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Backeground

An undisputed fact about U.S. macroeconomic data is that.consumption is
much less volatile than income. The traditional explanatjon of this iIs ' a
version of Milton Friedman's Permanent Income Hypothesis (PIH) which
incorporates a Trend Stationary representation for income. In a recent paper
Angus Deaton has arguéd that the Trend model is implausible, and that income
is more sensibly modelled as a Difference Stationary process. He then shows
that a version of the PIH that incorporates the Difference model has the false
implication that consumption is more volatile than income. This result is
referred to &s "Deaton’s” Paradox” since it contradicts widespread opinion
which holds that the PIH and the relative smoothness of éonsumption are
virtually synonymous.

Deaton's Paradox has been interpreted by some to imply that economic
theory canmot account for the observed smoothness of consumption relative to
income. This conclusion is unwarranted. Very small modifications of the
version of the PIH which incorporates the Difference model result in
implications for the relative volatility of consumption that are empirically
plausible. One such modification was pointed out by Deaton himself. He shows
that the Trend and Difference models are 50 similar that even the most
sophisticated statistical techniques camnot determine which fits the data
better. For this reason, Deaton's criticism of the Trend model is an

intuitive one {see Deaton, p.22.) and is not based on formal statistical




reasoning. Thus, onhe avenue of escape from the Deaton paradox is to return to
the traditional version of the PIH which incorporates the Trend model of
income, A second possibility is that other aspects of the PIH are
misspecified. This is suggested by results in Christiano {1987), where I show
that consumption is substantially' less volatile than income in a version of
Gary Hansen's (1985) real business cycle model (RBC) in which equilibrium
_ income has a Difference representation. Since both the PIH and ‘the RBC are
representative agent growth models, their differences can be reduced to
differences in their si:ecification of preferences and 1:ech1'xolog;y.1 Al though
there are several such differences, I argued that the key difference between
the PIH and RBC lies in the nature of the technology shocks assumed to underly
disturbances in income. Both assume that innovations to technology shocks
have a permznent effect. However, the RBC assumes that a positive shock
drives up the return on investment, thereby activating both the substitution
and income elffects on consumption. Because these effects offset each other,
the response of consumption to an innovation in income in the RBC is weak
relative to what is implied by the PIH. The PIH assumes technology shocks do
no affect the marginal return on capital and so they only trigger an income
effect on consumption. Because shocks have a permenent effect, the income
effect 1is very stirong, accounting for the implication emphasized by Deaton

that consumption is more volatile than income.

This. paper extends the results in Christiano (1987) in several ways.

1Sa.rgent {(1986) and Hansen {1985) describe an equilibrium interpretation of
the PIH, in which preferences are quadratic in consumption and production is
linear In capital, with nonstochastic marginal product of capital.
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First, those resulté are based on decision rules obtained by solving a log
linear-quadratic approximation to the RBC. Little is known about the accuracy
of that approximation. raising the possibility that the results. in Christiano
(1987) are distorted by approximation error. This possibilicy is ruled out in
section II-which shows that the log linear—quadratic approximate solution is
~ highly accurate. I do this by comparing it with the exact solution, obtained
‘ by‘a numerical method. Second, I show that th; RBC implies consumption is
‘approximately a random walk. In this sense the RBC and the PIH are quite
similar, since the latter implies consumption is exactly a random walk.

The random walk hypothesis for consumption is widely thought to be
falsified by the eﬁpirical evidence of correlation between dquarterly
consumption cPanggs and lagged income and other variables. However, this
inference depends sensitively on the assumption th#t the time interval of the
random walk coincides with the datg sampling interval. If the random walk
obtains over a time interval finer than ic data sampling interval, then one
expects consumption changes to be correiated with lagged variables.
Accordingly, section III investigates the implications of the assumption that
measured data are sampled averages of data generated from a version of the RBC
with & timing interval finer than the data sampling interval. I show that
this time aggregated RBC implies an empirically plausible amount of serial
correlation for consumption and income. This is consistent with results in
Christiano, Eichenbaum and Marshall (1987), who show there is surprisingly
little evidence against a continuous time version of the PIH. Section IV
argues that time aggregation effects improve the ability of the RBC to account

for the Deaton Paradox. Section Y concludes the paper.




