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Preface

This working paper consists of three studies, dealing with the relationship between expected
utility theory and some of its alternatives. These alternative theories have begun to be used for
modelling and estimation in areas such as macroeconomics and financial economics. (Examples
include Attanasio and Weber 1989 and Epstein and Zin 1989.) We hope that our research will
contribute to better understanding the issues regarding such models.

“Bayes Contingent Plans,” by Green and Park, provides a new revealed-preference characteri-
zation of subjective expected-utility maximization.! This characterization applies to choice among
arbitrary actions, rather than being restricted (as are previous characterizations) to choice among
Jotteries or actions that can be redefined as lotteries. We show that our axiomatization has only
limited ability to discriminate between preferences based on expected utility versus maximin utility,
but we show via an example that it can discriminate between expected utility and another alter-
native, known as “weighted utility.” Weighted utility is fairly closely related to the specifications
used in the econometric work cited above.

“A Revealed-Preference Implication of Weighted-Utility Decisions under Uncertainty,” by
Park, contains a strong result that complements the example just described. Roughly speaking,
the result is that an objective-probability analogue of our axiomatic characterization succeeds in
discriminating between expected-utility-maximizing and weighted-utility-maximizing patterus of
choice except in a few degenerate cases. Moreover, this result is proved in a constructive way that
has clear implications for how an econometric study of alternative preference specifications might
be constructed.

“Reconciling Some Conflicting Evidence on Decision Making under Uncertainty,” by Green,
uses our revealed-preference characterization provide one possible explanation of a scientific puzzle.?
Expected-utility models of economic agents solving naturally occurring problems seem to fit data
closely and to impute a high degree of success to agents in acting rationally. In contrast, re-
searchers who conduet laboratory experiments report that subjects’ behavior is often inconsistent
with expected-utility maximization in obvious and systematic ways. The proposed resclution of
this paradox relies on features that our specific to our expected-utilify representation theorem.
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Abstract

An intuitively natural consistency condition for contingent plans is necessary
and suflicient for a contingent plan to be rationalized by maximization of condi-
tional expected utility. One alternative theory of choice under uncertainty, the
weighted-utility theory developed by Chew Soo Hong (1983} does not entail that
contingent plans will generally satisfy this condition. Anoiher alternative theory,
the minimax theory as formulated by Savage (1972}, does entail the consistency
condition (at least for singleton-valued plans).
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1. Introduction

Social scientists must undertake the formidable task of modelling agents who are trying si-
multaneously to learn about their environment and to change it. For those social scientists who
impose on themselves the intellectual discipline of articulating their ideas as explicit formal mod-
els, L. J. Savage's ([1954] 1972) Bayesian decision-theoretic characterization of coherent decision
making and learning under uncertainty has become the benchmark representation of this process of
gimultaneous learning and action. In the context of this symposium, it is fitting to mention the field
of industrial organization as an example. The study of strategic interaction among producers in
an industry has been conducted primarily in the context of Bayesian game-theoretic models during
the past two decades. Cyert and DeGroot (1970) introduced the Bayesian model to this feld.

In this paper, we consider the specification of Bayesian decision theory as a “behavioral”
theory—a term strongly emphasized by Savage in statistics as well as by Cyert, Simon, and others
in economics. A theory of decision is to be considered behavioralistic if it has to do with predicting
how agents make decisions or with advising agents about how to make decisions, rather than
with agents’ introspection about their decisions. Savage emphasizes the sharp contrast in this
respect between his approach and the “verbalistic” approach taken by most of his contemporaries
in statistics.

Savage recognizes (especially in the concluding paragraphs of Chapter 2.5 and in Chapter
5.5 of {1954] 1972) that the practical employment of his theory by a researcher would require the
researcher’s own understanding of which consequences are the salient ones. This burden on the
researcher is exacerbated by the status of acts in Savage’s theory. Savage docs not take acts to be
logically primitive entities. Rather, he defines them in terms of two other types of entity: conse-
quences and states of nature. He takes the position that the identification of salient consequences
“is an operation in which we all have much experience, and one in which there is in practice con-
siderable agreement,” but he acknowledges that “what are often thought of as consequences ... are
in reality highly uncertain ... [and] can perhaps never be well approximated.” ([1954 1972, pp.
16-17, 84.)

In this paper, we address Savage's problem by formulating a new version of Bayesian subjec-
tivist decision theory . In this theory, acts and observations of evidence are the logically primitive
terms. States of nature are defined to be infinite sequences of observations. The utility of an act is
defined formally to be a state-dependent function of the act itself, so that reference to consequences
is avoided completely. Our main object of study is a contingent plan which completely specifies an
agent’s plan about which act to perform if the choice of act were to be based on various possible
sequences of observations.

After having set forth this theory, we investigate its strength. First we provide a necessary and
sufficient condition for a contingent plan to be rationalizable in terms of maximization of conditional
expected utility (that is, in terms of the Bayesian decision-theoretic criterion). Then we show that
this condition is also satisfied by single-valued plans (that is, plans that recommend a unique act
for each observation sequence) that can be rationalized by either a minimax-loss or minimax-regret
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criterion. In view of the heavy emphasis that Savage placed on the distinction between Bayesian
and minimax decision making, this result shows a clear sense in which our behavioral formulation
of the Bayesian theory has only weak observational implications. However, we also show that the
observational implications of this formulation can fail {o be satisfied by a contingent plan determined
according to Chew’s (1983) weighted-utility criterion. Thus the formulation is sufficiently strong
to serve as a basis for a study of whether an actual decision maker would conform more closely to
the Bayesian theory or to a prominent alternative theory.

We wish to emphasize that the equivalence result of this paper is proved in a finite-state,
finite-action setting. It is an open question whether or not this result extends to a wider class
of models. Also, we wish to make it clear that we do not view behavioralistic theories as being
necessarily the only theories of value for social science. (See Chomsky (1957), for instance, for an
argument that agents’ judgments and infuitions constitute mportant non-behavioral evidence to
be predicted and explained.)

2. Bayesian concept of rationality in decisions

The Bayesian decision-theoretic concept of rationality incorporates two principles. First, in
any situation an agent ought to maximize expected utility. Second, the probability measures
with respect to which expected utility is computed in successive situations ought to be related by
conditionalization on whatever evidence the agent may have observed in their interim. This paper
provides a representation theory for such a two-part Bayesian concept of rationality. The theory
contemplates an agent who has available a set of feasible actions. The agent makes a sequence of
observations. Before he begins to make these observations, and subsequently after each observation
that he makes, the agent reports which action he would be most inelined to take on the basis of
what he has observed to date. (If the agent considers several actions to be tied for the best, he will
report all of them.) A contingent plan is a record of such a sequence of reports for every possible
sequence of observations. The main contribution of this paper is to show that a necessary and
sufficient condition (to be called consistency) exists for a contingent plan to be rationalizable in
terms of conditional expected utility.

A simple example will illustrate the sort of contingent plan that would violate this necessary
and sufficient condition. Consider someone who can choose either to go to a concert or to go to
the opera or to stay at home (the feasible actions). Suppose that this person knows what is the
program of the concert, but is uncertain which of two operas is being performed. He is initially
inclined to go to the opera. However, regardless of which opera is announced in the newspaper
{the possible outcomes of making an observation), upon reflection, he is inclined to stay at home.
The pattern of decisions that is envisioned in this example is very specific. Prior to making an
observation, the agent would choose a particular action if he had to make an immediate choice.
After making the observation, the agent would choose a different action which is always the same,
regardless of exactly what he observes. Call a contingent plan consistent if it does not stipulate
such a pattern of decisions at any point.
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The example violates Bayes rationality because the prior expectation of conditional expected
utility must be equal to prior expected utility. Regardless of what he reads in the newspaper, the
agent’s subsequent inclination would imply that the conditional expected utility of staying at home
must be greater than the conditional expected utility of going to the opera. If that were always so,
then the prior expected utility of staying at home should have been greater than the prior expected
utility of going to the opera. Thus, contrary to the example, the agent should initially have been
incliped to stay at home rather than to go to the opera.

The setting of these results is closely related to that of the characterization by Green and
Osband {1991) of expected-utility maximization. The main difference is that, while Green and
Osband assume directly that an agent’s decision is a function of 2 probability measure, here it is only
assumed that the agent’s decision is a function of what the agent has observed. It may be helpful
also to mention some ways in which the theorem to be proved here differs from representation
theorems for subjective expected utility such as that of Savage ([1954] 1972). As mentioned in
Section 1, actions are taken here to be primitive entities of the theory. Savage interprets them to
be functions from a specified set of states of the world to a set of consequences. The contingent
plans studied here specify only the agent’s optimal actions. Savage specifies the agent’s preferences
among suboptimal actions as well. Conditionalization of probabilities i8 represented explicitly here.
Savage represents conditionalization implicitly in the context of specific assumptions about features
of preferences (including “state-independence”) and about the structure of the set of actions. The
probability measure and utility function shown here to rationalize a contingent plan that satisfies
the sufficient condition for Bayes rationality are not necessarily unique. Savage’s assumptions imply
their uniqueness. '

3. Formalization of the problem

Consider an agent who observes at each date ¢ € IN, a piece of evidence z; € X, where
X ={1,...,m} is a finite set. At some date ¢ € IN, and after having observed the values z1,...,z;,
the agent must take an action a from a finite set A.

The Bayesian concept of rationality interprets the agent as having beliefs represented by a
probability space (Q, B, Pr} and a state-contingent utility function u: 4 X 2 — IR, and interprets
the observations z, as the values of random variables X;: 0 —+ X. A Bayesian-rational agent always
chooses an action that maximizes the posterior expected utility

u(a,8) dPr(6
Oty = gD o

where

Blw,t) = {8 € Q¥s <t X,(0) = X,(w)}. (2)

(Note that B(w,0) = Q.}) That is, if a(X1(w),..., X:(w)) € A i8 the set of actions that the agent
might decide to take after having observed X (w), ..., X:{w), then

YVweQ VieN Ya€ 4 [a € a(X1(w),. .., Xe(w))

— Va'€ A Uld,w,t) < U(a,w,t)]. ®
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Note that this formulation does not represent the agent ag using the information that £, rather
than another date, is when the action is to be taken. Implicitly it is assumed that this date is
determined independently of the random variables X; and independently of the sections u(a,-) of
the utility function.

