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1 Introduction

Is the population growth rate too high in sub-Saharan Africa? Is it too low

in Sweden? These questions are simply the most recent manifestation of two

long-standing questions in economics and moral philosophy – What is the

optimal population size for society? Will individual choice of fertility lead to

the right size population? (See Malthus (1798), Bentham (1948), and Mill

(1965) for examples. Zimmermann (1989) contains an excellent summary of

the historic debate.)

Interest in the determinants of the equilibrium path for population has

increased recently. (See Becker and Barro (1988), Barro and Becker (1989),

Doepke (2001), Fernandez-Villaverde (2001), Boldrin and Jones (2002), and

Tertilt (2003). See Nerlove and Raut (1997) for a survey.) Surprisingly, little

of this literature has used the tools of modern welfare economics (for example,

Debreu (1962)) to address the normative questions that arise, in part because

the usual notion of Pareto-efficiency is not well defined for environments in

which the population is endogenous. To illustrate this, consider the following

example. Compare an allocation with two agents, who both consume one unit

of the consumption good, with one where only one agent is alive, but consumes

two units of the consumption good. Is one allocation Pareto-superior to the

other? Pareto-efficiency would involve a comparison of the two allocations for

each person. But since different numbers of people exist in the two allocations,

such a person-by-person comparison seems impossible.

In this paper, we generalize the notion of Pareto-efficiency to make it appli-

cable to environments with endogenous populations. Three different efficiency
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concepts are analyzed: P-efficiency, A-efficiency, and sequential P-efficiency.

The first two of these differ in the way that the unborn are treated.1 In the

first, P-efficiency, unborn children are treated symmetrically (i.e., they have

utility functions, etc.) with the born agents, but with a limited choice set. In

the second, A-efficiency, efficiency is defined only through comparisons among

agents that are born. (Hence, it is not necessary that the unborn have well

defined utility functions.) Sequential P-efficiency is a dynamic refinement

of P-efficiency. We show how these three concepts relate to the notion of

Pareto-efficiency when fertility is exogenous. We then prove versions of the

first welfare theorem for each of them. We also derive some results regarding

the existence of efficient allocations and planning problems characterizing the

set of efficient allocations.

To do this, we provide a fairly general, general equilibrium formulation of

fertility choice. Naturally, such a formulation will be embedded in an overlap-

ping generations framework. Each decision maker has a fixed set of potential

children and decides how many of them will be born. Models of fertility will

also naturally involve some external effects across agents in the economy. We

allow for a rich set of potential consumption external effects within a family

or dynasty, running both from parent to child (and grandchild, etc.) and from

1Throughout, we do not take a stand on how to evaluate the utility of the unborn. (In-

deed, such a task is well beyond the scope of this paper.) Rather, we propose two alternative

definitions of Pareto-optimality in the context of endogenous fertility. They are at oppo-

site extremes of the spectrum of treatments of the unborn: one treats them symmetrically

with born agents; the other assumes that they do not enter efficiency considerations beyond

whatever weight they receive from their parents (or born siblings, etc.). For either notion,

a version of the first welfare theorem holds.
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child to parent. This includes the Barro and Becker (1989) formulation of

fertility along with many others.

In addition to this standard utility externality, we include another more

subtle one. This is that, from the point of view of the potential children, this

is a model in which their choice set is dependent on the actions of other agents

in the economy. If the parent chooses that they will not be born, they have

effectively no choices. If, on the other hand, the parent chooses that they will

be born, they face a standard, nontrivial choice set.

We assume that it is costly to have children. This means that parents bear

a cost for changing their children’s choice set. Thus, an important interaction

effect between the two external effects is included. That is, without the con-

sumption external effect, parents may not have an incentive to enlarge their

children’s choice set.

As is usual in models with external effects, there is no presumption that

equilibrium individual behavior will aggregate to an efficient outcome. How-

ever, in models of fertility, it is commonly assumed that mechanisms exist

for transfers inside the family. Following this logic, we divide the efficiency

question into two pieces: efficient transfer systems within a dynastic family

and efficient trade across dynasties. First, we show using standard arguments

that if all trade across dynasties is done at common, parametric prices and

there are no external effects across families, equilibrium is efficient as long as

the dynasty problem is solved efficiently internally. Second, we give sufficient

conditions for a noncooperative implementation of the dynastic game to be

efficient. We show two extreme cases that guarantee efficiency of the family

game. In the first case, dynasties are perfectly altruistic, which eliminates
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the potential time consistency problem among family members and thereby

assures efficiency. This includes the Barro-Becker model as a special case. In

the second case, if contracts between parents and children are rich enough,

so that parents can effectively dictate their children’s actions, then efficiency

is also guaranteed, irrespective of the preference details. Other games and

preference specifications may lead to equilibrium inefficiencies. We provide

examples to illustrate what can go wrong.

Our approach allows us to easily distinguish between two potential causes

of overpopulation that have been at the center of the more recent debates on

population. The first of these is the existence of scarce factors and the ‘crowd-

ing’ of these factors that results when the population is ‘large.’ The second

is the potential increase in pollution (e.g., emission of greenhouse gases) as

population grows. We find that scarce factors do not, in and of themselves,

give rise to inefficiencies in population. Rather, they are a ‘pecuniary exter-

nality’ whose effects are manifested in price changes. This is similar to the

arguments made in Willis (1987) and Lee and Miller (1990). In contrast, if

true external effects exist that are related to population size, not surprisingly,

individual choices do not necessarily lead to efficient population sizes. This

is true both when the external effects are negative, like pollution, and when

they are positive, as some authors model knowledge (Romer 1987) or human

capital (Lucas 1988).2 Because of their structure, these examples suggest that

although population growth rates may be too high in the presence of negative

2Interestingly, Keynes was one of the first authors to argue that population growth was

too low in England in the 1920s and that this was a cause for a reduction in inventive

activity and hence stagnation. (See Zimmermann 1989)
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external effects, this is only a statement that overall population is too high,

not that African or Swedish population is.

To summarize, our findings suggest the following typology for inefficiencies

when fertility is endogenous. (They are not mutually exclusive.)

1. The family is using the ‘wrong’ efficiency concept internally; for example

they are A-maximizing and ‘should be’ P-maximizing.

2. The family is using the ‘right’ criterion, but for standard reasons based

on interactions among individuals, the first welfare theorem fails. Ex-

amples include external effects, public goods, congestion effects, missing

markets, and private information.

3. Limitations on bequests, lack of perfect altruism, and so on, cause the

family allocation to not be P-maximizing (or A-maximizing).

A small recent literature addresses the question of optimal populations

formally.3 Willis (1987) also attempts to analyze whether general equilibrium

models with endogenous fertility lead to Pareto-efficient allocations. Willis

does this, however, without formally defining Pareto-efficiency for these en-

vironments. Instead, Willis studies the solution to a planning problem and

shows under what it coincides with a competitive equilibrium. Nerlove, Razin,

3A separate line of research on endogenous populations derives from the social choice

literature. There, authors use an axiomatic approach to derive representation theorems for

social orderings which include population size as one of the choices. See Blackorby, Bossert,

and Donaldson (1995) for one such paper and Section 6 of Blackorby, Bossert and Donaldson

(2002) for a survey of this approach.
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and Sadka (1987, 1989) and Razin and Sadka (1995) have an agenda simi-

lar to ours. They mention the difficulty of defining efficiency in endogenous

population environments and establish the need for a new concept. However,

rather than developing a generalization of Pareto-optimality, they turn to a

characterization of the optimal population under two alternative social wel-

fare functions: the maximization of average utility and the maximization of

the sum of utilities in a society. Such criteria, however, typically give one op-

timal allocation and are very different in spirit from an efficiency concept that

usually contains a large number of allocations. Schweizer’s (1996) paper is

most directly related to ours. He proposes an ordinal welfare criterion, which

is based on a type-by-type comparison of various allocations. Versions of the

first and second welfare theorems for the new concepts are shown to hold un-

der certain conditions. This concept is defined only for symmetric steady-state

allocations. In this sense, our concept is significantly more general.4

Finally, a few authors have pointed out various reasons for why the private

and social costs of having children could differ. These papers all provide an

informal discussion of what types of externalities could arise in the context of

fertility choice. (Examples are Friedman (1972), Chomitz and Birdsall (1991),

Lee and Miller (1991), and Simon (1992).) However, none of these papers

provides a formal concept or the tools to thoroughly address the efficiency

question.

The remainder of our paper is organized as follows. In Section 2, we

introduce notation. In Section 3, we give definitions of our two notions of

4See Michel and Wigniolle (2003) for another approach that is similar to ours but sub-

stantially less general.
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Pareto-optimality, give some simple examples and discuss some preliminary

properties. Section 4 contains the development of the analog of the first wel-

fare theorem for settings in which population is endogenous and the decision-

making unit is a family. In Section 5, we show that the Barro and Becker

(1989) model of fertility choice is one example of a model in which our form of

dynastic maximization holds and hence population is efficient. Section 6 is de-

voted to discussing various examples of what might cause family maximization

to fail, and Section 7 concludes.

2 Notation and Feasible Allocations

We consider an overlapping generations economy, where each generation makes

decisions about fertility. Each agent is assumed to live only for one period.

The initial population in period 0 is denoted by P0 = {1, ..., N}. Each person

can give birth to a maximum of f̄ children.5 For each period t, a potential

population Pt is defined recursively as Pt ≡ Pt−1 × F , where F = {1, ..., f̄},
and we denote by P the population of all agents potentially alive at any given

date. Then, an individual born in period t is indexed by it ∈ Pt and can be

5Throughout most of the paper, we will assume that the number of children possible is

discrete. This assumption makes the ideas we discuss simpler to implement, but does not

come without costs. It introduces indivisibilities in the choice sets of individual agents, and

this property brings with it some technical difficulties. (See for example the discussion on A-

efficiency below.) Many of the models of fertility choice (e.g., Barro and Becker (1989)) allow

for non-integer choices. Much of the analysis presented here can be done in this framework

as well. See Section 5 for an example. Finally, note that we assume that individuals have

children, not couples. This is done to simplify the development that follows.
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written as it = (it−1, it), specifying that it is the itth child of the parent it−1.

We often simply write i as the length of the vector already indicates the period

in which the agent was born.

