tro	Treatment Effects	Robustness+Mechanisms	Toxic Stress	Nurturing Relationship

Childhood Exposure to Violence and Nurturing Relationships: The Long-Run Effects on Black Men

Dionissi Aliprantis Cleveland Fed Kristen Tauber

2023 Institute Research Conference Minneapolis Fed · OIGI

October 5, 2023

The views stated herein are those of the authors and are not necessarily those of the Federal Reserve Bank of Cleveland or the Board of Governors of the Federal Reserve System.

0000

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Residential Segregation in the US

2014-2018 ACS

itro	Treatment	
000		

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Safety in the US

2013-2018 Gun Violence Archive · 2014-2018 ACS

Treatment Effects	Robi

0000

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Safety in the US

Cheon et al. (2020) · 2013-2018 Gun Violence Archive · 2014-2018 ACS

0000

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Safety of Black Children in the US

"Of all the problems besetting the poor inner-city black community, none is more pressing than that of interpersonal violence and aggression."

-Code of the Street · Elijah Anderson

0000

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Safety of Black Children in the US

"Of all the problems besetting the poor inner-city black community, none is more pressing than that of interpersonal violence and aggression."

-Code of the Street · Elijah Anderson

- Black young males exposed to greater violence
 - 8× homicides (15-24 · 25-34)

NCHS 1977-2021 NLSY97

• 4× witnessing a shooting (0-11)

0000

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Safety of Black Children in the US

"Of all the problems besetting the poor inner-city black community, none is more pressing than that of interpersonal violence and aggression."

-Code of the Street · Elijah Anderson

- Black young males exposed to greater violence
 - 8× homicides (15-24 · 25-34)
 - 4× witnessing a shooting (0-11)

NCHS 1977-2021 NLSY97

- Short-run effects on Black males
 - Engaging in violent behavior
 - Academic attainment
 - Academic achievement

Bingenheimer et al. (2005)

Aliprantis (2017)

Torrats-Espinosa (2020)

· Casey et al. (2018) · Sharkey et al. (2014)

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

This Paper

Childhood exposure to violence

- Long-run effects
 - Do long-run correlations persist or fade out?
 - Do correlations reflect causality or selection?
 - Robustness by race/ethnicity
 - Mechanisms and interpretation of exposure

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

This Paper

Childhood exposure to violence

- Long-run effects
 - Do long-run correlations persist or fade out?
 - Do correlations reflect causality or selection?
 - Robustness by race/ethnicity
 - Mechanisms and interpretation of exposure

Adolescent exposure to violence

- Long-run effects
- + interaction with nurturing relationships
- Measurement: How to use many vars in NLSY97?
 - Sum
 - Item Response Theory or Principal Components
 - Item-Anchored Scale

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Rubin Causal Model

Treatment

$D_i \in \{0, 1\}$ is exposure to violence

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Rubin Causal Model

Treatment

$D_i \in \{0, 1\}$ is exposure to violence

Potential Outcomes

 $Y_i(D)$

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Rubin Causal Model

<u>Treatment</u>

 $D_i \in \{0, 1\}$ is exposure to violence

Potential Outcomes

 $Y_i(D)$

Treatment Effects

 $\triangle^{ATE} \equiv \mathbb{E}[Y(1) - Y(0)]$

Intr	
	0
ററ	ററ

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Rubin Causal Model

<u>Treatment</u>

 $D_i \in \{0, 1\}$ is exposure to violence

Potential Outcomes

 $Y_i(D)$

Treatment Effects

Observed characteristics

 $\triangle^{ATE} \equiv \mathbb{E}[Y(1) - Y(0)]$

$$W_i \in \mathbb{R}^{d_W} \cdot \mathcal{W} \equiv \operatorname{supp}(W)$$

Intr	
	0
ററ	ററ

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

 $Y_i(D)$

Rubin Causal Model

<u>Treatment</u>

 $D_i \in \{0, 1\}$ is exposure to violence

Potential Outcomes

Treatment Effects

Observed characteristics

Selection into Treatment

Random Selection

Selection on Observables

 $\triangle^{\textit{ATE}} \equiv \mathbb{E}[\textit{Y}(1) - \textit{Y}(0)]$

 $W_i \in \mathbb{R}^{d_W} \cdot \mathcal{W} \equiv \operatorname{supp}(W)$

 $Y(0), Y(1) \perp D$ $Y(0), Y(1) \perp D \mid W$

Int	ro	
00	000	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

 $Y_i(D)$

Rubin Causal Model

<u>Treatment</u>

 $D_i \in \{0, 1\}$ is exposure to violence

Potential Outcomes

Treatment Effects

Observed characteristics

Selection into Treatment

Random Selection

Selection on Observables

Propensity Score

 $\triangle^{\textit{ATE}} \equiv \mathbb{E}[\textit{Y}(1) - \textit{Y}(0)]$

 $W_i \in \mathbb{R}^{d_W} \cdot \mathcal{W} \equiv \operatorname{supp}(W)$

 $Y(0), Y(1) \perp D$ $Y(0), Y(1) \perp D \mid W$ $\pi(W) = Pr(D = 1 \mid W)$

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Data: NLSY97

National Longitudinal Survey of Youth, 1997 (NLSY97)

