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Eccnomic forecasting models are based on a combination
of human insight and statistical analysis, but the question of how
hest to combine these elements remains, in practice, unresolved.
Their combination cannot be avoided. Given the limitations of
human brains and economic databases, the potential linkages among
economic variables are too numerous to be accurately gauged by
elther human reasoning or statistical analysis alone. The tradi-
tional solution to this degrees of freedom problem has been, more
or less, to use reasoning to select a small set of coefficlients
thought to represent the most important linkages among variables,
to assume all other linkages can be ignored (by fixing their
coefficients at zero), and then to estimate the chosen coeffi-
cients from the data. Bayesian statistical theory suggests a
different approach: include as many linkages--and thus coeffi-
cientg--as your computer can handle; then use human insight to
overcome the degrees of freedom problem by specifying a set of
prior heliefs that supplement the data. Prior beliefs and data
then jointly determine the estimated values of all the coeffi-
cients.

This paper discusses how the Bayesian approach can be
used to construet a type of multivariate forecasting model known
ags a Bayeslan vector autoregression (BVAR).1 Since the ldea of
gpecifying prior beliefs about the numerous coefficients of a
multivariate forecasting model is rather daunting, the key to the
BVAR approach is to simplify this task. To that end, Doan,
Litterman, and Sims (198Y4) have proposed that a certain family of

prior probability distributions, indexed by a fairly small set of




"hyperparameters," can adequately represent modelers' prior be-
liefs in most cases. They have shown how to estimate a BVAR,
either when the modeler picks a particular member of their family
of prior distributions or in the not uncommon case where the
modeler has no strong beliefs (i.e., flat priors) about which
members of this family of possible prior distributions are most
appropriate. The explanation of their suggestions, in Section 2,
forms the core of this paper. However, the BVAR approach to
economic forecasting has implications, as well as a set of conven-
tional procedures, for how the data in a model are.selected and
transformed. For that reason, and for completeness, Section 1
discusses how to specify a BVAR and set up a BVAR database. A&

U-variable model is used to illustrate the BVAR approach.

Section 1: Specifying a BVAR

In the simplest form of a BVAR, n lags of each variable
in the model appear in each equation. In that case, model speci-
fication consists of picking n and a data series for each vari-
able. Even more complicated BVARs generally consist of blocks of
equations that have the simple form or slight variations of it, so
the links between model specification and database preparation
remain quite direct. For that reason, I will discuss the basies
of specifying a BVAR through a step-by-step discussion of setting
up a BVAR database. In many ways the considerations and conven-
tions used by BVAR modelers are the same as those used by other
forecasters, except that somewhat different criteria are used in

deciding which variables to include in the model.




What is the Purpose of the Model?

The first step in specifying any forecasting model,
including a BVAR, i3 to state as precisely as possible the goal of
the forecasting exercise, At a minimum, the forecaster presumably
wishes to produce accurate forecasts of at least one variable, and
aoften more. I will refer to these variables as the variables of
interest. They should be identified at the outset, and a loss
function over their forecast errors could also be specified.

Frequently the forecaster wants not only to forecast
accurately but also to claim that his or her forecasts incorporate
the effects of one variable on another. (Note that this desire
may be independent of, or even conflict with, the desire to fore-
cast a set of variables accurately.) After October 19, 1987, for
example, f{orecasters had to indicate whether their forecasts
reflected that day's crash in the stoeck market. Incorporating
such cross variable linkages rules out one fairly effective class
of pure forecasting models--those which forecast each variable of
interest by means of a univariate ARIMA model. Instead the mod-
eler will need a multivariate model to estimate the linkages among
the variables of interest and/or between those varlables and a set
of other variables which affect the variables of interest but are
not of direct interest themselves., I will refer to these other
variables as related variables.

The forecaster may be even more ambitious and wish not
only to incorporate but also to separately identify the causal
linkages among variables. For example, forecasters may wish to

gay not only that their forecasts reflect the stock market crash




but also that they know by just how mueh the crash affected each
variable's forecast. In this case the estimated multivariate
model will have to be augmented by a set of identification re-
strictions on the model's coefficients and/or covariance ma-
trices. These additional restrictions provide a unique relation-
ship between the forecasting model and a model of the underlying
structure of the economy. Meaningful what-if questions can then
be posed in the structural form of the model and traced through to
the corresponding forecasting model, producing what are known as
conditional forecasts. To estimate the effects of the stock
market crash, for Ilnstance, the forecaster could use the struc-
tural model to pose the question of what the current outlook would
be 1f the stock market had held steady at its October 18th
level. Without identifying restrictions, what-if questions can't
be posed, and the forecasts are said to be unconditional. Mod-
elers can say that their unconditicnal forecasts include the
effects of the stock market cr-ash,2 but they can't separately
identify what those effects are.

For the purposes of this paper, I will assume that my
goal is to accurately forecast, in as much detail as possible,
economic activity in the state of Minnesota (U.S.A.). I will also
assume that my clients, whom I take to be the general puhliec,
demand multivariate Cforecasts (whether or not these are more
accurate than multiple univariate forecasts) that incorporate the
linkages among Minnesota variables and befween Minnesota and
national variables. However, my clients are content with uncon-
ditional forecasts, allowing me to defer the complexities and

controversies of how to impose identifying restrictions on BVARs.



How Many Variables and Linkages Can I Include in the Model?

Ideally, my clients would like forecasts of almost every
Minnesota economic variable. Furthermore, they want each vari-
able's forecast to incorporate the effects of all the other vari-
ables. In non-Bayeslan modeling, this ideal caunot be met because
of insufficient degrees of freedom. Because there are many data
series, the number of potential linkages among them, and hence the
potential number of model coefficients, is huge. Bubt each data
series is fairly short, so that the number of observations per
coefficient in an equation is small, possibly less than one. To
conserve degrees of freedom, some variables are left out of the
model, and many potential linkages among the remaining variables
are turned off by assuming that the coefficients that represent
them are zero.

In BVAR modeling, concerns over degrees of freedom play
a much less important role in deciding which wvariables and link-
ages among variables to include in the model. Instead modelers
must worry more about the availability of computing power, support
staff, and their own time and energy in deciding whether to en-
large their models.

BVAR models can easily demand more memory than many
computers and software packages allow. The prior iInformation a
BVAR modeler supplies to the estimation program includes at least
a varlance-covarlance (VCV) matrix for each equation. Since BVARs
typiecally include several lags of many variables in each equation,
the number of coefficients, k, in a given equation can be large by

non-Bayesian standards. Since the VCV matrices, in turn, are



k x k, the memory required to store them may exceed the limits of
many computer systems (microcomputers, for example) or of software
oriented to non-Bayesian methods. For example, although the RATS
software available on the mainframe at the Federal Reserve Bank of
Minneapolis is designed for BVARsS and accommodates a fairly gener-
ous number of coefficlents per equation--about 200--this limit is
binding at times and has dictated a block recursive structure for
some of the models in use there. On a personal computer, RATS can
handle about 50 coefficients per equation. For a quarterly model
with 6 lags of each variable in each equation, this imposes a
limit of about 9 variables.