We assume that there are k goods available in each period. There is one

representative firm, which behaves competitively. The technology is charac-

terized by a production set: Y ⊂ Rk∞. In other words, an element of the

production set is an infinite sequence of k-tuples that describes feasible input-

output combinations. Note that goods are defined in a broad sense here. They

can include labor, leisure, capital stock, etc. An element of the production set

is denoted by y ∈ Y . We can write y = {yt}∞t=0, where yt = (y1
t , . . . , y

k
t ) is the

projection of the production plan onto time t.

An allocation is (z, y), where z = (z1, ..., zN , z(1,1), ...z(N,p̄), ...), with

zi=(xi, f
1
i , . . . , f f̄

i ) for each agent i ∈ Pt. The interpretation is that xi ∈ Rk

is i’s consumption and f j
i ∈ {0, 1}, j = 1, . . . , f̄ , is i’s fertility choices: f j

i = 1

means child j is born, and f j
i = 0 means child j is not born.

Each allocation implicitly defines a subset of the potential population that

is actually born. Given an allocation (z, y), let It(z) be the set of people born

in period t. (Note that this depends only on z and not on y.) Formally,

It(z) = {it = (it−1, it) ∈ Pt s.t. f it
it−1 = 1}.

Let I(z) be the set of people who are alive at some point in time; that is,

I(z) =
⋃

t It(z).

We assume that each (potential) agent is described by both an endowment

of goods and a utility function. We will use the notation (ei, 0, . . . , 0) ∈ Rk×F
to denote individual i’s endowment. Note that we have assumed that individ-
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uals are endowed with no children.

To simplify, we assume that preferences are described by a utility function,

denoted by ui(z) which we allow to depend on the entire allocation. We do

this to allow for the possibility of external effects across members of a family.

When it is important to distinguish the choices individual i makes from the

rest of the allocation, we will use the notation ui(xi, fi, z−i). Below, we will

place restrictions on the extent to which ui can depend on z−i.

An important, qualitative assumption is implicit in this construction: we

have assumed that all agents, even those who are not born, have well-defined

preferences. But, of course, it is not clear what the utility of the unborn should

be. There is a long-standing debate in the moral philosophy literature about

how this problem should be handled. (See for example Singer (1993).) As will

become clear, how this issue is resolved will partly determine which allocations

are efficient and which are not. Our strategy therefore is to model the utility

of an unborn person in a very general way and ultimately to let the researcher

pick a formulation appropriate for a specific problem. Our general formulation

includes the following examples:

u(zi, fi, z−i) = f it
it−1u(zi, fi)

u(zi, fi, z−i) = u(zi) + β

f̄∑
j=1

f j
i u(z(i,j), f(i,j))

u(zi, fi, z−i) =





u(zi, fi) if f it
it−1 = 1

ū if f it
it−1 = 0

u(zi, fi, z−i) = f j
i u(z(i,j)) + α

f̄∑

k=1

fk
i u(z(i,k), f(i,k))

In the first example, the utility of an unborn person is normalized to zero. The
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second example is one of an altruistic utility function, where parents derive

utility only from their born children. In the third example, the utility of an

unborn person is a constant, but may or may not be higher than the utility

from a particular consumption bundle of a born person. In the last example,

unborn people derive utility from their born siblings.

For the most part, the entirety of the theory can be developed without

making any specific assumptions about what these preferences are like, how-

ever, and this will be the strategy that we adopt. When discussing particular

examples, it will be necessary to go into more detail, of course.

Each individual has a consumption set which, as is standard in models with

external effects, is allowed to depend on the choices of other agents. Since we

want to focus on modeling fertility decisions, we will restrict this dependence

across agents to the fertility choices of the agent’s parents, grandparents, etc.

In particular, we assume that the consumption set of an unborn agent contains

only one element, his endowment. Note that this assumption is made for

convenience only and does not contain any content. With this convention,

unborn people can always be included in feasibility constraints and family

budget constraints, since they cancel out by construction. Formally, we write

zit ∈ Zit(z−it) =





(eit , 0, . . . , 0) if f it
it−1 = 0

Ẑ if f it
it−1 = 1

where Ẑ ⊆ Rk × {0, 1}f̄ . Note that the dependence of the consumption set

on other people’s choices is of a very limited nature. In particular, only the

fertility decision of a person’s ancestors is relevant. This means that if a person

is born, no further choices of other agents affect the consumption set of that
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person. Depending on the details of the model, Ẑ can be defined so that it

embodies certain joint restrictions on the consumption and fertility choices of

the individual. For example, it is natural to assume that child bearing takes

time directly from the parents, and so it may not be possible to have 10 children

and still consume, or supply to the labor market, the full endowment of leisure.

Note that we have assumed that Ẑ does not depend on the choices of other

agents beyond this. It is also natural to assume that (ei, 0, . . . , 0) ∈ Zi(z−i)

for all i and all z−i.

Since this formulation of consumption sets is static in nature, it does not

allow for the possibility of capital formation inside the households. This pos-

sibility can be modeled included it in the production set, however.

Most models of fertility also have a transferable cost of child production.

Let c(fi) ∈ Rk
+ be the goods cost, as a function of person i’s fertility choice.

Assumption 1 c(0) = 0, and c(f) is strictly increasing in f .

We can now define feasibility for this environment.

Definition 1 An allocation {z, y} is feasible if

1. zi ∈ Zi(z−i), for all i,

2.
∑
i∈Pt

xi+
∑
i∈Pt

c(fi) =
∑
i∈Pt

ei + yt for all t.

3. y ∈ Y.

This formulation, as general as it seems, is missing some obvious details.

We assume that individuals live for only one period and that fertility decisions

are made by individuals, not couples. These choices are made to keep the

notational burden to a manageable level.
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3 Efficient Allocations

The discussion above turns models with an endogenous set of agents into one

with a fixed set of agents, but with restrictions on what unborn agents can

choose and external effects in preferences. An advantage of this construction

is that we can use, as a first cut, the normal notion of Pareto-efficiency. We

call this concept P-efficiency, where P refers to populations. This concept

treats born and unborn people symmetrically. It is not clear, however, that

this is the best way of thinking about the issue. Alternatively, one might

consider concepts that treat born and unborn asymmetrically. Consider again

the example from the introduction, in which the only feasible allocations are

one person alive consuming one unit of the consumption good and two people

alive consuming 0.5 units each. Call these two allocations z and ẑ, respectively.

Any reasonable definition of efficiency should include the z allocation among

its efficient allocations, because the only other feasible allocation makes an

agent who is always alive strictly worse off. However, whether one would also

like the second allocation to be efficient is debatable. On the one hand, one

could argue that going from ẑ to z makes one person strictly better off and no

one worse off as the second person is not alive under z. This would then make

z superior to ẑ, and hence ẑ would be inefficient. Alternatively, associating low

utility with not being alive (say 0) and factoring unborn people into the utility

comparison would lead one to argue that ẑ is also efficient, as z would make

person 2 strictly worse off. These two perspectives differ in their treatment of

born and unborn people. Since it’s not obvious what the right perspective is,

we will provide two efficiency concepts, one that treats born and unborn people
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symmetrically (P-efficiency) and another that treats them very differently (A-

efficiency).

3.1 P-efficiency

P-efficiency does not distinguish between agents who are born and not born

in its treatment beyond what is implicit in feasibility and preferences. It is

defined as follows.

Definition 2 A feasible allocation (z, y) = ({(xi, fi)}i∈P , y) is P-efficient if

there is no other feasible allocation (ẑ, ŷ) such that

1. ui(x̂i, f̂i, ẑ−i) ≥ ui(xi, fi, z−i) for all i ∈ P

2. ui(x̂i, f̂i, ẑ−i) > ui(xi, fi, z−i) for at least one i ∈ P.

3.1.1 Examples

Following, we give some simple examples of what it means for an allocation

to be P-efficient. Consider a two period setting with only one agent alive

in the first period. Assume that f̄ = 2 so that only two potential children

can be born. Thus, the set of potential agents is P0 = {1}, P1 = {1, 2},
P = {1, (1, 1), (1, 2)}.

Assume that there are two goods, consumption, c, and time, `, so that

k = 2 and that the parent as well as each potential child is endowed with

`e ≥ 0 units of time. Assume there is no utility from leisure, and therefore

time is either supplied in the market, `, or used for childrearing. It takes θ > 0

units of time to birth a child. For simplicity, assume there is no goods cost
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of having a child. Since agents i = (1, 1), (1, 2) cannot have children, they

trivially supply their entire endowment of time to the market `i = `e, if born.

The production function is assumed to be static with c = F (`f ) = w`f ,

where `f is the amount of labor hired by the firm. An allocation can then be

described by the vector z = (c1, `1, f1, f2; c(1,1), `(1,1), c(1,2), `(1,2)).

Utility of agent 1 is given by

u1(z) = u(c1) + β
[
f1u(c(1,1)) + f2u(c(1,2))

]
,

where u is strictly increasing and concave with u(0) = 0, and 0 < β < 1

is a discount factor determining the weight that a parent puts on its child’s

consumption. Note that we have assumed that the two children are treated

symmetrically and that the parent gets 0 utility for children who are not born.

The utility of the potential children is given by

u(1,i)(z) = u(c(1,i)),

This is basically a two period version of the Barro and Becker model with-

out capital. Feasibility in this simple environment requires that

c1 = w[`e − θ(f1 + f2)],

that

f1c(1,1) + f2c(1,2) ≤ w(f1 + f2)`
e,

and that each agent be assigned an element of his consumption set, i.e.,

c(1,i) = 0, and `(1,i) = `e if fi = 0.

Examples of Efficient and Inefficient Populations :

Consider the four distinct allocations, z∗, ẑ, z̃, and z̆ defined by:

z∗ = (w`e, 0, 0, 0; 0, `e; 0, `e),
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ẑ = (w(`e − θ), 0, 1, 0; w`e, 0; 0, `e),

z̃ = (w(`e − 2θ), 0, 1, 1; w`e, 0; w`e, 0),

z̆ = (w(`e − 2θ), 0, 1, 1; 2w`e, 0; 0, 0).