II. The RBC Model,

This section describes the RBC model and reports some of its second
moment implications. In particular, I show that the model implies an
empirically pla.usible amount of volatility of consumption relative to income.
VWealmesses of the model include its counterfactual implications that log
consumption is approximately a random walk and that output' growth is ne;a.r.ly
serially uncorrelated. It is shown that it makes virtually no difference
vhether the mcodel’s second moment Implications are deduced using the exact or

the approximate solution method.
e Mode

At date t a representative agent chooses contingency plans for.

{k dkt+j > 0: §=0.1,2,...} to meximize

t+3'ht+,j'°t+3'yt+j' :

J
(1) Et§=05 {In{cg, ) - 7} 0<BCL, 7>0,

subject to ht+ < H,

J

(2) <, + dkt 4 Y = n_e(zthc)u_e}kg_l,

a given level of kt—l and the following law of motion for z_ :

t

(3) z, = zt_lexp{xt).




Here Yer © k. . ht denote ' gross output, total consumption, end-of-period

t’ t
capital, and hours, respectively. Also, dk, = k_ - [(1—-6)/n]1‘<t_1 denotes

gross capital investment. All variables are in per caplita terms. According
to (2). gross output is related by a Cobb-Douglas function te hours, capital,

and the exogenous productivity term, z The parameter 8 € (0,1), is the

e
share of capital in income, and & € {0,1) is the depreciation rate on capital.

. The parameter, n, 1is the gross rate of population growth. Also, Xy is an

independently, identically distributed, discrete random variable with mea.n'_z.n;>

O and standard deviation a,.- The distribution of X, is discussed later.

The risk free rate of interest 1s defined as follows:
(4) 1+ r, =[dleg(c,)/dC V/IFEdlog(c,,)/dC,, 1.

wheré.Ct = ctNt is total consumption and Nt is the population in quarter t.

Here, Nt/Nt-l = n.

Appendix A describes the exact and log linear—quadratic methods used to
compute contingency plans for ht' kt’ Cer Vo dkt' There it is shown that the

model has the balanced growth property that each of kt’ € ¥, and dkt can be

t

represented as the product of z_, and a covariance stationary stochastic

t

process. As a result, these variables inherit zt’s property of being a

Difference Stationary process in logs. By contrast, h e and r_ are predicted

t

to be covariance stationary.

Parameter Values

To deduce the model’s second moment implications, values must be assigned

to its parameters. I chose the following: p = .0035839, B = .99, 6§ = .018, n=




1.00324. 6 = .39, v = .00263, o = .019.2

% The value of n is the average

quarterly growth in the quality adjusted, working-age pbpulation in 1952-84.
With this wvalue, & = .018 is required if the gross investment series implied
by dkt = kt - [(1—6)/n]kt_1 using U.S. capital stock data is to resemble the
gross investment series published by the U.S. Department of Commerce. The
chosen values for 8, v and p have the effect that the model’'s implications for
the average values of ht’ ct/yt and kt/yt roughly match their empirical
counterparts in U.S. data for 1956,2-1984, 1. The impiied averages '(a:nd
empirical values) for these variables are 320.7 (320.4), .72 (.72), and 11.21
(10.58). respectively. These parameter values imply an average value for r N

of .017 per quarter. Given the values assigned to 6 and n. and using data on

g & time series on x, can be computed using the production function.

ht’ Yo k
The chosen values of u and o are the sample mean and standard deviation,
resp;s;:tively. of these xt’s. _