BVARs can also put large demands on suppert staff and on
the modeler's time and energy. Whenever a large model is speci-
fied, somecne has to assemble and maintain the database. This
takes a lot of time, or money, or both. In addition, estimating a
BVAR requires some programming and generates a lot of output that
needs to be analyzed. My impression is that, variable for vari-
able, BVARs are probably much easler to estimate and maintain than
many econometric alternatives. Nonetheless, they do require
support, and in practice limits on these resources may also con-
strain the size of BVARs.

Degrees of freedom do play a role in choosing variables
for a BVAR. Although they ease the degrees of freedom problem,
the prior beliefs imposed on the coefficients of BVAR models
express a degree of uncertainty about the value of the coeffi-
cient. The more data are available, the more this uncertainty can

be reduced. In cases where the prior uncertainty is large and the




data series are short, some variables may have to be dropped from
a BVAR to conserve degrees of freedom. I have estimated 6-vari-
able, 6-lag BVARs with as little as 10 years of monthly economic
data, but where longer data series can be substituted I normally
exclude business cycle variables with less than 15 or 20 years of
available data.

For my Minnesota model, let me begin with a generous
"wish list" of variables of interest: gross state product, non-
farm employment, nonfarm earned income, farm income, an index of
farm prices, farm land values, nonearned income, the unemployment
rate, retaill sales, the Minneapolis-St. Paul CPI, and possibly
some further disaggregations of these series. I'll tentatively
assume that the model will have the simple BVAR form, with n lags

of each variable in each equation {n to be determined later}.

How Shall I Transform the Data?

The BVAR framework does not have strong implications for
whether data series should be modeled as seascnally adjusted or
not, logged or not, deflated or real, etec. Nonetheless, some
conventions appear to have been followed in the majority of BVAR
applications. In addition, the BVAR framework itself allows
certain new ways of dealing with theszse issues, especilally season-
ality.

Seasonal adjustment. Most BVARs to date have been

estimated with seasonally adjusted data. I suspect that this is
because most BVAR applications so far have been for general-pur-
pose macro or regional forecasting, where success consists of

beating your competitors' forecasts of the seasonally adjusted



versions of variables like GNP, CPI, and unémployment. To keep
things simpler, I will assume that my clients alsc want me to
forecast the seasonally adjusted versions of my Minnesota vari-
ables.

As BVARs spread to other applications--such as predict-
ing government revenues or corporate cash flows--forecasts of the
nonseasonally adjusted versions of variables will be more rele-
vant. The question then arises: Is it more accurate to directly
model the unadjusted serles, or should I first adjust, then model,
then unadjust? Some research now underway touches on that ques-
tion, but I don't think there's an answer yet. BVARs do open up
one Interesting possibility, which is to model the unadjusted data
directly and introduce seasonal patterns into the prior beliefs
about the coefficients {Canova 1987, Ballabriga 1987).

Logging. The general practice in BVAR models has been
to log most variables, except those in ratio form or those taking
on negative values. Many economic data series--GNP and Minnesota
nonfarm employment, for example--seem to grow nearly exzponentlally
with proportional disturbances. Logging them is convenient be-
cause it allows their behavior to be better approximated by a
linear model with constant-variance additive disturbances. Even
series that show little evidence of exponential growth or propor-
tional disturbances may be logged, if their effects on other
variables are believed to be more nearly multiplicative than
additive. In U.S. models the exchange rate is often logged partly
for these reasons, and in my Minnesota model I would log the index

of ag prices for this reason.




Some series are usually not logged, however. Series in
ratio or proportional form--such as interesi rates or unemployment
rates--are usually not logged. Their ratic form already captures
some multiplicative effects, and their U.S. time series may show
little evidence of exponential growth.3 For these reasons, I will
not log the Minnesota unemployment data, Series that have nega-
tive values cannot, of course, be logged. For this reason, I will
work with levels rather than logs of Minnesota net farm income.

Deflating. With regard to deflating nominal variables,
BVAR modelers seem to follow the convention of convention. That
is, if the users of the forecast are primarily interested in the
deflated version of a variable, then that form is directly incor-
porated in the model . (rather than being computed from the fore-
casts of the nominal version and a deflator). Thus GNP is gener-
ally modeled in real terms {despite the occasional interest in
nominal GNP). If the nominal version is of more direct interest--
as 1s often true of stock price indices or the money supply--it Is
included in the model.

Sometimes this rule of thumb is not workable. For
example, I don't know whether the users of my Minnesota forecasts
are more Iinterested in real or nominal retail sales. Also, my
previous exzperience with this series has indicated that modeling
it in nominal form may lead to implicit forecasts of real growth
that seem unreasonable. Therefore, I would deflate retail sales.

Detrending. Although many data serlies, even those that
have been logged, seem to grow over time, BVAR modelers rarely

detrend their data series. Trend effects are allowed to enter



- 10 -

into the estimated coeffidients of tHe many distributed lags in
the model. Frequently this results in explosive roots in the

estimated model.

Are Appropriate Data Series Available?

At this point, I know which variables I want in my
model, and in which forms. WNow I have to see if the necessary raw
data series are available or can be created.

Some series are just not avallable at all. They must be
dropped or replaced by proxies. In my case, gross state product
figures for Mimnesofa are not available now. To some extent, they
can be proxied by employment and income.

Some raw series are available, but not Ffrequently
encugh. The available series on my wish list are reported at a
variety of intervals--monthly, quarterly, and annually. I could
put them on a common basis with an annual model, but my clients
aren't satisfied with this option. An alternative is use inter-
polation procedures to estimate quarterly values for series, such
as farm land values, that are available only annually. The model
could then be standardized on a quarterly calendar. My clients
approve, and I proceed on this basis.LF To interpolate quarterly
land values, I need to find a set of quarterly data series that
provide information about the likely intrayear movements in land
values. I can use some of the series I have already chosen, such
asz farm prices and incomes. I may also wish to gather some addi-
tional series--such as farm mortgage interest rates--just for this

5
purpose.
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Some raw series areé too short or inconsistent. My
Minnesota employment figures go back, in one form or another, to
1939, but income data begin in 1958, retail sales data in 1964,
and unemployment data in 1970. I will pieck 1958 as my starting
date. I throw away the earlier data on employment (except that
I've already used it to seasonally adjust) and estimate regression
equations for retail sales (using post-1964 data) and unemployment
(using post-1970 data) that allow me to backeast them to 1958. In
these regressions, as in my interpolations, I may use a combina-
tion of variables in the model and variables gathered solely for
this purpose. Similar technigues can be used to splice a more
recent to a less receni{ version of a data series that is not
available in a statistically consistent form for the whole data
period. Mendesh (1987) describes one not entirely successful
application of this approach to M1 data in the United States.