Assume that θ is small enough such that consumption is always interior,

i.e., θ < `e

2
. Allocation z∗ has no children being born. Allocation ẑ has

exactly one child (the first of the two possible children) born. In allocation

z̃, both potential children are born. Finally, in allocation z̆, both children

are born, but (1, 2) is ‘exploited’ by (1, 1) and has no consumption. Table

1 summarizes the utilities for the 3 potential people for all four allocations.

It follows immediately from the table that, irrespective of parameters, both

Table 1: Utilities for various allocations

Allocation Parent (1, 1) (1, 2)

z∗ u(w`e) 0 0

ẑ u(w`e − θ) + βu(w`e) u(w`e) 0

z̃ u(w`e − 2θ) + 2βu(w`e) u(w`e) u(w`e)

z̆ u(w`e − 2θ) + βu(2w`e) u(2w`e) 0

z̃ and z̆ are P-efficient, since these allocations are strictly preferred to any

other allocations by (1, 2) and (1, 1), respectively. In addition, depending on

parameters, z∗ and ẑ can also be P-efficient. For example, if β = 0, then z∗

is P-efficient, since any other allocation would make the parent strictly worse

off. The allocation ẑ can also be strictly preferred by the parent (and therefore

P-efficient) for moderate values of β and θ. Generally speaking, the parent’s

ranking of z∗, ẑ, and z̃ depends on the weight the parent puts on children’s

consumption, β, the cost of raising children, θ, and the concavity of u, along
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with the productivity of labor, as measured by w. From the parent’s point

of view, having extra children gives him additional labor in period 2, which

needs to be weighted against the (utility) cost of having the child.

This shows two important things. First, any fertility level can be P-efficient

for the right choice of parameters. Second, fertility can never be inefficiently

high because z̆ and z̃ are always efficient independent of β, θ, and the functional

form for u(·). This second property is fairly general and is discussed in detail

below. Also note that z̆ is P-efficient even though it would never be chosen

by rational parents (due to strict concavity of u(·)).
Next we will show that the set of efficient allocations can change if siblings

care about each other. Change the utility for agents i = (1, 1), (1, 2) to

ui(z) = u(ci) + fiλu(c−i), λ > 0

That is, an agent who is alive derives utility from his sibling’s consumption.

Then if λ is large enough, z̆ is no longer efficient because (1, 1) would prefer his

sibling to consume more and is willing to give up some own consumption to

achieve this. Note, however, that it is still true that, irrespective of parameters,

a superior allocation cannot exist that has strictly fewer people being born.

Allowing children to derive utility from their parent’s utility can also alter

the set of efficient allocations. Suppose that u1(z̃) > u1(ẑ), that is, the par-

ent strictly prefers having both children. Then it follows from Table 1 that

allocation ẑ is inefficient because z̃ is weakly preferred by (1, 1) and strictly

preferred by 1 and (1, 2). Now change the utility function so that children (if

born) derive utility from their parent’s consumption:

u(1,i) = u(c(1,i)) + fiηu(c1), η > 0
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Then for η large enough, the first child (1, 1) strictly prefers ẑ over any other

allocation.6 But this immediately implies that ẑ is P-efficient, because any

other allocation would make (1, 1) strictly worse off. In this case, ẑ is efficient

not because the parent strictly prefers having only one child, but because the

loss in utility to the first child due to the reduction in the parent’s consump-

tion when having the second child is too large. This is fundamentally a time

consistency problem in preferences: The parent and the first child differ in

their relative assessments of the utility of the three agents.

Finally, we allow the utility of unborn children to depend on the other

agents in the economy. In this case, it is no longer true that fertility cannot

be too high. Change the utility function of agents i = (1, 1), (1, 2) to

ui = u(ci) + ηu(c1)

Under this specification, agents (1, 1) and (1, 2) may prefer not being born at

all. For η and θ large enough, the children care more about the loss of direct

consumption utility by the parent than they do about their own consumption,

and hence, they would prefer that their parents not have children. If, in

addition, β is small, then the parent may also strictly prefer allocation z∗

over anything else, and hence for the right parameters, z∗ is the only efficient

allocation. This last example shows that if we allow the utility of the unborn

to vary with the consumption of other people, then fertility can be inefficiently

high.

As the examples show, even in fairly simple environments, which allocations

6More precisely, η > u(2w`e)−u(w`e)
u(w`e−θ)−u(w`e−2θ) is needed to guarantee that the first child prefers

ẑ over even the most favorable allocation in which the second child is born.
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are efficient can be a complex question, turning, in part, on somewhat arbitrary

choices about how the utility function of the unborn is defined. Intuitively,

however, one expects that in normal circumstances, when it is better to be

born than not, finding an improving allocation with fewer people alive is not

possible. As can be seen however, this depends on the implicit assumption that

the unborn do not care about the consumption levels of other family members

(η = λ = 0). We consider this formally Section 3.1.3.

3.1.2 Pareto-efficiency as a special case

A natural question to ask is whether or not this definition of P-efficiency

reduces to the standard one when population is exogenous. That is, given a

sequence of planned fertilities, fi, for everyone in the economy, Pareto-optimal

allocations of consumption goods can be defined in the usual way among those

potential agents who are in I(z). In general, a P-efficient allocation will not

be Pareto-optimal in this sense without further restrictions on the preferences

of the unborn. That is, an alternative consumption plan might improve the

welfare of all the agents who are born (i.e., for all i ∈ I(z)), but lower the

utility of some unborn agent (i.e., some i ∈ P\I(z)). Because of this, the

original allocation would be P-efficient even though it is not Pareto-optimal

among the set of born agents. A sufficient condition that this not be the case

is that unborn agents are indifferent between all consumption allocations of

the born agents. We will denote this utility level by ūi.

Assumption 2 If i ∈ P\I(z) ∩ P\I(z′), then ui(z) = ui(z
′) = ūi.
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Under this assumption, if an allocation is P-efficient, then the correspond-

ing allocation of consumption goods is Pareto-optimal for the fixed sequence

of populations. For completeness, we include this as a Proposition:

Proposition 1 If Assumption 2 holds, and if (z∗, y∗) = ((x∗i , f
∗
i )i∈P , y∗) is

P-efficient, then the consumption allocation (x∗, y∗) = ((xi)i∈I , y
∗) is Pareto-

optimal among the agents in I(z∗).

3.1.3 Fewer people can never be P-better

We return now to the discussion on the possibility of P-ranking alternative

populations. As noted, most people when thinking about this problem would,

as a first approximation, assume that the unborn do not have preferences. The

natural way to model this in our setting is to restrict attention to environments

where Assumption 2 holds; that is, the unborn agents are indifferent about the

consumption allocation among those agents who are born.

Under this assumption and under the further assumption that the alloca-

tion (z∗, y∗) does not give any agent i ∈ I(z∗) a lower level of utility than she

has when not born (ūi), it follows that no P-superior allocations exist in which

i ∈ P\I(z∗). Formally, we have the following proposition.

Proposition 2 If preferences satisfy Assumption 2, if the allocation (z∗, y∗)

satisfies ui(z
∗) > ūi for all i ∈ I(z∗), and if the allocation (z′, y′) is P-Pareto

Superior to (z∗, y∗), then I(z∗) ⊆ I(z′).

Proof. If not, then there is some j ∈ I(z∗)\I(z′). Hence, uj(z
′) = ūj. But,

by assumption, uj(z
∗) > ūj since j ∈ I(z∗). Thus, uj(z

′) < ūj < uj(z
∗), a

contradiction. ¤
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The proof of Proposition 2 is straightforward. The key is thus not how to

prove it given the assumptions that are made, but rather that assumptions are

necessary.7 That these assumptions are necessary follows from the examples

given above. In particular, in those examples, Assumption 2 implies that

people who are not born cannot be altruistic toward their siblings or parents.

The result above shows that there is a sense in which P-efficiency is a very

conservative notion. That is, it treats born and unborn agents symmetrically

when constructing improving allocations, and because of this fertility cannot

be P-inefficiently high (as long as being unborn is the worst outcome).

3.1.4 A Planner’s Problem

A planner’s problem is often used to identify efficient allocations. In standard

environments, the equivalence between Pareto-efficient allocations and the so-

lution to maximizing a weighted sum of utilities subject to feasibility can be

established under very mild assumptions. A similar result can be obtained in

our context, although it is a bit trickier. Below we give a planner’s problem

and show that the solution to this problem is P-efficient.

Proposition 3 Pick any sequence {ai}i∈P such that ai > 0 ∀i ∈ P. Suppose

(z∗, y∗) is a solution to the following problem:

max
z,y

∑
i∈P

aiui(z) , (1)

7Note also that if not being born is the best thing in the world, then the opposite

conclusion will hold: If (z∗, y∗) satisfies ūi > ui(z) ∀i ∈ P\I(z∗) and ∀z ∈ Z and if (z′, y′)

is superior to (z∗, y∗), then I(z∗) ⊇ I(z′).
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subject to feasibility and suppose that
∑

i∈P aiui(z
∗) < ∞. Then (z∗, y∗) is

P-efficient.

Proof. Suppose not. Then a exist a feasible allocation, (ẑ, ŷ) and a j ∈
P such that uj(ẑ) > uj(z

∗) and ui(ẑ) ≥ ui(z
∗) ∀i ∈ P . But then (and

here the finiteness assumption is crucial)
∑

i∈P aiui(ẑ) >
∑

i∈P aiui(z
∗), a

contradiction. ¤

Note that the reverse is not necessarily true.

3.1.5 Existence

Is the proposed efficiency concept welldefined? Specifically, are there situations

in which it does not exist? Under fairly weak conditions, the set of P-efficient

allocations is nonempty, as can be seen in the next proposition.

Proposition 4 Assume utility functions are continuous and uniformly bounded

above and below, that Ẑ ⊂ Rk × F is closed, that Y ⊂ Rk∞ is closed in the

product topology, and that the set of feasible allocations is bounded period by

period. Then the set of P-efficient allocations is nonempty.