Now define the set of observation sequences, X* = | J,o ¢ X!, and define h: X* = IN by A(Z) =

t <= & ¢ X* Given any measurable space (2, B) and infinite sequence of B-measurable functions
Xi:§1 = X, define

B*(Z) = {wl¥t < M) Xi(w) = F:}. 4

Note that a measurable space and sequence of random variables can always be constructed from X
by taking Q = X™ and X;(w) = w;, and by taking B to be the smallest o-algebra with which all
of the projection functions X; are measurable. If ¥Vt £ A(F) X:i(w) = Z:, then B*(£) = B(w, A(Z)).
Define £: 2 x IN = X* by

Ew,t) = (X1(w), -, Xs(w))- (5)

Throughout this paper, attention will be confined to stochastic processes for which every
observation sequence occurs with positive probability. That is, it is assumed that

vEeX* Pr(B*(I) > 0. (6)

Condition (6) makes it possible to define posterior expected utility analogously to (1), but in terms
of X*, by

fB—(,,-;) u(a, @) dPr(6)
" P ()
A contingent plan is a correspondence c: X* ——+ A. A Bayes contingent plan is one for

which there exists a representation of form (1)-(6). Say that a contingent plan « is Bayes for
{Q,B,Pr, {X;}tem, ) (or simply Bayes for {X:}tew, ) if a satisfies

U*(a,Z) = (7)

VEEX' Vo€ A |a€a@) = U*(a,i‘)=1§12.§U*(a’,5:')] (8)

with respect io some von Neumann-Morgenstern utility function and to that stochastic process.

4. A necessary condition

This section concerns the formulation of a condition on contingent plans, and the proof that
this condition must necessarily be satisfied by a Bayes contingent plan. First some notation is
introduced to formulate and analyze the condition.

Define the immediate extensions of £ € X* to be those observation sequences that consist of Z
followed by a single observation. Let ¥+y denote the immediate extension of Z by . The immediate
extensions of all observation sequences can be represented by a correspondence e:X* —+— X*
defined by 7€ ¢(f) <= yeX F=ZF~y. '
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Now the necessary condition for a contingent plan to be Bayes can be stated in terms of three
subsidiary conditions.

Contingent plan « satisfies ezistence of an optimum at £ if
o(Z) # 0.
Contingent plan « satisfies dominance-inclusiveness at £ if

Ya {[‘v’y a€alfxy) =>ac a(i’)}.

Contingent plan « satisfies dominance-restrictiveness at £ if

Ya Vb {[Vy a€a(f+y) and 3y bé (T *y) @béa(i‘)}.

Now we come fo the main definition. Define a contingent plan « to be consistent af £ if it
satisfies at 7 the three subsidiary conditions just presented: existence of optimum, dominance-
inclusiveness, and dominance-restrictiveness. It is easily seen that the conjunction of these sub-
sidiary conditions is equivalent to the set-theoretic condition that

a(&) # 8 and [ﬂ a@=0 or ) a(§)=a(5)} : (9)
yee(2) vee(@)

Theorem 1. A Bayes contingent plan must be consistent at every observation sequence.

Proof: First, a Bayes contingent plan must be nonempty valued (that is, must satisfy a(Z) # 0 at
every ) because expected utility attaing a maximum on a finite set of alternative actions. Suppose
that po" is Bayes for a stochastic process {Xi}eemw, and that
Ngeezy @) # 0. Specifically, suppose that a € [y s (7). Consider any o’ € A. Since
a € [geez @), (3) implies that Vij € e(Z) U*(d',7) < U*(a, 7).

By the law of iterated expectation,

Eﬁe cr(:i:’)VPr(B* (‘_!;‘.))U* (G, m
Pr(B*(2))

2gee(z) Pr(B*(§)HU(d, §)
Pr(B*(z))

U*(a, ) = and U*(d',3) = (10)

Therefore U™*(a’, ) < U*(a, £). Since this inequality holds for all o' € A4, (3) implies that ¢ € «(Z).
That is, either [z .z a(F) = 0 or else Nz z a(F) C a(Z).

Now suppose instead that @ € a(Z)\ Nyec(z) @(¥)- By (3) and (10),

Va'e A D Pr(B'@)U, ) < 3 Pr(BYH)U*(a,i). (11)
Fee(®) yee(z) ,
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Since o ¢ ﬂﬁ.&(g) o(7), suppose that Z € ¢(Z) and a ¢ afZ). Since o(Z) iz nonempty, suppose
that o' € a(Z). Then (3) implies that U*(a,2) < U*(a', Z). Therefore, in order for (11) to hold,
there must be some other @ € £(%) such that U*(a/,w) < U*(a,w). By (3), o’ ¢ «(w) and
hence o' ¢ (zg.(z @(¥). Since o’ is arbitrary except that o’ # a, this argument shows that
Nyee(zy (&) € {a}. However, a ¢ [y iz a(f) by assumption. Thus [ze (z () = 0.

What has just been established is that either (e na(d) = @ or else o) C

MNgee @(#)- The set inclusion must in fact be an equality, since it has earlier been established
that either Nz (z) (§) = @ or else (g (z) (F) S a(F). B

5. Congistent plans are Bayes

The converse of Theorem 1 is also true. Theorem 2 states that, if one requires only that a
state-contingent expected-utility function should be bounded above, then each consistent contingent
plan is Bayes for every stochastic process that satisfies (6). Theorem 3 states that, if one requires
that a state-contingent expected-utility function should be bounded below as well as above, then
a consistent plan is Bayes for some stochastic process (that may depend on the plan) that satisfies

(6).

Theorem 2. Suppose that o is consistent, and let {2, B,Pr, {X:}iem, ) be any stochastic process
that satisfies (6). Then there Is a state-contingent expected-utility function
u: A x Q -+ IR that makes o Bayes for {X;}:emw, , and such that u is bounded above.

Proof: For each a € A, define a martingale {V;*: @ &+ R};ew. recursively as follows. Let Vif(w) =
0if a € () and V§*{w) = —1 if a ¢ (D). Suppose that V;* has been defined. Then begin to define

max{V¥ (w)|a’ € A}, ifa € a(é(w,t+1)) and Miectetwy @ # 8 (12)

Ve (w) — ma'x{v:‘.a’ (w)
i1 +27¢a’ € A}, if @ € alé(w,t + 1)) and Npecerry @@ =0 (13)
KG(UJ), ifa ¢ Uiée(f(w,t)) a(ff) . (14)

Condition (12) defines V;%; except at those w € Q such that 37 € e{é(w,t)) [a € a(f) but a &
aff(w,t + 1)) At these states, V%, will be defined by a martingale condition. To accomplish
this, first define

Gla,w,t) = {fla € a(£(8,t + 1))} N B(w, t). (15)

The condition that 3F€e(t(w,t)) [a € alf) but a & a(é(w,t+1))] is equivalent to w & G(a,w,t)
and G(a,w,t) # 0. In this case, define V%, (w) by imposing the martingale condition

ViHw) Pr(B(w, ) = f 1+1(0) @Pr(8) + Vi3, (@) Pr(B(w, ]\G(a, w, 1)). (16)

a,w i
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It is now proved by induction that each {V®}.e is a martingale and that for each date 7,
Va Vo [a € a(t(w,7)) <= V*(w) = max{V?® (w)a’ € 4}]. (17)

The martingale condition on Vi¢,...,V? is vacuous for £ = 0, and Vi has been defined explicitly
to assure (17). For the induction step, suppose the hypothesis that Vi#,...,V;® is a martingale for
each a and that (17) holds. These conditions must be shown to hold also for the random variables
{Viiila € A}

Begin by verifying condition (17). Consider an action a and a state w. First suppose that the
condition a € a(é(w,t + 1)) and {Nge (equ,ey) ¥(F) # © of (12) is satisfied. S‘ince Neetew.sy) ¢ #
@, condition (13) is not satisfied at w for any action e*. Therefore V%, (w) is determined for
every action a* by either (12) or (14) or (16). In all of these three cases, V3 (w) < V& (w) =
max{V;® (w)|a’ € A}. Therefore the condition that a € a(é(w,t -+ 1)) and Naeeteqw,sy) @@ # 0
implies that V2, (w} = max{V;2, (w)|a’ € A}.

Second suppose that the condition a € aff(w,t + 1)) and (MNze .ty ¢F) = 8 of condition
(13) is satisfied. Then V2 ,(w) is the highest number that can be assigned to any V;},fl(w) by any
of conditions (12)~(14), so again V%, (w) = max{V%, (w)]e’ € 4}.

Third suppose that the condition @ & |Uze(¢(,,) @(#) of condition (14) is satisfied. Here there
are two subcases. The first is that, if the condition (V¢ (¢ 4y @(#) # 0 of (12) is satisfied, then this
condition and the defining condition (9) of Bayes consistency imply that ¢ € a(¢{(w,t)) and that
therefore V2(w) < max{V;* (w)|a’ € A}. Some a* is an element of Nieetew,ey @), and V5, (W) <
V& (w) = max{V%, (w)]e’ € A}. The second subcase is that the condition Niee(e(w,y) @@ =0 of
(13) is satisfied. Then (13) specifies a higher value of V% (w) for any a* € a(€(w,t + 1)) (of which
(9) requires that there should be at least one) than the value of V& ; (w).

Finally consider the case that w ¢ G(a,w,t) and G(a,w,t) # @. There are two subcases, de-
pending on whether or not a € a(é{w, t)). If e € a{(w, t)) and w ¢ G(a,w, 1), then Nyee(etwtyy &)
= { by the definition (9) of Bayes consistency and the definition (15) of G(a,w,t). There-
fore Vi%,(6) = V(@) + 27 for 8 € G(o,w,t). The condition that G(e,w,t) # 0 implies that
Pr(G(a,w,t)) > 0 by (6), so the martingale condition (15) entails that V3,{w) < V®(w). Also
by (9), there is some action &* € a(é(w,t + 1)), and VP (w) < V&, (w) by (13). Together these
inequalities establish that V% ,(w) < V& (w). In the alternative subcase, that @ ¢ a(&{w, #)), con-
tinue to let ¢* denote an element of a{é(w,t + 1)), and also let a’ denote an element of o€ (w,t))
which is nonempty as well by the Bayes consistency condition (9). By the induction hypothesis,
V#w) < V¥ (w). The value of V%, (w) must be determined by either (12) or (13), and in either
case Vi (w) < V&, (w). Also V3, (w) < V#(w), either by (14) or else by an argument from (16)
parallel to the one just given. Again in this subcase, then, V2 ,(w) < V&, (w).