Finally, some series are released with an unusuwally long
delay. If this delay is not too much longer than for the other
variables in the model, the data may still be useful. This is the
case for the quarterly data on Minnesota earned income, which are
released about four months after the end of the quarter they
cover. Most of my other series are available by one menth after a
guarter, but the one-quarter lag of the income data does not
prevent them from contributing to my forecasts of the other vari-
ables. This will probably not be true of the new data series on
state gross product that may be released soon. As I understand
it, these series will be annual and available about 13-15 months

after the fact. Even if I could get a good historical gross state
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product series and interpolate it to a quarterly level, the de-
layed release of this series would probably make it useless in my

forecasting model,

How Should Related Series Be Handled?

Recall that related series, though not of direct inter-
est themselves, may belong in the model because they affect the
forecasts of the variables of interest. The usual BVAR methodol-
ogy requires that forecasting equations for these related series
appear somewhere Iin the model, so that the model is self-contained
in the sense that it ecan produce forecasts autcnomously. However,
the modeler has wide latitude in choosing exactly how to model the
related series.

The essentlal feature of a related series is that it
contributes to the forecasts of the variables of interest, either
by making them more accurate or by allowing modelers to claim that
the forecasts incorporate all information their clients belleve is
relevant. Note that to improve the forecasts of the variables of
interest, the related series could be either causally related or
merely correlated with the variables of interest. In my Minnesocta
model, for example, national output, income, and employment vari-
ables can be viewed as shifting the demand for Minnesota products,
thereby causing changes in Minnesota's employment and income. The
role of stock market indices, such as the S&P 500, is less
clear. They seem to contribute significantly to making both U.S.
and Minnesota growth forecasts more accurate, but economists

disagree over whether this is because they cause or merely prefi-

gure changes in the real sector. A sharper example was related to
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me by Thomas Cargill, who fouhd that state gambling revenues in
Nevada could be used to improve forecasts of GNP. Probably no one
thinks that Nevada gambling revenues cause big changes in GNP, but
it is easy to believe that they might be correlated with--and thus
serve as a proxy for--some unmeasured dimension of consumer con-
fidence.

For my Minnesota model, I will choose my related series
from a 1list of important national economic variables. These
include the national counterparts of all my Minnesota variables of
interest, plus GNP and selected GNP components, the interest rate
on 3-month T-bills, the money supply, the exchange rate, the 35&P
500 index of stock prices, and an index of commodity prices.

The usual BVAR estimation method requires that forecast-
ing equations for the related series be included in the model.
The method relies on computing realistlie simulations of the out-
of-gample forecasting performance of the model. That, for exam-
ple, means estimating the model through the first quarter of 1964,
forecasting the next eight quarters, computing the resulting eight
forecast errors, and then repeating the process for each succes-
sive quarter. If the modeler tries to avoid medeling the related
series by simply plugging in scmeone else's forecasts of these
variables, it will probably be impossible to find out what that
other forecaster forecasted, or would have forecasted, as of the
first quarter of 1964, As a result, it will be impossible to
compute realistic statistics on the model's out-of-sample fore-
casting performance, Statistics computed by using the actual

rather than forecasted values of the related series--in effect,
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under the assumpbion of perfect foresight of the related series--
will generally be too optimistic. This can lead to the estimation
of a model which is suboptimal in computing current forecasts,
when perfect foresight of the related series is impossible.

Some important BVAR applications also require that the
related series be included in the model. For ezample, BVAR fore-
casters freguently use stochastic simulation te compute confidence
bands around forecasts or probabilities of events like a reces-
sion. Such probability assessments cannof be accurately computed
without a stochastic model for the related series.

Although the related series need to be included in the
model, they do not have to be modeled in the BVAR style. The
modeler is free to make liberal use of excluslion restrictions in
the equations for the related variables, since by definition the
clients don't care whether the forecasts of the related series
incorporate feedback from other variables. At one extreme, then,
the modeler may choose to model each related series as a univari-
ate autoregression. At the other extreme, the modeler may simply
enlarge the BVAR and treat the related series as though they were
variables of interest. Each equation would contain n lags of the
variables of interest and of the related variables., Even com-
mitted BVAR mocdelers may stop short of this extreme, however,
especially if it generates more coefficients than can be estimated
with the modeler's computer package. An intermediate possibility
is to follow a block recursive pattern: one BVAR with eguations
for the related variables only, with no variables of interest on

the right-hand side, and a second BVAR with equations for the
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variables of interest, with some or all of the related variables
on the right-hand side. A variety of other forms Is also possi-
ble, and the out-of-sample forecasting statistics used in estimat-
ing the model can guide the selection of a final model. I will
use these statisties in deciding whether to estimate a single BVAR
for the Minnesota and U.S. series or to adopt a block recursive
structure by excluding Minnesota variables from the U.S. vari-

able's equations.

Is the Model Manageable?

I have now drawn up a fairly long wish list of variables
of interest and related series. It's time to check whether my
staff, my computer, and I can handle so big a model.

My computing resources are probably adequate. They
allow about 200 coefficients per equation. Since I am working
with quarterly data, I can probably get by with 4 lags of each
variable. (I recommend at least enough lags to cover half a year,
and preferably a year's worth or more.) This means I can put
about 50 variables in the model and still not have to exclude any
variable from any equation. If I want to experiment with 8 lags-—-
which might be a good idea--I will have to cut down to about 25
variables. Even that is not very restrictive.

In this case my human resources are binding, however. I
have only a limited amount of time to devote to building the
model. In addition, I am not clever enough to clearly and con-
cisely present a large model as an illustration of the BVAR tech-
nigque. As a result, I will prune my model way back. My only

variable of interest will be Minnesota nonfarm employment. My
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related series will be the S&P 500 index, the interest rate on 3-
month T-bills, and GNF. A1l will be modeled as quarterly aver-
ages, with data since 1958. Only GNP will be deflated. GNP and
Minnesota employment will be seasonally adjusted, but the other
two series are already virtually nonseasonal in their raw form.

All except interest rates will be logged.

