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ABSTRACT

Constant returns to scale is a central construct of neoclassical theory. Previous studies argued that one must
adopt a specification of the production function with substantial unobserved service variation to reconcile
constant returns with the data. Some economists have argued that this finding has not resolved the size of
returns to scale, since factor service variation is unobserved, and there is no generally accepted theory to guide
specification of this alternative framework. In this paper we show that the stochastic version of the
neoclassical growth model delivers an orthogonality condition which can be used to estimate returns to scale.
Rather than the standard finding of increasing returns, we show that standard thecry and conventional
measures of output and inputs yield estimates of constant returns to scale at the aggregate level. Our estimates
also suggest that factor service variation is not an important determinant of output fluctuations.
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1. Introduction

The size of returns to scale in the aggregate production function has important impli-
cations for many questions in macroeconomics. Analyses of business cycles, growth, and the
scope of government policy depend fundamentally on whether there are constant returns to
scale (CRS) or increasing returns to scale (IRS). For example, with IRS, competitive equilib-
ria are no longer Pareto optimal, and there may be an important, welfare enhancing role for
activist fiscal and/or monetary policy. With regard to growth, if the aggregate production
technology is CRS and depends on measured inputs of capital and labor, then long-run growth
appears to be primarily determined by technological factors, while models which exhibit IRS
can imply that growth is largely due to increases in accumulable factors. Finally, while busi-
ness cycle models driven primarily by demand shocks are difficult to reconcile with aggregate
data U.S. data if the aggregate production function is assumed to have CRS, demand shock
models with IRS can be reconciled easily with the data.

A number of recent studies have estimated the extent of returns to scale. Two main
findings emerge from this literature. The first is that estimation of the conventional produc-
tion function with standard measures of output and inputs produces estimates of increasing
returns to scale (see for example Hall (1988), King and Baxter (1991), and the discussion
by Burnside, Eichenbaum and Rebelo (1995)). This finding has motivated researchers to
estimate returns to scale using different methods, specifications, and data. The second main
finding, which is drawn from these very recent studies, is that constant returns to scale esti-
mates can be obtained, provided that an alternative specification of the production function
is adopted, with substantial unmeasured variation in capital and/or labor services (Burnside,
Eichenbaum and Rebelo (1995), Basu(1995), Basu and Fernald {1995)).

However, the methodologies used in these studies have been questioned, and the find-
ings of constant returns to scale has been discounted. Hall (1995) has criticized the specifi-

cation of non-standard production functions and the proxies used for the true unmeasured

1An exception to this is Shapiro {1993) who uses unpublished data from the Census’s Survey of Plant
Capacity to estimate the workweek of capital between 1977-1988. He finds that when capital hours are taken
into account there is no evidence of increasing returns in a panel of four-digit manufacturing industries.
Unfortunately, the short duration of the data and the limitations on its coverage precludes its use given our
focus on aggregate annual data.



inputs. First, he notes that there are many proxies for labor and/or capital services that can
yield constant returns to scale, and that the common feature of these proxies is that they
are highly correlated with output. However, input services are unobservable in these models,
and theory provides little guidance in choosing alternative specifications of the production
function or proxies for factor services. Thus, he argues that it is not clear what type of
alternative specification or data proxy are reasonable, or what the appropriate criteria are for
choosing among different specifications. He concludes from these observations that estimates
of constant returns from these alternative specifications are not compelling.

Given these criticisms of this recent literature, we estimate returns to scale in the
aggregate production function using standard theory and measurement, but we use an esti-
mation technique that differs from methods used in earlier studies. In developing our analysis,
we note that estimating returns to scale typically requires the use of instrumental variables.
This is an important issue, since it is difficult to find variables that are arguably uncorrelated
with the “error term” ,. but reasonably correlated with the endogenous variables in the model.
We show that the neoclassical growth model implies an orthogonality condition between the
capital stock, which is predetermined, and the innovation to the Solow parameter (total fac-
tor productivity) only at the true value of returns to scale. In addition, we show that capital
is correlated with the endogenous variables. This suggests that capital is a good instrument.
We exploit this orthogonality condition implied by the growth model to estimate returns to
scale using a simple method of moments procedure. Our results are surprising, in that our
findings provide evidence against both components of the conventional view. The estimates
show that (i) U.S. data appear to be broadly consistent with CRS with standard theory and
measurement, and (ii) assuming that returns are not decreasing, there is little unobserved
cyclical service variation.

To test the robustness of our results, we show that estimates of returns to scale are
roughly one for a variety of different stochastic specifications for the Solow process. These
include integrated processes, such as log-random walk with drift, and also autoregressive
processes that are stationary around time trends. Moreover, the finding of constant returns
is not sensitive to a more complicated specification of the Solow parameter, which in addition

to the its own past history, includes other variables such as government spending, capital and




labor tax shocks. We also show that even allowing for plausible amounts of measurement
error in capital does not significantly change our findings.

Since part of the motivation of this analysis comes from critiques of studies that have
adopted different specifications of the production function with unmeasured factor service
variation, we summarize the well known papers in this area. This is discussed in section
2. The economic model we use in our analysis is presented in section 3. Our estimation
technique is presented in section 4. Our results are presented in section 5. Section 6 provides

a summary and conclusion.

2. Literature Review

There is an extensive and old literature that has estimated returns to scale. Despite
the large number of empirical studies, there has been lack of consensus on returns to scale
at the aggregate level. This is due partially to the fact that different methods and data have
yielded different returns to scale estimates, but also reflects the fact that identifying and
consistently estimating returns to scale is very difficult, requiring a number of strong, and
in some cases questionable, identifying and exogeneity assumptions. This has led economists
to question seriously the empirical findings from this literature, and more recently, to try to
develop new techniques and use alternative data to produce more robust estimates of returns
to scale.

The fundamental problem in estimating returns to scale is that the shock to the pro-
duction function is unobservable, and that theory predicts that the inputs are correlated with
this shock. To understand this problem, consider the standard log-linear representation of
the production function y = X\; + 6:k + (1 — 8,)i;, where A, is the log of the technology
parameter, k; is the log of the capital stock and [, is the log of total hours. It is very common
in the literature to assume that the technology parameter follows a random walk with drift

process and hence to work with this specification in first-difference form:
Ayf, ="fo+'}’1[9/_\.kt+ (1""9)Alt]+€¢, 7 (1)

where ¢; is assumed to be the innovation to the technology process. However, estimating

a relationship like (1) under ordinary least squares (OLS) would lead to upwardly biased
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estimates, since the OLS estimate is % = v+ {X'X)~' X'e, (where the elements of X are the
inputs), and standard theory predicts that some elements of X and € positively covary.