- Nationally-representative sample (N=8,984)
 - Born between 1980 and 1984
- Frequent interviews
 - Annual (1997-2011)
 - Biennial (2013-2019)
- We focus on subsample of non-Hispanic Black males
 - N=1,169
- Observed characteristics W

Descriptive Stats

- Mother's ed: not determined, dropout, GED, HS, AA, BA
- Parent(s)' Income in 1996
- HH: Parent(s) (2 bio, 1 bio, single), Grandparent(s), Other

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Data: NLSY97

Treatment D: Childhood or adolescent exposure to violence

"did you ever see someone get shot or shot at with a gun?"

Age	% Treated
0-11	26
12-18	31
0-18	47

Intr	
00	ററ

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Common Support

Estimated Propensity Scores Black and White Males Before Age 12

Int	iro	
00	SO	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Treatment Effects of Exposure to Violence

	ATE by Selection Assumption						
	Childhood Exp Random		on Obs.	Adolescent Exp Random		oosure on Obs.	
Outcome	C. Mean	Effect	Entr. Bal.	C. Mean	Effect	Entr. Bal.	
Violent Behavior (% at 15)	17	20 [0.00]	20 [0.00]				
Violent Behavior (% at 21)				9	15 [0.00]	14 [0.00]	
HS Diploma (% by 26)	63	—16 [0.00]	-15 [0.00]	64	—13 [0.00]	-13 [0.00]	
BA Diploma (% by 26)	7	-2 [0.25]	-2 [0.26]	8	-4 [0.06]	4 [0.02]	
ASVAB Pctl	25	—5 [0.00]	—5 [0.01]				

Int	iro	
00	SO	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Treatment Effects of Exposure to Violence

	ATE by Selection Assumption					
	Childhood Exposure Random on Obs.		Adolescent Exp Random		oosure on Obs.	
Outcome in 2018	C. Mean	Effect	Entr. Bal.	C. Mean	Effect	Entr. Bal.
HH Earnings (\$1,000s)	48	—13 [0.00]	-12 [0.00]	49	—12 [0.00]	-12 [0.00]
Ind. Earnings (\$1,000s)	34	-7 [0.02]	-7 [0.02]	34	-7 [0.03]	-7 [0.01]
0 Earnings (%)	20	9 [0.02]	9 [0.03]	21	5 [0.17]	6 [0.10]
Hours Worked (Weekly Avg)	33	—5 [0.03]	—5 [0.04]	33	4 [0.10]	4 [0.10]
Ever Incarcerated	26	8 [0.02]	8 [0.03]	21	21 [0.00]	22 [0.00]

Treatment Effects	Robustness+Mechanisms	Toxic Stress	Nurturing Relationships
	00000		

Are Black People Inherently More Violent?

"The charges of white privilege and systemic racism that are tearing the country apart float free of reality. Two known facts, long since documented beyond reasonable doubt, need to be brought into the open and incorporated into the way we think about public policy: American whites, blacks, Hispanics, and Asians have different violent crime rates and different means and distributions of cognitive ability. The allegations of racism in policing, college admissions, segregation in housing, and hiring and promotions in the workplace ignore the ways in which the problems that prompt the allegations of systemic racism are driven by these two realities.

We have been unwilling to say openly that different groups have significant group differences. Since we have not been willing to say that, we have been left defenseless against the claims that racism is to blame. What else could it be? We have been afraid to answer. We must. Facing Reality is a step in that direction."

-Facing Reality: Two Truths about Race in America · Charles Murray

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Are Black People Inherently More Violent?

Treatment	Effe

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Are Black People Inherently More Violent?

Males Engaging in Violent Behavior At Age 15 by Childhood Exposure to Violence

Are Black People Inherently More Violent?

Effects of Violence or of Broader Nbd Context?

2013-2018 GVA · 2014-2018 ACS

Effects of Violence, Not of Broader Nbd Context

Table · Nbd SES in 1997

Effects of Exposure Mediated by Incarceration?

Incar. critical for labor market outcomes in recent decades
Especially true for Black men

Bayer and Charles (2018) · Neal and Rick (2014)

- A single spell flattens the earnings of young men
 - True for Black or white

Neelakantan et al. (2022) · Raphael (2011)

Effects of Exposure Not Mediated by Incarceration

Individual Earnings · 0 Individual Earnings · Table

Intr	
00	00

Robustness+Mechanisms

Toxic Stress ●0 Nurturing Relationships

Mechanisms?

