Money and Banking in a New Keynesian Model

Monika Piazzesi Ciaran Rogers Martin Schneider Stanford Stanford Stanford

U-Fed 50th August 22+23, 2019

Motivation

- Standard New Keynesian model
- central bank controls short rate in household stochastic discount factor
- short rate $=$ return on savings \& investment
- This paper: New Keynesian model with banking sector
- central bank controls interest rate on fed funds or reserves
- households do not hold these assets directly
- banks hold these assets to back inside money
\rightarrow disconnect between policy rate \& short rate
- Central bank chooses reserve supply
- scarce reserves ('corridor system'): policy targets fed funds rate, fixes reserve rate, adjusts reserves to implement target
- abundant reserves ('floor system'): policy targets reserve rate

Banking with scarce reserves ("corridor system")

- higher policy rate i^{F} is tax on banks' liquidity

Reserves

Banking with abundant reserves ("floor system")

- higher policy rate i^{M} does not change banks' cost of liquidity

Reserves

Implications

- Standard NK model
- interest rate is all that matters, plumbing \& quantities not important
- NK model with banks
- disconnect between policy rate \& short rate
- affects transmission of policy
- plumbing and quantities matter
- stronger pass-through from policy rate to short rate in corridor system
- corridor system: tighter policy is tax on liquidity
- nominal assets held by banks important for output \& inflation
- less scope for multiple equilibria, even without Taylor principle
- Plan for talk:
- Transmission in minimal model with disconnect (no banks)
- Introduce banks

Minimal model with short rate disconnect (no banks)

- Representative household
- utility separable in labor + CES bundle of consumption \& money
- $\sigma=$ IES for bundles, $\eta=$ interest elasticity of money demand
- for now, separable in consumption \& money: $\eta=\sigma$
- later consider complementarity: $\eta<\sigma$
- Firms
- consumption goods $=$ CES aggregate of intermediates
- intermediate goods made 1-1 from labor, Calvo price setting
- Government: central bank digital currency
- path or feedback rule for money supply D_{t}
- path or feedback rule for policy rate $i_{t}^{D}=$ interest rate on money
- lump sum taxes adjust to satisfy budget constraint
- Market clearing: goods, money, labor
- $i_{t}^{S}=$ short rate in household SDF adjusts endogenously
- familiar special case: NK model with money growth rule \& peg $i_{t}^{D}=0$

Linear dynamics

- Steady state with zero inflation
- Standard NK Phillips curve \& Euler equation

$$
\begin{aligned}
\Delta \hat{p}_{t} & =\beta \Delta \hat{p}_{t+1}+\lambda\left(\varphi+\frac{1}{\sigma}\right) \hat{y}_{t} \\
\hat{y}_{t} & =\hat{y}_{t+1}-\sigma\left(i_{t}^{S}-\Delta \hat{p}_{t+1}-\delta\right)
\end{aligned}
$$

- Households' choose money holdings to equalize expected returns

$$
i_{t}^{S}-\delta=\underset{\text { policy rate }}{i_{t}^{D}-r^{D}+\frac{\delta-r^{D}}{\eta}\left(\hat{p}_{t}+\hat{y}_{t}-\hat{d}_{t}\right)} \begin{gathered}
\text { convenience yield, increasing }
\end{gathered}
$$

- Structure of difference equation
- Standard model: block recursive, solve for $\left(\hat{p}_{t}, \hat{y}_{t}\right)$ given policy rate i_{t}^{S}
- CBDC model: solve for $\left(\hat{p}_{t}, \hat{y}_{t}, i_{t}^{S}\right)$ given policy tools i_{t}^{D} and \hat{d}_{t}
- state variable \hat{p}_{t} with initial condition \hat{p}_{0}

Monetary policy

- Standard model: short rate $i_{t}^{S}=$ policy rate
- Transmission of interest rate policy

policy rate	+	real return	-	output,
	\longrightarrow	on savings	\longrightarrow	inflation

- Money supplied elastically to implement i_{t}^{S}, fix $i_{t}^{D}=0$

Monetary policy

- CBDC model: convenience yield is endogenous wedge

$$
i_{t}^{S}-\delta=i_{t}^{D}-r^{D}+\frac{\delta-r^{D}}{\eta}\left(\hat{p}_{t}+\hat{y}_{t}-\hat{d}_{t}\right)
$$

- Transmission of interest rate policy

policy rate	+	real return on savings	-	output,
inflation				

$$
+\uparrow
$$

\Rightarrow convenience yield dampens effect

- Money supply $=$ independent policy instrument

Local determinacy with interest rate peg

- Standard model: many bounded solutions to difference equation
- When do we get multiple bounded equilibrium paths?
low output Phillips curve
low demand

Euler eqn
high real rate
low inflation
interest rate peg

- Taylor principle: policy reacts aggressively to low inflation

Local determinacy with interest rate peg

- Standard model: many bounded solutions to difference equation
- When do we get multiple bounded equilibrium paths?