The foregoing argument shows that (17) holds at date 7 = ¢ + 1. Now consider the martingale
condition that, for every o € A and every event B measurable with respect to X,...,Xs,

[ ve@arso) = [ Vi ario) (18)
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It is sufficient to verify this condition on the sets B(§{(w,?)). Ifa € Nyee(e .y @), then (18) is
guaranteed by (12). If & € Ugee(equ,yy (), then (18) is guaranteed by (14). Otherwise (18) is
guaranteed by (16).

Thus it has been shown by induction that the processes {{V;®}icw|e € A} are martingales
that satisfy (17). Each martingale {V} e is bounded above by 2, so the Martingale Convergence
Theorem implies that there is an integrable random variable u®: ! &+ R bounded above by 2 and
such that u®(w) = lim;o Vi¥(w) almost surely. Defining u: 4 x 2 =+ R by u(e,w) = v*(w)
completes the proof, since the Martingale Convergence Theorem implies that V2(w) = Ule,w,?)
foralla, wand ¢. M

Theorem 3. If « is consistent, then there exists a stochastic process {(£,8,Pr*,
{X:htem,) satisfying (6) and a bounded, state-contingent, expected-utility function
u*: A X Q@ = IR that makes a Bayes for {X:}iem, -

Proof: Begin with a stochastic process (Q, B, Pr, {X;}icmv, ) satisfying (6) and with the utility
function u: A X = IR that was constructed in Theorem 2. Define a function §: Q2 — IR by

§{w) = —min{—1, min{u{a,w)|a € A}}. (19)
Now define
gy pS@API) L uaw) .
Pr(B) = Ry ™ oo = 52 -/;lé(w)dl"( ). (20)

By (19) and (20), Pr is absolutely continuous with respect to Pr* so Pr* satisfies (6). By (20),
Jpu*(a,w)dPr*(w) = fpu(a,w)dPr(w) for all B € B and a € A so u* makes o Bayes. By (19),
u* satisfies the bounds Vo Vw -1 <u*(a,w) <2. K

6. Comparing the Bayes and miminax criteria

A prominent alternative to maximization of expected utility in the history of decision theory
has been minimization of maximum loss—that is, the minimax criterion. An important reason
to have characterized Bayes contingent plans is to compare them with the contingent plans that
alternative criteria such as minimax would recommend. In order to do so, & necessary condition
to be a minimax contingent plan is now derived. This condition coincides almost exactly with the
consistency condition (9). In particular, the condition is equivalent to consistency in the important
case that a contingent plan is singleton valued.

The minimax criterion is formulated in terms of the loss £(a,w) of an action in a state of nature.
The loss may be conceived either as the negative of the state-contingent utility of an action,

fa,w) = —u(a,w), (21)
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or else as a state-contingent regret which is defined by
{(a,w) = max ule’,w) —u{a,w) . (22)
a'€A
Action a is minimax, conditional on observation sequence Z, if

sup £(a,w)=min sup £d,w). (23)
WwEB™(2) o' €A yepe(2)

A contingent plan e is minimaz (for utility function u: A x @ = R) if
VZ e X" a(f) = {a| sup £(e,w)=min sup £, w)}. (24)

wEB*(F) a'€A yeBr(2)

Theorem 4. If a contingent plan c: X* — A is minimax, then for every ¥ € X*,

oF) #£0 and [ of) € (@), (25)
Fee(®)
and
(] o #0 => e (&) al@) C ). (26)
Fee(®)

A singleton-valued minimax contingent plan is consistent at every observation sequence ¥ and hence
is Bayes.

Proof: Suppose that o is minimax. Clearly o must be nonempty valued. Suppose that a ¢ «(%).
Then £(a,w") > sup,ep.(z) f(a’,w) for some w* € B*(F). Since w* € B*({(w*, AM&) + 1)) and
§(w*, M) + 1) € e(®), a ¢ Nyeee ¢(F). This shows that [Vyc 2 a(f) S a(F), establishing (25).

Now suppose that a € [z a() and that o’ € a(F)\ e (z) *(9). Let
Y = BUP,¢ gr(g) £(a’,w). Since a’ € o£), for every n € IN,, there exists a state of nature w, € B*(Z)
guch that £(a,w,) < v+ 1/n. Because (%) is finite, {njw, € B*(§*)} is infinite for some 7* € «(T).
Thus sup,e g g+ £(a’,w) £ < supepe(j) (e, w). Since a € a(y"), these weak inequalities must
actually be equalities and therefore o’ € a(7*). Since the choice of * in this argument depends
only on < which is the same for all o’ € a(z), the argument actually establishes assertion (26).

If « is singleton-valued (that is, if the correspondence e is actually a single-valued function),
then condition (25) is equivalent to consistency of « (that is, to condition (9)). Hence « is Bayes
by theorems 2 and 3. 1

Y. Comparing the Bayes and weighted-utility criteria

Another illuminating comparison is between Bayes contingent plans and those that wouid sat-
isfy the analogous optimality definition with respect to the “weighted” utility functions introduced
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by Chew (1983). Chew replaced the “Independence” axiom of the expected utility theory with
weaker axioms {“Betweenness” axiom and “Substitution-Independence” axiom), and identified a
class of preferences among uncertain prospects that are representable by a weighted mean of the
utility values of sure prospects {weighted utility function). These utility functions are intended to
generalize expected utility as narrowly as possible while accommodating Allais’ paradox.

Suppose, according to an expected utility function or minimax criterion, an action is optimal
for probability measures Pr! and Pr? on Q. Then, the action remains to be optimal for any convex
combination of Pr! and Pr?. However, if the underlying preference is a weighted utility function,
this is not generally true any more. (Park (1993} characterizes the mapping, from the probability
simplex on a finite set of decision-relevant events to a finite set of actions, that may be rationalized
by weighted utility. In particular, the boundary of the set of probability measures at which one
action is preferred to another is the set of roots of a quadratic function of the probabilities.) As a
consequence, weighted utility functions may produce contingent plans that violate consistency as
is illustrated by an example below. This is not a degenerate example because any weighted utility
function “sufficiently close™ to the one in the example, produces the same phenomenon.

Chew’s (1983) original definition of weighted utility is stated in von Neumann and Morgen-~
stern’s framework involving preferences among lotteries, but it can be paraphrased to define con-
ditional weighted utility in a way that is analogous to the definition of conditional expected utility
in (1). In addition to a state-contingent utility function u, a “weighing function” y:IR — R, is
used to characterize weighted utility. This function - takes the state-contingent utility of an action
as its argument. (In Chew’s formulation, its argument is a lottery payoff which would correspond
to a consequence in Savage’s formulation of the expected-utility theory.) Expected utility is the
gpecial case of weighted utility in which the weighing function is constant. Here is the definition of
conditional weighted utility provided that appropriate measurability conditions are satisfied.

~ _ fB(w,t) Y(u(a, 8))ula, 6) dPr(B)
e t) = =l 0)) dP10)

(27)

Corresponding to the definition of a Bayes contingent plan, say that a contingent plan ¢ is
weighted-rational for {2, B,Pr, {X: }iemv, ) (or simply weighted-rational for {X,}iew, ) if o satisfies

VZeX* Vac A [a € a(f) <= U*(a,%) :—-Ir,lg%ﬁ*(a',f)] (28)

with respect to some state-contingent weighted utility function and weighting function and to that
stochastic process. (I* is defined analogously to U*.)

Now we construct an example of a weighted-rational contingent plan that fails to be consistent.
Let @ = {wy,ws}, with Pr(w,) = Pr(wy) = 1/2. Define X = {1,2}, X1{w) =1 and X (wy) = 2.

Let A = {a,5}. Define u(a,w;) = 1, u(a,wz) = 3, u(b,w;) = 2, and u(b,wz) = 4. Select a
continuous (or, smooth) weighting function -+ such that v(1) = v(4) = 1 and (2) = ¥(3) = 4.
For the resulting weighted-utility preference, a simple calculation shows that U{a,w,0) = 13/5 and
U(b,w,0) = 12/5 so that o(f) = {a}.
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Next, find the optimal action after the realization of X;. For Xy(w) = 1, or equivalently, for
o (u(a, ) (e, )
Y{ula,w))u(e,w

=u(e,wy) =1,
ua,w) AP

U(b,w,1) = T(USE:;;)ZS’ @) = u(b,w) = 2.

Similarly, for X;(w) = 2, or equivalently, for w = wy,

U(a,w,1) =

ﬁ(ay W, 1) = u(a‘l w2) = 3v
U(b,w,1} = u(b,ws) = 4.

Hence, a({1)) = a{2)) = {b}. This is a violation of consistency at #, namely,

[ @) = {b} ¢ {0, (D)}

Fe«(0)

This example illustrates the violation of consistency described in section 2 when actions a and
b are going to the opera and staying at home, respectively, and different values of X; indicate
different operas being announced to be performed.

8. Conclusion

An intuitively natural consistency condition for contingent plans has been shown to be neces-
sary and sufficient for a contingent plan to be rationalized by maximization of conditional expected
utility. One alternative theory of choice under uncertainty, the weighted-utility theory developed
by Chew Soo Hong {1983) does not entail that contingent plans will generally satisfy this condition.
Another alternative theory, the minimax theory as formulated by Savage ([1954] 1972}, does entail
the consistency condition at least for single-valued plans.
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1. Introduction

The expected utility theory, which dates back to Bernoulli and was given axiomatic foun-
dations by von Neumann and Morgenstern (1944} and by Savage (1954), has been the standard
analytic framework of decision under uncertainty. However, Allais and others have suggested that
people violate expected-utility maximization in systematic ways. Such reservations have led var-
ious authors to develop alternative theories that generalize the expected utility theory. These
“non-expected utility theories” make sharply different predictions from the expected utility theory
about the observed behavior of agents in some contexts (such as laboratory experiments) where the
possibilities for observation are very rich. The relationship between the expected utility theory and
its generalizations in terms of more restrictive observational settings (such as the typical situation
of non-experimental economists) is less well understood.

Achieving such an understanding has been difficult because individuals’ preferences are not
directly observable. But these preferences can be inferred from people’s behavior if certain prefer-
ences generate distinctive behavior patterns. So the expected utility theory and alternative theories
can be evaluated systematically as descriptions of behavior, using a revealed preference approach
that is well established in the study of choice under certainty. This paper investigates such a re-
vealed preference approach to the weighted utility theory of Chew (1983) and compares with the
corresponding characterization of expected utility theory by Green and Osband (1991). The main
result is that these two theories induce systematically different characterizations, and under minor
conditions the behavior rationalized by the weighted utility theory is distinguishable from that of
the expected utility theory in a “generic” sense.