Recent approaches to estimating returns to scale have tried to address this issue by
using instrumental variables. For example, Hall (1988) used instrumental variables, and found
evidence that was inconsistent with competitive behavior and a constant-returns-to-scale
production function in sectoral data. Hall tested whether (Ay, — Ak) — (1 = G,)(AL — Aky)
was orthogonal to instruments which he argued on a priori grounds were orthogonal to the
rate of technological progress, but not to the level of factor inputs. These instruments were
the first-differences of the “Ramey instruments” which include: (1) the political party of the
president, (2) the nominal price of oil, and (3) the level of military spending. Hall found
strong evidence against a zero correlation. Motivated by this work, a number of other studies
have found in favor of increasing returns using the standard production function and standard
inputs.

An alternative interpretation of this evidence has been to argue that the inputs have
been mis-measured, and in particular, that standard measurement of capital and labor signif-
icantly understate the true variability of these inputs. This argument suggests that estimates
of returns to scale based on conventional input measures will be biased upwards if the ra-
tio of true factor services to measured factor services is procyclical. There are two notable
approaches have been used which focus on the mis-measurement of inputs, and how to deal
with the unobservability of true factor services. The first strategy, as exemplified by Burn-
side, Eichenbaum and Rebelo (BER) (1995) and Caballero and Lyons (CL) (1992) has used
electricity or energy consumption to measure the cyclical variation in factor services. The
second strategy, as exemplified by Basu and Fernald (1994) and Basu(1995) (BF), has used
materials as a proxy for true capital and labor services within a gross output production

function, rather than value-added.?

2Baxter and King pursue a third strategy. They consider a dyramic general equilibrium model in which
there are both preference and productivity shocks. The specification of their model is such that they can use
the observed quantities to infer both the preference and productivity shocks given the observed quantities and
the returns parameter. They estimate the stochastic process generating both the technology and preference
shock process and then simulate their model gven these processes, They argue that the model with the
returns parameter equal to 1.3 does a better job of matching the data. While their results are interesting,
their finding seems quite sensitive to the assumed form of preferences and the preference shock.



Under the first strategy, BER and CL argue that capital services are not proportional
to the capital stock, but rather that there are substantial variations in how intensively capital
is used. BER construct an alternative measure of capital services which assumes that true
capital input is a function of energy. However, this raises the difficulty of seeking to divide
the observed change in Ay, — (1 —8)Al: into an increase in capital services and an increase in
technology. BER develop a structural relationships relating true capital input to electricity
consumption, and used this structural relationship to substitute for capital services in the
production function. Their preferred specification for capital services was K* = vE, which

implies that Ak} = Ae,. This specification yields an equation of the form:

Dy = o + nl0De + (1 — ) Aly] + €. (2)

To understand the implications of use of electricity as a proxy for capital services, we
have plotted in figure 1 total factor productivity under the assumption of constant returns to
scale and that true capital input is proportional to electricity use, as in the BER spe_ciﬁca,tion.
The solid line is the log of TFP (up to a constant) under the assumption that the relevant
measure of elet-:tricity is industrial consumption, which is the measure used by BER. The
dashed line is TFP under the assumption that the relevant measure of electricity is industrial
plus commercial ‘electric use. The behavior of productivity implied by these measures seems
puzzling. Under both measures, productivity drops sharply between 1948 and 1956. With the
narrower measure of electricity use there is no productivity growth relative to the initial level
for the first 30 years, while the broader measure implies that there has been no productivity
growth over the entire postwar period. This figure confirms that on average, electricity use
has grown significantly faster than the capital stock, and that its use for measuring total
factor productivity may be inappropriate.?

BER argue that while the level of total factor productivity may be biased by the
electricity proxy, the cyclical implications of this proxy may not suffer from this problem.
-To explore fhis issue, we have estimated returns using OLS for the standard i)roduction

specification in equation (1), and for the BER specification in equation (2). These results are

3The trend in the electricity/capital ratio, and its implications for productivity measurement, are discussed
in the Survey of Current Business, 1972,



presented in table 1 and are over the 1949-1993 period using annual data.* These estimates
show that returns to scale is sensitive to the inclusion of electricity in the production function.
The standard specification generates evidence of increasing returns, thought this estimate is
likley biased upwards. In fact, it is interesting to note that this estimate is roughly what
one would expect from a real business cycle model with a CRS production function; use of
calculations similar to Aiyagari (1994) suggest the regression coefficient bias may be on the
order of 0.15 to 0.4.5 The BER formulation yields returns to scale of .76, which implies
decreasing returns. Moreover, since QLS estimates may be biased upwards substantially, .76

can be reasonably viewed as an upper bound on returns to scale®.

Table 1: OLS Estimates
cases/parameters | Yo T R?
ST 0.009 | 1.20 .80

(.002) | (.092)
BER 0.006 | 0.76 83
(.002) | (.052)

An alternative strategy has been pursued by Basu, and Basu and Fernald, who specify
a sectoral gross output production function, rather than value added. They use materials
(intermediate inputs) as a proxy for capital and labor. To gain insight into their approach,

assume that the production function for gross output is given by:

yi = HOVF(k, 1), A8'ms).

4The electricity data was from the Energy Information Adminestration’s Annual Energy Review 1994,
table 8.6, and is electric utility retail sales by end-use-sector measured in billions of kilowatthours. We
discuss the other data in more detail in section 5 when we present cur results.

SFollowing Aiyagari (1994) assume detrended labor input is given by [, = v A¢ + (;, where (; represents all
the fluctuations in [; arising from factors that are orthogonal to the contemporaneous productivity level, and
that detrended output is yy = A, + (1 —8)l;. Assume that the values of ~;, var(¢)/var(A), and 8 are chosen so
that the model correctly predicts that: (1) productivity and labor input are uncorrelated, (2) the variablility
of labor input relative to output is 0.85, and (3) labor's factor share matches its long term average of about
0.7. Condition (1) implies that cov(y,l¢) = var(l;), and that a regression of y, on (1~ @)l recovers a value of
1.4 (= 1/(1 - 8)). If we included capital in our analysis, this would tend to lower the coefficient since capital
is less correlated with output than is labor.

6BER find roughly constant returns to scale, using the 1977-93 sample period, quarterly data, and instru-
mental variables.



If H is linear homogeneous and Al* = A% = !, then this can be written as:
v, = NH(F(ki, 1), my),

This is the specification adopted by Basu-Fernald. Since they find that the growth rates of
materials and output at the sectoral level are virtually perfectly correlated, their preferred
specification of H is Leontieff. Given this specification, they estimate the relationship between
materials and gross output using the Ramey instruments.” They find in favor of moderate
increasing returns to scale.

Materials are a good proxy for capital and labor services under the assumption that
At = A¥. However, this assumption does not seem to be consistent with conventional theories
of technical progress, which assume that advances in technology are embodied in labor (human
capital) or new capital equipment (vintage capital models). If this assumption was not
satisfied, then materials may not be a useful proxy for capital and labor services. We argue
that the maintained assumption is inconsistent with U.S. manufacturing data. Our argument
is based on the relationship between material and gross output. The BF data (from the
manufacturing sector), are presented in figure 2. The most striking feature of these data is
that the raw growth rates of these two series are virtually identical. This observation has
several important implications. First, it implies that y;/m} is constant. Thus, either the
relative price of materials has also been constant during this period, or H is Leontieff, which
seems to be their preferred specification. However, if H is Leontieff, then the growth rate
in X! must be zero, since the growth rate in gross output is the sum of the minimum of the
growth rates of value added and materials, plus the growth rate of the technology parameter.
Thus, the nearly perfect correlation between gross output and materials, with a Leontieff
specification, implies no technical progress over the postwar period.