Candidates

- Selection on observables
- Selection on unobservables · Details
- Broader neighborhood effects
- Incarceration
- Gangs · Details
- Toxic stress from trauma itself

Intro	
0000	С

Robustness+Mechanisms

Toxic Stress 00

Nurturing Relationships

Mechanisms?

Candidates

- Selection on observables
- Selection on unobservables · Details
- Broader neighborhood effects
- Incarceration
- Gangs · Details
- Toxic stress from trauma itself

Shonkoff and Garner (2012)

Adverse Childhood Experiences (ACEs) · Felitti et al. (1998)

Int	ro	
00	\mathbf{b}	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Toxic Stress

Biological Response to Stress = f_i (event, social buffers)

reatment Effects

Robustness+Mechanisms

Toxic Stress ○● Nurturing Relationships

Toxic Stress

Biological Response to Stress = f_i (event, social buffers)

Stressful event Short, mild + Buffer w/ caring adult \implies Stress Response Positive

National Scientific Council on the Developing Child (2011) via Shonkoff and Garner (2012)

Treatment Effects

Robustness+Mechanisms

Toxic Stress ○● Nurturing Relationships

Toxic Stress

Biological Response to Stress = f_i (event, social buffers)

<u>Stressful event</u> Short, mild Longer, more severe <u>+ Buffer</u> w/ caring adult w/ caring adult $\frac{\implies \text{Stress Response}}{\text{Positive}}$ Tolerable

National Scientific Council on the Developing Child (2011) via Shonkoff and Garner (2012)

Treatment Effects

Robustness+Mechanisms

Toxic Stress ○● Nurturing Relationships

Toxic Stress

Biological Response to Stress = f_i (event, social buffers)

<u>Stressful event</u> Short, mild Longer, more severe Extended, severe <u>+ Buffer</u> w/ caring adult w/ caring adult w/out caring adult ⇒ Stress Response Positive Tolerable Toxic

National Scientific Council on the Developing Child (2011) via Shonkoff and Garner (2012) Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Toxic Stress and Nurturing Relationships

"From a neuroscience perspective, then, what is the antidote to early childhood adversity and toxic stress? It is safe, stable, and nurturing relationships."

-Thinking Developmentally · Andrew S. Garner · Robert A. Saul
Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Toxic Stress and Nurturing Relationships

"From a neuroscience perspective, then, what is the antidote to early childhood adversity and toxic stress? It is safe, stable, and nurturing relationships."

-Thinking Developmentally · Andrew S. Garner · Robert A. Saul

"Nurturing relationships turn off the body's stress machinery in a timely manner," before that machinery can generate biological changes that are maladaptive and health harming over the long run.

-Statement of Am. Acad. Pediatrics · Andrew S. Garner · Michael Yogman

reatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Variables in the NLSY97

NLSY97 is full of relevant variables during adolescence

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Variables in the NLSY97

NLSY97 is full of relevant variables during adolescence

Exposure to Violence

Ages 12-18	At 1997
saw someone shot or shot at	% of peers belong to gang
had home broken into	got into a physical fight at school
victim of repeated bullying	something of value stolen at school
victim of a violent crime	threatened to be hurt at school
siblings or friends were in a gang	felt unsafe at school
	days/week typically hear gunshots

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Variables in the NLSY97

NLSY97 is full of relevant variables during adolescence

Nurturing Relationships

Parental NRs	Non-Parental NRs
about both the resident mother and father, whether each is residing with the respondent respondent thinks highly of them respondent thinks they want to be like them	whether school's teachers are interested in the students good
respondent really enjoys spending time with them they often criticize the respondent or their ideas respondent thinks they are supportive	whether other students get in the way of learning
they often help the respondent they blame the respondent for their problems they often cancel plans with the respondent they know a lot about the respondent's friends they know the parents of the respondent's friends they know details when respondent not at home they often praise the respondent	percent of peers who cut class or skip school plan to go to college

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Exposure to Violence

Sum:
$$\theta_i^{Sum} = \sum_{j=1}^J V_i^j$$

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Exposure to Violence

$$\underline{Sum}: \quad \theta_i^{Sum} = \sum_{j=1}^J V_i^j$$

<u>Item Response Theory (IRT)</u>: $V_i^j = \begin{cases} 1 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_i^j \ge 0\\ 0 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_j^j < 0 \end{cases}$

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Exposure to Violence

Sum:
$$\theta_i^{Sum} = \sum_{j=1}^J V_i^j$$

<u>Item Response Theory (IRT)</u>: $V_i^j = \begin{cases} 1 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_i^j \ge 0\\ 0 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_i^j < 0 \end{cases}$