The decision making set-up is as follows: A decision maker has a finite set of acts which
induce a consequence for each state of nature. Facing uncertainty represented by a probability
measure over states, the decision maker chooses a best act in the sense that the random prospect
(a probability measure over consequences) that this act induces is preferred to the ones induced by
other acts according to his or her preference. Then, the probability simplex on states of nature is
partitioned according to the chosen act. This partition is called a behavior partition.!

Green and Osband completely characterize behavior partitions induced by preferences con-
forming to the expected utility theory: A partition of the probability simplex on states is “rational-
ized” by expected utility if and only if it consists of convex polyhedral partition blocks satisfying
a certain integrability condition. In particular, the boundary between two partition blocks (this
boundary represents the set of probability assessments over states for which the acts chosen in either
block are indifferent) is an affine surface.? Because of its simplicity, “affine boundary” restriction
is practically a more useful empirical implication of expected utility theory than the integrability
condition. However, it is only valid to draw the inference from the blocks of an agent’s behavior
partition being polyhedral to the agent being an expected-utility maximizer if, were the agent be-

1 Another decision making situation explored in the study of the revealed preference of the expected utility
theory is to observe the choice of acts by changing the set of feasible acts while fixing the probability distribution of
the states. This is used in Border (1992), Fishburn (1975), Kim (1991) and Ledyard (1986} among others.

* In thig paper, a “surface” means a smooth manifold of codimension 1 in the space it is embedded. A surface
is “affine” (“quadratic”, regpectively) if it iz part of solution set to a non-vacuous linear (quadratic, respectively)
equation.
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having according to some other criterion than expected utility, the partition blocks would not be
polyhedral (that is, their boundaries would be curved).

This paper concerns the curvature of the boundaries between behavior-partition blocks for
a particular class of preferences among random prospects: the “weighted-utility” preferences in-
troduced by Chew (1983). This is a particularly interesting class to study because Chew designed
it deliberately to be as parsimonious a generalization of expected utility as possible, subject to
being able to accommodate the pattern of choices predicted by Allais’ paradox. Specifically, Chew
weakened von Neumann and Morgenstern’s Independence axiom to an axiom (Betweenness) that
still shares the implication that the agent’s indifference curves among random prospects are affine.
One might naturally think that affine indifference curves would induce a behavior partition with
polyhedral blocks,3 and in that case the Green-Osband criterion would fail to distinguish between
expected-utility and weighted-utility preferences. (Indeed, the present research began as an at-
tempt to prove that such a failure must occur.?) So weighted-utility preferences are a “hard case”
for the Green-Osband characterization, relative to less parsimonious generalizations of expected
utility {such as by Machina, 1982) for which one would expect ex ante that decision boundaries
would display curvature.®

Surprisingly, the boundaries between behavior-partition blocks induced by weighted-utility
preferences do generically display curvature, as well. That is the main result of this paper. Before
turning to its formal statement and proof, consider the intuition for it. Note that, if we follow Savage
in defining an act as a mapping from states of nature to a set of consequences, then a probability
measure on states of nature and an act together induce a probability measure on consequences. In
most treatments of choice among acts under uncertainty, the simplex of such induced probability
measures i8 studied. This is the probability simplex to which the Betweenness axiom is applied.
However, Green and Osband deal instead with the probability simplex on the underlying states of
nature themselves. This is the simplex that is divided into blocks by the behavior partition. For a
probability measure p on states of nature to be on the boundary between the blocks where acts a and
b are chosen respectively, it is necessary that, starting from p, o and b induce probability measures
on consequences such that the agent is indifferent between them. Each of the two acts Induces
an affine mapping from the state-probability simplex to the consequence-probability simplex, but
the weighted-utility function is not affine, so the locus of probability measures p satisfying this
induced-indifference condition is not necessarily affine. Specifically, it is shown in section 3 to be a
quadratic surface.®

3 This may look more likely to be the case by the observation that, under quadratic utilities, both the indifference
curves and the boundaries between partition blocks are quadratic surfaces. See footnote (4).

4 Failure to distinguish expected utility and non-expected utility preferences has been observed in other context.
See Dardanoni (1993).

% DBesides being a parsimonious generalization of the Independence axiom, Betweenness is a gubstantively impor-
tant generalization that has already had noteworthy application {particularly by Epstein and Zin, 1989) in empirical
economics.

& Chew, Epstein and Segal (1994) have shown that weighted utility and quadratic utility are the only prefer-
ences that satisfy a “projective independence” axiom. Note that guadratic utility implies that indifference curves
are quadratic in the simplex of induced probability measures on consequences, rather than directly imposing any
condition concerning the underlying simplex of probability measures on states of nature. It is shown in section 3
that quadratic utilities also generate partition blocks with quadratic boundaries.
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Since affine surfaces are a special form of quadratic surfaces, a weighted-utility preference
may produce partition blocks that are not distinguishable from those produced by expected-utility
preferences. However, it is also shown that, unless the observed acts are “mirror-images” or one
of them is “constant” as specified in section 4, this phenomenon is only exceptional; the boundary
between two observed acts produced by a weighted-utility preference is non-affine except for a small
subset of weighted-utility preferences whose closure has measure zero in the space of weighted-utility
preferences. Therefore, the revealed preference of a generic subset of weighted-utility preferences
is distinguishable from that of expected-utility preferences. Moreover, if the utility of acts are
state-dependent, the condition that acts are neither mirror-images nor constant is automatically
satisfied.

The rest of the paper is organized as follows. Section 2 formulates the model and reviews
the two decision theories discussed in this paper. Section 3 establishes a necessary condition for
a behavior partition to be consistent with weighted utility theory. Section 4 identifies a resticted
class of pairs of acts such that the boundary between the pair of acts in this clasg is necessarily
affine under weighted utility. Section 5 shows the generic distinction of the two theories in revealed
preference for acts that are not in the class discussed in section 4.

2. Model

Let S = {81,...,8,} and Z = {1,..., K} be finite sets of states of nature and consequences,
respectively. The simplex of 5,

AS)={peR":p; >0and Zn:pj =1} (2.a)
=1

represents the set of all probability assessments that the agent might have concerning the state of
nature. The simplex of Z, denoted by A(Z), is defined analogously and represents random propects
over consequences in Z. Typical elements of A(S) and A(Z) are denoted by row vectors p and o,
respectively. An act ¢ is a function from 8 to Z which is naturally extended to a linear function
from A(S) to A(Z) represented by a [Z| x |S| transformation matrix M,: the i-th column of M, is
a unit vector with 1 in the coordinate for a(s;) and 0’s elsewhere. Then, M,p* € A(Z) denotes the
random prospect that act a induces under assessment p € A(S). Here and throughout the paper,
superscript ¢ denotes the transpose.

A decision maker’s preference > is defined on the random prospects over Z, that is, = C
A(Z) x A(Z). For g,0’ € A(Z), we write o > ¢’ to mean (o,0’) € ». Given a preference > and a
finite set of acts A, define the best-act mapping BAsy a3 : A(S) =— A as usual;

BAs ay(p) ={a € A M,p' = Myp* forallbe A} (2.b)

Faced with an assessment p € A(S), a decision maker chooses an act in BA(y a}(p).
A finite partition Il of A(8) is a behavior partition if there exist a set A of acts from S to Z
and a preference > on A(Z) satisfying

i) there is a bijection 8 : A — Il such that a € BA;, 51 (p) for all p € B(a), and
{=.A}
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(ii) each a € A is the unique best act for some p € A(S).

A bebavior partition describes the pattern of rational choice of acts by an agent with preference
= and available acts A, where each partition element consists of all assessments over states of
nature for which one particular act is chosen. Condition (ii} essentially says that the agent could
not be assured to do as well if any act were removed from A. Without (ii), any partition would
be rationalized as a behavior partition by a trivial preference that ranks all random prospects
indifferently.

Topologocally we view elements of IT as embedded in A(S) and below we define some tex-
minology used later. The terminology is selected to capture “typical” situations even though the
definitions are more complex than the terminology itself might suggest to comprise “non-typical”
situations as explained in Remark 2.1.

We are interested in surfaces in A(S) that divide A(S) into nonempty subsets. Hereafter,
we use a surface in A(S) to mean a smooth manifold of codimension 1 in A(S) whose intersection
with the interior of A(S) is nonempty. (Notice that a surface may be entirely contained in the
interior of A(S). A surface intersected with the interior of A(8)} is obviously a surface.) A partition
element of IT is called a block if it's interior is non-empty. If a behavior partition is rationalized by
a continuous preference, condition (ii} above implies that every partition element i8 a block, The
intersection of closures of two blocks is called a boundary if it is a finite union of surfaces in A(S).
On the boundary of two blocks, both acts chosen in either block are best acts.

Remark 2.1 : A block is not necessarily a connected set under preferences more general than
expected utility. It will become apparent later that the behavior partition generated by a nontrivial
class of weighted utilities may contain a block censisting of two or more disjoint componenis.
Therefore, a boundary may consist of multiple surfaces. It is an unexpected finding that a boundary
can be a union of two surfaces that intersect with each other in the interior of A(S) for a special
case as explained in Rermark 4.5.

Different classes of preferences have different structural implications on behavior partition.
One of most prominent (so that easy to check) feature of a behavior partition is the curvature
of boundaries between blocks. The contrast of curvature ag “linear versus non-linear” is easy to
detect and therefore have a strong empirical implication. This paper separates the weighted utility
theory in this sense from the expected utility theory. We conclude this section by reviewing the
two theories.