Section 2: Estimating a BVAR

Az its name suggests, the Bayeslan vector autoregression
procedure is motivated by Bayeslan statistical theory. However,
BVAR methods do not rigorously follow Bayesian guidelines. They
can Instead be Interpreted as approximations to exact Bayesian
methods,

Without Bayesian-like restrictions, my proposed Minne-
sota model would probably be subject to degrees of freedom prob-
lems, leading to what is known as overfitting of the coeffi-
cients. With four lags of each of my four variables In each of my
four equations, plus a constant term, I would have an unrestricted
VAR (UVAR) system with 68 coefficients, or 17 per equation,
Beecause the right-hand-side variables are the same for each equa-
tion, the theory of seemingly unrelated regression (SURE) implies
that I can optimally estimate my entire UVAR by applying OLS to
each equatlon separately. I have 119 quarters of data for each
equation, or 7 for each of the 17 coefficients in the egquation.
Those 1T coefficients are probably more than enough to fit quite
well the in-sample data on Minnescta employment. In fact, the
fitted coefficients may fit the data too well, in the sense that

meaningless accidental patterns in the historical time series may
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strongly influence the estimated coefficients [see Todd (1984) for
a nontechnical discussion of this idea]. This is called overfit-
ting.

A comparison of simulated out-of-sample forecasts of
this UVAR and a set of four U-lag univariate autoregressions
suggests that overfitting is at least a mild problem in the UVAR
{gee Table 1), One step ahead, its forecasts for all variables
are less accurate than those of the system of univariate equa-
tions. For the nabional variables, thils remains true at longer
horizons, and the UVAR GNP forecasts are clearly inferior. For
Minnescta employment, however, the two models' forecasts are
nearly equally accurate, and the UVAR does better at long hori-
zZons. This reinforces the notion that national varilables are
important for Minnesota forecasts.

In larger UVAR models, where the number of coefficients
grows rapidly, overfitting is more of a problem. The number of
coefficients may even exceed the number of observations.

The BVAR method is designed to offset overfitting by
imposing Bayesian prior restrictions on the ccefficlents. In
effect, the information that OLS extracts from the data is supple-
mented by the modeler's beliefs about the likely values of the
coeffiecients. For practical reasons, these prior beliefs have so
far been imposed by methods that only approximate Etrue Bayesian
procedures.

One reason that BVAR methods are only approximately
Bayesian is that the coefficients of BVARs are generally estimated

with equation-by-equation estimators rather than system estima-
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tors. Although optimal for BVARs, saingle-equabtion methods are
suboptimal for BVARs unless the prior variance-covariance matrices
of the coefficients are identical for each equation (up to a scale
factor). I is unlikely that a modeler's prior beliefs would
satisfy this condition ezactly, so the typical BVAR single-
equation estimation procedure is inefficient.

Full system estimation of a BVAR, though efficient, is
computationally demanding. 1In my Minnesota model, it would In-
volve the 68 x 68 variance-covariance matrix of all the coeffi-
clents, instead of the four 17 x 17 varilance-covariance matrices
of . the separate equations. Some efforts are being made to find
efficient algorithms for system estimation of BVARs, but I am not
aware of any successful applications yet.G

For each BVAR equation, the prior information takes the
form of a "known" variance of the disturbance term and a normal
distribution for the coefficients,

Although treated as known, the disturbance term vari-
ances in the prior are usually computed from the data. [Alterna-
tively, Doan, Litterman, and Sims (1984) propose treating this
variance as an additional hyperparameter.] For each BVAR vari-
able, Doan, Litterman, and Sims (1984) suggest setting the stan-
dard deviation of its disturbance term to 0.9 times the standard
error of the residuals in a regression of the variable on six lags
of itself. The factor 0.9 allows for a 10-percent reduction in
the standard deviation when other variables are added to the
equation. 411 of these standard deviations are alsc used in

scaling the prlor covariance matrixz of the coefficients of each




-19 -

equation. Therefore a standard deviation must be computed even
for related series that are not modeled with BVAR eguations.

The mean of the normal distribution of each equation's
coefficients is Gypically set according to the so-called random
walk {or random walk with drift) prior. The intuition behind this
prior 1is that most economic series are reasonably well approxi-
mated by a random walk around a trend.

To help capture the trend, a constant 1Is inecluded in
each eguation. For logged variables, the constant can pick up the
trend growth rate. (As it happens, the variables that typically
have not been logged also typically exhibit little trend.) Usu-
ally, the prior means of all the constant terms are zero., Their
prior variances are ustally scaled by a hyperparameter dedicated
to this purpose. Alternatively, their variances can be set at a
large multiple {100,000 for example) of the disturbance term
variance. This expresses prior ignorance about the constant term
and lets the data determine its value.

To represent a discrete-time random walk, the prior mean
of the coefficient on the first lag of the dependent variable is
set to 1.0. All other coefficients are given a prior mean of 0.0.

It may be more plausible that a variabhle behaves like a
random walk in continuous, not discrete, time. 1In this case the
implications of the random walk prior for the BVAR coefficients
are somewhat different. BVARs are generally fit to time-averaged
discerete data series. If the underlying continuous time version
of the variable follows a random walk, the time-averaged version

will show a more complicated pattern of lag coefficients. [See
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Christiano and Eichenbaum (1987), pp. T5-T7, and Working
(1960).] The coefficient of the jth lag of the dependent variable
will have a nonzero mean given by (1-u)aJ-1, where o = v/3-2. The
prior means of the other coefficients in the equation remain zero,
however.

Specifying the prior variance-covariance matrices for
the cocefficients of each equation is the heart of the BVAR method
and the core of a typical BVAR computer program. Usually the
prior VCVs are chosen from a standard family of VCVs. This fam-
ily, which is indexed by about ten so-called hyperparameters, has
gradually emerged from the work of Sims, Litterman, and Doan.
Each setting of the hyperparameters identifies a particular VCV in
this family and thus completes the specification of the prior
normal distribution of the cocefficients. Viewed another way, the
prior VCV can be written as a funection of the hyperparameters (and
of the disturbance term variances). Doan, Litterman, and Sims
(DLS) have thus considerably simplified the task of speecifying
prior VCVs, reducing the number of decisions from hundreds or
thousands to about ten.

The DLS family of VCVs i1s based on two simple beliefs
about the coefficients of a multivariate time serles forecasting
model, O{ne is the belief that, in forecasting a given variable,
its own past values are likely to be more useful than the past
values of other varlables. The other is that, for both the fore-
casted varlable and the other variables used to forecast it, more
recent values are likely to be more useful .than more distantly

lagged values. In other words, our confidence that a coefficient
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is nearly zero increases if the coefficient applies to a more
distant lag or to a variable other than the dependent variable, as
indicated in Figure 1.

These two simple beliefs are expressed by means of two
or three hyperparameters. One, which I will call DAMP, controls
the rate at which the prior variances shrink toward zero as lag
length increases. This is generally done by making the prior
variances of coefficients on jth lags proporticnal to elther
3-DAMP on pamp(I-1).  Aithough the most prominent BVAR software
package (RATS, by VAR Econometrics) has a built-in facility for
varying DAMP (which it refers to as the lag decay parameter), in

1 is used.

many applications the formula j~

Two other basic hyperparameters govern the relative
prior variances of coefficients of own lags (lags of the dependent
variable) versus coefficients of cross lags (lags of other vari-
ables). Own-lag variances are all scaled by the hyperparameter
DLS eall s and cross-lag variances are all scaled by the hyper-
can strongly affect the fore-

parameter they call = T, and @

o
casting performance of a BVAR.