An alternative interpretation is that technological innovations have come in the form
_ of changes to A{* and not to A¥. However, this implies that materials may be a good proxy

for y or ALF(k}, 1), but not F(k}, 3). Moreover, this suggests that OLS estimation of gross

"When they assume that H is homogenous, they estimate the returns parameter along with the elasticity
of substitution using the relative price of materials and the Ramey instruments.



output on materials should recover a coefficient of roughly 1 {CRS).

From this perspective, it is surprising that the BF IV estimates show moderately in-
creasing returns to scale, since instruments should correct for the possible upward bias in
OLS estimation. Given the presumption that OLS is biased upwards, this suggests that ei-
ther the instrument is correlated with the true innovation, or that the model is mis-specified.®
Additionally, the Solow residual backed out by BF and BER is uncorrelated with the inputs.
Rather than a theoretic.a.l puzzle, this finding may also be due to instruments that are corre-
lated with the true productivity shock.

The main difficulty with seeking to uses proxies for unmeasured service variation is
that there are three unmeasured components in the production function: capital services,
labor services and productivity. As Hall (1995) points out, there is no standard, accepted
theory for cyclical factor utilization to help guide the specification of the alternative model.
He notes that “it is well established that adding a free variable to a cyclical productivity
equation will eliminate evidence of increasing returns to scale. These free variables are highly
correlated with cutput. Research now needs to turn to the issue of whether the role of the free
variable makes sense as a matter of theory...” The theoretical and measurement difficulties
associated with these alternative specifications lead us to estimate returns to scale using
the standard production function with conventional measures of inputs, but with different

techniques than those used in previous research.

3. Model

The basic model is similar to that used by Benhabib and Farmer (1994) and Baxter
and King (1992). Time is discrete, and there is a single capital/consumption good produced
each period. There is a measure one number of identical infinitely lived consumers. The

individuals’ preferences and budget constraint are given by:

E{i ﬁ‘u(ct, 1 - Iy, di)}

t=g - -

Yo+ (1= 6)ke = e + kepr + beg — meby + 71,

8This result may also reflect the fact that the Ramey instruments are not highly correlated with inputs;
see for example, John Shea (1993) and BER.



where b, and r; denote the individuals borrowing level and the gross interest rate respectively,
and 7; denotes a lump-sum tax, ¢; is consumption, 1 — I, is leisure {non-market time), and d;

is a preference (or home production) shock.? Per-capita production is given by:
Y = MF(k, lt)Y¢

where k; and [, denote the individuals levels of capital and labor, and Y; is aggregate per-
capita output.'® Following other work in this literature, we assume that the production
function F(-) is a linear homogeneous Cobb-Douglas function with “capital’'s share” given
by 6. The term ), is the aggregate technology shock. The parameter ¢ determines the size
of the externality. The economy is defined as “neoclassical” {aggregate constant returns to
scale) if ¢ = 0. While we pursue our analysis within the context of a model where increasing
returns reflects an externality, our set-up is also consistent with increasing returns internal
to the organization, provided that pure profits are negligible.

We define €, as a 4 x 1 vector of i.i.d. random variables, with €' = {e,}{_o. Let the
¢t period realization of the technology shock, the government spending shock, the preference
shock, and, where relevant, the sunspot variable be given by A:(€*), g:(€*), di(€’) and v,(e*).

The government'’s budget constraint is
gt =T
The aggregate level of (per-capita) output is given by
Y; = [(AF(K,, L) 7 = [AthL}‘a]-l_l‘_" .

An equilibrium for this economy consists of a set of functions which describe: (i) the
consumer’s policy {c, {i, kes1}(et), (ii) the gross interest rate {r,(¢')}, and (iii) aggregate per

capita output {7:(¢")} such that -

98ince households are identical, there will be no borrowing in equilibrium.
0The assumption that the aggregate externality is depends upon the level of per capita as opposed to

aggregate output is driven by the cobservation that large countries do not seem to be more productive than
small countries.



1. Consumer’s maximize with {c;, s, k41 }(¢!) and by = 0, given {r¢(¢*)} and {#:(¢")}.
2. The equation of motion for aggregate output is consistent with individual produc-
tion decisions, or

Y = [’\tF(kt,lz)]Tl—"-

4. Estimating the Size of the Aggregate Externality Parameter

To identify total returns to scale, which in this model we denote as v = 1/(1 —
@), we exploit the fact that the stochastic version of the Cass-Koopmans model implies
that the current period capital stock will be uncorrelated with the unpredictable component
{(innovation) to the technology shock process A only for the true 1, ¥*. This orthogonality
condition comes from the fact that rational, optimizing individuals will take into account
relevant information when making investment decisions. Since these decisions depend upon
expected future events, individuals must make forecasts of these events, and one property of a
good forecast is that the capital stock will be uncorrelated with the unpredictable component
of the technology shock. For all other values for this parameter, the capital stock will be
correlated with the innovation to the measured technology shock, since the measured process
at a wrong value of ¥ will be a function of not only the true process, but also of capital
and labor!!. Given the orthogonality between the innovation to the technology shock process
and the capital stock at ¥*, we use method of moments to estimate this parameter. In
particular, the estimate of ¥ in the method of moments framework is that which sets the
sample covariance between the innovation to the technology shock and capital to zero. The
maintained identifying assumption in our analysis, as in any IV estimation, is that we specify
a stochastic process for the technology shock.!? Rather than choosing one process, we will

conduct our analysis under a number of alternative models for the technology shock.

U This is true as long as fvar(k) # (8 — 1)cov(k,[).
1214 is easy to show that given a & # ¢, one can construct an alternative technology shock process A,(e)
such that A )
Me%)ye(€)? = Ael(e¥)ye(eh)?,
and hence the economy with this new shock process and externaltiy parameter would be observationally
equivalent to the first economy. However, this second economy will typically involve assuming a high order

process for the technology shock since capital will typically depend in a complicated way on the history of
past shocks.
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A. The First Order Integrated Case:

We first consider estimating 7 under the assumption that the true technology shock

process () is a log-random walk with drift:

In(A) = In(Ae_q) + o+ €

Given the assumption of an integrated process, the moment conditions are E{h{x, w:)} =0,

where x = (¥, ),

Aln(K,)e}

h(Xa wt) = )
€

and w,; denotes a sample realization. The sample moment conditions for estimating the

parameters ¥ and y are given by:

£ (Aln(K,) &) =0 ®)

1 .
where T is the effective sample size.

