear on the question of which of these models li‘_es
closest to the truth. This is an empirical question that remains to be an-

swered.



Footnotes

.l/The inverse optimal predictor problem is related to problems
studied in Mosca and Zappa (1979).

EJThis is a solution to the following inverse optimal predictor
problem: "what wunivariate representation for {p(t)} 1is consistent with
{3)?" This problem was posed and solved in Muth (1960),

QJWhat follows would be even more general 1f we set ki = ki(L),
where ki(L) is a polynomial in non-negative powers of L and i=1, +.a, 6. We
do not do this in order to keep the notation simple and because the generality

in which we consider the problem is sufficient to establish the claims made in
the introduction.

fJThe notation used in this paper matches that used in Sargent
{1977) to facilitate comparisons.

éJSee, for example, Sargent (1979, Chapter XI).

éJIt can easily be showm that, in equation (40), v(t) = (l-L)TZ(L)
(a,(t)=ra ().

ZJSee Sargent (1979, p. 293) for a heuristic deriation of this
formula. For an application of the formula in a context similar to rhe one in
this paper, see Sargent (1976).
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