2

Over the years, the DLS family of VCVs has been refined
by the addition of more hyperparameters. The prior variances of
the constant terms, for example, are scaled by a hyperparameter
they call.w3. Other hyperparameters influence the time variation

of the coefficients (« 8), the sum of the coefficients (ns), and

7t"
relative varlances among the cross varlables (“ll)'
Although DLS have taken us a long way toward specifying

a prior VCV for our coefficients, it is usually the case that even
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experienced BVAR modelers cannot pick a setting of the hyperparam-
eters that adequately represents their beliefs. In fact, most of
the easily agreed to characteristics of a prior VCV are common to
all members of the DL3S family, and DL3S focus attention on the
hyperparameters partly because they index the remaining uncer-
tainty about the nature of the prior. In Bayesian terms, the
prior distribution of the coefficients 1z a mixture of normal
distributions, and the hyperparameters index the family of normal
distributions in the mixture. (More correctly, the distribution
of the coefflicients is a mizxture of conditicnal normal distribu-
tions, each conditional on the assumed variance of the equaticn
disturbance term.) 4 Bayesian could proceed by ezpressing a
fairly flat prior distribution over the hyperparameters, compubing
the implied mixture of coefficient distributions, and using that
mizture to specify the prior VCV of the coefficients.

This fully Bayesian approach has never, as far as I
know, been implemented. Instead DLS have suggested a procedure
for using the historical data to select a particular set of hyper-
parameters {(and thus also a particular VCV for each equation).
This procedure appears Lo be contradictory. A prior is the dis-
tribution the modeler belleves before examining the data, so how
can the data be used to pick the prior? Strictly speaking, they
cannot. However, under certain conditions, this data-based method
for selecting a prior is jJustified as an approximation to the
Bayesian mixture-of-distributions procedure outlined above (see

the Appendix).
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The key Ingredient in the DLS procedure for selecting a
set of hyperparameters is realistic simulation of the model's oub-
of-sample forecasting performance., A set of hyperparameters is
chosen. Then the model is estimated, using Kalman Filter tech-
nigues to incorporate the prior associated with those hyperparame-
ters, through a startup date. A forecast is made from that date
and compared to the actual data to compute its forecast errors.
The Kalman filter is applied again to update the estimates of the
coefficients with data through date startup plus one, and the
forecasts and forecast errors for that date are computed. This
continues until the end of the historical data is reached. The
whole procedure 1s then repeated for many other settings of the
hyperparameters, so that each hyperparameter setting has a simu-
lated forecasting track record. The setting with the best track
record wins. That iIs, its prior is singled out and used to esti-
mate the final forecasting model.

A ceritical aspeet of this procedure, obviously, Iis
deciding which forecasting track record is best. Several crite-
ria, or metrics, have been proposed and used, including minimiza-
tlon of the log determinant of the VCV of the simulated one-step-
ahead forecast errors and minimization of weighted averages of
roct-mean-squared forecast errors one or more steps ahead., The
choice of a criterion is to some extent problem-specific and could
be based on the modeler's f{orecast error loss function. In my
Minnesota model, for exzample, I could focus on my variable of
interest, using as my criterion the root-mean-squared error of

one-step-ahead forecasts of Minnesota nonfarm employment.
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However, the criterion that is most consistent with the
notion that BVAR methods are approximately Bayesian is maximiza-
tion of the quasilikelihoed statistic proposed by Doan, Litterman,
and Sims (1984). For any given equation, maximizing this statis-
tic is equivalent (under certain assumptions) to minimizing a
weighted sum of the out-of-sample one-step-ahead forecast errors,
with weights that are inversely proportional to the conditional
forecast error variances. An equation's forecasting performance
thus depends both on its model's accuracy and on its model's
ability to detect when forecasts are subject teo abnormal uncer-
tainty. An analogous statlistic could be computed for the model as
a whole if efficient system Kalman filtering algorithms were
available. 3ince these algorithms are not widely available yet, a
model's forecasting performance {(that is, its performance under a
given set of hyperparameters) is usually ranked by summing the
quasilikelihoods of its individual equations. This 1s the crite-
rion I will use to select hyperparameters for my Minnesota model.

The remaining task--searching for a set of hyperparame-
ters that optimize the criterion--is computationally intensive.
Even if the final model selected will be small enough to estimate
and use on a microcomputer, it is helpful to use a mainframe at
this stage. This is especlally true if the number of hyperparame-
ters is large, say 5 or more.

The computational burden of hyperparameter search de-
pends on two factors, the number of hyperparameters to be picked
and the computational complexity of computing out-of-sample fore-

casts for a given set of hyperparameters. The latter factor
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depends primarily on the number of coefficients per eguation and
the length of the historical period over which out-of-zample
forecasts will be computed. The former Ffactor determines the
dimenzion of the space to be searched. This is important because
it can rule out a nearly surefire method of optimizing the criter-
ion--checking all hyperparameter settings on a fine grid that
encompasses all reasonable values. For example, Five hyperparame-
ters and 5 grid points for each implies a grid with 52, or 3125,
gsettings of the hyperparameters. Except for small models with
short out-of-sample forecasting periods, checking all of those
hyperparameter settings would require hours--possibly days--of
mainframe CPU time. Similarly, computational burdens alsc limit
the possibilities of computing the numerical derivatives needed
for hill-climbing algorithms,

With grid search and hill climbing effectively ruled
out, the most common alternative is a procedure sometimes referred
to as axial search. The modeler takes an initial guess at the
optimal setting of the hyperparameters. Then a grid of settings
of the first hyperparameter is searched, holding the remalning
hyperparameters fixed. The best point in this grid is used to
pick the optimal value of the first hyperparameter. The procedure
is repeated for each hyperparameter in succession, always with the
other hyperparameters held constant. A grid of 5 points for each
of 5 hyperparameters thus implies 25 points under axial search,
rather than 3125 under a multidimensional grid search. Aand 1f the
griterion is a fairly smooth, symmetrical (when bisected by lines

parallel to the axes) function of the hyperparameters, axial
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search will get close to the optimal setting of the hyperparamet-
ers. (See Figure 2a.)

In general, however, axial search can go astray, as
illustrated in Figure 2b. As the figure suggests, it may be valu-
able to do several axial searches, varying the order in which the
hyperparameters are searched. Table 2 shows the differences
between 2 axial searches over 10 hyperparameters for the 4-lag
version of my Minnesota model. The first search, leading to Model
1, ends with fairly typical optimal hyperparameter values
(although the hyperparameter on the variance of the constant term
is somewhat low). The search leading to Model 3, over a different
ordering of the hyperparameters, leads to a lower likelihood and
somewhat unusual degrees of time variation, decay of coefficients,
and tightness on sums of coefficients.