Choosing parameters to satisfy these moment conditions can be handled in the stan-
dard method of moments framework of Hansen (1982). Given the nature of the problem, it
reduces to a simple linear case, and standard errors of parameters can be computed using the
usual formulas!®. Substituting for &} = Ay, /1 — 80k, — (1 — 8)Al; — p yields two equations
in two unknowns from which we can derive our estimates of ¢ and u:

% Z(Akt(Ayt/Tﬁ — 00k, — (1 - 0)AL — 1)) 0

9’()2) ZT) = 1 ~ . = )
7 S Ay /Y — 00k, — (1 — 0)AL — 1) 0

where x = (1/}, {1} denotes our vector of parameters, and Zr denotes our set of sample obser-

13Christiano and den Haan (1995) note that estimation of standard errors may be misleading in sample
sizes typically encountered in macroeconomics for dependent processes. Under our theory, the innovation to
the technology shock process is an i.i.d. random variable, and thus should not suffer as much from these
problems.
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vations. The asymptotic standard errors of the parameter estimates are given by:

{[dg(x; ZT)] - [dg(x; zT)}’}"l
dx dx

where S is the asymptotic variance of the sample mean of the moment conditions:

5= 3 B{lrbowdllktoweal).

U=—00

Here
; (Akt)20'3 Aktgg i T
E{[h(x,wt)][h(x, wt—v)] = } ifv =0,
Ak;o? a2
and
, 0 0| .
E{[h’(X1w¢)][h’(X1 wt—v)] = [ 00 } if v ?l" 01

since given our theory &7 is i.i.d. Thus our sample estimate of .S, S, is given by the variance-

covariance matrix of the sample moment conditions or

S=1/nY

(Aktég‘)2 Akt(éi‘)g
Ak(E)2 (@2 |

The matrix of first-partial derivatives is given by

dg(X; Z1) _
dx

~(1/T) S Aplkef9? —(1/T) T Ay /3
—(1/T)E Ak -1

Thus the sample estimate for the standard errors is given by

1 ([do(: 2r)] s, [da(x 20)1\ "
HE=EE

B. Higher Order Shock Specifications:

It is straightforward to estimate 7 using this technique for any technology shock

process that is a stationary and finite stochastic process. For example, suppose that the

12



true process was AR(Q) around a deterministic trend, rather than the first-order integrated

process described above. After detrending, this process is:

Q
In{A,) =Z piIn{ X 1) + €,

i=1

In this case, the @ autoregressive parameters {p;} would be estimated with ¢ additional

moment conditions of the form:

;}Z(m()\t_i) e,)=0, i=1,..Q

Moreover, given that the lag order of the technology shock process typically will be unknown,
it is straightforward to test for lag-length truncation. More general stochastic processes for

the technology shock also could be handled in this framework.

C. Time Varying Drift Term:

In our analysis, returns to scale are identified by a moment condition requiring orthog-
onality between capital and the unpredictable component in the technology shock. Given the
extensive discussion of the productivity slowdown in the growth literature, a natural feature
to incorporate into our specification of the shock process is a trend break in the technology
shock process. It is straightforward to do this in our model. For example, assume that the
drift term follows a finite state Markov process, and that the drift term in period ¢, p, is
known as of period ¢ — 1.

In this case the unanticipated innovation to productivity parameter is still ;. Condi-
tional on the econometrician being able to identify the date of the drift break, our moment
conditions in the integrated case, (3) & (4), change slightly. Assume that there is a single
drift break during our sample in period 77. Then our moment condition becomes

7 ey (Bke(Aye/ — 08k — (L= 0)AL — dyjiy — (1 = di)in)) |
9(%; Zr) = LyT (Aye/th — 00k, — (1 — 6)AL — f)d, =
L3 (Age/ — 00k — (1= 0)AL — fo)(1 = dy)

n B ane T e |
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where ¥ = (1,5, fi1, fi2), and d; is a dummy variable which takes on a value of one for allt < T’
and a value of zero otherwise. The specification of the sample standard errors for this drift
break specification are given in the Appendix.

An alternative specification would be to assume that the current drift term is known,

but that the future term is not. In particular, consider the two-state specification:

Pr(pes1) = pslpe = py = o

with Markov transition matrix:

aq | 2

Qg1 | Qa2

If we assume that o;; and «;; are near 1, and the p; and g; are not much different,
then the conditional expectation of the drift term is roughly equal to its current level. In this
case the unanticipated innovation in the technology parameter is approximately equal to ¢; in
periods in which no change in the drift term occurs, and approximately equal to € + s — 2y
in periods in which a break occurs. In this case, the first equation in the moment condition
is

T
Z (Ak(Ay/ 1/1 0Ak, — (1 —0)AlL —dijiy —~ (1 = dp) 1)) = 0,

*-BI

where d; takes on a value of one for all £ < T”, and zero otherwise.

5. Findings

Given our focus on the aggregate production function, we conduct our analysis using
the standard measures of aggregate output and inputs. This also facilitates comparison of our
findings with other estimates in the literature. The output data is real GDP. In our sensitivity
analysis, we also examine somewhat narrower measures of aggregate output. The source for
the aggregate capital stock was Fixed Reproducible Tangible Wealth, and includes residential,
nonremdentml government and pr1vate busmess cap1tal The source for the agtrregate labor
input series was the Survey of Current Business, Total Hours Worked by Full-Time and Part-
Time Employees (Table 6.9C). The sample period is over 1948-1993, and the frequency of

14



the data is annual®*. We assume that capital’s share of income (#) is equal to the average
of the ratio of unambiguous capital income (depreciation, dividends, corporate profits, rental
income of persons, net interest) to the sum of unambiguous income of capital and labor

(compensation of employees) over this period, which is approximately .30 in the data.

A. Specification 1: Log Random Walk with Drift Process
We consider a number of alternative specifications of this stochastic process to evaluate
the robustness of our findings. Our first specification is that the true productivity shock is a

log random walk with drift:
ln(At) = ln(At_l) + L + Ext

E(&At) = 0, E(EAt)z = 02

Ex

Denoting k = In{K), and é,; as the sample estimate of the disturbance term, the

sample moment conditions that are used to estimate the parameters 1 and u are:

1
T Z(Ak €x) =0

1
ngAt "'—"0

This specification is a natural starting point, since it is the most commonly employed
specification in the literature (Basu and Fernald, Caballero and Lyons, Baxter and King,
Burnside, Fichenbaum, and Rebelo, Hall, and Evans ). The common use of this statistical
model reflects two observations. First, under the assumption of constant returns to scale, it
is a reasonably good characterization for the measured process (Prescott {1986)). Second,
one can take a log-linear approximation to a general, homogeneous, production function that

yields a log-differenced equation to be estimated that relates the percent change in output

14We use annual data, since the pure measurement quality of the data is probably better at this frequency
than at the quarterly frequency, and also because seasonal adjustment is not an issue at the annual frequency.
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to income-weighted percent changes in inputs. A key issue that is often unstated in this
literature is that this log-differenced specification implicitly assumes a log-shock process that
is serially uncorrelated in first differences. The log random walk with drift process satisfies
this restriction.