Proof. Pick 0 < δ < 1. Then define ait = δt

|Pt| for i ∈ Pt, where |Pt| de-

notes the number of elements in Pt. Now consider the following maximization

problem

max
z,y

∞∑
t=0

∑
i∈Pt

aitui(z) s.t.

zi ∈ Zi(z−i)∀i
∑
i∈Pt

xi +
∑
i∈Pt

c(fi) =
∑
i∈Pt

ei + yt∀t.
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The arguments in Jones and Manuelli (1990) can be used to show that the

objective function in this problem is continuous in the product topology. It

follows from our assumptions that the set of allocations that are feasible is

closed in the product topology. By assumption, the feasible set is bounded,

and hence, it follows that it is compact in the product topology. Therefore, a

maximum exists. Since utility functions are uniformly bounded, the weights

as chosen guarantee convergence of the infinite sum. Hence, we can use Propo-

sition 3 to conclude that such a maximizer is P-efficient. ¤

The assumption that utility is uniformly bounded is stronger than is nec-

essary. Jones and Manuelli (1990) and Alvarez and Stokey (1998) show how

this can be relaxed for special cases. Similarly, the assumption that the set

of feasible allocations is bounded can be built up from assumptions at the

individual level. (See Bewley (1972).)

3.2 A-efficiency

This section describes the second efficiency concept. It is a natural modifica-

tion of P-efficiency, which treats born and not born potential people asym-

metrically.

Definition 3 A feasible allocation (z, y) = ({(xi, fi)}i∈P , y) is A-efficient if

there is no other feasible allocation (ẑ, ŷ) such that

1. ui(x̂i, f̂i, ẑ−i) ≥ ui(xi, fi, z−i) ∀i ∈ I(z) ∩ I(ẑ)

2. ui(x̂i, f̂i, ẑ−i) > ui(xi, fi, z−i) for some i ∈ I(z) ∩ I(ẑ)
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This definition differs from P-efficiency in that only a subset of the po-

tential population is considered when making utility comparisons across allo-

cations. An allocation is superior if no one who is alive in both allocation is

worse off and at least one person alive under both allocations is strictly better

off. Since utility comparisons are made only for the agents who are in fact

born, (i.e., i ∈ I(z) ∩ I(ẑ)) it has the added advantage of not requiring utility

functions to be defined for agents who are not born. We call it A-efficiency

because only ‘alive’ agents are considered.

3.2.1 The Relationship between A- and P-efficiency.

Intuitively, one expects the set of A-efficient allocations to be a subset of the

set of P-efficient allocations since it is easier to find a superior allocation.

Since utility improvements are not required under A-efficient allocations for

those agents not born in a candidate blocking allocation, in the typical case,

the set of A-efficient allocations consists of those P-efficient allocations for

which no parent can be made better off by decreasing fertility. While this is

true for most examples, consider the following counterexample. One initial

parent has two potential children. Childrearing has no costs. Both the parent

and the first child have an endowment of one if born, while the second child

has no endowment. Utility functions for the parent and the first child are

ui(ci) = ci, whereas the second child if born is altruistic toward his sibling

u(1,2) = f2[ln(1 + c3) + u(1,1)]. Consider the allocation

z = {c1 = 1, f1 = 1, f2 = 0, c(1,1) = 1, c(1,2) = 0}
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This allocation is A-efficient, since no other allocation makes any alive person

strictly better off. Yet it is not P-efficient, as it is dominated by the following

allocation:

ẑ = {c1 = 1, f1 = 1, f2 = 1, c(1,1) = 1, c(1,2) = 0}

The second child strictly prefers being born and not consuming anything over

not being born; therefore, z is not P-efficient.

Examples like the above are rare and do not seem very robust. They are

related to the fact that in our setting, two alternative definitions of Pareto-

optimality are not equivalent. Consider a slight variation of P-efficiency:

Definition 4 A feasible allocation (z, y) = ({(xi, fi)}i∈P , y) is P ′-efficient if

there is no other feasible allocation (ẑ, ŷ) such that

ui(x̂i, f̂i, ẑ−i) > ui(xi, fi, z−i) for all i ∈ P

The analog of this concept for exogenous fertility models is called weak

Pareto-efficiency, and under mild assumptions, it is equivalent to the usual

notion of Pareto-efficiency. Focusing on environments in which the same is

true here (i.e., environments such that the set of P-efficient allocations co-

incides with the set of P ′-efficient allocations), also rules out examples like

the one given. If an allocation is superior only when it benefits everyone in

P strictly, then obviously it also benefits everyone alive strictly. Hence, in

such environments, the set of A-efficient allocations is a subset of the set of

P-efficient allocations.

Examples of allocations that are P-efficient and not A-efficient are more

common because a superior allocation that needs to benefit only a subset of

the population and allows everyone else to be ignored is simpler to find. This
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means that in many environments, we expect the set of A-efficient allocations

to be considerably smaller than the set of P-efficient allocations. The fact

that counterexamples to this general proposition exist seems to be related to

the indivisibility of fertility choice and the potential utility jump a person can

experience when going from being unborn to being born. If it was possible to

be half-born (or ε-born), and if utility was continuous in the degree of being

born, then we suspect that an allocation that is superior in the A-sense would

also be superior in the P-sense. This would then imply that A-efficiency would

be a subset of P-efficiency.

3.2.2 Existence

There is a slight problem with A-efficiency – A-efficient allocations may not

exist. Examples exist in which cycles occur and then no allocation is A-

efficient. These situations are rare, however. For example, any allocation

that maximizes a linear combination of the utilities of the agents alive in

period 0 is A-efficient as long as this maximizer is unique (for given weights).

Typically, uniqueness would be guaranteed by assuming enough concavity on

utility functions. Here, because of the indivisibilities in fertility choice, there

is no natural way to guarantee this.

3.3 Sequential P-Efficiency

This section briefly describes a refinement of P-efficiency that we call sequential

P-efficiency. The refinement proceeds sequentially – we first make generation

0 as happy as possible. Then, having children is only efficient insofar as it
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benefits generation 0 (either directly by providing utility or indirectly by pro-

viding labor, etc.). If a parent is indifferent between having a child and not,

only then is the welfare of the children taken into consideration. Similarly,

for later generations, fertility in period t is only efficient if it does not make

anyone from a previous generation worse off. Formally, we have the following

definition.

Definition 5 A feasible allocation (z, y) is sequentially P-efficient if ∀T @(ẑ, ŷ)

such that

1. (ẑ, ŷ) is feasible

2. ui(ẑ) ≥ ui(z)∀i ∈ ⋃
t≤T Pt

3. ui(ẑ) > ui(z) for some i ∈ PT .

This concept is similar in spirit to A-efficiency because it also introduces

an asymmetry between people who are alive and those who are not alive.

But in addition, it introduces an asymmetry between generations. In this

sense the concept has more the flavor of a welfare criterion than an efficiency

concept. In particular, when fertility is exogenous, this concept will typically

give a much smaller set than the set of Pareto-efficient allocations because

the concept is heavily biased towards the initial generation. Later generations

count only inasmuch as earlier generations are indifferent. However, sequential

P-efficiency has two nice features: it is a strict subset of P-efficiency, and it

always exists. The proofs are omitted here, but are available upon request.
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4 Cooperation Within the Family and the First

Welfare Theorem

Our economy has external effects both in utility and in consumption sets, of

a very limited type. In particular, by construction, the only agents in the

economy who can affect i’s consumption set are individual agents who are

in i’s family, but were born before agent i. Moreover, in our description of

the consumption sets, these agents can only affect i’s choice set through their

fertility decisions. In keeping with this structure, in this section we examine

the validity of the first welfare theorem under the assumption that within a

family (but not across families) individual agents are cooperative. That is,

we formulate a notion of dynastic maximization that corresponds to a Pareto

criterion within the dynasty.

We show that as long as all external effects are confined within the family,

families view themselves as not affecting prices and, within the family, decision

making satisfies this notion of cooperation, then fertility choices are efficient.

In the next section, we address the question: Under what conditions do non-

cooperative formulations of the dynastic decision problem lead to cooperative

dynastic decisions in the sense required here.

Assumption 3 We assume that ui is monotone increasing in xj, that is each

agent is weakly better off when any other agent’s consumption is increased.

Thus, there are no negative external effects in consumption.

Definition 6 A Dynastic Structure, D, is a partition of the population. That

is, P = ∪τDτ , where Dτ ∩Dν = ∅ if τ 6= ν, and for all Dτ ∈ D, Dτ 6= ∅. A
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Dynasty is a member of this partition, Dτ .

Assumption 4 We assume that if z and z′ are two allocations such that zi =

z′i for all i ∈ Dτ , then uj(z) = uj(z
′) and Zj(z) = Zj(z

′) for all j ∈ Dτ . Thus,

those positive external effects that do exist are confined to a dynasty.

The idea behind a dynastic structure is to isolate the totality of external

effects within an associated group. For models with endogenous fertility, the

external effects are typically limited to the dynasty that an agent belongs to.

Thus, by assumption, agents i and j must necessarily belong to the same

dynasty if it−k = j for some k, meaning that j is a predecessor of i. It

also follows that all agents with a common predecessor must be in the same

dynasty (since a dynastic structure is a partition, and they must both be

in the same dynasty as their common ancestor). It follows that under the

maintained assumptions, there are at most N dynasties in a given economy,

each corresponding to a different period 0 agent.

We suspect that this separation between agent groups that are externality

linked is likely to be useful more generally, however.

Next, we define what it means for an allocation to be optimal for a given

dynasty at a given price sequence. Intuitively, an allocation is dynastically

maximizing if and only if there is no way of increasing the utility of every

member of the dynasty without increasing overall spending by the dynasty.

Before defining a notion of family optimization, we need to specify an

ownership structure for the firm. To simplify, we will assume the firm is

owned only by members of the initial generation. So let ψi specify the fraction

of the firm that belongs to i, i ∈ P0. For a well-defined ownership structure,
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we need ψi ≥ 0, and
∑

i∈P0
ψi = 1.

Definition 7 Given (p, y, z−τ ), a dynastic allocation zτ = {zi}i∈Dτ ∈ Zτ is

said to be Dynastically P-maximizing if @ẑ = (ẑτ , z−τ ) such that:

1. ẑi ∈ Zi(ẑ−i) for all i ∈ Dτ .

2. ui(ẑi, ẑ−i) ≥ ui(zi, z−i) for all i ∈ Dτ .

3. ui(ẑi, ẑ−i) > ui(zi, z−i) for at least one i ∈ Dτ .

4.
∑

t pt

∑
i∈Dτ∩Pt

(x̂i + c(f̂i)) ≤
∑

i∈Dτ∩Pt
ptei +

∑
i∈P0∩Dτ

ψi

∑
t ptyt.

