Hours and Wages

Alexander Bick Adam Blandin Richard Rogerson

August 2019

Introduction

Introduction

Changing nature of what we mean by "micro-foundations".

Introduction

Changing nature of what we mean by "micro-foundations".
Today: Labor supply in the cross-section, with emphasis on intensive margin.

Introduction

Changing nature of what we mean by "micro-foundations".
Today: Labor supply in the cross-section, with emphasis on intensive margin.

Our focus: Cross-sectional relationship between hours and wages.

Introduction

Changing nature of what we mean by "micro-foundations".
Today: Labor supply in the cross-section, with emphasis on intensive margin.

Our focus: Cross-sectional relationship between hours and wages.
Literature has mostly focused on first and second moments.

Introduction

Changing nature of what we mean by "micro-foundations".
Today: Labor supply in the cross-section, with emphasis on intensive margin.

Our focus: Cross-sectional relationship between hours and wages.
Literature has mostly focused on first and second moments.
Message: First and second moments not enough.

Introduction

Changing nature of what we mean by "micro-foundations".
Today: Labor supply in the cross-section, with emphasis on intensive margin.

Our focus: Cross-sectional relationship between hours and wages.
Literature has mostly focused on first and second moments.
Message: First and second moments not enough.
Going beyond first and second moments has first order implications for labor supply responses, estimation of key preference parameters.

Data

Data

Key data: usual weekly hours and hourly wages on main job.

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Sample Selection Criterion

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Sample Selection Criterion

- Ages 25-64

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Sample Selection Criterion

- Ages 25-64
- Not enrolled in school, not self-employed

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Sample Selection Criterion

- Ages 25-64
- Not enrolled in school, not self-employed
- Weekly hours > 10, Implied wage > . 5 federal minimum wage

Data

Key data: usual weekly hours and hourly wages on main job. CPS ORG, pooled 1996-2004.

Sample Selection Criterion

- Ages 25-64
- Not enrolled in school, not self-employed
- Weekly hours >10, Implied wage $>.5$ federal minimum wage

Data

Key data: usual weekly hours and hourly wages on main job.
CPS ORG, pooled 1996-2004.
Sample Selection Criterion

- Ages 25-64
- Not enrolled in school, not self-employed
- Weekly hours >10, Implied wage $>.5$ federal minimum wage

Over 850,000 observations

Data

Key data: usual weekly hours and hourly wages on main job.
CPS ORG, pooled 1996-2004.
Sample Selection Criterion

- Ages 25-64
- Not enrolled in school, not self-employed
- Weekly hours >10, Implied wage $>.5$ federal minimum wage

Over 850,000 observations
Key patterns confirmed in other data sets: Census, ACS, NLSY79.

Facts I: Distribution of Usual Weekly Hours (Males)

Facts I: Distribution of Usual Weekly Hours (Males)

Facts I: Distribution of Usual Weekly Hours (Males)

Key points:

Facts I: Distribution of Usual Weekly Hours (Males)

Key points:

- heavy concentration in 40-44

Facts I: Distribution of Usual Weekly Hours (Males)

Key points:

- heavy concentration in 40-44
- little mass below 40

Facts I: Distribution of Usual Weekly Hours (Males)

Key points:

- heavy concentration in 40-44
- little mass below 40
- significant mass above 50 (almost 30% of total hours come from those with usual hours of 50 or more)

Facts II: Wages and Hours

Facts II: Wages and Hours

We examine how hourly wages very with hours in the cross-section.

Facts II: Wages and Hours

We examine how hourly wages very with hours in the cross-section. We run the following non-parametric regression using 5 hour bins:

Facts II: Wages and Hours

We examine how hourly wages very with hours in the cross-section.
We run the following non-parametric regression using 5 hour bins:

$$
w_{i}=\left(\sum_{h \in H} \beta_{h} 1_{i h}\right)+\gamma X_{i}+\epsilon_{i}
$$

Facts II: Wages and Hours

We examine how hourly wages very with hours in the cross-section.
We run the following non-parametric regression using 5 hour bins:

$$
w_{i}=\left(\sum_{h \in H} \beta_{h} 1_{i h}\right)+\gamma X_{i}+\epsilon_{i}
$$

Note: regression is just data-description.