1st Principal Component (PC) of J questions: θ_i^{PC}

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Exposure to Violence

Sum:
$$\theta_i^{Sum} = \sum_{j=1}^J V_i^j$$

$$\underbrace{\text{Item Response Theory (IRT)}}_{i}: \quad V_i^j = \begin{cases} 1 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_i^j \ge 0\\ 0 & \text{if } \alpha_j(\theta_i^{IRT} - \beta_j) - \epsilon_i^j < 0 \end{cases}$$

1st Principal Component (PC) of J questions: θ_i^{PC}

<u>Item-Anchored</u>: $Y_i = \beta^1 V_i^1 + \cdots + \beta^J V_i^J + \epsilon_i \implies$

$$\theta_i^{Anchored} = \mathbb{E}[Y|V_i^1, \dots, V_i^J] = \beta^{1,OLS}V_i^1 + \dots + \beta^{J,OLS}V_i^J$$

Treatment	Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Treatments

BA · HH Earnings · Incarceration

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Treatments

IRT and PC perform comparably to simple sum score

More Details: IRT · Anchoring · Comparison

- Surprising
 - Wide variation in item-level responses
 - Many results sensitive to scale
 - B-W test score gap over age
 - B-W test score gap over time
 - M-F variation in test scores
 - Identification of skills

Bond and Lang (2013)

Nielsen (2015)

Domicolo and Nielsen (2022)

Agostinelli and Wiswall (2016)

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Treatments

IRT and PC perform comparably to simple sum score

More Details: IRT · Anchoring · Comparison

- Surprising
 - Wide variation in item-level responses
 - Many results sensitive to scale
 - B-W test score gap over age
 - B-W test score gap over time
 - M-F variation in test scores
 - Identification of skills

- Bond and Lang (2013)
 - Nielsen (2015)
- Domicolo and Nielsen (2022)
- Agostinelli and Wiswall (2016)

- Not Surprising
 - Similar results for health frailty index
 - $\bullet~$ 1st PC \sim sum of adverse indicators

Hosseini et al. (2022)

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Indexes of Treatments

IRT and PC perform comparably to simple sum score

More Details: IRT · Anchoring · Comparison

- Surprising
 - Wide variation in item-level responses
 - Many results sensitive to scale
 - B-W test score gap over age
 - B-W test score gap over time
 - M-F variation in test scores
 - Identification of skills
- Not Surprising
 - Similar results for health frailty index
 - $\bullet~$ 1st PC \sim sum of adverse indicators
- Good news
 - Robustness of lit using ACE scores

- Bond and Lang (2013) Nielsen (2015)
- Domicolo and Nielsen (2022)
- Agostinelli and Wiswall (2016)

Hosseini et al. (2022)

reatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

Define
$$D_i^V = \mathbf{1} \{ \theta_i^{\text{Anchored}} \geq \pi_{50}(\theta^{\text{Anchored}}) \}$$

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

Define
$$D_i^V = \mathbf{1} \{ \theta_i^{Anchored} \ge \pi_{50}(\theta^{Anchored}) \}$$

Implement $D^V, D^{NR} \perp Y(D^V, D^{NR}) \mid W$ by estimating

$$\begin{split} \widehat{\beta}_{L,L}^{OLS} & \text{on the } D^V = L, \ D^{NR} = L \text{ subsample} \\ \widehat{\beta}_{L,H}^{OLS} & \text{on the } D^V = L, \ D^{NR} = H \text{ subsample} \\ \widehat{\beta}_{H,L}^{OLS} & \text{on the } D^V = H, \ D^{NR} = L \text{ subsample} \\ \widehat{\beta}_{H,H}^{OLS} & \text{on the } D^V = H, \ D^{NR} = H \text{ subsample} \end{split}$$

to obtain

$$\mathbb{E}[Y(D^V, D^{NR})] = \mathbb{E}[\widehat{eta}_{V,NR}^{OLS}W]$$
 for full sample

Imbens (2015)

ntro	
000	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

High School Graduation

Treatment	

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

BA Attainment

Treatment

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

Intr		
00	0	0

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Potential Outcomes

	0	
ò	0	

Robustness+Mechanisms 00000 Toxic Stress

Nurturing Relationships

Treatment Effects

	Given High Exposure to Violence and Low Nurturing Relationships		
	$\downarrow D^V$	$\uparrow D^{NR}$	Both
HS Diploma	14.5	14.5	40.3
(% by 26)	[0.00]	[0.00]	[0.00]
BA Attainment	8.7	4.2 [0.12]	11.2
(% by 26)	[0.03]		[0.00]
Ever Incarcerated	-19.6	6.5	-21.3
(% by 2019)	^[0.00]	[0.00]	^[0.00]
Household Earnings	16.6 [0.01]	10.5	31.6
(1,000s of 2018 \$s)		[0.04]	[0.00]