Tables 3a-3c show three BVAR models that achieve better
performance statistiecs for Minnesota employment than the univari-
ate and unrestricted VAR systems, at least one year ahead. Re-
sults for the national variables are less clear. One step ahead,
the BVAR models generally forecasted more accurately than the
univariate and unrestricted VAR models. At longer horizons,
however, BVAR Model 1 (Y4 lags, first axial search order) is domi-
nated by the univariate model and, for TBILL, by the unrestricted
VAR. Model 2 (8 lags), which had the highest likelihood, fared
better. It almost uniformly forecasted better than the univariate
and unrestricted BVAR models. (I also estimated 8-lag univariate
and unrestricted VAR models. The former performed about the same

as its B-lag counterpart. The latter performed much worse than
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any model shown here.) Based on its higher likelihood and overall
forecasting performance, Model 2 is my choice as the best fore-
casting model. However, the forecasting performance of Model 3 (i
lags, second axial search order) was generally nearly as good and
was better for Minnesota employment.

The optimal hyperparameter settings from the axial
search reported in Table 2 were used to estimate the Minnesota
BVAR models 1 and 2. I am now ready to use them, especially model
2, for forecasting my variable of interest. Table 4 showus the
results, under two assumptions. With data only through the third
quarter of 1987, both models forecast strong GNP and Minnesota
employment growth ahead. When preliminary estimates of fourth
quarter average stock prices and interest rates are added to the
data (to refleect Qctober's stock market crash), the models fore-
cast an immediate but brief downturn in GNP and a slowdown in
Minnesota employment growth.

My model is up and running, and my discussion of imple-
menting Bayesian vector autoregressions would now have to turn to
applications. Perhaps ancther day.

»
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Footnotes

"This paper does not focus on other toples related to
BVARs, such as their conceptual motivation [see Doan, Litterman,
and Sims (1984) or Todd (1984)], their forecasting performance
[see Litterman (1986a) and McNees (1986)], or their use in resolv-
ing questions concerning economic structure or policy [see Sims
(1982,1986a,1987), Litterman (1985), Cooley and LeRoy (1985),
Runkle (1987), and the references cited therein].

“This assumes that the unknown underlying structure of
the economy will not change through the forecasting perliod (or, in
the case of a time-varying coefficients model, will continue to
evolve as it has in the past}. This may not be a geood assumption
in the case of the 1987 stock market crash, which may very well
induce new private sector strategies and public sector regula-
tions. In addition, the mere size of the crash itself may be
inconsistent with the stochastic structure of wmany models.

3However, in countries where interest rates have taken
on more exbtreme values than in the United States, the log trans-~
formation may be more useful and has the advantage of capturing
the multiplicative relationship between interest rates and asset
values.

“There Is a long literature on optimal interpolation of
economi¢ time series. One early BVAR modeler, Robert Litterman,
made extensive use of interpolated national income and product
‘account data to build a monthly model of the U.S. economy
(Litterman 1984). His interpolation method (Litterman 1983)
generalizes the earlier methods of Chow and Lin (1971} and

Fernandez {1981).
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*mmirizadeh (1985) describés many examples in which
geries both inside and outside the model are used to interpolate
data from a quarterly to a monthly level.

®Valentin Carril (1988) has experimented with system
estimation procedures for a Chilean macroeconomic BVAR. His
procedure 1s expensive and has so far not led to improved fore-
casts.

"sims {1986b) has recently proposed an alternative
search procedure. First the criterion is evaluated on a small
grid (up to 50 points} of the hyperparameter space. Then Bayesian
procedures and some assumptions about the rate of change of the
criterion funetion are used to interpolate the value of the fune-
tion for any other hyperparameter setting, These Interpolations
are not computationally expensive, so a hill climbing routine can
be used to find optimal hyperparameter settings for the inter-

polated function.
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Appendix:

A Bayesian Interpretation of
Searching over Hyperparameters

The following 1s patterned after the discussion in Doan,
Litterman, and Sims (1984). I am responsible for any errors.

Suppose the data y are conditionally distributed with
density function p(y|e), where 8 is a vector of coefficients. If
we ean then specify a prior density q(e) for these coefficients,
we can form the joint density p(y|e)q(e) of the data and coeffi-
cients, calculate the 1likelihood function by plugging observed
values of y into p, and apply Bayes's Rule to get a posterior pdf
for 8. This 1s the standard Bayesian approach.

Suppose now, however, that our prior for 8 can be writ-
ten as a function of a smaller set of parameters =, so that
q1(9]n) represents our pricor pdf for 8, conditional on the vector
7. Suppose further that we are unsure of our beliefs about =,
holding the prior pdf q,(w). Then our prior pdf for 6 is actually
a mixture of pdfs of the form q1(9]n), where the mixture is formed

by weighting q1(e[n) by do{w) and integrating, or
q(8) = Iq1(6|ﬂ)q2(ﬂ)dﬁ.

We are free to formulate our prior for 6 in this way and then
proceed as above.

Alternatively, suppose we leave ¢, unspecified and
regard y and 6 as conditionally (on =) jointly distributed as
p(yle)q1(6|w). If we integrate 8 out, we obtain m(y{w), the

marginal distribution for y conditiomal on 7. For a ['ixed data
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vector y, m(y|w) plays thé role of a likelihood funection for w.
And, if we know our prior distribution for v is relatively flat in
the region where m(y|n) is large, we can say, even without speci-
fying anything more about our prior for n, that our posterior for
7 1s roughly proportional to the “"likelihood" m(y|[w)}. OQur poste-
rior for o, in turn, Is a weighted average of those obtalined (by
the usual Bayesian methods) conditional on values of =, with
weights given by the posterior on w and hence also roughly propor-
tional to m{y|w).