Estimated Wage-Hours Profile

Estimated Wage-Hours Profile

(a) Log Hourly Wages

Estimated Wage-Hours Profile

(a) Log Hourly Wages

Key points:

Estimated Wage-Hours Profile

(a) Log Hourly Wages

Key points:

- Non-monotonic

Estimated Wage-Hours Profile

(a) Log Hourly Wages

Key points:

- Non-monotonic
- Very similar for males and females

Estimated Wage-Hours Profile

(a) Log Hourly Wages

Key points:

- Non-monotonic
- Very similar for males and females
- Holds also by age, education and for many occupations.
(b) By Education

(a) By Age

Is the Decreasing Portion an Artifact of Data Issues?

Is the Decreasing Portion an Artifact of Data Issues?

Three Potential Issues

Is the Decreasing Portion an Artifact of Data Issues?

Three Potential Issues

- Top-coding

Is the Decreasing Portion an Artifact of Data Issues?

Three Potential Issues

- Top-coding
- Salaried workers with variable hours

Is the Decreasing Portion an Artifact of Data Issues?

Three Potential Issues

- Top-coding
- Salaried workers with variable hours
- Measurement error

Facts III: Other Profiles

Facts III: Other Profiles

(b) SD - All

Figure IIE Mean and SD of Hours ly Wage Decile: Men
(a) M ex $-A$ II

(b) $5 \mathrm{D}-\mathrm{AE}$

A Simple Benchmark Model

A Simple Benchmark Model

Unit mass of individuals, with preferences:

A Simple Benchmark Model

Unit mass of individuals, with preferences:

$$
\frac{1}{1-(1 / \sigma)} c_{i}^{1-\frac{1}{\sigma}}-\frac{\alpha_{i}}{1+(1 / \gamma)} h_{i}^{1+\frac{1}{\gamma}}
$$

A Simple Benchmark Model

Unit mass of individuals, with preferences:

$$
\frac{1}{1-(1 / \sigma)} c_{i}^{1-\frac{1}{\sigma}}-\frac{\alpha_{i}}{1+(1 / \gamma)} h_{i}^{1+\frac{1}{\gamma}}
$$

Budget equation:

A Simple Benchmark Model

Unit mass of individuals, with preferences:

$$
\frac{1}{1-(1 / \sigma)} c_{i}^{1-\frac{1}{\sigma}}-\frac{\alpha_{i}}{1+(1 / \gamma)} h_{i}^{1+\frac{1}{\gamma}}
$$

Budget equation:

$$
c_{i}=w z_{i} h_{i}
$$

A Simple Benchmark Model

Unit mass of individuals, with preferences:

$$
\frac{1}{1-(1 / \sigma)} c_{i}^{1-\frac{1}{\sigma}}-\frac{\alpha_{i}}{1+(1 / \gamma)} h_{i}^{1+\frac{1}{\gamma}}
$$

Budget equation:

$$
c_{i}=w z_{i} h_{i}
$$

Optimal labor supply:

A Simple Benchmark Model

Unit mass of individuals, with preferences:

$$
\frac{1}{1-(1 / \sigma)} c_{i}^{1-\frac{1}{\sigma}}-\frac{\alpha_{i}}{1+(1 / \gamma)} h_{i}^{1+\frac{1}{\gamma}}
$$

Budget equation:

$$
c_{i}=w z_{i} h_{i} .
$$

Optimal labor supply:

$$
\log h_{i}=A \log z_{i}+B \log \alpha_{i}
$$

where

$$
\begin{aligned}
A & =\left(\frac{\sigma-1}{\sigma}\right) /\left(\frac{1}{\sigma}+\frac{1}{\gamma}\right) \\
B & =-1 /\left(\frac{1}{\sigma}+\frac{1}{\gamma}\right)
\end{aligned}
$$

Calibration

Calibration

Fix γ and σ. In what follows $\sigma \rightarrow 1$ and $\gamma=0.50$.

Calibration

Fix γ and σ. In what follows $\sigma \rightarrow 1$ and $\gamma=0.50$.
Assume (z_{i}, α_{i}) are jointly log normally distributed.

Calibration

Fix γ and σ. In what follows $\sigma \rightarrow 1$ and $\gamma=0.50$.
Assume (z_{i}, α_{i}) are jointly log normally distributed.
No measurement error for now.