- CBDC model: endogenous convenience yield as a stabilizing force
- works like Taylor principle: lower rate if lower inflation, output
- strength depends on preferences, technology, policy

Conditions for local determinacy

- Policy: interest rate \& money supply
- exogenous path for i_{t}^{D} or Taylor rule $i_{t}^{D}=r^{D}+\phi_{\pi} \Delta \hat{p}_{t}+v_{t}$
- compare three scenarios for money supply rule

1. Exogenous path for money supply

- always local determinacy: convenience yield responds strongly to π

2. Exogenous path for real balances: $D_{t}=P_{t} G_{t}$

- local determinacy iff $\frac{\delta-r^{D}}{\eta}>\frac{\lambda(\varphi+1 / \sigma)}{1-\beta}\left(1-\phi_{\pi}\right)$
- less scope for multiple equilibria if
\star money demand less elastic (low η) \rightarrow conv. yield responds more to y
\star flatter NK Phillips curve, e.g. prices more sticky, lower λ
\star more aggressive inflation response: higher ϕ_{π}

3. Nominal rigidities in money supply: $D_{t}=\mu D_{t-1}+P_{t} G, \quad \mu<1$

- local determinacy if μ sufficiently large
- predetermined nominal money \rightarrow convenience yield responds more

Cost channel

- Consumption \& money complements in utility
- nonseparable utility with $\eta<\sigma$
- higher cost of liquidity $i_{t}^{S}-i_{t}^{D}$ makes shopping less attractive \rightarrow reduce consumption, increase leisure/decrease labor \rightarrow lower output, higher inflation
- Effect of higher policy rate on cost of liquidity $i_{t}^{S}-i_{t}^{D}$
- standard model: higher i_{t}^{S} with fixed $i_{t}^{D} \rightarrow$ higher cost
- CBDC model: higher $i_{t}^{D}+$ imperfect pass-through \rightarrow lower cost
- Numerical example
- $\delta=4 \%, r^{D}=1.6 \%, \sigma=1, \eta=.2$, standard cost \& Calvo pars
- constant money supply
- Taylor rule with coefficient 1.5 on inflation, .5 on past short rate
- compare impulse responses to $25 b p$ monetary policy shock

IRFs to 25 bp monetary policy shock: standard model

IRFs to 25 bp monetary policy shock: standard vs CBDC

IRFs to 25 bp monetary policy shock: standard vs CBDC

NK Model with Banks

- central bank provides abundant reserves ("floor system")
- reserves are special as collateral, not needed for liquidity
- monetary policy targets reserve rate

Banking sector

- Balance sheet

Assets			Liabilities		
M	Reserves	Money	D		
A	Other assets	Equity			

- Shareholders maximize present value of cash flows

$$
\begin{aligned}
& M_{t-1}\left(1+i_{t-1}^{M}\right)-M_{t}-D_{t-1}\left(1+i_{t-1}^{D}\right)+D_{t} \\
& +A_{t-1}\left(1+i_{t-1}^{A}\right)-A_{t}
\end{aligned}
$$

- Costless adjustment of equity
- Leverage constraint: $D_{t} \leq \ell\left(M_{t}+\rho A_{t}\right)$
- $\rho<1$ other assets are lower quality collateral to back (inside) money

Bank optimization: perfect competition

- Nominal rate of return on equity $=i_{t}^{S}$
- banks equate returns on assets \& liabilities to cost of capital i_{t}^{S}
- $\gamma_{t}=$ multiplier on leverage constraint
- Optimal portfolio choice: assets valued as collateral

$$
\begin{aligned}
i_{t}^{S} & =i_{t}^{M}+\ell \gamma_{t}\left(1+i_{t}^{S}\right) \\
i_{t}^{S} & =i_{t}^{A}+\rho \ell \gamma_{t}\left(1+i_{t}^{S}\right)
\end{aligned}
$$

