Money and Banking in a New Keynesian Model

Monika Piazzesi Ciaran Rogers Martin Schneider
Stanford Stanford Stanford

U-Fed 50th August 22+23, 2019

Motivation

- Standard New Keynesian model
 - central bank controls short rate in household stochastic discount factor
 - ▶ short rate = return on savings & investment
- This paper: New Keynesian model with banking sector
 - central bank controls interest rate on fed funds or reserves
 - households do not hold these assets directly
 - banks hold these assets to back inside money
 - \rightarrow disconnect between policy rate & short rate
- Central bank chooses reserve supply
 - scarce reserves ('corridor system'): policy targets fed funds rate, fixes reserve rate, adjusts reserves to implement target
 - ► abundant reserves ('floor system'): policy targets reserve rate

Banking with scarce reserves ("corridor system")

• higher policy rate i^F is tax on banks' liquidity

Banking with abundant reserves ("floor system")

• higher policy rate i^M does not change banks' cost of liquidity

Implications

- Standard NK model
 - ▶ interest rate is all that matters, plumbing & quantities not important
- NK model with banks
 - ► disconnect between policy rate & short rate
 - affects transmission of policy
 - plumbing and quantities matter
 - ► stronger pass-through from policy rate to short rate in corridor system
 - corridor system: tighter policy is tax on liquidity
 - ► nominal assets held by banks important for output & inflation
 - ► less scope for multiple equilibria, even without Taylor principle
- Plan for talk:
 - ► Transmission in minimal model with disconnect (no banks)
 - ► Introduce banks

Minimal model with short rate disconnect (no banks)

- Representative household
 - ▶ utility separable in labor + CES bundle of consumption & money
 - $\sigma = IES$ for bundles, $\eta = interest$ elasticity of money demand
 - for now, separable in consumption & money: $\eta = \sigma$
 - ▶ later consider complementarity: $\eta < \sigma$
- Firms
 - ► consumption goods = CES aggregate of intermediates
 - ► intermediate goods made 1-1 from labor, Calvo price setting
- Government: central bank digital currency
 - \triangleright path or feedback rule for money supply D_t
 - path or feedback rule for *policy rate* i_t^D = interest rate on money
 - lump sum taxes adjust to satisfy budget constraint
- Market clearing: goods, money, labor
 - $ightharpoonup i_{\star}^{S} = \text{short rate in household SDF adjusts endogenously}$
 - familiar special case: NK model with money growth rule & peg $i_t^D=0$

Linear dynamics

- Steady state with zero inflation
- Standard NK Phillips curve & Euler equation

$$\Delta \hat{\rho}_{t} = \beta \Delta \hat{\rho}_{t+1} + \lambda \left(\varphi + \frac{1}{\sigma} \right) \hat{y}_{t}$$
$$\hat{y}_{t} = \hat{y}_{t+1} - \sigma \left(i_{t}^{S} - \Delta \hat{\rho}_{t+1} - \delta \right)$$

Households' choose money holdings to equalize expected returns

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
policy rate
$$\frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
convenience yield, increasing in velocity = spending / money

- Structure of difference equation
 - Standard model: block recursive, solve for (\hat{p}_t, \hat{y}_t) given policy rate i_t^S
 - ► CBDC model: solve for $(\hat{p}_t, \hat{y}_t, i_t^S)$ given policy tools i_t^D and \hat{d}_t
 - state variable \hat{p}_t with initial condition \hat{p}_0

Monetary policy

• Standard model: short rate $i_t^S = \text{policy rate}$

Transmission of interest rate policy

• Money supplied elastically to implement i_t^S , fix $i_t^D=0$

Monetary policy

CBDC model: convenience yield is endogenous wedge

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

Transmission of interest rate policy

- ⇒ convenience yield dampens effect
 - Money supply = independent policy instrument

Local determinacy with interest rate peg

- Standard model: many bounded solutions to difference equation
- When do we get multiple bounded equilibrium paths?

Taylor principle: policy reacts aggressively to low inflation

Local determinacy with interest rate peg

- Standard model: many bounded solutions to difference equation
- When do we get multiple bounded equilibrium paths?