Expected utility representation : A preference > on A(Z} is an ezpected utility if there exists
a function U : Z — IR (an expected-utility function) such that for all o,0" € A(Z),

oro’ =Y U)o(z) 2D Ulz)e'(z)  (2.)

zE€Z z€ZL

The axiomatization of expected utility representation is well known; a preference = on A(Z) is
represented by an expected utility if and only if the strict preference > is a weak order, and satisfies
the Archimedean (or continuity) axiom and the Independence (or substitution) axiom. Chew (1983)
replaced the Independence axiom with a weaker axiom of Betweenness which says that a convex
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combination of two lotteries is strictly between them in preference ordering. Requiring in addition
the axiom of Substitution-independence, Chew provided

Weighted utility representation : A preference = on A(Z) is a weighted utility if there exist
functions u: Z —+ R and « : Z —+ R4 (2 utility function and a weighting function) such that

) () = u(z)] = [a(#) = ()], and
i1} for all 0,0’ € A(Z),
> rezu(R)a(z)o(z) 30, ezulz)al2)o’(2)

oo — TE8 > (2.d)

2aez(z)o(e) T X,eze(2)o’(z)

We refer precise formulation of above mentioned axioms to known references on choice theory
(e.g, Kreps, 1988) and Chew (1983). Here, we discuss implication of these axioms on indifference
surfaces in A(Z). Independence axiom generates indifference surfaces which are affine and parallel
to one another. Betweenness implies affine indifference surfaces, and Substitution-independence
implies that indifference surfaces have a “common axis” outside of A(Z) (so-called “fan-shaped”
indifference surfaces). Typical indifference surfaces for both theories are presented in Figure 1 for
three consequences case. T

[Figure 1 here]

3. Weighted Utilities Generate Quadratic Boundaries

Given S and Z as before and a preference > on A(Z), the border of acts @ and b is
Lp(x) = {p € A(S) : Mop' ~ Myp'} (3.2)

When the underlying preference is obvious, we write I, instead of I(>). If » 18
represented by a functional v : A(Z) — IR, then I,; is the solution set to

v(M,p*) — v(Myp*) =0 (3.6)

As long ag the left hand side of (3.5) is a smooth function in p for which 0 is a regular value, which ig
generically the case for preferences considered in this paper, the solution set is a smooth manifold of
codimension 1 in the relevant domain. (See the Preimage Theorem, Guillemin and Pollack (1974),
p 21.) The boundary between two parition blocks for which e and b are chosen respectively, is by
definition a full-dimensional subset of I,;. In this section we investigate the curvature of borders
hence that of boundaries of behavior partition.

In the benchmark case that > is represented by an expected-utility function U, the func-

tional v in (3.) is a linear operation of premultiplying by a row vector u = (U(2))E,. So, I

T  This condition says that two consequences of the same utility level are indistinguished as incorporated in
random prospects. In Chew’s original representation, this is automatic because consequences are identified by their
utility levels. In this paper, condition 1) is required mainly to avoid unnecessary technical complication.
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solves a linear equation u(M, — M;)p* = 0 and, therefore, is affine. This is part of the complete
characterization of behavior partition by Green and Osband (1991} under expected utility.

Proposition 3.1 (Green and Osband) : Under an expected utility =, the border I, is afline.

Let us for a moment consider I;;, when > is a quadratic utility of Chew, Epstein and Segal
(1991); v is quadratic in probabilities of consequences. Then, (3.b) becomes

(Mop*) R(M,p*) — (Myp*) R(Myp') = p(MERM, — M{RM)p* = 0

where R is a |Z| x |Z| matrix. This equation is quadratic in p and so I, is a quadratic surface.

Notice the coincidence of curvature between the indifference surfaces in A(Z) and the borders
{equivalently, boundaries) in A(S): they are all affine under expected utility while quadratic under
quadratic utility. This relationship, however, does not extend to nnder weighted utility; indifference
surfaces are affine but boundaries are quadratic.

To see this, let S = {81,...,8,} and Z = {1,..., K} be finite sets of states and consequences,
respectively. Represent a weighted utility > by a pair of vectors u = (uj,...,ux) and @ =
(ar,. .., r) which are, respectively, utility levels and weights of pure consequences. Let D be the
K x K diagonal matrix with oy as k-th diagonal element and e be the K-vector (1,...,1). Then,
the weighted utility level of the random prospect M,p* induced by an act a under p, is

uDM.p*
eD Mgt

Since the same argument applies to another act b, I, is the solution to

uDM,p!  uDMypt _ p(MiD'u‘eDM, — M{D'uteDM,)p
eDM,pt  eDMypt pMEtDtDMypt

=0 (3.e)

Since the denominators in (3.¢) are strictly positive as weighted sums of probabilties and their
product, equation (3.¢) reduces to a quadratic equation. Therefore, we established

Proposition 3.2 : Given acis e and b from S to Z and a weighted utility = on A(Z),
Ip(=) = {p € A(S) : pQp* =0} (3.d)

for some |8| x |S| matrix Q.

The simplex A(S) is often identified with the projection on the first (n — 1)} coordinates,
AB)={pe RY: Yrolps € 1), Let Iy denote the projected image of I, on A(S). Then,
substituting p,, with (I —p; — -+~ — ppw1) in I, we have the following expression for I; in A(S):

ILp={pecAS): pQp* +pG+c= 0} (3.€)

for some (n — 1) % (n— 1) matrix @, some (n — 1)-vector § and some real number c. The coefficients
of the quadratic equation in (3.e) (i.e, elements of @ and §) are expressed in terms of utility levels
and weights of consequences.
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Expected utilities are a special class of weighted utilities where all consequences have the game -
weight, say o > 0. Then, D = alx and equation (3.c) becomes u(M, — M, )p* = 0 which determines
an affine surface in A(S). Moreover, since an affine surface is a special form of a quadratic surface,
a weighted utility which is not an expected utility may generate boundaries which are afline. We
say that a surface is genuinely quadratic if it is not affine. The next section characterizes pairs of
acis that always have affine borders under weighted utility. Section 5 shows that other pairs of acts
“almost always” have genuinely quadratic borders under weighted utility.

4. When Weighted Utilities Generate Affine Boundaries

If weighted utilities that may produce affine boundaries are “negligible,” given a behavior
partition with affine boundaries, we can “safely” (in the sense of probability 1) reject the hypothesis
that it has been generated by a weighted utility. In this respect, we are concerned about the set of
weighted utilities that may produce affine borders.

In equation (3.¢), M, and M, are determined by the pair of acts under consideration. Gen-
erally, given M, and M;, (3.c) may become linear for some weighted utilities, i.e., for some specifi-
cation of D and u. For some restricted pairs of acts, however, M, and M, are structured in such a
way that equation (3.c) becomes linear for all D and w. This section identifies these pairs of acts.
To maintain the focus of the paper, the discussion is restricted to weighted utilities even though
the results in this section can be proved for all preferences satisfying the Betweenness axiom.

Firstly, if an act is constant, that ig, if it leads to the same consequence regardless of states,
then the weighted utility level from this act is constant regardless of p. So, one of the terms in the
left hand side of (3.c) is a constant and the equation becomes linear.

Lemma 4.1 : Let a and b be acts one of which is constant. Then, the border I, is affine under
weighted utility.

The other case is when there are only two states s; and sp so that the simplex A(S) is 1-
dimensional, that is, A(S) is a unit interval. Then, solutions to a quadratic equation consist of at
most two points of the unit interval A(S), which trivially constitute affine boundaries of a behavior
partition of A(S). Note, however, that the number of consequences induced by either of the acts
from the two states are generally more than two, so that the simplex A(Z) is of higher dimensional
and weighted utilities are a richer class of preferences than expected utilities. Conceptually the same
argument applies to three states for the specific pairs of acts such that 7} both acts lead to the same
consequence from the third state and #f) the consequences from the other two states are switched
between a and b. In this case, the third state is “irrelevant” in determining I.;. Predictably, when
these states are duplicated, the borders remains to be affine while gaining additional dimensions
corresponding to the duplicated states. The discussions in this paragraph are formalized below.

Definition 4.2 : Lef ¢ and b be acts from S to Z. States s and s’ are equivalent for ¢ and b if
a(s) = a(s’) and b(s) = b(s’). Denote the equivalence class of s by [s]. A pair of acts a and b are
mirror-images (of each other) if

a) there are only two equivalence classes, or

b) there are exactly three equivalence classes, say [s1], [sz] and [s3], such that

als1) = b(sz), a(sz) = b(s1) and afsz) = b(s3).
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Lemma 4.3 : Given a weighted utility > and a pair of acts @ and b that are mirror-images, I,5(>)
is a finite union of affine surfaces.

Proof : First, consider case a} in Definition 4.2. Let [s1] and s3] be the two equivalence classes
and Iet g;, 7 = 1,2, denote the probability of [s;]:

G= Y. p (4.a)
{i:[ai]=[s5]}

where p € A(S). Clearly, g; -+ g2 = 1. So (3.e) becomes a quadratic equation in a single variable g;.
It is well known that this equation has at most two solutions and each of them is also the solution
to an obvious linear equation in ¢;. Substituting (4.e) for ¢;, we have at most two linear equations
in p whose solutions constitute I,;. This completes the proof for case a).

Next, consider case b) of Definition 4.2 and define ¢;, j = 1,2,3, as above. Represent
equation (3.e) in two variables ¢; and ¢;. Suppose this equation is not vacuous because otherwise
the proof is trivial. If ¢; = g2, acts a and b lead to the same lotiery, i,e., Mop* = Myp*. Hence,
{p € A(S) : 1 = g2} C I,p. This implies that the left hand side of equation (3.e) is factored into a
product of (g1 — ¢2) and another linear factor and, therefore, the solution set to (3.¢) is represented
by two linear equations. Substituting (4.a) for ¢; and gz, we have two linear equations in p whose
solutions constitute I,. This completes the proof. B

Remark 4.4 : For pairs of acts that are mirror-images in sense b) of Definition 4.2, the requirement
that the consegquences from states s; and s, are switched between a and b are necessary for Lemma
4.3. In particular, “a(s1) > a(s2) whileb(sg) = b(s1)” is not sufficient. What leads to the conclusion
is that when [s1] and [s2] have the same probability, the random prospects that a and b induce are
identical (not merely indifferent), which determines a part of I, which is affine. Notice that this
conclusion comes from the acts alone without reference to . Even though a(s3) = b(s3), if the
above mentioned requirement fails this argument also fails because I, is governed by the preference
. i

Remark 4.5 : The behavior partition for a pair of acts that are mirror-images in sense b) can take
the following form which may not be naturally predicted: The 2-dimensional simplex A({s1, 52, 83})
is divided into four blocks by two straight lines crossing at one point Inside the simplex. One of
the straight lines connects the vertex for s; and the middle point of the side 318z, and the other
straight line is parallel to 5133. One of the acts is chosen in one pair of blocks with no common
boundary and the other act is chosen in the other pair of blocks. It is easily verified that the
behavior partition of A({sy,s2,83}) always takes this form if there is one indifference curve in
A(Z) that is parallel to the side of A(Z) connecting the two consequences induced from s; and ss.
(Notice that A(Z) is also 2-dimensional.) This behavior partition has affine boundaries but does
not satisfy the integrability condition of Green and Osband.

5. Weighted Utilities Generate Genuinely Quadratic Boundaries

Pairs of acts shown in the last section to have affine borders under weighted utility, are
very restricted; either they are mirror-images or one of them is constant. Essentially, “mirror-
images” picks up situations where A(S) is 1-dimensional so that quadratic equations are inherently
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undistinguished from linear equations in the structure of their solution components. In particular,
if the utility of an act is defined to be a state-dependent function of the act itself, then by definition
no act is constant and no pair of acts are mirror-images. In this section we establish, for acts that
are neither constant nor mirror-images, that the boundaries are genuinely quadratic under weighted
utility by verifying non-affine curvature of borders in A(S).