- Optimal money creation: money requires leverage cost

$$
i_{t}^{S}=i_{t}^{D}+\gamma_{t}\left(1+i_{t}^{S}\right)
$$

\Rightarrow Marginal cost pricing of liquidity

$$
i_{t}^{S}-i_{t}^{D}=\frac{1}{\ell}\left(i_{t}^{S}-i_{t}^{M}\right)
$$

Bank market power

- Many monopolistically competitive banks
- Households care about CES bundle of deposit varieties

$$
D_{t}=\left(\int\left(D_{t}^{i}\right)^{1-\frac{1}{\eta_{b}}}\right)^{\frac{1}{1-\frac{1}{\eta_{b}}}}
$$

- $\eta_{b}=$ elasticity of substitution between bank accounts
\Rightarrow Constant markup over marginal cost

$$
i_{t}^{S}-i_{t}^{D}=\frac{\eta_{b}}{\eta_{b}-1} \frac{1}{\ell}\left(i_{t}^{S}-i_{t}^{M}\right)
$$

Equilibrium with abundant reserves

- Government: floor system with abundant reserves
- path or rule for supply of reserves M_{t}
- path or rule for interest rate on reserves i_{t}^{M}
- Market clearing for reserves \& other bank assets
- path or rule for exogenous supply of nominal assets A_{t}
- stands in for borrowing by firms or against housing
- nominal rigidity in A_{t} could be due to long term debt
- Characterizing equilibrium
- NK Phillips curve \& Euler equation unchanged

Dynamics with abundant reserves

- Interest rate pass-through: reserve rate to short rate

$$
i_{t}^{S}-\delta=i_{t}^{M}-r^{M}+\frac{\delta-r^{M}}{\eta}\left(\hat{p}_{t}+\hat{y}_{t}-\hat{d}_{t}\right)
$$

- reserves back inside money, inherit convenience yield of deposits
- Money supply

$$
\hat{d}_{t}=\frac{M}{M+\rho A} \hat{m}_{t}+\frac{\rho A}{M+\rho A} \hat{a}_{t}
$$

- reserves a separate policy instrument: QE stimulates economy!
- other bank assets also matter: bad loan shocks contractionary
\Rightarrow Works like CBDC model, but coefficients depend on banking system

Banking with scarce reserves

- Banks manage liquidity
- deposit outflow/inflow $\tilde{\lambda} D_{t}$ to/from other banks
- iid liquidity shock $\tilde{\lambda}$ has mean zero, cdf G with bounded support
- satisfy leverage constraint after deposit inflow/outflow
- borrow/lend in competitive fed funds market at rate i^{F}
- Assets valued as collateral, reserves also for liquidity
- Government:
- path or rule for fed funds rate i_{t}^{F}, reserve rate i^{M}; here $i^{M}=0$
- reserve supply adjusts to meet interest rate targets
- Market clearing for reserves, Fed funds
- reserves scarce: quantity small relative to support of liquidity shocks
- otherwise $i^{F}=i^{M}$ \& no active Fed funds market, back to abundance
- government selects type of equilibrium

Dynamics with scarce reserves

- Interest rate pass-through: fed funds rate to short rate

$$
i_{t}^{S}-\delta=i_{t}^{F}-r^{M}+\frac{\delta-r^{M}}{\eta}\left(\hat{p}_{t}+\hat{y}_{t}-\hat{d}_{t}\right)
$$

- Inside money in reserveless limit: share of reserves in bank assets $\rightarrow 0$

$$
\hat{d}_{t}=\frac{\eta}{\eta+\varepsilon} \hat{a}_{t}+\frac{\varepsilon}{\eta+\varepsilon}\left(\hat{p}_{t}+\hat{y}_{t}-\frac{\eta}{r^{F}}\left(i_{t}^{F}-r^{F}\right)\right)
$$

- $\varepsilon=$ function of bank technology parameters
\Rightarrow Works like CBDC model with more elastic money supply
- Numerical example to compare floor \& corridor system

IRFs to monetary policy shock

Conclusion

- Disconnect between policy rate and short rate
- convenience yield is endogenous wedge, changes transmission
- less scope for multiple equilibria, even without Taylor principle
- policy weaker if more nominal rigidities in balance sheets
- Bank models vs CBDC model
- same basic transmission mechanism
- difference to standard model depends on details of banking system:
\star nominal rigidities in bank balance sheets, bank market power
\star liquidity management \& elasticity of deposit supply
- Corridor vs floor system
- with cost channel, significant differences in IRFs
- corridor system closer to standard model than floor system