For notational simplicity in what follows, we will use Πτ to denote a dy-

nasty’s profits earned; that is, Πτ =
∑

i∈P0∩Dτ
ψi

∑
t ptyt. Note that this

depends on both prices and the production plan of the firm.

An allocation being dynastically maximizing corresponds naturally to the

dynasty overall using maximizing behavior given the resources it has available

to it overall. Note that since there is only one, dynastic, budget set, it is as

if the dynasty is fully free to make any transfers of wealth inside the dynasty

that it chooses. Thus, an allocation being dynastically maximizing implies

that are no further transfers within the dynasty can improve dynastic welfare

(in a Pareto sense). Finally, for those agents in the dynasty who are not born,

feasibility requires that x̂i = ei and f̂i = 0, and hence, they drop out of the

dynastic budget constraint entirely.

Next we define the analog of a competitive equilibrium among the dynasties

in the partition.

Definition 8 (p∗, z∗, y∗) is a dynastic P-equilibrium if
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1. For all dynasties, given (p∗, y∗, z∗−τ ), z∗τ is dynastically P-maximizing.

2. (z∗, y∗) is feasible.

3. Given p∗, y∗ maximizes profits, i.e. p∗y ≤ p∗y∗, ∀y ∈ Y .

Lemma 1 Assume dynasty Dτ has at least one member alive at time 0 with

strictly monotone preferences. Let z∗τ be dynastically P-maximizing for dynasty

Dτ , given prices p and production y. Then ui(zτ , z
∗
−τ ) ≥ ui(z

∗
τ , z

∗
−τ ) for all

i ∈ Dτ implies that
∑

t pt

∑
i∈Dτ∩Pt

(xi + c(fi)) ≥ Πτ +
∑

t pt

∑
i∈Dτ∩Pt

ei.

Proof. This will be proved by contradiction. Suppose not. Then there

exists a zτ such that ui(zτ , z
∗
−τ ) ≥ ui(z

∗) for all i ∈ Dτ and
∑

t pt

∑
i∈Dτ∩Pt

(xi+

c(fi)) < Πτ +
∑

t pt

∑
i∈Dτ∩Pt

ei. Let j ∈ Dτ ∩ P0 have strictly monotone

preferences. Then construct z̃ as follows: z̃i = zi ∀i 6= j and z̃j = (zj + ε, fj).

Then ∃ε > 0 such that the dynastic allocation z̃τ does not violate the dynastic

budget constraint. Moreover, by Assumption 3, z̃ is weakly preferred over z

by all i in the dynasty and hence also over z∗. Finally, by strict monotonicity,

uj(z̃) > uj(z
∗). But this contradicts the assumption that z∗τ is dynastically

P-maximizing. ¤

Proposition 5 Suppose ui(xi, fi, z−i) is strictly monotone in xi for all i ∈ P0.

If (p∗, z∗, y∗) is a dynastic P-equilibrium, then
∑

t pt(
∑

i∈Pt
ei + y∗t ) < ∞, and

(z∗, y∗) is P-efficient.

Proof. First, note that since ui(xi, fi, z−i) is strictly monotone in xi for all

i ∈ P0, for the given allocation to be a dynastic P-equilibrium, zi must be

dynastically P-maximizing, and hence,
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Πτ +
∑

t

∑
i∈Pt

ptei < ∞, for all τ .

Summing over τ gives

∑
t pt(

∑
i∈Pt

ei + y∗t ) < ∞.

Now (z∗, y∗, p∗) is a dynastic P-equilibrium and by way of contradiction,

assume that it is not P-efficient. Then an alternative feasible allocation (z, y),

exists that is P-superior to (z∗, y∗). That is, ui(z) ≥ ui(z
∗) for all i ∈ P

and ui(z) > ui(z
∗) for at least one i ∈ P . Without loss of generality, assume

i ∈ Dτ . Then, since z∗τ is dynastically P-maximizing, and since there are no

external effects across dynasties (Assumption 4), for dynasty Dτ , it must be

that zτ was not affordable, i.e.

∑
t

p∗t
∑

i∈Dτ∩Pt

(xi + c(fi)) > Πτ +
∑

t

p∗t
∑

i∈Dτ∩Pt

ei

Moreover, by Lemma 1, we know that for all other dynasties, the following

must hold:

∑
t

p∗t
∑

i∈Dτ∩Pt

(xi + c(fi)) ≥ Πτ +
∑

t

p∗t
∑

i∈Dτ∩Pt

ei

Summing over all dynasties, we get

∑
t

p∗t
∑
i∩Pt

(xi + c(fi)) >
∑

t

p∗t [y
∗
t +

∑
i∩Pt

ei] (2)

Note that the right hand side is finite; hence, the strict inequality is preserved.

Profit maximization implies that p∗y∗ ≥ p∗y for all other production plans

y ∈ Y . Using this, we can rewrite equation 2 as

∑
t

p∗t
∑
i∩Pt

(xi + c(fi)) >
∑

t

p∗t [yt +
∑
i∩Pt

ei] (3)

Finally, feasibility of (x, y) implies that

∑
i∈Pt

(xi + c(fi)) ≤ yt +
∑
i∈Pt

ei for all t
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Multiplying the above by p∗t and summing over t gives

∑
t

p∗t
∑
i∈Pt

(xi + c(fi)) ≤
∑

t

p∗t [yt +
∑
i∈Pt

ei]

But this contradicts equation 3. This completes the proof. ¤

Summarizing the results from this section, we see that as long as each

dynasty solves the internal redistribution problem efficiently, there are no ex-

ternal effects across dynasties, and all dynasties take prices as given, dynastic

equilibria are efficient. In particular, fertility choices are efficient.

An analog of the first welfare theorem holds for A-efficiency as well as for

sequential P-efficiency. The propositions and proofs are very similar to the

above and are hence omitted here.

5 Dynastic Games and Efficiency

As is standard in models with external effects, equilibrium will naturally in-

volve a mixture of price-taking behavior and quantity-taking behavior – the

agent takes the prices it faces as fixed, and takes the actions, in particular the

fertility choices of the other agents as fixed, when making its own consumption

and fertility choices. Thus, the equilibrium notion is a mixture of Nash and

Walrasian equilibrium.

Exactly what this means depends on the nature of the game being played

by the agents, of course. The most straightforward treatment would be to

formulate a game in which agents’ choices are simultaneous moves chosen

at time zero. One would then formulate the game in which the action of

each agent included not only his own consumption and fertility choices, but
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also, possibly, a complex scheme of transfers to the other agents in his own

dynasty. This game would generate a set of equilibrium strategy profiles,

each of these generating an equilibrium outcome in terms of consumption and

fertility decisions. Given the development in the sections above, the question

would be, What types of games would generate equilibrium outcomes that are

dynastically efficient (in either the P , the A or the sequential P sense)?

Since fertility is intrinsically a dynamic decision, however, this is not the

typical way (or the best way) to model these types of decisions. Rather, models

of fertility usually have a dynamic game theoretic formulation in which each

agent who is born in period t must choose levels of both consumption and

fertility in period t + 1 as a function of all previous actions chosen by the

preceding agents in his dynasty. These actions involve both the consumption

and the fertility decisions of predecessors as well as the bequests left, etc.

Further, we want to think of external effects as arising only within a dy-

nasty, and we want to preserve the notion that each dynasty is small relative

to the aggregate. Because of this, we will assume that each dynasty views

itself as having no effects on prices.

Finally, since these games are dynamic in form, the issue of equilibrium

refinements arises quite naturally. Minimally, we will assume subgame per-

fection. Typically, we will use something stronger, focusing only on those

subgame perfect equilibria of the supergame that are the limits of subgame

perfect equilibria of finite horizon versions of the dynastic game.

We think of each dynasty as being small and so they take prices for goods

{pt} as given. Given prices, each member of every dynasty chooses actions at

from the action set At({pt}, at−1), where at−1 is the history of actions taken
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before she was born. These actions will typically include, at a minimum, fer-

tility decisions, choices of consumption, and bequests. The action set depends

on the equilibrium prices and actions taken by the previous generations. Thus,

if an agent’s parents decided that she will not be born, her action set will be

the singelton {et}. Thus, formally, each agent has a strategy space St({pt}, ht)

which depends on both equilibrium prices and the history of actions to that

date. The strategies st ∈ St are chosen to maximize individual utility u(si, s−i).

Finally, the prices are such that markets clear,

∑
i∈Pt

xi +
∑

i∈Pt
c(fi) =

∑
i∈Pt

ei + yt for all t.

In context, then, the definitions and propositions stated above properly

concern the equilibrium outcomes (i.e., the actions along the equilibrium path)

of this dynamic formulation of the choice problems. At this level of generality

of the problem and the types of external effects we allow, one can easily con-

struct examples in which the equilibrium outcomes will not be efficient. What

is perhaps surprising is that natural examples exist in which this is not true.

That is, the equilibrium outcomes of this dynamic game are efficient (P , A,

and sequential P).

Throughout this section, we will confine our attention to conditions under

which the equilibrium outcome of the game played within the dynasty, for

given prices, is dynastically maximizing. Given the results of the preceding

section, it follows that if this is true for all dynasties at the equilibrium prices,

the resulting equilibrium allocation is efficient as well.

The remainder of this section consists of three parts. Sections 5.1 and 5.2

identify sufficient conditions for the equilibrium of the dynasty game to be

efficient. We find that the degree of altruism and the richness of contracts
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between ancestors and descendants are crucial ingredients. We analyze two

extreme cases. In the first case, dynasties are perfectly altruistic. This includes

the Barro-Becker model as a special case. The altruism eliminates the time in-

consistency problem between parents and their descendants. Due to agreement

between parents and children, contracts between parents and children can be

fairly limited. We find that in this case, allowing for period-by-period bequests

to a parents’ own children is sufficient for efficiency. These bequests may need

to be negative in some cases if the dynasties are sufficiently different.8

The second extreme puts no restrictions on preferences, but requires a

rich set of bequest contracts. In particular, we show that if the head of the

dynasty has a rich set of transfers that allows him to dictate the behavior of

all descendants, then the time inconsistency problem becomes irrelevant. This

is a very extreme case, obviously. The point we want to emphasize here is that

some combination of altruism and richness in bequests is needed to ensure that

the equilibrium outcome of the game is efficient.