It remains only to specify the remaining features of the distribution of
t_he xt's. As = checi: on the robustness of the calculations, four were used.
In all cazses. the distributions are restricted to be symmetric.s In
particular, denote the possible values of X, by x{i)., with probability w(i),
i=l,... M. Of the four distributions, three set M = 3, and the ather, M = 5.
The details for the five and three point distributions appear in Table 1 and
Table 2, respectively. The three 3 point distributions are distinguished by

the degree of Jurtosis, k, they imply. (The restrictions in Table 2 require «

2'l'he approximate decision rules for kt and ht implied by these parameter

values are k c =

z exp{9.728503363+. 94889790842  log(k,_,/z,_,)-9.728503363~(x,~.003589)]}  and
h, = exp(5.770449327-. 4531385034  log(k,_,/z,_;)-9.728593363~(x —.003589) ]}

3’[’1’1e skewness statistic based on the 111 computed xt's is -.355, which is not
significantly different from zero.
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Second Moment Results

Second moment results are reported in Tables 3 and 4, based on the four
shock distributions, and the two methods for computing .the contingency plens.
A notable feature of the results in the Tables is that the second moment

distribution,

properties are virtually insensitive to the form of the X,
despite the substantial varilety of distributions tried. Second. the
approximate and exact results are very similar. In view of the extreme

disparity in computational costs, thig should stimulate interest in the
approXimate selution method. To be sure, there are some discrepancies between
approximate and exact solutions, but one has to look carefully to find them:
The agul-aproximte method seems consistently to overstate the sampling variation
1n.ac/°y' &dk/ay'
Despite these minor discrepancies, the approximate and exact solutions give

and to understate the sampling variation in.Pr Ac{o)'

essentially the same picture regarding the empirical performance of the model.
In particular, the model predicts precisely the amount of relative consumption
volatility observed in the data. (See the last column in Table 3 for the
empirical results.) On other dimensions the model does less well. In
particular, capital fluctuates a bit too much, and hours too little, relative
to what iz observed. Moreover, the relative volatility in real interest rates
is about 23 standard deviations lower than the empirical measure, and the
correlation between consumption growth and interest rates in the RBC is too
high. It is an open question whether this reflects a failure of the model, or
of the empirical measure of Iinterest rates.

A particularly interesting feature of the RBC model is its implication




that the log of consuﬁption is approximately a random walk. The tables feport
the RBC's implied correlation of consumptioil growth with the first lagged
value of every other variable In the model. The mean value of these objects
iz always close to zero, and they display considerable sampling variation.
The approximate random walk implication for consumption presumably reflects
the very small amount of variation in interest rates implied by the model.
Another empirical shortcoming of the RBC iz its implication that output
growth is roughly a random walk. As shown in Christianc (1987). this refléc;s
that, in this model, the dynamic properties of output growt§ clogsely mimick

the dynamic properties of the growth of z,, which is serially uncorrelated.




A major empirical failing of the quarterly RBC is its implication that
log consumption is approximately a random walk. On the other hand, it has
been lknown at least since Working (1560} that if a process is a random walk
over a time interval f inef than the.dat:a sampling interval, then the time
: averaged and sampled process is not a random walk. This follows from the fact
that in this case the change in measured consumption between quarter t and
quarter t+l is composed of the uncorrelated revisions to consumption effected
by households from the beginning of quarter t to the end of quarter t+l.
Similarly, the difference between measured consumption in quarter t and
quarter t-1 is composed of revisions to consumption from the beginning of t-1
to the end of quarter t. Because of the overlap of revisions in quarter t,
the cha.nge in measured consumption is correlated at lag one. A simple
extension of this argument establishes that measured consumption changes are
correlated with other information lagged 1 period, but uncorrelated with all
information lagged 2 peridds and more. Using several measures of consumption
and income, and several sample periods, Christisno, Eichenbaum and Marshall
{(1987) test these implications and find them to be reasonably consistent with
the data. For these reasons, it seems promising to investigate the empirical
performance of a time mggregated version of the RRBC.