In this specification, the relevant moment condition is to set the covariance between
the percentage change in capital and the innovation to the technology shock to zero. This
is useful, because if the capital stock has persistent measurement error, as would be the
case if depreciation rates are measured with error, the log-differenced specification would
tend to eliminate some of that mis-measurement. Thus, under the assumption of persistent
measurement error, the measurement of log-differenced capital will be more accurate than
the measurement of the raw capital stock!?.

To gain insight into how our moment procedure works, we present in Figure 1 the
correlation between the percentage change in capital, and the innovation to the technology
shock for values of returns to scale ranging from 0.1 to 2.0 over the full postwar sample. This
figure reveals a number of interesting features that provide intuition about our technique, and
that also shed new light on externality values that have been used in the recent literature.
Given our theory, the covariance between (de-meaned) log-differenced capital and the implied

innovation to the technology shock at any conjectured ¥ is:

Ve, + t;(BAln(K) +(1-6)AIn(L))])

7 ZA(E) (Gor +

First, this covariance is zero only for the true externality parameter, ¢ = 113, which occurs
in U.S. data near 1 (.984). Second, our theory predicts that the covariance between these
variables should be: (1) positive for ¥ < ¥, (2) negative for ¢ > %, and (3) that this
covariance should decline monotonically as 1,5 rises'®. These predictions from our theory are

exactly consistent with postwar U.S. observations: the correlation is positive for values of

15We discuss measurement error in detail in section 6. ‘

16These implications of our theory hold provided that fvar(AIn(K}) + (1 — #)cov(Aln(X), Aln(L)) >
0,which is satisfied in the data. If this expression was negative, rather than positive, monotonicity of the
covariance would still hold, but it would fall as 1 rises, rather than decline. If this expression was exactly
equal to 0, which is not the case, then identification fails.
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¥ < .984,and is negative for values of ¥ > .984.

This figure shows clearly the dependence between the percentage change in capital and
the estimated innovation to the technology shock for the different values of . In addition,
this figure indicates that estimates of the externality parameter that have been used in earlier
literature (e.g. Benhabib and Farmer), such as 1.4, are at variance with the aggregate data. At
i = 1.4, the correlation between the percent change in capital and the estimated innovation
to the technology shock is -.37.

The second column of Table 2a presents the Method of Moments estimates and stan-
dard errors for this basic case. As noted above, the estimate of returns to scale is .984, with a
standard error of .155. The estimated drift in the log random walk is .01, with standard error
of .004. It turns out that the estimates are somewhat sensitive to the first two observations
in the sample. The third column of Table 2 presents estimates over the 1950-1993 period.
The estimate of returns to scale rises from just under 1, to 1.13. The estimate of the drift
term is not much affected. As we will show below, this higher estimate of returns to scale

is very sensitive to the assumption that there is no change in the stochastic process for the

technology shock.

The Effect of the Productivity Slowdown on Estimated Returns to Scale

Our a.nalyéis involves estimating the unpredictable component of the technology shock.
As we noted earlier, it is well known that productivity growth in the U.S. has slowed con-
siderably since the early 1970s. This is seen clearly in Figure 2, which displays total factor
productivity {under the assumption of constant returns to scale) over the entire postwar
period. The average growth rate of TFP between 1948 and 1972 is 1.5 percent, while the
average growth rate since 1973 has been only 0.6 percent. Within the context of our model,
this observation suggests that the stochastic process should be specified to accommodate a
trend (drift) break at the time of the productivity slowdown. Therefore, we consider an

alternative specification for the technology shock:

In{A) =1In(Ae—1) + paDs + pall — Dy) + et

where D, is a dummy variable that is unity prior to the break, and is zero otherwise. We
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analyze break dates in two ways. First, given the prevailing view that there was a technology
slowdown in the early 70’s, we allow for a drift break beginning in 1973.}7 Second, we use
the critical values constructed by Andrews (1993), search over all possible break dates, and
choose the break on the basis of the date of the maximum test statistic. We find that this
occurs with a break after 1965. Therefore, we estimated returns to scale, allowing for a single
break to occur (i) beginning in 1966, or (ii), beginning in 1973.

The estimates for the drift break specifications for both the full sample and the re-
stricted sample are presented in Tables 2b and 2c. The final row of table 2b reports the
J-test statistic for no break. For both the full and sub-samples with the break occurring after
1965, estimates of returns to scale are near 1, and the standard errors are somewhat lower
than under the single drift specification. We also find in each sample that there is significant
difference in the estimates of the two drift terms. If the break is assumed to have occurred
after 1972, we find a full sample estimate of returns to scale of .81, while the sub-sample
estimate is .91. Thus, there is no point-estimate evidence in favor of increasing returns when

a break is allowed in the drift term of the technology shock process.

B. Specification 2: Trend Stationary with LI.D. Shocks

An alternative process that we consider is a trend stationary process with i.i.d. shocks.
Unlike the standard real business cycle model, this specification features sertally uncorrelated
shocks to technology. This process implies that the serial correlation in measures of the shock
obtained by Prescott (1986) is an artifact of assuming constant returns to scale. Briefly, this
specification of the shock process is not supported by the data. In figure 5, we plot the
correlation of the innovation with detrended capital. We find that at no reasonable estimate
of returns to scale is first-order serial correlation below .75, and moreover, that the correlation
between detrended capital and the innovation is zero only if returns to scale are around 4, a

highly implausible number.

17The findings aren’t senitive to the precise year that we choose the break in the early 1970’s. .
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C. Specification 3: Trend Stationary Autoregressive Process

We next consider a specification that is a trend-stationary autoregressive process in

logs:

In(A) = pln(A—y) + vt + 4+ ex

where p is the serial correlation coefficient, v is the deterministic growth rate, and u is the
constant term. Given the uncertainty over whether aggregate time series are best represented
as an integrated process, or a persistent trend stationary process, this specification is a natural
alternative to our first model for the shock process. The parameters «y, p, i, and ¥can be

estimated using the method of moments.

1 .

? Ext = 0

l % .

T Z)\t—IEAt
1

The findings from the trend-stationary AR(1) specification with no trend break are
presented in Table 3a. The second and third columns of this table presents the findings
with a single trend coeflicient for the full sample and the 1950-1993 sample. In both sam-
ples, estimated returns to scale is about 1.1, and the selj_ial cqr;elatioq is above .8, with a
small standard error. We also conduct the analysis with a trend break. When we again
follow Andrews’s procedure, we find the maximum break statistic to occur beginning 1964.

We therefore estimated the model allowing for a break date (i) beginning in 1964 and (ii)
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beginning in 1973.
Using these two break dates, we find, as in the integrated case, that allowing for a
trend break eliminates estimates of increasing returns to scale. For both break dates, and for

both samples, we find returns to scale between .97 and .99. Moreover, the amount of serial

correlation in the shock falls considerably.