Calibration

Fix γ and σ. In what follows $\sigma \rightarrow 1$ and $\gamma=0.50$.
Assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed.
No measurement error for now.
Six parameters: $\mu_{z}, \mu_{\alpha}, \sigma_{z}, \sigma_{\alpha}, \rho_{z \alpha}, w$, (but w and μ_{z} not separately identified).

Calibration

Fix γ and σ. In what follows $\sigma \rightarrow 1$ and $\gamma=0.50$.
Assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed.
No measurement error for now.
Six parameters: $\mu_{z}, \mu_{\alpha}, \sigma_{z}, \sigma_{\alpha}, \rho_{z \alpha}, w$, (but w and μ_{z} not separately identified).

We choose these to match features of the cross-section.

Calibration to First and Second Moments

Calibration to First and Second Moments

Table 1
Calibration of Simple Model

Data Moment	Model Parameter
mean $(\log h)=3.74$	$\mu_{\alpha}=-11.2347$
$\operatorname{mean}(\log w)=2.804$	$\mu_{z}=0$
$\operatorname{std}(\log h)=0.122$	$\sigma_{\alpha}=0.3415$
$\operatorname{std}(\log w)=0.460$	$\sigma_{z}=0.4616$
$\operatorname{corr}(\log w, \log h)=0.067$	$\rho_{z \alpha}=-0.08$

Calibration to First and Second Moments

Table 1
Calibration of Simple Model

Data Moment	Model Parameter
mean $(\log h)=3.74$	$\mu_{\alpha}=-11.2347$
$\operatorname{mean}(\log w)=2.804$	$\mu_{z}=0$
$\operatorname{std}(\log h)=0.122$	$\sigma_{\alpha}=0.3415$
$\operatorname{std}(\log w)=0.460$	$\sigma_{z}=0.4616$
$\operatorname{corr}(\log w, \log h)=0.067$	$\rho_{z \alpha}=-0.08$

Note: If we consider an alternative value of σ then $\rho_{z \alpha}$ adjusts accordingly to "undo" the correlation $\mathrm{b} / \mathrm{w} h$ and w induced by σ.

A Good Model of the Micro Data? The Hours Distribution

A Good Model of the Micro Data? The Hours Distribution

(a) Distribution Over Hours Worked

A Good Model of the Micro Data? The Wage-Hours Profile

A Good Model of the Micro Data? The Wage-Hours Profile

(b) Mean Wages

An Extension of the Benchmark Model

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

$$
E(h)=A h^{\bar{\theta}}
$$

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

$$
E(h)=A h^{\bar{\theta}}
$$

Define the wage function as:

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

$$
E(h)=A h^{\bar{\theta}}
$$

Define the wage function as:

$$
W(h)=\frac{E(h)}{h}=A(h) h^{\theta(h)-1}
$$

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

$$
E(h)=A h^{\bar{\theta}}
$$

Define the wage function as:

$$
W(h)=\frac{E(h)}{h}=A(h) h^{\theta(h)-1}
$$

Why might this help?

An Extension of the Benchmark Model

We allow for a non-linear earnings function:

$$
c_{i}=z A(h) h^{\theta(h)}=z E(h)
$$

Special case (French (2005), and many others since):

$$
E(h)=A h^{\bar{\theta}}
$$

Define the wage function as:

$$
W(h)=\frac{E(h)}{h}=A(h) h^{\theta(h)-1}
$$

Why might this help?
Interpretation: $E(h)$ reflects the set of market opportunities available to a worker.

Calibration

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins
- the wage-hours profile by 5 hour bins.

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins
- the wage-hours profile by 5 hour bins.

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins
- the wage-hours profile by 5 hour bins.

We also add measurement error

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins
- the wage-hours profile by 5 hour bins.

We also add measurement error

- classical measurement error in hours $\left(\sigma_{m}\right)$

Calibration

We generalize the previous calibration exercise so as to target not only first and second moments but also:

- the hours distribution by ten hour bins
- the wage-hours profile by 5 hour bins.

We also add measurement error

- classical measurement error in hours $\left(\sigma_{m}\right)$
- except for those who work 40

Calibration Details

Calibration Details

- We fix σ and γ as before, and fix measurement error.

Calibration Details

- We fix σ and γ as before, and fix measurement error.
- We assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed as before.