I considered versions of the RBC with timing fnterval equal to 1/N
qﬁhrtcrs. for N =2, 4, and 8. The parameters of the RBC which are time
dependent are B, Tpr Ha 7. 6,‘and n. The values of these parameters in the

time aggregated RBC are related to the N = 1 version of the model by:

M) _ oo3sso/N. +M)

5y pMN) = 0™, SN = o1am, u = .00263xN,

10_




N &) 21 - (1 - o)™

at™ & 1.00324
where the superscript (N) signifies that the associated parameter -belongs to
the RBC with timing interval N. Contingency plans for the time aggregated RBC
were computed using the approximation method. They were used to simulate 1000
artificial data sets, each of length 112xN, on consumption, income, capital
investment, hours worked, cutput, and -the one pericd real interest rate,
measured at & quarterly rate. An N period moving sum of each data set o;:h;:r
than the real rate of interest was then computed, and every N-th cbservation
of the resulting series was sampled and stored for subsequent use. The real
interest rate was simple sampled point-in-time. This produced 1000 data sets
on "measured”- consumption, income, capital investment, etc., each of length

112.%

I then computed the first and second moments of the same 13 statistics
studi'ed in Tables 3 and 4. The sim:lations were executed by drawing from the
distribution ofixt's appearing in Table l. The results for N =2, 4, 8 are
reported in Ta.bl.; 5. Results f:;r N=1 and based on the U.S. data are also
reproduced in the Table for convenience. These were taken from the first and
last columns of Table 3, respectively.

Several things. stand out in Table 5. First, the ratios of standard
deviations are not much affected by time aggregation. In particular. the
mecdel continues to imply an empirically plausible amount of consumption
volatility. Cn the other hand, the approximate random walk behavior of
consumption that appears in the +88H colum disappears as N increases.

Moreover., the correlation between consumption growth and variables lagged one

period is empirically plausible In meost cases. In addition, the first order

4An implicit assumption is that real returns are measured point-in-time. This

is in fact not the case, since point-in-time nominal returns are adjusted
using a price index that is best thought of as an average of prices over the
sampling interval. .

i1




serial correlation properties of output growth is also close to its
corresponding.empirical value. In fact, time aggregation has improved the
empirical performance of the model on almost all dimensions. An. exception is
the correlation between consumption growth and reﬁl returns, which is further
from the correponding empirical measure. This has to iInterpreted with
‘caution, however, since the model’s interest rate is a one period real return
{measured at a quarterly rate), which is not a one quarter return when N

exceeds 1.
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[to be added...J

V. Conclysion,
[to be added...]




T; : ivl P t but xt_’_L
x(1) =p - ao . x(2) = p - O x(3) = p, x(4) =p + A x(5) = pu + g
Ta(i)x()w)? = o2 Ea(Uw(e) =p [EE(0)()0 0k = «

7{1) = 7(5). #(2) = v(4), a = 10, k = 6.

x(1) = p - ag_, x(2) = pn, x(3) =+ T, (1) = 7(3)
2 (x(1)1)2 = o [Em() (1)) 10 = «

k=3, 6, 2.
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Table 3: Selected Second-Moment Properties.

Spoint, x =§ int., &k =
Approximation Exact Approximation — Exact
v.s.¢

m_s_t_i_gb Mean (stdv)® Mean (stdy) Mean (stdv) Mean (stdv) Estimates '
o /o, .49 (.031) .50 {.012) .49 (.034) .49 (.012) .49
T/, 2.40 (.171) 2.38 (.091) 2.41 (.183) 2.38 (.095) 1.91
ahfoy 414.1 (99.8) 413.7 (99.3) 412.3 (97.4) 412.3 (97.3) 665.6
a./a, .088 (.021) .104 (.017) .088 (.021) .105 (.018) .561
o, .017 (.002) .017 (.002) .017 (.002) .017 {.002) .012
Er, .017 {.001) .017 {.001) .017 (.001) .0i7 (.001) .002
Pr 3e(0) .493 (.034) .331 (.0886) 492 (.035) .351 (.077) .085
Phc.ac(l)  -066 (.108)  .053 (.105) .060 (.1068) .052 (.103) 271
Pac. ay(D) .053 (.099) .050 (.099) .047 (.099) .048 (.098) .204
Pac n(l) - 086 (.126)  .084 (.124) .085 (.124) .083 (.120)  -.057
Pro.ace(l)  -0%42 (.095) .047 (.0%6) .039 (.085) .045 (.096) .161
Pao.p(1) 087 (L128) .153 (.104)  .086 (.124) .147 (.110) .104
Pay.ay(1)  —-001 (.095) =-.002 (.095)  -.006 (.095) -.008 (.095) .361
CPU time® 0 432 0 257