It is not to be hoped even for these acts that boundaries are genuinely quadratic under all
weighted-utility preferences. Expected utilities are a subset of weighted utilities and, as will be
clarified shortly, there are weighted utilities which are not expected utilities but still produce affine
boundaries. The result shown is for “generic” weighted utilities in the sense specified below.

Given Z = {1,...,K}, a weighted utility on A(Z) is represented by a pair of vectors u =
(u1,...,u%) € R¥ and o = (@,...,ax) € RY, where u, and o, are the utility level and the
weight of consequence z = 1,..., K. So, we define a space of weighted utilities as

w = R¥ x RE,

A subset of W is negligible if it is contained in a closed set with measure 0. A subset of WV is generic
if it is the complement of a negligible set.?

Proposgition 5.1 : Suppose ¢ and b are acts from S to Z that are neither constant nor mirror-
images. Then, the set of weighted utilities under which I, contains an affine surface in A(S), is a
negligible subset of W.

Proof of Proposition 5.1 ig basically to find the utility levels and weights of weighted utility
for which the quadratic equation in (3.e) admits a representation by linear equations, and verify
that these weighted utilities form a negligible subset. Apparently, if the coefficient matrix @ in
(3.) iz 0, the equation is linear. Less obviously, for certain coefficients, a quadratic equation can
be represented by a union of linear equations. (For example, p? — p2 4+ 2p; + 1 = 0 is equivalent to
p2=p1+lorpy=—p —1.)

If the coefficients of the quadratic equation are independently determined (as in the case of
state-dependent utilities of acts), either of the above mentioned reduction to linearity occurs only if
the parameter values of weighted utility solve a certain non-vacuous polynomial equation and so the
conclusion of the Proposition follows. (See Lemma A in the Appendix.) However, since different
combinations of state and act may lead to idemtical consequences, coefficients of the gquadratic
equation can be interrelated. Yo deal with this complication, the proof consists of case-by-case
arguments as provided in the Appendix. Here, we sketch the main structure of the proof.

For a and b to have an affine boundary, there should be one state for which a is preferred to
b and another state for which the preference is reversed. Since a and b are not mirror-images, there
is a third state not equivalent to either of the two above mentioned states. Now we focus on the
2-dimensional face of A{S) convex-spanned by these three states and look into the possibility that
I, intersected with this face contains straight line segments. The equation in (3.e) confined to this

8 The space of weighted utilities can be reduced by taking the quotient space of W. However, generic sets
are preserved between these two spaces because the quotient map is homeomorphic. Earlier version of this paper
presents the results using the reduced space.
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face is easier to handle because it has only two variables. By examining all possible consequences
that may be induced by a and b from these three states,® we conclude that a pair of acts that are
neither constant nor mirror-images are sufficiently differentiated so that it is not possible for the
coefficients of the equation to be interrelated in such a way that the quadratic equation breaks
down to linear ones.

We close this section with an implication of Proposition 5.1 on the size of the set of weighted
utilities that may produce behavior partitions with affine boundaries for three or more acts. The
proof of this corollary is immediate from Propogition 5.1,

Corollary 5.2 : Suppose A is a finite set of acts from S to Z such that none of the acts is constant
and at least one act, say a, Is not a mirror-image of any other act in A. Then, the set of weighted
utilities that may produce a behavior partition consisting of two or more polyhedral blocks such
that one of the blocks is for a, is a negligible subset of V.

It needs to be mentioned that if one of the acts is constant, the conclusion of Corollary 5.2
is not generally true because a non-affine border may be hidden in the polyhedral block for the
constant act. The following example illustrates this possibility.

Example 5.3 : Let S = {81,52,83,84} and Z = {1,2,3} be the sets of states and consequences
and let {a,b, ¢} be the following acts;

81 —+3 81 ¥ 2 51—+ 1

a: g2 =1 b Sg— 2 c: 83—+ 1
"ls3—1 T 82 ) 83 —+ 2
841 84 —+ 2 84—+ 3

Notice that neither {a,c¢} nor {b,c} are mirror-images. First, consider the expected utility
according to which z3 > 23 » #; and z; is indifferent to the lottery that z realizes with probability
2/3 and z; realizes with probability 1/3. Using the diagram in Figure 2, ¢ i8 chosen in the top
tetrahedron, ¢ is chosen in the bottom tetrahedron and b is chosen in between. I,. is the shaded
triangle. Notice that [, is entirely contained in the interior of the block for b. The borders between
actg change continuously as the preference changes continuously. Hence, in the space of weighted
utilities, there is a neighborhood of the above considered expected utility such that, if we pick a
preference in that neighborhood the corresponding I,. (which is not affine in general) is hidden
in the polyhedral block for 4. So, the weighted utilities in this neighborhood produce behavior
partitions that are rationalized by expected utility.

[Figure 2 here]

¢ The number of these consequences is in general more than 3 and so, the dimension of the probability simplex
over these consequences is higher than 2.
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Appendix: Proof of Proposition 5.1

Let S = {s1,...,8,} be states and let Z = {1,..., K} be consequences. We simplify the
notation: a; and b; represent a(s;) and b(s;), respectively. In this appendix, we restrict our attention
to the following generic subset of weighted utilities; no two pure consequences are indifferent. We
verify the conclusion of Proposition 5.1 for a generic subset of this generic set of weighted utilities.

Suppose the border I,; contains an affine surface Bgy in A(S). Then, by Substitution-
independence, I, contains the affine hull of B, for which we use the same notation Bgp. It is
not the case that all vertices of A(S) are contained in one of the closed half space of B,y If they
were, By, would not intersect the interior of A(S) contrary to supposition. (Recall that a surface
is assumed to contain interior points of A(S).} So, there is one state in each open half space of
Bgp. That is, there are two states, say $; and 83 such that

ai = b and bz = az (A.a)

Since a and b are not mirror-images, there is a third state sz not equivalent to s; or sg, that is,
(as, b3) # (as, b)), 1=1,2 (A.b)

Denote the simplex of {s1, 82,93} in terms of p; and p3:

A={(paps) €ERL: p+p <1} (A9

;From (3.€), By N A is the solution to the quadratic equation

P(p2,p3) = Y2203 + Y3393 + Y2spaps + S2p2 + dsps +c =0 (A.d)
where the coefficients are as follows (f = 2, 3):

¥j5 =(QasUa; — Qay U, )(0p; — ;)
= (o up; — ap,up, )ty — @),

Y23 =(Qaz Ua; — Cay tia, )(C0; — )
— (o, s, — 0, U, ) Qay — Qg )
+ (0o Uas — Qay e, ) (0, — 0;)
— (opy i, — g, Upy H{Xay — Oy ),

85 =(0la;Ua; — Qla, Ua, )0, + Cay Ua, (0, ~ @)
— (o, up; — oy, Up, )Qlay — U, (Olay = Oy ),
€ =0, Oy, (Ug, — up,) 7 0

We check necessary conditions for the sclution set to (A.d) to be affine:
If o9 = 733 = 0, necessary conditions are

(C.l) Y2z = 0or
(0.2) Y23€ = 5253.
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If Y2 -‘,é 0, (Ad) implies

_ —(723ps + 82) = [(723p3 + 2)® — 4722 (5203 + apa + DIk
2792
Thie equation is linear in p3 only if the square root term resolves as linear, that is,

P2

(c.3) (6% — 4y220)(v23® — 4722733) — (V232 — 272283)% = 0.
Finally, if 33 # 0, analogous argument leads to the necessary condition

(c4) (63 — dvysac)(v2s® — 4ye2733) — (72303 — 273302)% = 0.

What we will show is that given a pair of acts a and b as specified in Proposition 5.1, those
weighted utilities (u, ) that satisfy one of the necessary conditions (c.1) to (c.4) form a negligible
get. By virtue of the next Lemma, we only need to show that each condition is a polynomial
equation in (u, &) with at least one non-vanishing term {(monomial). (We say a monomial vanishes
if its coefficient is 0.)

Lemma A : The solution set to a polynomial equation in IRYN is a negligible subset of RY if the
polynomial has at least one non-vanishing monomial.

Proof : This is an immediate corollary of Theorems 1 and 2 of Whitney (1957). R

The analysis depends on the consequences that each act induces. If each act-state pair induces
a distinct consequence (i.e., the case of state-dependent utilities of acts), obviously every condition
(c.1) to (c.4) is a non-vacuous polynomial. On the other hand, if some act-state pairs induce
identical consequences, the analysis involves simple but laborious calculation. For cach possible
case, we find a monomial which does not vanish. The result is summarized below.

Since acts are not mirror-images, we can choose s; and s3 such that (a1,5) # (b3,a3). For
notational convenience, denote a; = g and by = r where s > 7.
Cagel az=3<b3=t. ,

In this case 33 is a vacuous polynomial (i.e, identically 0). Because a is not constant, there
is a state, 8ay 82, such that az £ s.

[Subcase 1-1] 22 = 0.

iFrom the expression of a3 in terms of (u, ), this subcase happens only if either a; = r and
bp=g,0r by =by =,

In this subcase, condition (c.1) is

(g thay — Astis) (s — o) — (@sus — rtir){Cla; — @) = 0.
So, the term a,o:u, does not vanish,
Next, condition (c.2) is expressed in terms of (u,a) as
[(cvagtay — cstts) (e — ar) — (@etty — Cptin) (o, — )] - [a0tr (U5 — u,)]
— oy Bay — Ciats )0 + g {Cr, — Q) — (Qby oy — Crlp )@y + Gt (G, — )}
[opug(oy — o) — (gt — Ctp iy Youg]

=0
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Consider the first possibility of a2 = 0: @2 = r and by = 5. Then, the term with u? is o2a.(a; —
a,)u? which does not vanish. Consider the second possibility: by = by = r. If ag = ¢, the term
afa,.a,u? does not vanish. If ag # £, the term oy 0404, u;u, does not vanish.

[Subcase 1-2] 22 # 0.

Since y33 = 0, condition (c.3) is yoz (7239283 — Y2262 —¥2;¢) = 0. Being too long, the expression
in terms of (u,«) is omitted. Similar investigation to Subcase 1-1 can be carried out whose results
are summarized below.

1) If by = 8, the term oo, u® does not vanish.

2) If by =t = ay, the term atazazutu, does not vanish.

3) If by = ¢ but ap # ¢, the term ofadv?u, does not vanish.