Calibration Details

- We fix σ and γ as before, and fix measurement error.
- We assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed as before.
- Earnings function

Calibration Details

- We fix σ and γ as before, and fix measurement error.
- We assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed as before.
- Earnings function
- have tried several specifications

Calibration Details

- We fix σ and γ as before, and fix measurement error.
- We assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed as before.
- Earnings function
- have tried several specifications
- here we report on a step function specification with three regions (steps at 40 and 50)

Calibration Details

- We fix σ and γ as before, and fix measurement error.
- We assume $\left(z_{i}, \alpha_{i}\right)$ are jointly log normally distributed as before.
- Earnings function
- have tried several specifications
- here we report on a step function specification with three regions (steps at 40 and 50)
- parameters are θ_{s}, θ_{n}, and θ_{l}

Estimates

Estimates

For today, we show estimates using data for males aged $50-54$ with either high school or some college.

Estimates

For today, we show estimates using data for males aged $50-54$ with either high school or some college.

Table 2
Estimated Parameter Values

μ_{α}	σ_{α}	σ_{z}	$\rho_{\alpha, z}$	θ_{s}	θ_{n}	θ_{l}
-12.869	1.199	0.501	-0.40	1.399	0.110	0.095

Model Fit: First and Second Moments

Model Fit: First and Second Moments

Table 3
Fit of Estimated Model

	Data	Model
mean $(\log h)$	3.744	3.744
mean $(\log w)$	2.804	2.804
std $(\log h)$	0.122	0.124
std $(\log w)$	0.460	0.460
corr $(\log h, \log w)$	0.067	0.067

Model Fit: Hours Distribution

Model Fit: Hours Distribution

(a) 10-Hour Bins (Targeted)

(b) 5-Hour Bins

Model Fit: Wage-Hours Profile

Model Fit: Wage-Hours Profile

Figure 14: Fit of Wages

Selection vs. Wage Function (vs. Measurement Error)

Selection vs. Wage Function (vs. Measurement Error)

Figure 15: Model Wages: The Wage-Hours Menu vs. Selection

Figure 16: Model Wages: The Wage-Hours menu vs. Measurement Enror

Implications

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

- Aiyagari-Bewley-Huggett heterogeneous agent incomplete markets model.

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

- Aiyagari-Bewley-Huggett heterogeneous agent incomplete markets model.
- Life cycle labor supply setting

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

- Aiyagari-Bewley-Huggett heterogeneous agent incomplete markets model.
- Life cycle labor supply setting

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

- Aiyagari-Bewley-Huggett heterogeneous agent incomplete markets model.
- Life cycle labor supply setting

Key point: our specification implies a large kink in the earnings function at 40 hours, and that a lot (but not all) individuals are at the kink.

Implications

Consider embedding our (static) wage function into otherwise standard dynamic settings:

- Aiyagari-Bewley-Huggett heterogeneous agent incomplete markets model.
- Life cycle labor supply setting

Key point: our specification implies a large kink in the earnings function at 40 hours, and that a lot (but not all) individuals are at the kink.

This has important implications for labor supply responses in both settings.

Summary/Future Work

Summary/Future Work

Our analysis suggests that there are important non-linearities in the budget sets faced by individual workers at a given point in time.

Summary/Future Work

Our analysis suggests that there are important non-linearities in the budget sets faced by individual workers at a given point in time.

These non-linearities have first order implications for labor supply responses.

Summary/Future Work

Our analysis suggests that there are important non-linearities in the budget sets faced by individual workers at a given point in time.

These non-linearities have first order implications for labor supply responses.

Key next step is to extend the analysis to a dynamic setting in which current hours may influence future wages via learning by doing.

Summary/Future Work

Our analysis suggests that there are important non-linearities in the budget sets faced by individual workers at a given point in time.

These non-linearities have first order implications for labor supply responses.

Key next step is to extend the analysis to a dynamic setting in which current hours may influence future wages via learning by doing.

Our analysis suggests that one cannot isolate the dynamic effects of hours on wages without incorporating static effects.

Summary/Future Work

Our analysis suggests that there are important non-linearities in the budget sets faced by individual workers at a given point in time.

These non-linearities have first order implications for labor supply responses.

Key next step is to extend the analysis to a dynamic setting in which current hours may influence future wages via learning by doing.

Our analysis suggests that one cannot isolate the dynamic effects of hours on wages without incorporating static effects.

Existing literature on dynamic effects has neglected this issue.