This process of weighting the conditional posterior for
8 by m(y|=) has never, to my knowledge, been used by a BVAR mod-
eler. Instead, the value n* that maximizes m(y|w) has been found
(at least approximately), and the posterior value 8% for ® condi-
tional on 7% has been computed and used as the fitted coefficient
vector. On the surface, this is a procedure for using the data to
select a prior and is thus not a Bayesian procedure. However, if
the likelihood for =, m(y|r), is large only within some region P
(and falls off rapidly elsewhere), and if the posterior for @
conditional on n is not very sensitive to variations of 7 within
P, then the differenée between 8% and the true posterior value of
0 formed by weighting conditional posteriors for 8 by m(ylv)] is
small. In this sense, picking =% and computing 6% can approximate
the true Bayeslan flat-w-prior estimate of 8. At least in some
well-known examples of BVAR models [Doan, Litterman, and Sims
(1984)], the conditions for approximate optimality of o appear to
be met. Estimating BVARs by picking optimal hyperparameters in
this way to some extent implies a helief that these conditions are

not too seriously violated,.
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Table 14

Forecasting Performance of a System
of 4-Lag Univariate Equations

Mean Root Mean Numbers
Quarters Mean Absolute Squared of
Ahead Error Error Error Theil U OQObservations

N 00 &= R —s BN — oM —

MNOEFEN —

Forecast Statisties for Stock Prices

0.44129199E-02
0.900604 10E-02
0.16141438E-01
0.24719777E-01
0.28204854E-01

0.42502138E-01
0.76055179E-01
0. 12081456
0.16682311
0.18362790

0.56529307E-01
0.9756 1945E-01
0.15058548
0.21228678
0.23081953

Forecast Statistics for T-Bill Interest Rates

-0.1074Y4089E-01
~0.28423123E-01
-0.70139866E-01
-0. 12470743
-0. 14503393

0.63635907
1.1173874
1.5833610
2.5288659
2.9584100

Forecast Statistics for GNP

0.17570410E-03
0.39077426E-03
0.80596419E-03
0.71383881E-03
-0.92070822E-03

0.77680328E-02
0.12310T05E-01
0.20828869E-01
0.3U4583572E-01
0. 40445501E~01

0.9950T047
1.5945973
2.0769228
3.0916833
3.6232216

.98777363E-02
. 15663106E-01
.26260504E-01
.40548729E-01
.658704 1E-01

[r Jas B o B o B o

Forecast Statisties for Minnesota Employment

0.10791717E-02
0.2U459644E-02
0.52632735E-02
0.10109570E-01
0. 1422256 U4E-01

0.53575G96E-02
0. 10848400E-01
0.21999314E-01
0.38966145E-01
0.45364438E-01

.64582705E-02
.13116183E-01
.25701500E-01
.44899233E-01
.55285882E-01

OO0

0.91949525
0.95152243
0.96612738
0.97025187
0.92956019

0.97783979
1.0338853
1.0178l4g4
1.0372513
1.04LA660

0.79686875
0.72366887
0.67236302
0.58997202
0.49970576

0.62954228
0.66134598
0.67459082
0.64370795
0.57681050

94
93
91
87
83

94

91
87
83

Current value of the system likelihood is 592.06.




Table 1b

Forecasting Performance of a
§_-Lag Unrestricted VAR

Mean Root Mean Numbers
Quarters Mean Absolute Squared of
fhead Error Error Error Theil U Observations

Forecast Statisties for Stock Prices

0.64694356E-02
0.17736T43E-01
0.31752133E-01
0.64125931E-01
0.65056825E-01

0.56751922E-01
0.10303019
0.15047637
0.20885106
0.27150705

0.69585327E-01
0.12422263
0. 18640531
0.27720111
0.38216381

Forecast Statistiecs for T-Bill Interest Rates

-0.70387902E-01
-0.13341794
-0. 14276755
-0.85T4H0554E-01
0.53176012E-01

0.72140918
1.2586961
1.5966581
2.3709643
2.5657213

Forecast Statistics for GNP

0.813U45505E-03
0. 15835237E-02
0.41698089E-02
0.10053677E-01
0.99343588E~02

0.92385880E-02
0.14849571E-01
0.27198716E-01
0.51197739E-01
0.82881626E-01

1.0716148
1.7903711
2.225794L
3.1562491
3.3852398

0.12096472E-01
0.19575944E-01
0.35305520E-01
0.71922229E-01
0.13764736

Forecast Statistics for Minnesota Employment

0.14234481E-03
0.11956464E-03
0.13690653E-02
0.34885120E~02
0.1286U247E-02

0.52966308E-02
0.94588151E-02
0. 18894005E-01
0.41518127E-01
0.70509216E-01

0.66608800E-02
0.115498T4E-0
0.23195T08E-01
0.551885L9E-01
0.11052038

1.1318620
1.2115443
1.1959405
1.2669k14
1.5390564

1.0530586
1.1608187
1.0908077
1.0589130
0.97586300

0.97586126
0.90445033
0.90394785
1.0464472
1. 5764445

0.64929233
0.58236933
0.60882095
0.79122304
1.1530849

94

92
87
83

9k
83
g1
87
83

gl
93
91
87
83

94

91
87
83

Current value of the system likelihood is -655.93.




Table 2

Optimal Hyperparametersg and Likelihood for
3 Specifications and Searches

10 implies very little feedback from Minnesota to U.S.

(DLS OWN  CROSS TVAR SUM TITE WT  CONST DECAY
notatlon) (11'1) (11'2) (1[7) (-:[6) (“5) (“u) (1,1-3) (118) BEGHT® MNWT*%® Likelihood
Orderings
First order 1 2 g 8 6 10 5 7 3 4
of search
Second order 9 8 3 1 4 2 7 6 10 ]
of search
Results
First order 0.01  0.01  0.,000001 10.0 5.0 1.0 0.001 1.0 0.2 0,25 769.38
4 lags
(Model 1)
First order 0.01  0.01 0.0001 10,000.0 5.0 0.01 0,001 0,999 1.5 10.0 789.55
8 lags
(Model 2)
Second order 0.05 0.01 0.000% 10,000.0 5.0  0.07 100.0 0.999 0.2 10.0 760.73
4 lags
(Model 3)
*¥Extends no-change forecast in prior to coefficient covariances.
¥¥Larger values increasingly constrain Minnesota coefficients in U.S, equations to be near zero. A value of