Treatment Effects	Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Inputs into Policy Maker's Decision Problem

		Benefit / Avoided Cost of Providing:		
	Compliers	NRs	Safety	Both
Ind. Earnings	10%	\$3.7B	\$5.2B	\$12.0B
(B. Males 25-54)	25%	\$9.1B	\$13.1B	\$29.9B
Incarceration (B. Males \leq 40)	10%	\$1.4B	\$5.4B	\$9.4B
	25%	\$3.4B	\$13.6B	\$23.5B
			Cost of Program	m:
B. Males 12-18		Boys and Girls Clubs		\$2.2B
B. Males 12-18		Big Bros/Sisters		\$3.0B
All K-12 Title I Students		Wrap-Around Services		\$5.2B
All K-12 Title I Students		School-Wide Tutoring		\$5-\$16B
B. males 12-18		High-Dosage Tutoring		\$9.5-11.7B
B. males 12-18		Student Supports		\$19.0B

Cost Sources: Boys Girls Clubs (2023) · Alfonso et al. (2019) · Say Yes Cleveland · Kraft and Falken (2021) · Guryan et al. (2023) · Oreopoulos et al. (2017)

Toxic Stress

Nurturing Relationships

Conclusion: Childhood Exposure to Violence

Childhood exposure to violence

- Large long-run effects on Black men
- Effects not from selection on observables
- Effects unlikely from selection on unobservables
- Effects on violent behavior similar across race/ethnicity

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Conclusion: Childhood Exposure to Violence

Childhood exposure to violence

- Large long-run effects on Black men
- Effects not from selection on observables
- Effects unlikely from selection on unobservables
- Effects on violent behavior similar across race/ethnicity

Key mechanism appears to be trauma / toxic stress

- Not mediated by incarceration
- Not simply a measure of overall neighborhood environment
- Consistent with literature on ACEs / toxic stress

Treatment Effects

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Conclusion: Nurturing Relationships

• Large effects in adolescence Chang et al. (2023) · Nielsen (2023) · Carneiro et al. (2021) · Wodtke et al. (2016) · Wodtke et al. (2011)

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Conclusion: Nurturing Relationships

• Large effects in adolescence Chang et al. (2023) · Nielsen (2023) · Carneiro et al. (2021) · Wodtke et al. (2016) · Wodtke et al. (2011)

• Importance of nurturing relationships

- $\bullet~$ Providing NRs \sim as beneficial as shielding from violence
- Both is good (shielding from violence and providing NRs)
- Our results driven by parents; we speculate not just parents

Bethell et al. (2019a) · Pierre et al. (2020)

Robustness+Mechanisms

Toxic Stress

Nurturing Relationships

Conclusion: Nurturing Relationships

• Large effects in adolescence Chang et al. (2023) · Nielsen (2023) · Carneiro et al. (2021) · Wodtke et al. (2016) · Wodtke et al. (2011)

• Importance of nurturing relationships

- $\bullet~$ Providing NRs \sim as beneficial as shielding from violence
- Both is good (shielding from violence and providing NRs)
- Our results driven by parents; we speculate not just parents

Bethell et al. (2019a) · Pierre et al. (2020)

- NRs as basis for <u>effective interventions</u>
 - Tutoring, mentoring, and community-building
 - Targeting children and adolescents Kraft and Falken (2021) · Oreopoulos et al. (2017) · Lavecchia et al. (2020) · Guryan et al. (2021)

Observed characteristics W

	Means	for Males
Variable	Black	White
Mother's Ed		
Not Determined	9	11
Dropout	20	8
GED	6	4
HS Grad	48	48
AA	8	11
BA	9	17
Parent(s)' Income in 1996		
Mean (Thousands of 2018 \$s)	39	71
HH Structure		
Two Parent (Both Bio)	26	60
Two Parent (One Bio)	14	17
Single Parent	50	21
Grandparent(s)	6	1
Other	4	1

Outcomes Y

	Means for Males			Means for Males	
Earlier Surveys	Black	White	Most Recent Survey	Black	White
Violent Beh. at 15	22	18	HH Earnings	51	95
Violent Beh. at 21	14	10	(\$1,000s)		
ASVAB Percentile	26	56	Ind. Earnings	37	68
HS Grad by 26	61	78	(\$1,000s)		
BA by 26	9	24	0 Ind. Earnings	22	9
			Hours (Weekly Avg)	33	39
			Ever Incarcerated	26	12

Western and Wildeman (2009)

Admin + Survey + Census Data via Pettit and Western (2004)

Back

Codebook for D

National Longitudinal Survey of Youth, 1997 (NLSY97)