The last section gives some examples of inefficient equilibrium outcomes.

The examples illustrate what can cause intra-family decisions to be inefficient.

The first example emphasizes that solutions to intra-generational dynamic

games can be inefficient if bequests are not allowed to be negative. We then

8¿From a formal point of view, this problem is similar to that studied in the clubs

literature: When does a noncooperative formulation give rise to efficient outcomes? (See

Scotchmer (1997) for an example.) However, the mechanism at work here is quite different.

In club and other local public good environments, efficiency is guaranteed by competition

between the clubs for members. Here, since the dynasty is the analog of a club, no such

competition between clubs is possible. Rather, here the natural alignment of incentives

within a family guarantees efficiency within the group.
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show that allowing negative bequests may still not be enough to solve the time

inconsistency problem between parents and children. The section concludes

with an example demonstrating that not every time inconsistency has to lead

to an inefficiency.

5.1 The Barro-Becker Model

One of the principle economic models of fertility is pioneered in Becker and

Barro (1988) and Barro and Becker (1989). In this section, we show how our

approach to efficient fertility can be applied to that class of models. In that

approach, at each date, t, the individuals alive make decisions about their own

consumption, how many children to have, and how large a bequest to leave

each child. To make the model more tractable, Barro and Becker assume that

fertility can take on any positive value, not just integers. Because of this, the

analysis of the preceding sections do not directly apply to the Barro-Becker

model. The modifications necessary are straightforward, however.9

We generalize the Barro-Becker framework here by allowing for more than

one period 0 person. Each initial agent is the dynastic head of his own dynasty.

We allow dynasties to differ in their initial capital stock kτ
0 , child-rearing costs

θτ
t , discount factor βτ , and skill aτ

t . Let wt be the wage per skill unit at time

t and rt the return on capital. We also use a more general utility function.

For most parts in this section, it is enough to focus on one dynasty. For these

cases we drop the superscript τ .

In the Barro-Becker model, it is assumed that each agent alive in period t,

9Details on this are available online in the appendix to this paper. See Golosov, Jones

and Tertilt (2003) at http://www.econ.umn.edu/˜lej/lejresearch.html.
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it, must choose his current consumption level, xt(i
t), his fertility level, ft(i

t) ∈
[0, f̄ ] and a bequest level for each of his children, subject to his own budget

constraint:

ptxt(i
t) + c(ft(i

t)) +

∫ ft(it)

0

bit(it+1)dit+1 ≤ ptet(i
t) + bit−1(it)

Note that this includes the bequest that he has received from his own parents,

bit−1(it). It is assumed that his preferences are given recursively by:

Ut(i
t) = u(xt(i

t)) + βg(ft(i
t))

∫ ft(it)

0

Ut+1(i
t+1)dit+1.

Each agent in each dynasty views the entire sequence of prices as given when

making this choice.

Since our goal is to establish that an equilibrium is sequentially P-efficient,

when prices are determined by the interaction of multiple price-taking dynas-

ties, we must first have a precise definition of what the equilibrium is. To do

this, we will model the formulation above as an infinite horizon game in which

each period each child that is born must make decisions as given above. How

then does a time t decision maker conjecture the future utility of his children?

Of course, the answer is that they must correspond to the actual utility lev-

els that these children receive if they optimally respond to the bequests that

they receive from their parents, etc. That is, the sequence of consumption,

fertility, bequest plans should be a subgame perfect equilibrium (SPE) of this

infinite horizon game. Of course, there are typically many SPE’s of infinite

horizon games involving different threats of punishments off the equilibrium

path. There is no easy way to select among these different equilibria, but one

common selection criterion is that it not be too dependent on the assumption
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that time lasts forever. That is, it should be the limit of the equilibria of the

finite horizon truncations of the infinite horizon game. This is the criterion

that we will use below. Formally, our definition of equilibrium is:

Definition 9 An equilibrium is prices {pt} and {xτ
t (i), f

τ
t (i)}t,i for each dy-

nasty τ such that:

1. For each dynasty τ , {xτ
t (i), f

τ
t (i)}t,i is the limit of the subgame perfect

equilibrium outcome of the finite dynasty game.

2. The allocation is feasible.

To prove that the Barro-Becker equilibrium is sequentially P-efficient, we

need to show that all dynasties are sequentially P-maximizing in the dynastic

Barro-Becker game. The details for this proof are available in Golosov, Jones

and Tertilt (2003), where a T period truncation of the infinite horizon game is

defined. It is then shown that the subgame perfect equilibrium outcome of this

game coincides with the dynastic head choosing his most preferred outcome

and moreover, that this is unique. This result depends on the following four

assumptions:

Assumption 5 u(·) is continuous, strictly increasing, strictly concave and

u(0) = 0.

Assumption 6 c(f) = θf .

Assumption 6 implies that f1c(f2) = c(f1f2), which will be used below.

Assumption 7 g(·) satisfies g(x)g(y) = g(xy).
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Assumption 8 H(F,X) ≡ g(F )Fu(X/F ) is strictly concave in (F, X).

Then we have the following:

Proposition 6 Let the allocation z = {zτ}τ , where zτ = (cτ
t , f

τ
t , kτ

t+1)t, to-

gether with prices {wt, rt} be a Barro-Becker equilibrium as defined in Defini-

tion 9. Then under Assumptions 5-8, along the equilibrium path, all dynasties

are dynastically sequentially P-maximizing given prices.

Given this result, we can then state the main result of this section:

Theorem 1 Let the allocation z = {zτ}τ , where zτ = (cτ
t , f

τ
t , kτ

t+1)t, together

with prices {wt, rt} be a Barro-Becker equilibrium as defined in Definition 9.

Then under Assumptions 5-8, z is sequentially P-efficient.

Proof. This follows immediately from the first welfare theorem (for se-

quentially P-maximizing dynasties) together with Proposition 6 above: zτ is

sequentially P-maximizing for each dynasty τ by Proposition 6; it is also fea-

sible, since it is an equilibrium. There are no externalities across dynasties by

assumption; hence it must be sequentially P-efficient. ¤

Note that an immediate corollary to Theorem 1 is that the equilibrium

allocation is also P-efficient. This follows from the fact that the set of sequen-

tially P-efficient allocations is a strict subset of the set of P-efficient alloca-

tions. That it is also A-efficient follows from the fact that, for each dynasty,

the equilibrium allocation is the unique maximizer of the utility function of

the dynasty head at the equilibrium prices.

In the above we have assumed that it is feasible for parents to leave neg-

ative bequests to their children. We would like to know if this is a necessary
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assumption. Assume that there is a nonnegativity constraint on bequests,

kτ
t ≥ 0. Note that if all dynasties were identical, then this constraint would

never be binding in equilibrium; and hence, the equilibrium allocation would

still be (sequentially) P-efficient. If dynasties are heterogeneous, but not too

different, then the same logic will still apply by continuity. However, if the

heterogeneity is big, then prohibiting negative bequests can indeed lead to an

inefficiency in the Barro-Becker environment, as we will see in Section 5.3.

5.2 Dynastic Dictators

In this section, we again model the rate of growth of population as the equi-

librium outcome of a game played within a dynasty, but deviate from the

assumption that preferences are perfectly time consistent. Without this as-

sumption something extra must be added to guarantee that, given prices, the

outcome within the family is dynastically maximizing. Our strategy is to allow

for virtually any type of preferences but to also allow a rich set of bequest con-

tracts for the dynastic head to choose from. This allows the initial generation

to force its most preferred outcome even if this is not what the subsequent

generations would choose if left on their own.

In a sense, this result, which is fairly intuitive, is at the opposite extreme

from the one given in section 5.1. Taken together, they imply that if the

head has a sufficiently rich set of transfers which he can use to manipulate

bequests, the family equilibrium outcome will be dynastically maximizing.

The richness needed to insure this depends, quite naturally, on the extent of

time consistency problems within the family.
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We will confine our attention to a single dynasty, τ , and will assume that

this dynasty has only a single member at time 0.

Consider an infinite horizon game with t running from 0 on. In period

0, the head chooses his own consumption, x0, his own fertility, f0, and his

bequests, b0. We will allow for b0 to be fully dependent on the consump-

tion and fertility decisions of his descendents. That is, b0 is a family of real-

valued functions indexed by it, t = 0, 1, ..., i = 1, ..., f̄ , b0(·; it), with domain

given by ηt = (x0, f0, x1(1), f1(1), b1(1, 1), ..., x1(f̄), f1(f̄), b1(f̄ , 1), ...). Then

b0(ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t); it) is the bequest that the head leaves to player

it in period t is the history up to period t−1 is ηt−1 and it takes action (xt(i
t),

ft(i
t), bt(it+1, i

t)). We do not restrict b0 to be non-negative.

It’s best to think of b0, as the result of setting up a trust, with detailed

descriptions of subsidies, when they apply, etc. For example, it might give a

specific payout for any direct descendant finishing college.

In period t > 0, all members of the dynasty alive at the time take as

given the history up to that point, denoted by ht−1 and including both ηt−1

and b0, and make simultaneous and independent decisions about their own

consumption, their own fertility, and any bequests that they wish to leave to

their direct descendants. These are denoted by xt(i
t) ∈ Rk, ft(i

t) ∈ F =

{0, 1}f̄ and bt(it+1, i
t) ∈ Rf , respectively. We assume that if ft(it+1, i

t) = 0,

then bt(it+1, i
t) = 0 as well.

We assume that the actions taken by player it in period t are constrained

to satisfy

ptxt(i
t) + c(ft(i

t)) +
∑f̄

it+1=0 bt(it+1, i
t)

≤ ptet(i
t) + bt−1(it, i

t−1) + b0(ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t); it).

42



The action of player 0 must satisfy

p0x0 +
∑

t

∑
it b0(ηt−1, xt(i

t), ft(i
t), bt(it+1, i

t); it) + c(f0) ≤ p0e0

for all ht.