- CBDC model: endogenous convenience yield as a stabilizing force
 - ► works like Taylor principle: lower rate if lower inflation, output
 - strength depends on preferences, technology, policy

Conditions for local determinacy

- Policy: interest rate & money supply
 - exogenous path for i_t^D or Taylor rule $i_t^D = r^D + \phi_{\pi} \Delta \hat{p}_t + v_t$
 - ► compare three scenarios for money supply rule
- 1. Exogenous path for money supply
 - always local determinacy: convenience yield responds strongly to π
- 2. Exogenous path for real balances: $D_t = P_t G_t$
 - ▶ local determinacy iff $\frac{\delta r^D}{n} > \frac{\lambda(\phi + 1/\sigma)}{1 \beta}(1 \phi_{\pi})$
 - ► less scope for multiple equilibria if
 - \star money demand less elastic (low η) o conv. yield responds more to y
 - \star flatter NK Phillips curve, e.g. prices more sticky, lower λ
 - \star more aggressive inflation response: higher ϕ_π
- 3. Nominal rigidities in money supply: $D_t = \mu D_{t-1} + P_t G$, $\mu < 1$
 - ightharpoonup local determinacy if μ sufficiently large
 - lacktriangle predetermined nominal money ightarrow convenience yield responds more

Cost channel

- Consumption & money complements in utility
 - ▶ nonseparable utility with $\eta < \sigma$
 - ▶ higher cost of liquidity $i_t^S i_t^D$ makes shopping less attractive
 - → reduce consumption, increase leisure/decrease labor
 - \rightarrow lower output, higher inflation
- Effect of higher policy rate on cost of liquidity $i_t^S i_t^D$
 - lacktriangledown standard model: higher $i_t^{\mathcal{S}}$ with fixed $i_t^{\mathcal{D}}
 ightarrow$ higher cost
 - lacktriangleright CBDC model: higher i_t^D + imperfect pass-through ightarrow lower cost
- Numerical example
 - $\delta = 4\%$, $r^D = 1.6\%$, $\sigma = 1$, $\eta = .2$, standard cost & Calvo pars
 - constant money supply
 - ► Taylor rule with coefficient 1.5 on inflation, .5 on past short rate
 - ► compare impulse responses to 25bp monetary policy shock

IRFs to 25 bp monetary policy shock: standard model

IRFs to 25 bp monetary policy shock: standard vs CBDC

IRFs to 25 bp monetary policy shock: standard vs CBDC

NK Model with Banks

- central bank provides abundant reserves ("floor system")
 - ► reserves are special as collateral, not needed for liquidity
 - monetary policy targets reserve rate

Banking sector

Balance sheet

Assets		Liabilities	
M	Reserves	Money	D
A	Other assets	Equity	

Shareholders maximize present value of cash flows

$$\begin{aligned} & M_{t-1} \left(1 + i_{t-1}^{M} \right) - M_{t} - D_{t-1} \left(1 + i_{t-1}^{D} \right) + D_{t} \\ & + A_{t-1} \left(1 + i_{t-1}^{A} \right) - A_{t} \end{aligned}$$

- Costless adjustment of equity
- Leverage constraint: $D_t \le \ell \left(M_t + \rho A_t \right)$
 - ho < 1 other assets are lower quality collateral to back (inside) money

Bank optimization: perfect competition

- Nominal rate of return on equity $= i_t^S$
 - **b** banks equate returns on assets & liabilities to cost of capital i_t^S
 - γ_t = multiplier on leverage constraint
- Optimal portfolio choice: assets valued as collateral

$$i_t^S = i_t^M + \ell \gamma_t \left(1 + i_t^S \right)$$

$$i_t^S = i_t^A + \rho \ell \gamma_t \left(1 + i_t^S \right)$$

Optimal money creation: money requires leverage cost

$$i_t^S = i_t^D + \gamma_t \left(1 + i_t^S \right)$$

⇒ Marginal cost pricing of liquidity

$$i_t^S - i_t^D = \frac{1}{\ell} \left(i_t^S - i_t^M \right)$$

Bank market power

- Many monopolistically competitive banks
- Households care about CES bundle of deposit varieties

$$D_t = \left(\int \left(D_t^i\right)^{1-rac{1}{\eta_b}}
ight)^{rac{1}{1-rac{1}{\eta_b}}}$$