Treatment (D): Childhood exposure to violence

```
i 📖
R04441.00
          [YSAQ-519]
                                                        Survey Year: 1997
  PRIMARY VARIABLE
            R SEE SOMEONE SHOT WITH GUN < 12 YEARS OLD?
Before you turned age 12, did you ever see someone get shot or shot at with a
gun?
UNIVERSE: R >= 18 at end of prev year
    975
              1 Yes (Go To R04442.00)
              0 No
    7859
    8834
Refusal(-1)
                   14
Don't Know(-2)
                   9
Invalid Skip(-3)
                 126
                       VALID SKIP(-4) 1
                                                  NON-INTERVIEW(-5)
TOTAL =====> 8983
                                                                         0
Min:
                 0
                         Max:
                                          1
                                                   Mean:
Lead In: R04440.00[Default]
```

Default Next Question: R04443.00

NLSY97

000

Selection

Nbd SES

tion Nbd SES Incarceration Gangs Non-Violent Adversity IRT Co oo co Codebook for Components of S_{1/2}

NLSY97

000

$s_{\nu}(a) = 1$ if carried a hand gun in the past year (1/4)

```
R03600.00 [YSA0-380]
                                                       Survey Year: 1997
 PRIMARY VARIABLE
           R CARRIED GUN IN LAST 12 MONTHS?
Have you carried a hand gun in the past 12 months?
UNIVERSE: R has carried a hand gun
             1 Yes (Go To R03601.00)
    480
    381
             0 No
    861
Refusal(-1)
                   0
Don't Know(-2)
                   0
TOTAL ======> 861 VALID SKIP(-4) 8123
                                                 NON-INTERVIEW(-5)
                                                                        0
Min:
                        Max:
                                  1
                0
                                                 Mean:
                                                                      .56
Lead In: R03599.00[Default]
Default Next Question: R03603.00
```


4

NLSY97 Nbd SES

000

Codebook for Components of s_v

$s_{\nu}(a) = 1$ if been in a gang in the past year (2/4)

```
R03607.00 [YSAQ-387]
                                                        Survey Year: 1997
  PRIMARY VARIABLE
            R BELONG TO GANG IN LAST 12 MONTHS?
Have you been a member of a gang in the past 12 months?
UNIVERSE: R has belonged to a gang
              1 Yes (Go To <u>R03609.00</u>)
    232
    239
              0 No
    471
Refusal(-1)
                    1
Don't Know(-2)
                    0
TOTAL =====> 472 VALID SKIP(-4) 8512
                                                  NON-INTERVIEW(-5)
                                                                         0
Min:
                 0
                         Max:
                                   1
                                                   Mean:
                                                                        .49
Lead In: R03606.00[Default]
Default Next Question: R03608.00
```

Codebook for Components of s_v

NLSY97

000

Selection

Nbd SES

 $s_{\nu}(a) = 1$ if charged with an assault in the past year (3/4)

```
100
R03807.00
           [YSAQ-456.01]
                                                           Survey Year: 1997
  PRIMARY VARIABLE
            POLICE CHARGE ASSAULT? ARREST 01
Did the police charge you with assault, that is, an attack with a weapon or your
hands, such as battery, rape, aggravated assault, or manslaughter?
UNIVERSE: R has been arrested; has been charged with offense by police
     108
              1 Yes
              0 No
     265
Refusal(-1)
                      0
Don't Know(-2)
                      0
                    373
                          VALID SKIP(-4)
                                                     NON-INTERVIEW(-5)
TOTAL ======>
                                            8611
                                                                             0
Min:
                 0
                          Max:
                                            1
                                                     Mean:
                                                                           .29
Lead In: R03786.00[1:1]
Default Next Ouestion: R03824.00
```

Back

Codebook for Components of s_v

$s_{\nu}(a) = 1$ if attacked someone in the past year (4/4)

R21991.00 [YSAQ-427] PRIMARY VARIABLE

Nbd SES

NLSY97

Selection

Survey Year: 1998

TIMES ATTACK OR ASSAULT SINCE DLI?

You indicated earlier that you attacked someone with the idea of seriously hurting them or have had a situation end up in a serious fight or assault of some kind. How many times have you attacked someone or have had a situation end up in a serious fight or assault of some kind since the last interview on [date of last interview]?

UNIVERSE: R has physically attacked someone

Selection Nbd SES Incarco

ion Ganı 00 Non-Violent Adversi

IRT Comparing Inc

Assessing Robustness via Age Profiles

What if correlation in outcomes were due to selection?

 Selection
 Nbd SES
 Incarceration
 Gangs
 Non-Violent Adversity

 •00000
 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Comparing Indexe

Assessing Robustness via Age Profiles

What if correlation in outcomes were due to selection?