4) If by # 8, bg # £ and ag = £, the term o?a?a?u?u, does not vanish.

5) If by # 8, bg # t and ag # t, the term o0, o, u?u, does not vanish.

Case 2. az=d—<bs=r.

By exchanging the roles of ¢ and b and those of s; and s3, this is the same situation as Case
1.

Cage 3. a3 =fand by =g where f <g, [ # s, g# 7 and (g,f) # (s,7).

Denote a¢; = z and b = y and recall that (z,y) # (s,7) and (z,y) # (f,g). From these
conditions, it is easily checked that 7z i8 a non-vanishing polynomial. So, we consider condition
(c.4). Again, we omit the detailed process and summarize results for various cases: we divide cases
depending on whether g,  and y are identical with s or not, and in each case we consider further

variations.

1) g=s, £ =8, y = s: In this case, f # r because (g, f) # (s,7), and the term aladasul does
not vanish.
2) g =8, =8, y 5 & In this case, f # r because (g, f) # (s,r), and y 7# r because
(z,y) # (s,7). So, the term atoloyu? does not vanish.
3) g =8, x# 8, y=s: In this case, f # r because (g, f) # (s,7), and f 7 x because
(z,y) # (f,9)- So, the term afo?a,u? does not vanish.
4) g # 8, £ =28, y=a3: Recall f # g and g # r. In this case, the term a’c za,.afu, does not
vanish.
5) ¢ =8, T # 8, y # s In this case, f # r because (g, f) # (s,7).
If z = f and y # f, the term aja%aru] does not vanish.
In all other situations, the term ofer fu‘* does not vanish.
6) g # s, x =3, y # 8 In this case, y # r because (z,y) # (s,1).
iy =g, the term o2alara,udu, does not vanish.
If y # g, the term afo?oludu, does not vanish.
TNg#s c#s8 y=s8 Recall fgand g#r.
If z = g, the term ooy} does not vanish.
If 2 # g, the term o agaxuﬁ does not vanish.
8) g#s, z# s y#Fs:
If z = y = g, the term afao?ulu, does not vanish.
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If x = g but y # g, the term aa? ayu uy does not vanish.
If x # g but y = g, the term ofajoul ug does not vanish.
If z 5 g and y # g, the term afsa ozmayu ug does not vanish.

Until now, we showed that, given a pair of non-constant acts ¢ and b that are not mirror-
images, those weighted utilities (u, &) that satisfy one of the conditions (c.1) to (c.4) form a negli-
gible set. Since one of these conditions is necessary for the border I,; to contain an affine surface
in A(S), the proof of Proposition 5.1 is complete.
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Abstract:  Laboratory experiments concerning decision under un-
certainty tend to uncover systematic viclations of Bayesian rational-
ity. When models that posit Bayesian rationality are compared to
non-experimental data, though, they fit the data well. One possible
explanation is that an agent’s global pattern of choices may not be ra-
tionalizable, but that the pattern may satisfy weak conditions sufficent
to rationalize the limited range of choices required by any particular
decision protocol. Examples of such patterns are constructed here. An
agent who adopts a protocol acts rationally, but an experimenter in-
duces trrationality by imposing distinct protocols in various phases of
the experiment.
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1. Introduction

When people make decisions under uncertainty, are their actions in accord with subjective-expected-
utility (SEU) theory? That is, does a person tend to behave as though (a) his initial beliefs were
encoded by a probability measure on possible events, (&) he considers evidence by conditioning this
probability measure according to Bayes’ rule, and (¢} he chooses an action that would maximize the
expectation of some utility function (which is always the same across the various decision problems
that he faces) with respect to this conditional probability measure?

This question has been studied intensively. Researchers who use non-experimental methods
tend to conclude that SEU theory accounts well for their data. In sharp contrast, experimental
researchers tend to report that behavior inconsistent with SEU theory is pervasive, robust, and
easy to elicit from subjects. This systematic disparity between experimental and non-experimental
findings is a paradox that needs to be resolved.! In this paper I propose one resolution among the
many complementary resolutions that can probably account for aspects of this puzzle.

The resolution to be proposed here has to do with how a decision maker often works: by
obtaining answers to a sequence of questions, and then eventually choosing an action on the basis
of these answers. Such questions typically have answers that are of a yes-or-no variety, or that
are numerical quantities, or that otherwise partition the situation into possibilities that are jointly
exhaustive and mutually exclusive. Each successive question refines the partition further. It is even
comimon for a decision maker to work according to a protocol that raises these questions in a fixed
order. Sometimes an order is determined by practical considerations (as when a detective goes
quickly to the scene of the crime, where weather and traffic are likely to obliterate evidence such as
footprints), but often a determinate order is followed purely as a matter of professional discipline
(as when a doctor obtains a patient’s history, if it is possible to do so, at the beginning of treating
an illness—even though the nature of the illness is often obvious from signs and symptoms that the
patient presents). This determinateness of order has the implication that there is a fixed sequence of
increasingly fine partitions of events that uniformly characterize the decision maker’s knowledge at
successive stages of a family of related decigion problems such as criminal investigations or medical
cases.

Part of a decision maker’s job is to decide when to stop asking questions and to do something.
However, even before this point is reached, a decision maker will make judgments regarding what
would be the best thing to do on the basis of current evidence. Sherlock Holmes might be confident
that he will solve a case conclusively but might nevertheless judge that, if there were an imminent
prospect of the criminal committing another heineous crime before further evidence could be un-
earthed, then the police should try to prevent it by arresting Moriarity. A surgeon might know
that, if the hospital had run out of a dye needed to make a patient’s blood vessels show clearly in
an X-ray, then a particular operation should be performed without waiting to take such an X-ray

! This paradox has been discussed by the contributors to Hogarth and Reder {1987). In addition to the types of
study discussed in that volume, a new kind of non-experimental study has subsequently become available: inference
about decision making based on explicit modelling and estimation of data regarding decision making by an expert
subject in the course of his actual work. A leading example of such a study is Rust (1987).
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because prompt repair would be imperative if the patient were bleeding internally. I will agsume
that a researcher can observe such “premature” contingent decisions, either because exceptional
circumstances such as those that I have just described do arise occasionally, or else because deci-
sion makers are able t¢ make reliable reports about what they would do counterfactually. In this
respect, I am making a generous assumption about how much data a non-experimental researcher
can obtain.

To suminarize, in non-experimental settings a decision maker will typically consider a fixed
sequence of information partitions, which is dictated either by feasibility restrictions or by the de-
cigion maker’s protocol. This fixed sequence of partitions is all that a non-experimental researcher
can observe. In contrast. an experimental researcher can force a subject to consider information
partitions that the researcher—not the subject—selects. In particular, a researcher can force a
subject to use incomparable partitions to make decisions about cases that are otherwise similar.
For example, a doctor might be required to choose a hypothetical treatment on the basis of infor-
mation about whether or not the patient has “an elevated temperature” in one case, but on the
basis of information shout whether or not the patient has “a high fever” in another case. Those two
information partitions are intuitively close to one another, but they are not identical. In medicine
and in many other fields, authoritative protocols for decision making specify recommended informa-
tion partitions exactly and discourage decision makers from substituting approximately equivalent
partitions. Thus subjects, and especially experts who are well-trained professionals, can be forced
in experimental settings to make decisions that they would systematically avoid in their actual
work. I am going to argue that comparisons among such forced decisions in experimental settings
greatly expand the opportunity to observe violations of the SEU theory. Some implications of this
argument will be examined in the concluding section of the paper.

2. A formal description of decision-making data

I will describe the data from experimental and non-experimental studies of decision making in
terms that closely resemble a standard version of SEU theory.? There is a finite Boolean algebra
£, the elements of which are to be interpreted as events.® I will assume informally that, except
for the null event (denoted by 0 € £), these are events to which the decision maker would consider
seriously as possibly occurring.* Upper-case parameters and variables will denote events in £.

There is also a finite set A of aeis that the decision maker can choose. Lower-case parameters
and variables will denote acts in A.

2 A gignificant limitation of this description will be discussed in the conclusion.

% Finiteness is assumed here for convenience. It is not a hypothesis of the results of Green and Park (1993} that
are adapted to this setting below.

4 If there are nonzero events that the decision maker would totally discount, then they should constitute a lattice
ideal. The Boolean algebra formed by factoring by this ideal will then satisfy my informal assumption. This is the
technical reason why I am considering an abstract Boolean algebra of events, rather than a field of sets of “states of
nature.”
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A decision rule is a correspondence
8E = A (1)

That is, d is a function that assigns a subset of A to each event. Since 0 € £ is to be interpreted
as the impossible event, stipulate that

5(0) = A. (2)
This stipulation is innocuous, and it will simplify some definitions below.

I will assume that a researcher can observe a subject’s entire decision rule in an experiment.

All that can be non-experimentally observed, though, is a decision maker's contingent plan. A

contingent plan consists of a sequence IT = (Iy,...,II,) of partitions® of 1, together with a corre-
spondence

o U I, = A (3)

msn

Asgume that the initial partition Il is trivial, and the partitions II,, are successive refinements of
one another. That is,

Iy = {1}, and Vm<n 4 i8 a refinement of Il,,. (4)

Given a function 7 that is defined on the union of a sequence II of partitions satisfying (4), a
sequence I gatisfying (4) can be constructed from the domain of . The new IT can differ from
the original IT only with respect to the timing of the resolution of uncertainty. (That is, a partition
element of some II,, may be partitioned further at a different tire in II' than in IT, but it must be
partitioned in the same way in both sequences.) Since conditional expected utility is insensitive to
the time at which uncertainty is resolved, the function 7 contains all of the information about the
sequence II that will be of interest here. Therefore the term ‘contingent plan’ will sometimes be
applied to 7 itself, without specifying IT explicitly.

Finally, say that a decision rule § and a sequence I of partitions satisfying (4) induce the
contingent plan 7 that is obtained by restricting d to the set of events | J,_ ., IL,.

5 A partition of C € £ is a set P of non-null events (that is, A # 0) that are pairwise disjoint (that is, AANB =10
if A # B) and such that \/ aep A = C. Partition P’ is a refinement of partition P if, for each element 4 € P, 2

subset R C P’ is a partition of A.
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3. SEU rationality

Conformity of a decision rule or of a contingent plan to subjective-expected-utility theory can be
defined in terms of signed measures. A signed measure on £ is a function p: £ — R that satisfies

#(0)=0 and VA VB [AAB=0==pu(AV B)=pu(4)+ u(B)]. (5)

Note that in a probability space, a signed measure is defined on the feld of events (that is,
measurable subsets of the sample space) by considering the integral of a measurable function (from
the sample space to R) as a function of the domain of integration. In particular, suppose that
(©2,£,Pr) is a probability space and that v: A x Q is a state-contingent utility function. Then,
for each @ € A, a signed measure y, is defined by u.(B) = [z v(e,w)dPr{w). The conditional
expected utility of act @ in event B is u(B}/ Pr(B). Thus a’ has higher conditional expected utility
than does a in event B if and only if u./(B) > p.(B).

