Data 00 Model 00000000 Quantitative Analysis

Conclusions o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The End of the American Dream? Inequality and Segregation in US Cities

Alessandra Fogli and Veronica Guerrieri

Research and Policy: A Golden Minnesota Partnership August 2019

Quantitative Analysis

Question

- over last 40 years large increase in US income inequality
- simultaneous rise in residential income segregation

Question:

has residential segregation contributed to amplify inequality response to underlying shocks?

This paper:

model of human capital accumulation and local spillovers disciplined with new micro estimates by Chetty-Hendren

Model 00000000 Quantitative Analysis

Conclusions o

Some Literature

- 90s theoretical work on inequality and local externalities: Benabou (1996a,1996b), Durlauf (1996a,1996b), Fernandez and Rogerson (1996,1998),...
- recent use of administrative data: Chetty, Hendren and Katz (2016) and Chetty et Hendren (2018) estimate effects of childhood exposure to better neighborhoods
- we bridge the two literatures and use recent micro estimates to discipline a quantitative GE model
- new active area of research: Durlauf and Seshadri (2017), Zheng (2017), Eckert and Kleineberg (2018)

Quantitative Analysis

Conclusions o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preview

- data: correlation between inequality and segregation
- GE OGM with human K and residential choice
- key ingredient: neighborhood spillover
 - peer effects, public schools, social norms, learning
- endogenous response of house prices \rightarrow feedback between inequality and segregation
- calibrate the model to a representative US MSA
- main exercise: MIT shock to skill premium in 1980
- segregation contributes to 28% of the increase in inequality

Inequality and Segregation Across Time

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Motivation	Data	Model	Quantitative Analysis	Conclusions
000	0•	0000000	000000	0

Inequality and Segregation Across Space and Time

◆ロト★園▶★恵▶★恵▶ 恵 のなぐ

Data 00 Model •ooooooo Quantitative Analysis

Conclusions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Set Up

- overlapping generations of agents who live for 2 periods: children and parents
- a parent at time t:
 - earns a wage $w_t \in [\underline{w}, \overline{w}]$
 - has a child with ability $a_t \in [\underline{a}, \overline{a}]$
- assume log(a) follows an AR1 process with correlation ρ
- $F_t(w, a)$ = joint distribution of w and a at time t

Geography and Housing Market

- two neighborhoods: $n \in \{A, B\}$
- · each agent live in a house of same size and quality
- R_t^n = rent in neighborhood *n* at time *t*
- extreme assumptions on supply:
 - fixed supply *H* in neighborhood *A*;
 - fully elastic supply of houses in neighborhood B;
- marginal cost of construction in $B = 0 \Rightarrow R_t^B = 0$ for all t

Quantitative Analysis

Education and Wage Dynamics

- parents can directly invest in education $e \in \{e_L, e_H\}$
- cost of $e_L = 0$, cost of $e_H = \tau$
- wage of child with ability *a*_t, education *e*, growing up in *n*:

$$w_{t+1} = \Omega(w_t, a_t, e, S_t^n, \varepsilon_t)$$

where ε_t is iid noise and S_t^n is neighborhood n spillover

• S_t^n = average human capital in neighborhood *n* at time *t*

$$S_t^n = E[w_{t+1}(w, a, \varepsilon)|n_t(w, a) = n]$$

Data oo Model 00000000 Quantitative Analysis

Conclusions o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Parents' Optimization Problem

parent (w_t, a_t) at time t solves

$$\begin{array}{lll} U(w_t, a_t) & = & \max_{c_t, e_t, n_t} u(c_t) + E_t[g(w_{t+1})] \\ s.t. & c_t + R_t^{n_t} + \tau e_t \leq w_t \\ & w_{t+1} = \Omega(w_t, a_t, e_t, S_t^{n_t}, \varepsilon_t) \end{array}$$

taking as given R_t^k and S_t^k for k = A, B

Data oo Model 00000000 Quantitative Analysis

Conclusions o

A D F A 同 F A E F A E F A Q A

Equilibrium

For given $F_0(w, a)$, an equilibrium is a sequence $\{n_t(w, a), e_t(w, a), R_t^A, S_t^A, S_t^B, F_t(w, a)\}_t$ satisfying

- agents optimization: for any t given R_t^A , S_t^A , S_t^B
- spillover consistency for any t and k = A, B
- housing market clearing: for any t

$$H = \int \int_{n_t(w,a)=A} F_t(w,a) dw da$$

wage dynamics: for any t

$$w_{t+1}(w, a, \varepsilon) = \Omega(w, a, e_t(w, a), S_t^{n_t(w, a)}, \varepsilon)$$

Data oo Model

Quantitative Analysis

Conclusions o

Assumptions

Focus on equilibria with $R_t^A > 0$ for all $t \Rightarrow S_t^A > S_t^B$ for all t

Assumption A1

The function $\Omega(a, e, S, \varepsilon)$ is

- constant in S and a if $e = e_L$
- increasing in S and a if $e = e_H$

Assumption A2

The composite function $g(\Omega(a, e, S, \varepsilon))$ has increasing differences in *a* and *S*, *a* and *e*, *w* and *S*, and *w* and *e*

Motiv	ation
000	

Model 00000000 Quantitative Analysis

Conclusions o

Cut-Off Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Response to Skill Premium Shock

$$\Omega(\boldsymbol{w},\boldsymbol{a},\boldsymbol{e},\boldsymbol{S}^{n},\varepsilon) = (\boldsymbol{b} + \boldsymbol{ea\eta}(\beta_{0} + \beta_{1}\boldsymbol{S}^{\xi}_{n}))\boldsymbol{w}^{\alpha}\varepsilon$$

Data oo Model 00000000 Quantitative Analysis

Conclusions o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extended Model

Two new ingredients:

1. continuous educational choice:

· higher dispersion in investment in human capital

2. residential preference shock:

• this generates more mixing in the initial steady state

Data oo Model 00000000 Quantitative Analysis

Conclusions o

Calibration

Table 1: Calibration Targets

Description	Data	Model	Source
Gini coefficient	0.366	0.365	Census 1980, family income
Dissimilarity index	0.318	0.318	Census 1980, family income
H^R index	0.100	0.094	Census 1980, family income
B/A average income	0.516	0.459	Census 1980
R^A - R^B normalized	0.073	0.074	Census 1980
Rank-rank correlation	0.341	0.330	Chetty et al. (2014)
Return to spillover 25th p	0.104	0.104	Chetty and Hendren (2018b)
Return to spillover 75th p	0.064	0.070	Chetty and Hendren (2018b)
Return to college 1980	0.304	0.306	Valletta (2018)
Return to college 1990	0.449	0.449	Valletta (2018)

Data

Model

Quantitative Analysis

Conclusions o

Response to Skill Premium Shock

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivation	Data	Model	Quantitative Analysis	Conclusio
000	00	00000000	000000	0

Main Counterfactual: Random Re-Location

▲□▶▲□▶▲□▶▲□▶ ■ のくで

Motivation	Data	Model	Quantitative Analysis	Conclusion
000	00	0000000	000000	0

No Spillover and No Spillover Feedback

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Decomposing the Spillover Feedback

GE effect: as R^A increases, the degree of sorting by income increases

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Data oo Model 00000000 Quantitative Analysis

Conclusions

(ロ) (同) (三) (三) (三) (三) (○) (○)

To conclude

- GE model with human capital accumulation, residential choice and local externalities
- local externalities generate segregation by income across neighborhoods
- segregation contributed to roughly 28% of the increase in inequality in response to a skill premium shock
- for the future:
 - use the model to think about differential response of inequality and segregation across metros
 - normative analysis