Discussion
Why do estimated returns to scale fall when we allow for a trend break in the tech-
nology shock process? To understand this finding, consider the moment condition in the

integrated case that restricts the covariance of log-differenced capital and the innovation to

the shock to be 0:

%Z{Ak(%&ym(eﬂk—k(l—(?)l)}=0 ()

This expression indicates how the estimate of returns to scale, ¥, depends on (1) the
variance of capital, (2) the covariance between capital and ocutput, and (3) the covariance
between capital and labor. We find that the difference in the estimate of returns to scale
between the single drift specification and the drift break specification is primarily due to
differences in the covariance between capital and labor under these two specifications. In
particular, the growth rate of capital tends to be high prior to 1973, and low afterwards
(2.1 percent prior to 1973, and 1.3 percent after). However, the growth rate of per-capita
labor has the opposite pattern: it is low prior to 1973, and higher afterwards (no growth
before 1973, 0.4 percent after.) Given these different patterns in growth rates between these
series, this implies that the covariance between these two variables will be biased downward
if the means of the growth rates are restricted to be the same over the entire sample. Of
course, this restriction is imposed in the specification of the shock process with a constant
drift parameter. Moreover, if this covariance is biased downward, we see from (5) that it will
tend to increase the returns to scale parameter, 1.

We in fact find that the covariance between capital and labor is significantly lower in
the single drift specification for the 1973 break date. Table 4 presents a correlation matrix

for the variables Ay, Ak, and Al. Note that the correlation between capital and labor is
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46 conditional on a single mean, but is .56 with a mean break in 1973. This issue is also
important for the time trend specification. With the single trend, the correlation between
capital and labor is only -.1, while allowing for a trend break in 1973 results in a correlation
of .72! Given these different trends, specifying the stochastic process to accommodate for a

break in the drift term at the start of the productivity slowdown is important.

D. Specification 4: Vector Shock Processes

Our findings based on the log-differenced and trend stationary specifications of the
technology shock indicate constant returns to scale. Of course, there are other alternative
specifications for the shock process. Among these alternative processes are those which
include other variables in the processes.

Hall (1990) and Evans (1992) find that the Solow residual is correlated with other
macroeconomic variables, such as government spending. Two possible interpretations of this
finding are as follows. First, there could be a component of the technology shock that is
forecasted by government policy variables. Thus, rational agents would use that informa-
tion when . making investment decisions, which implies that their forecasting equation for the
technology shock would include those variables that are useful in prediction. A second inter-
pretation of this_ finding is the argument put forward by Hansen and Prescott (1993), who
interpret implied residuals from production function broadly. In particular, they suggest that
variations in implied technology shocks reflect not only “true” advances in technical progress,
but also are functions of any exogenous influence that affects the efficiency of an organiza-
tion’s ability to produce final output. This observation suggests that changes in government
regulation, such as OSHA and EPA rules, will affect computed productivity residuals.

We pursue this empirically by specifying a shock process in which the technology
shock depends on government policy. For the integrated case, we consider the following

process (with a drift break):
In(A) = In(Am1) + 1 Dy + po(1 — Dy} + Zaigit—l + Ext
i=1

where g is a vector of government policy vartables (specified as percent changes). The variables
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we consider are government spending, labor tax rates, capital tax rates, and the monetary
base. All variables are lagged one period. These variables are chosen since we have consistent
measures available over the entire postwar period, and because other authors have found
some of these variables to be correlated with the Solow residual.!®.

Table 5 presents our findings for the vector integrated case. Our finding of constant
returns to scale is not changed when we include these additional variables in the technology
shock process for the integrated case. We find that returns to scale are .99 and .95 for the
entire sample and the sub-sample with the trend break specification. Table 6 presents the
results for the trend stationary case. These findings are also similar to our earlier results,

with an estimate of 1.12 for the full sample, and 1.02 for the 1950-1993 sub-sample.

Alternative Instruments

Our analysis uses a single instrument, capital. We also have considered three other
instruments that seern reasonable: lagged capital, labor input, lagged two years, and output,
lagged two years. We do not consider labor input or output lagged one just year, since with
time averaged data, it is likely that the informational assumption we require in our analysis
will not hold. This is not an issue with capital, since the planning horizon is quite long.
We find that the incremental R? from adding these three other variables is very low, which
implies that they add little in the way of explanatory power beyond the contemporaneous
capital stock. The adjusted R? are typically negative. This also suggests that our estimate
of the innovation to the technology shock is uncorrelated with these other variables. Given
recent work on the effects of irrelevant instruments in small sample IV estimation, we do not

include them in the analysis.

6. Extensions

~ Higher Order Processes

We have also considered higher order processes for the integrated and trend stationary

cases, including AR(1) in log-differences, and AR(2) in the trend-stationary case. In all

18The capital and labor tax rates were constructed by Joines (1981), and updated by McGratten (1993).
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the cases we considered, the data never support including any additional lags at the 10%
marginal significance level. Moreover, we find that returns to scale are largely unaffected by
including these additional lags. Since the findings are similar to those in tables 2-3, we have

not presented them here.

Alternative Measures of Output

We have also examined a measure of aggregate output that subtracts from total GDP
(i) services from residential capital and (ii) government output. We exclude these measures,
since much of government output is valued at input cost, and because there is no labor input
associated with the service flow from residential capital. As inputs, we use aggregate hours
of private labor, and the nonresidential capital stock. We include government capital, since
it has been argued by Aschauer and others that government capital is an important input
in private production. These findings for the trend stationary case are presented in Table
6a. The findings are very similar to those obtained with the broader measure of output and
inputs. Returns to scale is .95 with no break, .97 if a break is included, and 1.03 if the
government policy variables are included in the equation for the technology shock. We also

conducted the analysis with the integrated assumption, and found that returns to scale were

around .7.

A. Instrument Quality

These findings broadly suggest constant returns to scale at the aggregate level, using
the standard production function and standard measures of output and inputs. In this
section we extend the analysis by evaluating the overall quality of capital as an instrument.
As Nelson and Startz (1992) and others have pointed out, an important issue in any finite
sample IV analysis is the extent to which the instrument is correlated with the endogenous
regressor(s). In both the integrated and trend stationary specifications, we find that the
correlation between capital and labor is high. For example, in the integrated case with the
break in 1973, the correlation between log-differenced capital and log-differenced labor is .56.
Based on the work of Shea, and Burnside, Eichenbaum and Rebelo, this suggests that capital
dominates the Ramey instruments along this dimension.

A second issue associated with instrumental variables is whether it is reasonable to
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argue that the instrument is uncorrelated with the shocks. In our analysis, this orthogonality
will be true under the assumption that the date “¢” capital stock is determined prior to the
date “t" realization of the innovation to the technology shock. In our view, this is a reasonable
assumption, given the standard law of motion of the capital stock, and in particular, the
substantial lead time between appropriations for investment and investment expenditures.
This is one reason why we have not included consumer durables in our measure of the capital
stock. Thus, in our analysis, we are exploiting the pre-determined nature of the capital stock
as an instfument, rather than choose a contemporaneous variable, and arguing that it is
ezogenous, as is done in much of the other literature. Although other lagged variables could
be used as instruments, we found that they did not add much incremental explanatory power.