Table 3&

Forecasting Performance of BVAR Model 1

Quarters
Ahead

Mean
Error

Mean
Absolute
Error

Root Mean
Squared
Error

Theil U Observations

Numbers

of

Forecast Statistics for Stock Prices

0.96457942E-02
0.22915027TE-01
0.49051095E-01
0.88026369E-01
0.11542238

0.41427879E~01
0.75341238E-01
0. 11945865
0.17331010
0.19562545

0.55086468E-01
0.94585965E-01
0. 14578003
0.21617859
0.25357343

Forecast Statisties for T-Bill Interest Rates

-0.66237272E-01
-0.13288265
-0.18117597
-0. 15550373
-0.T6TBUTE4E-O1

0.64385951
1.1374443
1.5773181
2.5676163
3.1334149

Forecast Statistics for GNP

-0.64374095E-03
-0.12042653E-02
-0.97842509E-03
0.22722351E-02
0.67937170E-02

0.79779010E-02
0.12271489E-01
0.22186438E-01
0.39164592E-01
0.60463561E-01

1.0024518
1.6338256
2.0916440
3.3218537
4.,0116873

0.98313782E-02
0.15022276E-01
0.26025275E~01
0.47713133E-01
0.73629265E-01

Forecast Statisties for Minnesota Employment

-0.49030206E-03
-0.11091415E-02
-0.17157645E-02
-0.42042340E-03

0.37508124E-02

0.38385829E-02
0.74289833E-02
0.15542168E-01
0.35660881E-01
0.51762176E-01

0.47857412E-02
0.91212827E-02
0.18689575E-01
0.40454940E~01
0.60092712E-01

0.89602629
0.922U9767
0.93529655
0.98803932
1.0211951

.98509333
.0593197
.0250639
1144729
. 1564490

P . It 0 ain |

.79312890
.69406116
.66634032
.69421198
. 78976829

CQOOoOoO

16650669
-15991254
49054787
0.57999134
0.62696127

O OO

o4

91
87

94
93
91
87
83

94
93
g1
87
83

o4
93
91
87
83




Table 3b

Forecasting Performance of BVAR Model 2

Quarters
Ahead

Mean
Error

Mean
Abhsolute
Error

Root Mean
Squared
Error

Theil U Observations

Numbers
of

NOREN -

Forecast Statistics for Stock Prices

0.22856762E-02
0.31050548E-02
-0.45228548E-02
-0.36636097E-01
-0.7597097T5E-01

0.42061257E-01
0.75705907E-01
0.11010722
0.15387294
0. 17690725

0.55767352E-01
0.95092680E-01
0. 14087597
0.19664602
0.22369056

Forecast Statistics for T-Bill Interest Rates

-0. 15492653E-02
0.17478035E-01
0.12194619
0.40882801
0.72548312

0.63847701

1.1022750 °
1.8434553
2.2568759
2.7045816

Forecast Statistics for GNP

0.11946314E-03
0.22709227E-03
0.50809497E-03
-0.12175093E-02
-0.53656837E-02

0.75846517E-02
0.11573013E-01
0.20209497E-~01
0.33500818E-01
0.39503988E-01

- 0.96049839

1.5295039
1.9036699
2.9055395
3.3794420

0.96080025E-02
0. 14043 110E-01
0.25525459E-01
0.39440695E-01
0.45586761E-01

Forecast Statisties for Minnesota Employment

0.17109189E-02
0.399609078-02
0. 1002406 TE-D1
0.23136702E-01
0.35664753E-01

0.43507330E-02
0.87830836E-02
0.19389729E-01
0.41841318E-01
0.55455294E-01

0.53161874E-02
0. 10600508E-01
0.22983272E-01
0.48283716E-01
0.64764457E-01

0.90710142
0.927433967
0.90383305
0.89876613
0.90085028

0.94386636
0.99168087
0.93294236
0.97480058
0.97819167

0.77510846
0.65040351
0.65354325
0.57385045
0.48897648

0.51821378
0.53450025
0.60324510
0.69223035
0.67570268
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Table 3¢

Forecasting Performance of BVAR Model 3

Quarters
Ahead

Mean
Error

Mean
Absolute
Error

Roct Mean
Squared
Error

Theil U Observations

Numbers
of

RS = o b Y NN — PO ERMN —

RN OEN

Forecast Statistics for Stock Prices

0.35541865E-02
0.70145339E-02
0.95860105E-02
G.11074612E-01
0.36510444E-02

0.43619641E-01
0.78414110E-01
0.11990585
0.16263327
0.17841622

0.55569037E-01
0.95721289E-01
0.14613505
0.20623418
0.22663072

Forecast Statistics for T-Bill Interest Rates

-0.41453112E-01
-0.81996515E-01
-0.11252442
-0.55075583E-01
0.93502966E-01

0.6401T480
1.1394534
1.5891316
2.3617689
2.5722453

Forecast Statistics for GNP

-0.60T04319E-01
-0.13451009E-02
-0.25165850E-02
-0.52181970E-02
-0.10336068E-01

0.77246191E-02
0.11333701E~01
0.18371969E-01
0.29454862E-01
0.39937586E~01

0.99358674
1.5930433
2.0644306
2.5809486

" 3.2281564

0.95561864E-02
0.142736U44E-01
0.23179269E-01
0.37036TO5E-01
0.50844328E-01

Forecast Statistics for Minnesota Employment

0.54594528E-03
0.12T7T054E-02
0.32155998E-02
0.70654911E-02
0.10233763E-01

0.38864228E~02
0.76168731E-02
0.15305952E-01
0.32061078E-01
0.44356588E-01

0.48762372E-02
0.92663490E-02
0.1858263TE-01
0.37841634E-01
0.53757773E-01

0.90387568
0.53357049
0.93757428
0.94258861
0.91265092

0.97638176
1.0328778
1.0117273
1.0001001
0.93058057

0.77415521
0.65947277
0.59347237
0.53887311
0.54537063

0.47532811
0.46722911
0.4877h 104
0.54252509
0.56086738
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Forecasts of Growth Rates for GNP and Minnesota Employment

Table Y

GNP

MINNESOTA NONFARM EMPLOYMENT

With Data Through

With Additional Data

on Stock Prices and

With Data Through

With Additional Data
on Stock Prices and

87:3 only T-Bill Rates of 87:4 87:3 only T-bill Rates for 87:4

Model 1 Model 2 Model 1  Model 2 Model 1 Model 2 Model 1 Model 2
87:4 4.7 4.5 -1.1 ~2.0 3.6 3.5 4.5 4.0
88:1 4.4 4.2 2.4 0.9 3.6 3.5 2.1 1.7
88:2 3.6 2.9 2.5 0.4 3.7 3.1 1.4 0.7
88:3 3.0 1.7 3.7 1.1 3.5 2,2 1.7 -0.1
88 :1 2.7 1.1 5.2 1.9 3.1 1.5 2.8 0.2
89:1 2.5 1.3 5.5 3.6 2.8 1.2 3.7 1.5
89:2 2.4 1.5 5.0 4.5 2.6 0.9 4.0 2.5
89:3 2.3 1.8 4.3 4.y 2.4 0.9 4.1 3.1
B89:4 2.3 2.2 3.8 3.9 2.3 1.0 h.0 3.1




Coefficients on Coefficients on

Dependent Variable Qther Variables
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Figure 1: A Schematic Representation of the Means and Variances
of the Coefficients in the Discrete~-Time Random Walk
Prior Distribution.




FIGURE 2A:  SUCCESSFUL AXIAL SEARCH

(HI’Hi)z(Hl’H2}
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FicUre 2B:  UnsuccessFuL AXIAL SEARCH
h
Ha 1
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Asymmetric
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0
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\\_,—// Hl
Explanation: Each graph shows two searches, Each search begins

at the Initial pguess (H?,Hg). The search denoted
BY emmeemmeemmeaa and * first optimizes Hy while fixing
Hy at Hg. It then optimizes H, while fixing H, and
H?. The search denoted by —-— e —r— or - first
optimizes H, (with H1=H?) and then optimizes H,

{with H2=ﬁ2).