Let z∞ denote a complete description of the levels of consumption and

fertility for every player for every time period, and denote by

ẑ∞ = (x̂0, f̂0, x̂1(1), f̂1(1), ..., x̂1(f̄), f̂1(f̄), ...)

that history that maximizes the utility of player 0, i.e., u0(ẑ
∞) ≥ u0(z

∞)

for every other feasible path through the tree, z∞. Further, assume that ẑ∞

is the unique maximizer of u0; that is, if z∞ is feasible and z∞ 6= ẑ∞ then

u0(ẑ
∞) > u0(z

∞).

Consider the family of bequest functions given by the following:

If (ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t)) = (η̂t−1, x̂t(i

t), f̂t(i
t), b̂t(it+1, i

t)), then

b0(ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t))

= ptxt(i
t) + c(ft(i

t)) + bt(it+1, i
t)− (ptet(i

t) + bt−1(it, i
t−1)),

and if (ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t)) 6= (η̂t−1, x̂t(i

t), f̂t(i
t), b̂t(it+1, i

t)), then

b0(ηt−1, xt(i
t), ft(i

t), bt(it+1, i
t) = −[ptet(i

t) + bt−1(it, i
t−1)].

Note that under this specification, if at any time any player deviates from the

path η̂∞, then for that player, and for all subesquent generations, the only

feasible choice is to have x = 0, and f = (0, 0, ..., 0).

Assumption 9 If z is a sequence of consumptions and fertilities throughout

the tree, such that xi = 0 and fi = (0, 0, ..., 0), then ui(z) = 0.
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That is, if a player has no consumption and no children, his utility is

independent of the allocations received by other members of the dynasty. (The

choice of 0 is just a normalization, but we are assuming that it is 0 no matter

what happens to what other people.)

Assumption 10 ui(ẑ
∞) > 0 for all i ∈ I(ẑ∞).

Proposition 7 Under Assumptions 9 and 10, ẑ∞ is a subgame perfect equi-

librium outcome of the game. It is also the unique subgame perfect equilibrium

outcome that is the limit of subgame perfect equilibria of the finite horizon

truncations of the game.

The proof is immediate and is not included.

5.3 Examples

In this section, we give a variety of examples to illustrate why equilibria may

fail to be efficient.10 Keeping with the spirit of this section, we focus on

inefficiencies originating within a dynasty. That is, all examples have at least

one dynasty that in equilibrium is not dynastically maximizing given prices.

Section 6 will look at instances in which an equilibrium fails to be efficient

despite maximizing behavior of all dynasties.

At the beginning of Section 5, we said that an equilibrium in this environ-

ment would involve a mixture of Nash and Walrasian equilibrium as it always

involves a game among family members as well as market transactions across

10See also Becker and Murphy (1988) for a discussion of situations in which equilibria

may be inefficient.
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dynasties. In particular, we focus on subgame perfect Nash equilibria. The

exact properties of such an equilibrium will depend on the details of the game,

in particular, on the action space of the agents. To further clarify this equilib-

rium concept, we will define action sets and the equilibrium concept in detail

for the first example. For the subsequent examples, many of the details are

omitted.

5.3.1 Credit Constrained Dynasties

In Section 5.1 we emphasized that allowing parents to make negative bequests

to their children is a crucial assumption to guarantee efficiency of the equi-

librium in the Barro-Becker model. Following is a simple 2-period example

illustrating why this is a necessary assumption. There are two dynasties, in-

dexed by their period 0 members, i ∈ P0 = {1, 2}. Assume f̄ = 1 so that each

dynastic head can have at most one child. Then P1 = {(1, 1), (2, 1)}. The

dynasties differ in their labor endowment profiles. The labor endowments of

the first dynasty are `e
1 = 1, `e

(1,1) = 0, whereas the second dynasty has the

reversed profile, `e
2 = 0, `e

(2,1) = 1. The utility functions for the dynastic heads

i = 1, 2 are ui(z) = cσ
i + βcσ

(i,1), while children care about their own consump-

tion only, u(i,1)(z) = cσ
(i,1). The utility of being unborn is normalized to the

utility of zero consumption. Let 1 > σ > 0. A linear technology transforms

labor into the consumption good, F (`f ) = a`f . There is no capital and no

storage technology. There is a small cost of having a child, θ > 0.

The actions of each (potential) agent are constrained to be in the respective

budget set. Let w0, w1 be the period 0 and 1 wages, respectively, and let R be
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the gross interest rate. Then the budget set for the period 0 agents is

Bi(w0, R) = {(ci, bi, fi, `i)|ci+bi+fiθ ≤ w0`i, `i ≤ `e
i , `i, ci, bi ≥ 0, fi ∈ {0, 1}}

and for the period 1 agents,

B(i,1)(w1, R, bi) = {(c(i,1), `(i,1)|c(i,1) ≤ w1`(i,1) + Rbi, `(i,1) ≤ `e
(i,1), c(i,1) ≥ 0}.

An equilibrium is an allocation and prices (w0, w1, R) such that

1. For i = 1, 2 the following holds:

(a) (ci, bi, fi, `i) ∈ Bi(w0, R)

(b) (c(i,1), `(i,1)) ∈ B(i,1)(w1, R, bi)

(c) (ci, bi, fi, `i, c(i,1), `(i,1)) is a subgame perfect Nash equilibrium of the

game between players i and (i, 1).

2. Profit maximization: w0 = w1 = a

3. Market clearing:

goods market in period 1: c1 + c2 ≤ F (`1 + `2)

goods market in period 2: c(1,1) + c(2,1) ≤ F (`(1,1) + `(2,1))

bond market: b1 + b2 = 0

The only equilibrium allocation of this example is quite degenerate:

z = {c1 = 1, f1 = f2 = 0, c2 = c(1,1) = c(2,1) = 0}

The corresponding equilibrium prices are w1 = w2 = a,R = 0. To see why

this is an equilibrium, recall that bequests are constrained to be positive. In
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equilibrium, the second dynasty has an income of 0 in period 1, and cannot

borrow against the income of the child. This implies that the only feasible

fertility choice is f2 = 0. For dynasty 1, the interest rate R = 0 means that

for any bequest choice c(1,1) = 0. This together with θ > 0 implies an optimal

fertility choice f1 = 0.

For small θ or large β, this equilibrium is P- as well as A- inefficient,

because the following allocation is superior in both senses:

ẑ = {f1 = f2 = 1, c1 = c2 =
1− 2θ

2
, c(1,2) = c(2,1) = 0.5}

The intuition is that not allowing negative bequests effectively rules out inter-

dynasty trade in equilibrium. Both dynasties would be better off if the first

dynasty would lend some of its period 1 income to the second dynasty. This

example illustrates that preventing parents from leaving debt to their children

reduces a dynasty’s ability to borrow.

5.3.2 Inability of Parent to Consume from Child’s Income

The next example illustrates an issue that comes up in a slightly more general

formulation. In this example the parent lives for two periods and is not altru-

istic. The lack of altruism means that there is no benefit from having children,

so equilibrium fertility is zero. The child would like to compensate the parent

for the costs of childbearing. But this does not happen in equilibrium because

of a commitment problem. Hence, the equilibrium is dynastically inefficient.

Suppose people live for two periods. The utility function of an agent born

in t is ut = cσ
t + βcσ

t+1. Each agent is endowed with one unit of labor when

young; there is no utility from leisure. The production function is F (K,L) =
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KαL(1−α). Assume capital depreciates fully after one period (δ = 1). Agents

can have children when young, it costs θ units of the consumption good to

produce one child. Let ft denote the number of children a person born in t

has. Parents can leave bequests to their children, but they are restricted to

be nonnegative. Hence, the budget constraint for a young agent is cy
t + ft(θ +

bt+1)kt+1 ≤ wt + bt and for an old agent co
t+1 ≤ 1 + rtkt+1.

Claim: There exists a Competitive Equilibrium with co∗
0 = 0, f ∗0 = 0,

b∗1 = 0, r∗1 = 0 , and k∗1 = 0. Thus, there are no agents alive beyond period 0.

Proof: To verify that this is an equilibrium, we need to find prices such

that the allocation is consistent with consumer optimization and profit max-

imization. Consider the consumer first. Given r∗1 = 0 and δ = 1, the return

on savings is zero; hence, there is no incentive to save, and k∗1 = 0 follows

immediately. The return on children is also zero (assuming negative bequests

are not possible). Therefore, since children are costly, the utility-maximizing

number of children is f ∗0 = 0. Since the consumer has no income in period 1,

it follows that co∗
1 = 0.

Next, consider firm optimization:

max
L,K

Y − w∗L− r∗K = max
L,K

F (K,L)− w∗L

The only wage at which the profit-maximizing output is Y = 0 is w∗ = ∞.

And given w∗ = ∞, the above is indeed an equilibrium. ¤

The above is an example of a model where fertility is P-inefficiently low

in equilibrium. Everyone could be made strictly better off by having some

children, but no one would privately choose to do so. This problem results

from the assumed form of the ownership structure. The return to an additional
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unit of labor is infinity, and the cost is finite, yet no one “produces” extra labor

(that is, children), because the returns belong to someone else (the child). This

issue would not arise if parents were allowed to make negative bequests to their

children. Leaving a negative bequest to the child would allow a parent to reap

the returns from producing an additional unit of labor. The private benefit

from having a child would then no longer differ from the social return.

5.3.3 Children and Drugs

However, simply allowing negative bequests is not always enough to eliminate

an inefficiency of the above kind. In some environments, an even richer bequest

structure would be necessary to ensure that the dynamic game played within

the family leads to an efficient outcome. Following is an example of this point.

There is one initial old person and one potential child, P = {1, (1, 1)}. The

parent derives utility from her own consumption and from the consumption of

her child: u1 = u(c1)+f1βu(c(1,1)), where u(·) is strictly concave. The child has

preferences over consumption, c(1,1), and drugs, d(1,1): u(1,1) = c(1,1) + γd(1,1).

People in each period are endowed with one unit of leisure. A static technology

converts labor into consumption and drugs, c+d ≤ F (`) = w`. It costs θ units

of the consumption good to produce a child. Suppose γ > 1, then (1, 1) (if

born) will consume only drugs and none of the consumption good. Then the

following is an equilibrium allocation: z = {c1 = w, f1 = 0, c(1,1) = 0, d(1,1) =

0}. The reason for not having children is that knowing that their children

will be drug addicts, parents prefer not to have any children. But note that,

assuming θ is not too large, z is not P-efficient, since the following allocation

is P-superior: ẑ = {c1 = w − θ, f1 = 1, c(1,1) = w, d(1,1) = 0}.
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Note that the above inefficiency does not disappear with negative bequests.