Thie observation motivates a definition of SEU rationality. To state this definition, let M
denote the set of signed measures. If u: A =+ M, then I will write u,(B) instead of [u(a)](B) in
order to avoid cumbersome notation.

Let C C £, and let v:C — A. Then < is SEU rational if there is a mapping ur. A -+ M such
that
VC eC ~(C)= {alVa' ua(C) £ u.(C)}. (6)

4. A decision rule that is not SEU rational

The following is an example of a decision rule that is not SEU rational. Let £ be the feld of subsets
of a set of four elements. Specifically, let

1 ={a,bcd}; £€={B|BCS} (7}

For an event B € £, define # B to be the cardinality of B. Also let

A=1U{f,g}. (8)
Define 8:£ —+ A by W wmeg
+ 1 =¥
_ ) B, #B={z};
SB)=9(f), it#B=2orB=1 ©)
{oh, if#B=3.

That & is not SEU rational is easily demonstrated by contradiction. Let A = {a}, J = {b,¢},
and K = {b,¢,d},. Suppose that the mapping u: A = M were to satisfy the SEU-rationality
condition (6). By (6) and (9}, us(J) > uy(J) and up(A v J) < uy(A vV J). By the additivity
property (5) of a signed measure, therefore, u7(A4) < uy(A). However, analogous reasoning involving
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substitution of K for J and transposition of f and g, leads to the contradictory conclusion that
ug(A) < ‘U.f(A).

It is well known that there exist decision rules that are not SEU rational. What makes this
example noteworthy is the additional fact, to be proved below, that every contingent plan induced
by & (and an arbitrary sequence of partitions satisfying (4)) does conform to SEU theory. To
provide some intuition for that result, let me explain now why the demonstration that § is not
SEU rational cannot be applied to any contingent plan induced by 4. Recall that the domain of a
contingent plan w is the union of a sequence of partitions ordered by refinement. It is easily seen
that, if A and B are any two elements of such a union, then either ANB = Aor AAB =B or
A A B = (. (This can be proved by induction on the number of partitions in the sequence, and it
is also intuitively obvious from drawing a Venn diagram of such a sequence.) In the demonstration
that & is not SEU rational, information about the images of § at both AV J and K are used.
Observe that (AVJ)A K = J, and that J # AV J and J # K, so that AV J and K cannot both
occur in a sequence of partitions ordered by refinement. In any contingent plan, then, the decision
maker’s choice at one of these events or the other will be uncbserved.

The kind of example presented here is pervasive. To see this, extend the cardinality operator
# to events in an arbitrary finite Boolean algebra by specifying that #B is the cardinality (in the
usual sense) of the finest partition of B. (Thus #1 denotes the “cardinality” of the unit element
of £. If £ is the field of all subsets of a set 5, then 1 = .5, so #1 is the cardinality of §.) Also, if
A € &, then define £4 to be the Boolean algebra of elements A A B for all B € £. (In particular,
&, = £.) The following lemma, which is proved in the same manner as the analysis that has just
been made of the example, shows how to construct a decision rule that violates SEU rationality at
many places.

Lemma 1: Let £ be a finite Boolean algebra. Define C = {C € £]#C is odd and #C < (#1)/2}.
Let A=CU{f, g}, where f #gand CN{f,g} =@ Define &:£ + A by

A iEB=
_j{B}, ¥Beg
§(B) = {7}, if+#B iseven;
{9}, if #B isodd and #B > (#1)/2.

Then, for any A € £ such that #A4 > (F#1)/2 + 3, £4 i3 not SEU rational.

5. SEU-rational contingent plans

Although the decision rules constructed in the preceding section are not SEU rational, they always
induce SEU-rational contingent plans. This fact will be proved by means of the following theorem,
which adapts to the present context a result of Green and Park (1993). The theorem is proved in
the appendix.

Theorem 1: A contingent plan n with domain |, ., I is SEU rational if it satisfies three
conditions for all events A, B, and € in its domain.
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HA=BvCand BAC =0and ¢ € n(B) and a € n{C), then a € n(4). (11)

IfA=BvCand BAC=0and a € n(B) and a € n(C) and b ¢ «(B), then b & w(A). (12}

w(A) # 0. (13)

Condition (11) states that, if event A is partitioned into events B abd C, and if the decision
maker would be willing to choose act a if he were certain of either B or €, then he must be willing
to chose ¢ if he is certain of event 4. Condition (12} states that if the decision maker has at least
one such “sure-thing” act, and if there is one of the two specific events comprised by A in which
he would be unwilling to choose another act &, then he must not be willing to choose b in event
A. Condition (13), which states that in any event there must be at least one act that the decision
maker would be willing to choose, is motivated by the idea that the decision maker’s conditional
choices reflect optimization with respect to consistent preferences on the finite set A.

Green and Park (1993) use this theorem provide some idea of the stringency of conditions
(11)—(13). They show that a single-valued minimax-loss or minimax-regret decision rule always
(that is, for any partition sequence) induces a contingent plan that is SEU-rational. That result does
not address the specific question being stndied in this paper, though, because it is consistent with
the possibility that a minimax-loss or minimax-regret decision rule may always be SEU rational
on its full domain if it is single-valued. However, Green and Park do address the present question
by constructing an example in which a decision rule induces a contingent plan that is not SEU
rational. The decision rule in the example is obtained by maximizing an instance of Chew's (1983}
“weighted-utility” preference. It is noteworthy that Chew introduced that class of preferences
in order to provide a relatively parsimonious generalization of expected-utility theory that would
accomodate experimental evidence regarding Allais’ paradox. Thus the example would support
the view that behavior that is incongistent with SEU rationality should presumably be observable
outside the laboratory, if it can be elicited from experimental subjects inside the laboratory. Now
I turn to the analysis of the examples constructed in the proceding section, and I show that such
a view does not necessarily have to be taken.
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6. SEU rationality of contingent plans induced by SEU-irrational decision rules

The decision rules defined at the beginning of section 4 and in lemma 1 can be shown always to
induce SEU-rational contingent plans, by showing that it satisfies conditions (11)—(13) of theorem
1.% Specifically, consider the decision rule § defined by condition (10) in lemma 1. Clearly J satisfies
condition (13} of being nonempty valued. Moreover, since 4§ is single valued (except at 0), condition
(11) implies condition (12). To see this, suppose that the antecedent of (12) is true. Then, by (11),
a € §(A). Since b ¢ w(B), B # 0 and therefore A # 0. Since 4 is single valued at A4, b ¢ §(A).
That is the conclusion of (12), so the implication (12) ig true.

Thus only condition (11) has to be checked. Suppose, therefore, that A = B V C and that
B AC = 0. To consider the case that B = 0 or C = 0, assume without loss of generality that
B = 0. Then A = C, so (11) is tauntological. If neither B = 0 nor C = 0, then there are three
posgibilities. Either both #B and #C are even, or else both #B and #C are odd and at least one
of them is no larger than (#1)/2 (since BAC = 0), or else one of #B and #C is even and the other
is odd. In the first case, #A4 is also even, so §(B) = §(C) = 8(A) = {f} by definition (10}, so (11)
is true. In both of the remaining cases, (10) implies that there are x and y such that é(B) = {z}
and 6(C) = {y} and z # y, so the antecedent of implication (11) must false because there can be
no a such that a € §(B) and a € §(C). Therefore (11) is true. This proves the following resuls.

Theorem 2: If 7 is induced by the decision rule § defined by (10), together with any sequence of
partitions satisfying (4), then « is SEU rational. '

¢ Lemma 1 does not show that the decision rule in the example given at the beginning of section 4 is not SEU
rational, because in that example #1 < (#1)/2+ 3. The bound (#1)/2 + 3 can actually be improved to (#1}/2-+2,
though, except in the case that #1 is divisible by 2 but not by 4. That improvement subsumes the example.
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Appendix: Proof of Theorem 1

Conditions (11) and (12) imply that
If © is a partition of A, then ﬂ 7(B) =w(A) or ﬂ n(B) = 0. (14)
Beg® Beo

Signed measures u, for a € A will be defined from a function V: A x {J,,¢, lIm —+ R. The
function V is defined recursively on the partitions Il,,, as follows. The basis step is that, if B € I,
then B =1 and

_J1, ifae=(l);
Vie,1) = { 0, ifagr(l); (15)
For the recursion step, let ¢: UmSn II,, = A be a selection from =. {That is, Vde

Um<n Im ¢(A) € m(A).) Suppose that m < n and that V has been defined on A % II;,. The next
pa.rfftion IT,41 can be expressed uniquely as a union | Joery, @ ¢, where each ©¢ is a partition of
C. For each a € A and for each C € Il,, define O, to be the set of B € O¢ such that either
a € m(B) or else YD €O¢ o ¢ w(D). Now, for each a € A, extend the definition of V to {a} X Q¢
by specifying that

V(HC),C),  ifa€n(B)and peo, (B) #0;
V(e,B) = V($(C),C) +1, ife€ n(B)and Ngee, n(B) =0 (16)
V(a, A4), ifYDe@¢ a ¢ x(D);
Complete the extension of V' to A x ©¢ by specifying that
If B ¢ Oqc, then V(a, B) = p < V(a,C), (17)
where p solves the equation
3 [Vie,D) - #D]+p[#C - ¥ #D] = V(e,0) - #C. (18)
Deeac DEeuC

It must be proved that the equation (18) always possesses a solution, and that this solution
satisfies the inequality in (17). Both of these facts are guaranteed by (14), as is shown by Green
and Park (1993).

Conditions (17) and (18) are essentially a martingale condition, with respect to counting
measure on the atoms of £ (that is, the elements D € £ such that #D = 1), for the conditional
expected utility V(a, B) of taking act a. By the martingale convergence theorem, for each a there
is a signed measure u, € M that satisfies

vBe | ) M, ua(B) =V(a,B). (19)
m<n
By induction on m, using conditions (16) and (17),
vBe | J M, #(B) = {alVa'eA V(d',B) < V(a,B). (20)
man .

Conditions (19) and (20) together imply condition (6) which defines SEU rationality. W
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