Another potential issue is measurement error in the capital stock. For example, if
depreciation is measured with error, the capital stock will tend to have persistent measure-
ment error. Although this type of measurement error would be a problem in the levels of
the capital stock, first-differencing the data may tend to reduce its influence. To gain more
insight into this issue, suppose that the measured percent change in capital is equal to the

true percent change plus classical measurement error:

Ak, = Ak} + 7,

2

var(n) = o,

cov(Ak*,n) =0

Classical measurement error implies that the variance of measured capital is higher
than the variance of true capital. Defining r to be the correlation coefficient, this implies
that the correlation between true capital and labor is higher than the correlation between

measured capital and labor:

r(AK*, Al) > r(Ak, Al)

24



r(Ak,Al) = .56

To understand how big measurement error in the percent change in capital might
be, and how it would affect our estimates of returns to scale, we conduct the following
experiment. Under the assumption of classical measurement error, the correlation between
capital and labor of .56 is biased downward. Since the bias is a function of the variance
of the measurement error, we can estimate the variance of the measurement error for any
conjectured correlation between true capital and labor. Therefore, we conduct a sensitivity
analysis by assuming different values for the correlation between true capital and labor. We
use this assumed correlation and the sample correlation between capital and labor to estimate
the variance of the measurement error, and then re-calculate returns to scale accounting for
measurement error.

We consider two alternatives to our estimated value of .56. The first is .64, which is the
sample correlation between the percent change in labor and the percent change in investment.
Assuming this value as the correlation between the true percent change in capital and the
percent change in labor, we find our estimates of returns to scale in the integrated drift break
specification rise from .91 to about .94. The second value we consider is .74, which is the
correlation between the percent change in labor and the percent change in output. Given
that the capital stock is the sum of current and all past levels of investment, it would seem
reasonable to assume that the correlation between true capital and labor is not higher than
the correlation between labor and output. Using this value, we find returns to scale rise from
01 to about 1.01. This analysis suggests that our finding of constant returns is robust to

allowing for plausible levels of classical measurement error.

B. Capital and Labor Service Variation

In our analysis, we have used measured capital and labor as inputs. Given the im-
portance that the recent literature has placed on unobserved service variation in analyzing
returns to scale, it is natural to ask how abstracting from this issue might effect our estimates.

We consider two simple cases. In the first case, the ratio of services to the measured input is a

25



function of the current technology shock. Under this assumption, we show that our estimate
of returns to scale is unaffected. We then consider an alternative case in which the this ratio
is, in equilibrium, a function of the level of aggregate output. In this case we show that our
estimate of returns to scale depends on the service fluctuation parameters.

First, assume that:

k‘f/kt = Fk(EA)
lf/lg = FI(E,\)

In this case, our estimated of 1 is unaffected by factor service variation. To see this, consider
our simple integrated example. If ¢ is the true value and ¢ is the value that we take to be
correct in constructing the productivity series, we can derive the measured productivity series

in terms of the true series as follows:
0 a1
Y, = [MATR(A) KO (TA L) 0] 7

Taking logs yields
1
w=14 [Ae + T(Ae) + 0k, + (1 - 0)1],

where I'(A) = 6Tk (N) + (1 — H)T4(N), and v, A are taken to denote the logs of the original
values. This implies that

(1- @)y - Ok + (1 - ) =
¢~
1—

bl

- ¢
g [Ae + T(A)] +

Bk, + (1 — O)1,).

S

But this is just our original formulation with A;+I

——

A¢) being a combination of the productivity
parameter and the relative services from the inputs. Hence we can still recover consistent
estimates of ¢ from initial capital given an assumed process for A, + T'(A;).

In the second case, we assume that the ratio of the log of capital and labor services to

their measured inputs are given by

ki — k= wi + ve(ys — met)
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and

I} — 1l = w + vy — nit)

then, since

Yo = A+ 0k + (1= 0)7 +

this implies that y, = (wi + w; + A + 0k, + (1 — ), — nt) + (6 + v + (1 — Ovr)y:, where
n =T+ M.
Thus, if we do not account for service variation, our estimate of the aggregate exter-

nality parameter is actually equal to .-

1

Ll ey g oL

Thus we can indirectly evaluate how much the maximum variation in services from capital
and labor given our assumption that ¢* > 0. This is given by our estimate of ¥
Given that our estimates for returns to scale based on measured inputs are near, but

less than one, our evidence suggests little unobserved variation in factor services.

7. Conclusion

Constant returns to scale is a central construct of neoclassical theory. The theoretical
underpinnings of a constant-returns-to-scale aggregate production technology relies simply
on cither CRS at the plant level, or replication and a sufficiently small optimum firm size.
Given the minimal nature of these assumptions, and the widespread use of neoclassical theory,
one would be reluctant to discard the theory lightly. Previous studies argued that one must
accept significant factor service variation to reconcile constant returns with the data. Some
economists have argued that this finding has not resolved the size of returns to scale, since
factor service variation is unobserved, and there is no generally accepted theory to guide
specification of this alternative framework. As Hall has noted, “it is well established that
adding a free variable to the production function will eliminate evidence of increasing returns.
Research needs to turn to whether the role of the free variables...makes sense as a matter of
theory.”

In this paper, we show that the stochastic version of the neoclassical (Cass-Koopmans)
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growth model delivers an orthogonality condition which can be used to estimate returns to
scale. Rather than finding point estimates in favor of increasing returns, we show that
standard theory and conventional measures of output and inputs yield estimates of constant
returns to scale at the aggregate level. Our estimates are robust to various specifications
of the stochastic process for the technology shock, to an alternative measure of output that
abstracts from government product and service flows from residential capital, and to plausible
measurement error. Our estimates also suggest that factor service variation (at the annual

frequency) may not be an important determinant of output fluctuations.
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A. Estimation with Drift Break:

L 5T (Ake(Aye/vh — 00k — (1 — B)AL — defiy — (1 — dy)jia))
9(%; Zr) = LYT (Ay /P — 08k, — (1 — 6)AL — fi)d, =
%Zi‘ll(i\yt/lﬁ ~ 00k — (1 - 0)Al — f1)(1 — d:)

o o o

Our sample estimate of §, 5, is given by

LS(AKE? AT AREd T ARE) - d)

S=| LiTAkE)MH,  A5E)d 0
L3 AREN (1 - dy) 0 + L(60)2(1 - db)
And,
dg(x; Zr) — 5 T Ak /P —; T Ayd /P ~5 T Ayl - dy) /4
X;
%&—T— =| —LlYddk —N/T 0
~L (1 - d) Dk 0 —(T-N)/T

The sample estimate for the standard error for ¥ is given by

() ])

B. Estimation AR(1) Specification:

Assume that the stochastic process generating the technology parameter was given by
A= pAer + vt + L+ €,
where 0 < p < 1. In this case, if we first detrend the inputs and outputs, then