2Second moments computed by simulating 1000 sample paths, each of length 112
observations, using either the exact or approximate the contingency plan, as
indicated, with the xt’s drawvn randomly from the indicated S or 3 point

discrete distribution.

bc‘, E are the variability and mean, respectively, of the indicated variable;

P, (T} is the correlation between u(t) and v(t-t), 7=0,1; end Au(t) denctes
log u(t) - log u{t-1).

“Yean and stdv denote the mean and standard deviation of the indicated
statistic, across 1000 realizations.

d3ased on 112 quarters, 1956,2-1984,1.

®Total CPU time, in minutes, needed to compute contingency plans on IBM 3033
mainframe, where O means less than .00 minutes.
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Table 4: Selected Second-Moment Properties.
Mode]l Simulations _(3 point shock distributicn)
5 = 3 KX = 20
Approximation Exact Approximation Exact
- Statistic _Mean {stdv) Mean (stdv) Mean (stdv} Mean (stdv)

o /a, .49 (.031) .50 (.011) .49 (.043) .50 {.012)-
/% 2.40 (.162) 2.38 (.085) 2.42 (.243) 2.38 (.122)
o/ 410.1 (98.9) 410.3 (98.9) 415.0 (90.4) 415.5 (89.9)
a./a, .088 (.021) .102 (.018) .088 (.019) .107 {.019)
ay .017 {.001) .017 (.001) .016 (.004) .016 (.004)
Er, .017 (.001) .017 {.001} .017 (.001) 017 (.001)
() ~.492 (.033) .346 (.081) .493 (.040) .314 {.091)
Prc.acl) .058 (.104) .049 (.104) .064 (.0986) .047 {.093)
Prc, ay(1) .045 (.096) .045 (.086) .050 (.088) .043 (.088)
Pro.n(l) .081 (.126) 076 (.124) .080 (.121) .086 {.116)
P, adik(1) .038 (.091) .042 {.093) .041 (.083) .040 (.086)
Pro. (1) .082 {.126) .139 (.109) .091 (.121) .158 {.107)
Pay.ag(l) -.007 (.091) -.008 {.091) -.004 {.084) ~-.002 (.C85)
CPU time

(minutes) 0 251 ¢ 245

aSee notes to Table 3,
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2l 5: Selected Second- roperties.®

Time Agpregated RBC
N=1 N=2 N=24g -8 4
Statistic® Mean (stdv)® Mean (stdy) Mean (stdv) Meap (stdy) UEg.SQi-mtg§
ac/b& .49 (.031) 50 (.023) .49 (.019) .49 (.018) .49
aakfb& 2.40 (.171) 2.38 (.1086) 2.38 (.0768) 2.38 (.056) 1.91
ch/b& 414.1 (99.8) 473.3 (114.) 494.0 (116.) 498.3 (112.) 669.6
cr/ay .088 (.021) .100 {.023) .103 (.023)  .103 (.022) .561
a, ' - .017 (.002) .010 (.001) .007 (.001) .005 (.0004) .012
Er, .017 (.001) .017 (.001) .017 (.0004) .017 {.0003) .002
P2 2c(0) .493 (.034) .557 (.033) .576 (.033) .579 (.033) .085
Phc.ac(D) .066 (.108) .234 (.101) .287 (.089) .305 (.098) 271
pAc.Ay(l} . .053 (.089) .221 (.093) .276 (.091) .295 (.092) .204
Ppe.nll) .086 (.126) .160 {.124) .180 (.124) .185 (.118) -.057
Pic. adxll) .044 (.095) .209 {.089) .264 (.086) .285 (.089) .161
pAc‘r(I) .087 (.1256) .221 (.108) .280 (.097) .324 (.085) .104
' pAy‘&y(x) -.001 {.095) .159 {.090) .212 (.088) .231 (.091) .361