Personality traits=common cause of exposure+poor outcomes

• Personality traits \implies behaviors \implies exposure, but:

- Most "street" behaviors occur in adolescence
- Adolescent exposure only 5pp > than childhood
- \approx 2/3 of those exposed in ad. not exposed in childhood

Age	% Treated		
0-11	26		
12-18	31		
0-18	47		

Assessing Robustness via Age Profiles

Selection

000000

Nbd SES

Assessing Robustness via Age Profiles

Selection

000000

Nbd SES

Selection

Selection on *c*-Dependent Unobservables

$$\sup_{y_d \in \text{supp}(Y(D)|W=w)} |\mathbb{P}(D=1|Y(D)=y(d), W=w) -\mathbb{P}(D=1|W=w)| \le c \qquad \forall w \in \mathcal{W}$$

Selection on *c*-Dependent Unobservables

$$\sup_{\substack{y_d \in \text{supp}(Y(D)|W=w)}} \left| \mathbb{P}(D=1|Y(D)=y(d), W=w) - \mathbb{P}(D=1|W=w) \right| \le c \qquad \forall w \in \mathcal{W}$$

 \implies bounds on treatment effects given *c*

Selection

00000

Nbd SES

Masten and Poirier (2018) · Manski (1990)

Selection on *c*-Dependent Unobservables

$$\sup_{\substack{y_d \in \text{supp}(Y(D)|W=w)}} \left| \mathbb{P}(D=1|Y(D)=y(d), W=w) - \mathbb{P}(D=1|W=w) \right| \le c \qquad \forall \ w \in \mathcal{W}$$

 \implies bounds on treatment effects given c

Selection

00000

Nbd SES

Masten and Poirier (2018) · Manski (1990)

 \implies inference of +/– effect often breaks down at some c^*

Masten and Poirier (2020) · Horowitz and Manski (1995)

Selection

An Example: ATE bounds by the strength of *c*-Dependence

Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexe

Q: How to judge if breakdown frontier *c** is "large" or "small"?
A: Use selection on observables to define "large" and "small" Altonji et al. (2005) · Oster (2019)

Selection

000000

Nbd SES

Q: How to judge if breakdown frontier *c** is "large" or "small"?
A: Use selection on observables to define "large" and "small" Altonji et al. (2005) · Oster (2019)

Where does *c** lie in the distribution of leave-one-out changes? Masten, Poirier, and Zhang (2020)

$$\triangle_k \equiv \big| \, \pi(\mathbf{W}) - \pi(\mathbf{W}_{-k}) \, \big|$$

$$\pi(w) = \pi((w_{-k}, w_k)) = \mathbb{P}(D = 1 | W = (w_{-k}, w_k))$$
$$\pi(w_{-k}) = \mathbb{P}(D = 1 | W_{-k} = w_{-k})$$

Selection

000000

Selection

000000

Selection

000000

Selection

000000

Selection

00000

Selection

00000

Selection

00000

Selection

00000

Selection

00000

Selection

00000

ction Nbd SES Incarco 000 ●0 0

eration

Non-Violent Advers

IRT Comparii 0000 000000

Effects of Violence, Not of Broader Nbd Context

Coefficient w/out and w/ Indicators for Deciles of Nbd SES

Dependent Variable	Without	With	
HH Earnings in 2018 (\$1,000s)	-17.4 (4.6)	-16.8 (4.5)	
HS by 26	-17.6 (3.2)	-16.5 (3.2)	
BA by 26	-5.6 (1.9)	-4.9 (1.9)	
Ever Incarcerated (% by 2019)	10.5 (2.9)	10.3 (2.9)	

Measuring Neighborhood SES in 1997

Nbd SES

00

Selection

(97 Selection Nbd SES Incarceration Gangs Non-\ oooooo oo ● oo ooo

Non-Violent Adversity

T Comparing Index

Effects of Exposure Not Mediated by Incarceration

Household Earnings in 2018

Independent	Coefficient in		
variable	Earnings Regression		
Childhood Exposure	–17.4 [0.00]		–15.2 [0.00]
Ever Incarcerated		–33.8 [0.00]	–33.3 [0.00]
R ²	0.02	0.06	0.07

Effects of Violence or of Gang Activity?

Gangs

Selection

Nbd SES

Conditional Distributions of Peers in a Gang by Having Seen Someone Shot in Childhood

NLSY97

Nbd SES

ISES I

ration

Non-Violent Adve

sity IRT Com

Comparing Indexes

Effects of Violence or of Gang Activity?