Instead, the parent would need a tax-and-transfer system so that she can

discourage the use by the child of the good the parent does not want the child

to consume. Also note that more subtle disagreements between generations

can cause similar issues. A very natural form of dissent would arise if parents

and grandparents differ in their evaluation of their child/grandchild.

5.3.4 Time Inconsistent Preferences and Efficiency

The last two examples demonstrated that preferences that are time inconsis-

tent across generations often lead to inefficient equilibrium outcomes. How-

ever, this does not have to be the case. This section gives an example of

an efficient equilibrium in the presence of time inconsistent preferences. This

example is interesting because it does not maximize the utility of the initial

generation and therefore is very different from the Barro-Becker model.

Assume there is one dynasty, lasting for two periods. Hence, P = {1, (1, 1)}.
There are three goods: leisure, a consumption good, and drugs. Each agent is

endowed with one unit of leisure. A technology uses labor and produces both

the consumption good and drugs, c + d ≤ F (`) = w`. The cost of having a

child is θ > 0. There is no storage technology; hence, it is impossible for the

parent to leave a bequest. The utility function of the parent is

ln(c1) + f ln(c(1,1))

and the child,

ln(c(1,1)) + ln(d(1,1))

For small θ, the equilibrium of this game is straightforward:
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z = {c1 = w − θ, f = 1, c(1,1) = d(1,1) =
w

2
}.

This obviously does not maximize the parent’s welfare. The parent and the

child disagree about the child’s consumption of drugs. But this disagreement

does not lead to an inefficiency in this example, because any other allocation

would make the child strictly worse off. Note that the same would not be true

if there were a storage technology and making bequests possible. In that case,

the time inconsistency would indeed lead to an inefficiency.

6 Is Population Growth Too High?

In many discussions, it is taken as a given by policy makers that fertility is

‘too high’ in developing countries. Few reasons are typically given for this

view, although several auxiliary concerns are mentioned. These include the

overall scarcity of factors as well as the role of population size and density

in determining pollution. In this section, we use the tools developed above

to identify which of these concerns do and do not give rise to suboptimal

population growth rates.

6.1 Scarce Factors, Crowding, and Efficient Fertility

If land is scarce, or if there are other fixed factors, will there be too many

people in a competitive equilibrium? In the policy debate it is often argued

that because resources are scarce, fertility decisions affect society as a whole

and should therefore not be left entirely to individuals. The logic provided is

that since parents do not take into account that having another child decreases
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the land available per capita for the next generation, private and social costs

of an extra child do not coincide, and hence an inefficiency arises. This logic

is sometimes used to justify family planning programs.

In this section we argue that this logic is a fallacy. The effect that an

additional child has on wages (by increasing the aggregate labor supply) is

analogous to the effect that an individual’s increase in labor supply has on

aggregate labor and thereby wages. These effects are channeled through prices

and therefore do not lead to an inefficiency. Thus, this is an example of a

pecuniary externality.

To see this, consider an example in which there are three goods in each

period. The first is land, the second is leisure, and the third is a consumption

good. All agents are endowed with one unit of leisure, which they supply in-

elastically to firms if they are born. Those agents alive in period 0, indexed

by i = 1, ..., N , are also endowed with holdings of land, Ai. Let Ā =
∑

i∈P0
Ai

These holdings are sold to the firm and subsequently used forever. The pro-

duction function is static with:

yt = F (A, `f ),

where F is assumed to be constant returns to scale.

Profit maximization on the part of the firm then implies that the dynastic

P-equilibrium price of land traded in period 0 is given by

q0 =
∑

t FA(Ā, Nt)pt,

where Nt is the size of the population in period t and pt is the equilibrium

period 0 price of one unit of the consumption good in period t. Similarly, the

real wage rate must be

wt/pt = F`(Ā, Nt).
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Thus, in keeping with intuition, if, for whatever reason, N̂t > Nt for all

t, and with pt held fixed, the sale price of land (and the implicit rental price

as well) is higher while the equilibrium real wage rate must be lower. That

is, because land is scarce, if parents choose to have more children, real wages

must be lower. In this sense, one parent would, across equilibria, lower the

realized wage for all children by increasing his fertility choice. In this sense,

there is crowding of scarce resources.

Despite this fact, it is easy to see that all of the assumptions of Proposition

5 are satisfied. It follows that the equilibrium fertility levels chosen will be

sequentially P-efficient (and hence P-efficient) as long as individual dynastic

decision making is done efficiently.

To get some intuition for the above result, consider the following question:

Is it possible to eliminate some agent i at time t from the equilibrium allocation

to make the remaining Nt − 1 people strictly better off due to their increased

wages? To see that this is impossible, consider total output at time t minus the

compensation that i receives for his labor input: F (Ā, Nt)−w. In equilibrium

w = FN . This, together with the assumption that F (Ā, Nt) is concave in Nt,

implies immediately that F (Ā, Nt) − w is greater than total output without

i, F (Ā, Nt − 1). Hence, it is impossible to make the remaining Nt − 1 agents

strictly better off because while less labor leads to higher wages, it at the same

time it decreases returns to the fixed factor by even more.

Note that this result holds independent of the form of preferences. Thus,

although the Barro-Becker formulation is one example in which this result is

true, the conclusion is actually much more general.
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6.2 Pollution, Congestion, and External Effects Across

Families

In contrast to the example presented above, if there are true external effects,

equilibrium fertility need not be efficient. Recall, however, from Proposition 2

that under relatively weak assumptions, no P-superior allocation can involve

fewer people. So with negative externalities, the equilibrium can only involve

inefficiently many people in the A-sense and not the P-sense, unless one is

willing to violate these assumptions. If positive externalities are present in

an economy, then the equilibrium fertility can be low fertility, in both the

sequential and the P-sense. Following is a simple example to illustrate these

points.11

Assume that there are N dynasties, each identical, each lasting only two

periods. There are two goods, leisure and a consumption good, with a constant

returns to scale production function between the two given by c = w`. Also

assume that with each unit of output, one unit of pollution is produced and

assume that labor is inelastically supplied. The time endowment, if born, is 1.

Under this specification, it follows that if each dynasty has f children,

consumption in the second period is

c(i,j) = w i = 1, . . . , N j = 1, . . . , fi.

Thus, the total amount of pollution in period 2 is s2 =
∑

i fi.

Assume that the utility function of individuals in the first generation is

given by

ui(ci, f1, f2, ..., f̄ , c(i,1), c(i,2), ..., c(i,f̄), s2) = ci + β
∑

c(i,1) + ηs2.

11A similar example is constructed in Harford (1998).
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We are interested in pollution here, so assume η < 0. The utilities of agents

alive in period 2 are given by:

u(i,j)(ci, f1, f2, ..., f̄ , c(i,1), c(i,2), ..., c(i,f̄), s2) = βc(i,j) + ηs2.

The utility of unborn is normalized to 0.

The cost of bearing a child is θ > 0. The problem of an individual in period

0 making the fertility choice can be written as

max
f

w + f(βw − θ) + ηs2.

If we assume that βw − θ > 0, the parent will always choose to have the

maximum number of children, f ∗ = f̄ . By symmetry, the same is true for all

dynasties, which leads to an equilibrium level of pollution given by s∗2 = Nf̄ .

The equilibrium utility of a period 1 agent is therefore

u(z∗) = w + f̄(βw − θ + ηN).

It is clear that as long as βw − θ + ηN < 0, that is, if η < 0 is large enough

in absolute value, then all parents can be made strictly better off by lowering

utility to f = 0 for everyone. Hence, in this case, the equilibrium allocation,

z∗, is not sequentially P-efficient. However, z∗ will be P-efficient as long as

βw + ηN > 0, that is, as long as being alive and enduring the externality is

better than not being alive. On the other hand, if βw + ηN < 0, then the

potential children would also gain by not being born, and for this case z∗ is

not P-efficient.

Finally, consider a positive externality, η > 0. This is relevant, for example,

in models with human capital if there are positive external effects in knowledge

accumulation. (See Romer (1987) and Lucas (1988) for examples.) Assume
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now that βw−θ < 0; that is, the private returns on having a child are negative.

Then in equilibrium, f ∗ = 0. Suppose further that βw − θ + ηN > 0; then

the social returns on having a child are higher than the private returns. Thus,

the equilibrium is not efficient in either sense. The allocation f̂ = f̄ is strictly

superior both in the sequential and in the P-sense, since it gives strictly higher

utility to everyone in the economy, parents and children.

The above examples show that it is far from obvious that fertility is too

high in Africa and too low in Sweden. Per-person pollution, for example, is

likely to be much higher in rich countries compared to poor ones. This would

imply that the negative externality is a bigger problem in Sweden, implying

that the Swedes that are having too many babies. However, if the positive

externality is important, then perhaps people in all countries are having too

few children.

6.3 Missing Markets

Yet another example of the failure of the first welfare theorem in this environ-

ment arises when key markets are missing. One can imagine many examples

relevant in fertility settings (for example, the lack of insurance against the

risk of not being able to have children). A simple and particularly interest-

ing example involves private information about expected lifetimes. This is a

common explanation given for the relative sparsity of annuity markets. This

may lead parents to have too many children, because parents use children as

an alternative to annuity contracts. In other words, an A-superior allocation

would involve fewer people with better insurance across dynasties. The miss-
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ing markets problem is similar to the pollution externality discussed above. In

both cases, dynasties may well be A-maximizing, and yet, equilibrium fertility

is too high due to a problem in the economy as a whole.

7 Conclusion

In this paper, we have presented three extensions of the notion of Pareto-

optimality for models in which fertility is endogenous, P-efficiency, A-efficiency,

and sequential P-efficiency. We have shown that, although these models al-

ways have external effects, if they are confined to the family and the family

makes optimal decisions, the time series of populations that is generated is

optimal. We have shown that the most popular economic model of fertil-

ity choice, that of Barro and Becker (1989), satisfies these assumptions, and

hence, in that model, population is efficient. Finally, we have shown that the

presence of external effects can cause indivdually optimal fertility choices to

be suboptimal from a social point of view and that this bias depends on the

direction of the external effect.
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