- η_b = elasticity of substitution between bank accounts
- \Rightarrow Constant markup over marginal cost

$$i_t^S - i_t^D = \frac{\eta_b}{\eta_b - 1} \frac{1}{\ell} \left(i_t^S - i_t^M \right)$$

Equilibrium with abundant reserves

- Government: floor system with abundant reserves
 - ▶ path or rule for supply of reserves M_t
 - ▶ path or rule for interest rate on reserves i_t^M
- Market clearing for reserves & other bank assets
 - ightharpoonup path or rule for exogenous supply of nominal assets A_t
 - ► stands in for borrowing by firms or against housing
 - ▶ nominal rigidity in A_t could be due to long term debt
- Characterizing equilibrium
 - NK Phillips curve & Euler equation unchanged

Dynamics with abundant reserves

Interest rate pass-through: reserve rate to short rate

$$i_t^S - \delta = i_t^M - r^M + \frac{\delta - r^M}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

- ► reserves back inside money, inherit convenience yield of deposits
- Money supply

$$\hat{d}_t = rac{M}{M +
ho A} \hat{m}_t + rac{
ho A}{M +
ho A} \hat{a}_t$$

- ► reserves a separate policy instrument: QE stimulates economy!
- other bank assets also matter: bad loan shocks contractionary
- \Rightarrow Works like CBDC model, but coefficients depend on banking system

Banking with scarce reserves

- Banks manage liquidity
 - deposit outflow/inflow $\tilde{\lambda}D_t$ to/from other banks
 - lacktriangleright iid liquidity shock $\tilde{\lambda}$ has mean zero, cdf G with bounded support
 - ► satisfy leverage constraint after deposit inflow/outflow
 - borrow/lend in competitive fed funds market at rate i^F
- Assets valued as collateral, reserves also for liquidity
- Government:
 - ▶ path or rule for fed funds rate i_t^F , reserve rate i_t^M ; here $i_t^M = 0$
 - reserve supply adjusts to meet interest rate targets
- Market clearing for reserves, Fed funds
 - ► reserves scarce: quantity small relative to support of liquidity shocks
 - otherwise $i^F = i^M$ & no active Fed funds market, back to abundance
 - ► government selects type of equilibrium

Dynamics with scarce reserves

Interest rate pass-through: fed funds rate to short rate

$$i_t^S - \delta = i_t^F - r^M + \frac{\delta - r^M}{\eta} \left(\hat{\rho}_t + \hat{y}_t - \hat{d}_t \right)$$

ullet Inside money in reserveless limit: share of reserves in bank assets o 0

$$\hat{d}_{t} = \frac{\eta}{\eta + \varepsilon} \hat{a}_{t} + \frac{\varepsilon}{\eta + \varepsilon} \left(\hat{p}_{t} + \hat{y}_{t} - \frac{\eta}{r^{F}} \left(i_{t}^{F} - r^{F} \right) \right)$$

- ε = function of bank technology parameters
- \Rightarrow Works like CBDC model with more elastic money supply
 - Numerical example to compare floor & corridor system

IRFs to monetary policy shock

Conclusion

- Disconnect between policy rate and short rate
 - convenience yield is endogenous wedge, changes transmission
 - less scope for multiple equilibria, even without Taylor principle
 - ▶ policy weaker if more nominal rigidities in balance sheets
- Bank models vs CBDC model
 - ▶ same basic transmission mechanism
 - difference to standard model depends on details of banking system:
 - ★ nominal rigidities in bank balance sheets, bank market power
 - ★ liquidity management & elasticity of deposit supply
- Corridor vs floor system
 - with cost channel, significant differences in IRFs
 - corridor system closer to standard model than floor system