At = yf_/’f,D - ekg — (1 - G)Zt,
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and
e = (1 — pL)(Ae — ),

where in an abuse of notation, we have used A, y, k& and [ to denote the detrended values of
these variables. (Note that simply demeaning the inputs and outputs does not ensure that
the €;’s are mean zero since we are dropping at least one observation and hence we retain the

constant p.) Then, our moment conditions are
E{(l — pL)kgft} = O,

E{Ep\t_l} = 0
E{e} =0

Consequently,

—15°[(1 - pLYke(1 — pL)y: /%7

dg(x; Z 0 7
g(z’l]} T) = —% {(1 — pL)ytAf‘_l/sz + Etyt—l/’lrbz]
—% Z[(l - PL)yt/1L2
A —-% Z[kt_.let + (1 — pL)kt(/\t—l - IJ')]
dQ(X; ZT) _ 1 Y Y
___df) = —7T (A1 — ) As—1
“'% T Ae-r — 1)
R
‘gﬁ’TT: “‘%Z/\t—i(l—P)

-(1-p)

The S matrix is once again given by the covariance matrix of the sample moment conditions.
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Table 1: Univariate Log Random Walk with Drift Specification

Table 1la: Single Drift

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
1) {returns to scale) | 0.984  (.155) 1.132  (.158)
p (drift) 0.011  (.004) 0.008  (.003)

Table 1b: Drift Break 1965/66

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
i (returns to scale) | 0.940  (.126) 1.041  (.145)

g (drift) 0.018 (.005) 0.014  (.004)

po (second drift) 0.008  {.005) 0.006  (.003)

J statistic 7.62 7.05

Table 1c: Drift Break 1972/73

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
¥ (returns to scale) | 0.811  (.127) 0912  (.143)

w1 (drift) 0.020  (.006) 0.015  (.004)

[2 (second drift) 0.010  (.004) 0.008  (.004)

J statistic 4.86 4.60




Table 2: Univariate Trend Stationary AR(1) Specification

Table 2a: Single Trend

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
1 (returns to scale) | 1.120  (.076) 1.097  (.081)

p (AR coeflicient) 0.846  (.044) 0.881  (.056)

v (time trend) 0.001  (.0004) 0.001  {.0005)

¢ (constant) 0.228  (.063) 0.185  (.090)

Table 2b: Trend Break 1963/64

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
¥ (returns to scale) | 0.987  (.134) 0.983  (.136)

p (AR coefficient) 0.557  (.092) 0.485  (.109)

v, (time trend) 0.005  (.001) 0.006  (.002)

~ (time trend) 0.003  (.001) 0.004 {.002)

1 (constant) 0.731 - (.216) 0.867  (.275)

uo (constant) 0.784  (.226) 0.920  (.284)

J statistic 19.88 23.18

Table 2¢: Trend Break 1972/73

parameters/cases Full Sample 1948-1993 | Sub Sample 1950-1993
¥ (returns to scale) | 0.998  (.100) 0973  (.103)
¢ (AR coeflicient) 0.616  (.095) 0.612  (.105)
v (time trend) 0.005  (.002) 0.005  {.002)
v (time trend) 0.003  (.001) 0.003  (.001)
41 (constant) 0.625  (.199) 0.663  (.245)
t2 (constant) 0.666  (.218) 0.701  (.264)




Table 3: Correlation Matrix of Inputs and Output 1948-1993

Table 3a: First Differenced with Single Mean

Ay | Ak | &l
Ay |l
Ak 104311

Al 1089046 |1

Table 3b: First Differenced with Mean Break in 1972/73

Ay | Ak | Al
Ay |1
Ok (104011

Al 1092]056 1 1

Table _3c: Detrended Levels
Y k [

£1063]|1
11043]-01 1

Table 3d: Detrended Levels with Trend Break in 1972/73

Y k l
yll
k10571

£1095(0721|1




Table 4: Vector Integrated Process Specification!®

parameters Full Sample 1948-1993 | Sub Sample 1950-1993
1 (returns to scale) | 0.987  (.134) 0954 (174)
4 (drift) 0.016 (.004) 0.016  (.005)
a, (govt. spending) | 0.058  (.036) 0.061  (.040)
oy, (capital tax) 0.000  (.001) 0.000  (.001)
o, (labor tax) 0.005  (.004) 0.007  (.004)
o (St. Louis Base) | -0.131 (052} -0.106  (.048)
Table 5: Vector Trend Stationary AR(l) Specification®
parameters/cases Single Trend Break 1963/64
1 (returns to scale) | 1.123  (.075) | 1.022  (.087)
p (AR coefficient) 0.544 (.120) | 0.410  (.139)
v (time trend) 0.003  (.001)| 0.004 (.002)
~ (time trend) 0.005  (.002)
i1 {constant) 0.645 (.162) | 0.955  (.266)
12 {constant) 0.963 (.276)
oy, (govt. spending) | 0.016  (.024) { 0.004  (.023)
ar, (capital tax) 20.000  (.021) | -0.003  (.029)
a., (labor tax) 0.027  (.024) |-0.038  (.028)
agp (St. Louis Base) | -0.053  (.015) | -0.066  (.046)

19For the case in which the sample was 1950-1993, the R? from regressing the errors on lagged first differ-
enced capital and twice lagged first differenced output and labor was -.02.

20The sample was 1950-1993, though the results were essentially unchanged over the whole sample. The
R? from regressing the errors on lagged detrended capital and twice lagged detrended output and labor was
—.05 and —.004 respectively.



Table 6: Nonresidential Private Output, Private Labor and Nonresidential
Capital Stock

Table 6a: Trend Stationary AR(1) Specification?

parameters Univariate Break in 1968/69 | Vector

Yy (returns to scale) | 0.948  (.133) | 0.969  (.110) 1.030  (.119)
p (AR coefficient) 0.727  (102)| 0535  (.103) | 0517  (.126)
~ (time trend) 0.002  (.001)| 0.006 (.001) | 0.004  (.001)
~2 (time trend) 0.004  (.001) o

1 {constant) 0.517  (.247) | 0.830  (.201) 0.820  (.221)
g2 (constant) 0.855  (.208)

a, {govt. spending) -0.005  (.040)
ar, (capital tax) -0.020  (.032)
o, (labor tax) -0.060  (.040)
aap (St. Louis Base) -0.044  (.014)

Table 6b: Correlations Detrended Levels

Y k [
yl1
k({0321

[ 10.57-0.7]1

Table 6¢: Correlations Detrended Levels with Trend Break in 1968/69

Y k l
1
k0581
[ 1094105911

2lThe sample was 1950-1993. The R? from regressing the errors on lagged detrended capital and twice
lagged detrended output and labor was .01 and —~.01 for the trend break and vector cases. The maximum
J statistic on the trend break was in 1968/69 with a value of 18.85. With private nonresidential capital
the returns-to-scale estimates are somewhat lower; 0.739 for the univariate case and 0.917 for the vector
spectfication.



Figure 1: Total factor Productivity with Electricity as Measure of Capital Services
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Figure 2: Growth Rates of Gross Output and Materials in Manufacturing
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Figure 3: Random Walk with Drift Specification
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Figure 4: Total Factor Productivity
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correlations

Figure 5: Correlations with Trend and 1.1.D. Shocks
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