8Second moments computed by simulating 1000 sample paths, each of length 112
observations on sampled, summed data, using either the exact or approximate
the contingency plan, as indicated, with the xt's drawvn randomly from the 5

point discrete distribution. See section III for further explanation.

ba. E are the variability and mean, respectively, of the indicated variable:
Py v[-r) is the correlation between u{t} and v{t-r), 7=0,1; and Au(t) denotes

log u{t) - log u{t-1).

“Mean and stdv denote the mean and standard deviation of the indicated
statistic, across 1000 realizations.

dBased on 112 quarters, 1956,2-1984,1.
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A A: Iv e

According to (3), log(zt) is a random walk with positive drift, and so z,
is expected to grow without bound. As a consequence, optimal Y kt and c,
are also Difference Stationary processes in logs. expected to grow without
bound. These facts make it difficult to solve the model directly using the
techniques epplied in this paper. Instead, it is convenient to first
transform the problem into an alternative, equivalent, form in which the
optimal wvalues of the decision variables do not exhibit growth. The
transformation exploits the "balanced growth™ property of this model:

al though the levels of ¢ kt grow without bound, their ratio to z_ is

' Ve t

stationary.

Because the returnl function is unbounded above.- there is no loss of
generality in replacing the weak inequality in (2) by an equality. Eguation
(2) can then be used to eliminate consumption as an independent decision

variable. Accordingly. substitute out for c_ in (1) from (2) toc get the

t
following ohjective problem:
> 8 (1-8), 6 1-5
Et?goﬁj{lnfn (ZeoPeag) Keoteg ¥ 3 Kem1eg T Keagd T Thyggd-
Next, factor =z from the expression in square brackets to yield the

t+]

following alternative representation of the objective function:

2
5 ~ o~
(A.1) Eti;oﬁ {ulby, ke Ry Xeey) * 10z )
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where,

(A.2) u(ht,ﬁt,ﬁt_l.xt) = 1n[n"eht(1'6)e:fp(-8xt)(I:t_l)e

~

+ [(1-—6)/n]exp(—xt)it_1-kt] - -rht

and
(A.3) k =k/z_.

The original® optimization problem can be posed in terms of equations
(A.1)-(A.3) as follows: Maximize (A.1) over contingency plans ‘for
{k

20; §=0.1.2,...} subject to the law of motion for x_, and the

t+j’ ht-r- i t

nonnegativity constraint on c,. The optimal d':ecisio'n rule for kt is cbtained

t
by multiplying the decision rule for kt: by z,.

ion by Numerica ic Progr

The representation of the problem In (A.1}-{A.3) is well suited to
solution by numerical dynamic programming -methods since Et and ht are
stationary processes which, under certain circumstances, can be restricted
without loss of generality to fall in a closed, bounded set. Denote this set

by G = [O.H]xl:l_c_.f:], where O ¢ k < k < N.S Our numerical procedures required

5A sufficient condition that the restriction (kt.ht) € G be nonbinding is that
the smallest possible realizatjon of X, exceed log[(1-6)/n]. In this case

there ig a 0 < E* < @ such that for amy initial O < kt—-l < E*, all possible

20




further restricting G to the intersection of [O,H]x[li.fr.] and a finite set of
grid points. The dynamic programming formulation of the pr.oblem is the
following:

L d

(A.4)v(kt_1,xt) = max {u(ht’kt'kt—l’xt) + B E v(kt.x

)}
~ t+1
(k,.h,) & CA(K

=1"%¢ t+l

where A constrains c N 2 O:
(A-B)ACk,_;.x,) = {(k,h,): k, <n Cexp( ox )k, °h "0 e (x )k, )

A solution to the problem is a set of functiions i:t = kc;t-‘l'xt}' h, =
h(Et_l,xt) that solve (A.4). These were obtained by first computing v using
the method of successive approximations described in Bert.sekas (15':176,1:'.237).s
The k and h functions are the argmax of the maximization problem to the right

of the equality in (A.4). The solution to the original problem is then

feasible subsequent kt's also belong to [0,k ]. ({As a result, [0.k ] forms an

ergodic set for kt'] This may be verified by studying equation {2) expressed

in terms of C, = ct/zt. h,, k.. x

¢ t . taking into account the nonnegativity

constraint on ¢, and the restriction ht ¢ [0.H]. Therefore, there is no loss

™~ - = g 3
of generality in limiting kt to [k,k] for k = 0 and k 2 k. The other
veriable. h e [0.H] by construction.

S'I'he successive approximations were carried ocut by starting with an initial v
function, say Vv.. and then carrying out the calculations indicated on the

right of the equality in (A.4) and calling the result V- This was repeated,
this time begimming with vy and ending with a new value function, Vo
Proceding in this way, we obtained a sequence, vj, J = 1.2,3,... .  The

function to which this sequence converged (in the sup norm sense) was taken as
the soclution to the functional equation, (A.4}. '
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{(A.8) kt = ztk[(kt_llzt_l),xt], ht = h[(kt__lfzt_l).xt].

Decision rules for Yer ©

and gross investment, dk kt - [{(1-8}/n]k

t’ t t-1"

were obtained by substituting (A.8) into (2). Given initial values for kt-—l
and Z,.1 these decision rules can be used to compute second moment properties
of the endogenous variables of the model. Monte Carlo simulation methods were
used for this.

In order that ourl computed second moments correspond to those of the
version of the model in which the endogenous variables can take on a continuum
of values, we repeated the above procedure for larger and larger intervals

[15.12] and finer grids. We stopped when we found virtually no further change

in the implied second moment properties.

Following is the log linear—quadratic method for approximating k and h.
To allow application of tools for solving linear—quadratic control problems,
pdmegativity constraints are ignored throughout. First, replace the
stochastic problem defined by (A.1)}-{A.2} with the nonstochastic version in
which the wvariance of x, is zero. Then, use the first order necessary
conditions for am interior optimum of {(A.1)-{A.2) to compute steady state

values of Et and ht' Denote these by '1‘:'8 and hs. respectively. Write
] -~ * »* ™~ »*
(A.7) k = log(ks). h = log(hs), k = log(k.). h, = log(ht).

Use (A.7) to rewrite the return function, (A.2), as follows:




(4.8)  WRLKLKL %) = ulem(h)), exp(l) . exp(Ky_;).x,]

: »
Next, let U denote the second order Taylor series expansion of u* about h: =

h*. k: = k*. k:—l = k*. and X, = M. We now have a log linear-quadratic

version of (A.4):

(A.9) V%) = max (UK _ %) + BE  VKLx )
(k’;.h’:)emz X+l

The solution to this problem, which is trivial te compute, is a set of
»* u »* 2
decision rules: 1-:t = K*(kt—i’xt) and ht = H*(kt_l.xt}. These are used to

obtain decision rules for the xariables of interest, kt and ht’ as follows:

(A.10) k.= z exp{K [log(k,_;/z,_).x,3}, b, = exp{H [log(k,_,/z _ ).x ]}
In conjunction with (2), (A.10) can be used to compute implied decision rules
for c.. ¥, and dkt‘ Like (A.6)., (A.10) can be used to compute second moment

properties of the variables of the model conce initial values for kt—l and Z._1

are specified.