Gangs ●○

	Ref.	Seen		Peers ir	Gangs	
Outcome	Mean	Shot	pprox 25%	pprox 50%	pprox 75%	> 90%
Violent at 15 (%)	16	17 [0.00]	— 1 [0.99]	0 [0.99]	4 [0.42]	21 [0.00]
HS Diploma (%)	67	—16 [0.00]	6 [0.54]	—3 [0.54]	—11 [0.06]	—19 [0.00]
BA (%)	12	—5 [0.02]	0 [0.08]	—5 [0.08]	6 [0.09]	—10 [0.01]
Incarcerated (%)	21	9 [0.00]	1 [0.20]	5 [0.20]	5 [0.32]	16 [0.01]
Earnings (\$1,000s)	43	-10 [0.01]	-2 [0.01]	-12 [0.01]	—11 [0.11]	—20 [0.01]
HH Earnings (\$1,000s)	61	- 15 [0.00]	4 [0.01]	-18 [0.01]	18 [0.05]	29 [0.00]

Nbd SES

Gangs

Exposure and Acute Effects

00

Seen Someone Shot or Shot at (% of Males)

Age	Black	White
0-11	26	8
12-18	29	10
0-18	43	16

Back · NLSY97 · Aliprantis (2017) · Graham (2018)

ILSY97 Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexes 000 00000 00 0 00 00 000 0000000 NLava \/:alavat A alava vaitus

Non-Violent Adversity

Black Male Adolescents (12-18)

Non-Violent Adversity	Percent	Cumul.
Incarcerated Parent	1.2	1.2
Homeless	1.6	2.8
Unemployed Parent	6.4	9.0
Death of parent or sibling	15.0	23.6
Any Non-Violent Adversity	23.6	23.6

LSY97 Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexes

High School Graduation

ALSY97 Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexes 000 00000 00 00 0000000 Potential Outcomes

Selection Non-Violent Adversity 000 Potential Outcomes

Adversity

Incarceration

Selection Non-Violent Adversity 000 Potential Outcomes

Household Earnings (Aged 34-38)

LSY97 Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexes

	Given High Non-Violent Adversity and Low Nurturing Relationships		
	$\downarrow D^{NV}$	$\uparrow D^{NR}$	Both
HS by 26 (%)	4.4 [0.06]	12.3 [0.00]	32.3 [0.00]
BA by 26 (%)	4.8 [0.03]	4.3 [0.20]	9.2 [0.00]
Ever Incarcerated (% by 2019)	5.6 [0.07]	6.6 [0.11]	-14.0 ^[0.00]
HH Earnings in 2018 (\$1,000s)	16.7 [0.03]	18.1 [0.11]	28.0 [0.00]

Nbd SES Incarceration Gangs Non-Vi

Non-Violent Adversity

IRT Comparing Indexes

Item Response Theory

Binary response item *j* depends on latent index θ_i^V

$$ACE_{i}^{V,j} = \begin{cases} 1 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} \ge 0\\ 0 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} < 0. \end{cases}$$

IRT ●000

Binary response item *j* depends on latent index θ_i^V

$$ACE_i^{V,j} = \begin{cases} 1 & \text{if } \alpha_j(\theta_i^V - \beta_j) - \epsilon_i^j \ge 0\\ 0 & \text{if } \alpha_j(\theta_i^V - \beta_j) - \epsilon_i^j < 0. \end{cases}$$

Assuming ϵ_i follows a type-1 extreme value distribution:

$$Pr(ACE_i^{V,j} = 1 | \alpha, \beta, C, \theta_i^V) = \text{logit}[\alpha_j(\theta_i^V - \beta_j)]$$

IRT ●000

Binary response item *j* depends on latent index θ_i^V

$$ACE_i^{V,j} = \begin{cases} 1 & \text{if } \alpha_j(\theta_i^V - \beta_j) - \epsilon_i^j \ge 0\\ 0 & \text{if } \alpha_j(\theta_i^V - \beta_j) - \epsilon_i^j < 0. \end{cases}$$

Assuming ϵ_i follows a type-1 extreme value distribution:

$$Pr(ACE_i^{V,j} = 1 | \alpha, \beta, C, \theta_i^V) = \text{logit}[\alpha_j(\theta_i^V - \beta_j)]$$

Maximize the marginal LL

$$\mathcal{L}_i(lpha,eta) = \int_{-\infty}^{\infty} Pr(ACE_i^V | lpha,eta, heta_i) d\Phi(heta_i^V)$$

IRT ●000

Binary response item *j* depends on latent index θ_i^V

$$ACE_{i}^{V,j} = \begin{cases} 1 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} \ge 0\\ 0 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} < 0. \end{cases}$$

Assuming ϵ_i follows a type-1 extreme value distribution:

$$Pr(ACE_i^{V,j} = 1 | \alpha, \beta, C, \theta_i^V) = \text{logit}[\alpha_j(\theta_i^V - \beta_j)]$$

Maximize the marginal LL

Selection

Nbd SES

$$\mathcal{L}_i(lpha,eta) = \int_{-\infty}^{\infty} Pr(ACE_i^V | lpha,eta, heta_i) d\Phi(heta_i^V)$$

Numerical quadrature assuming $\theta_i^V \sim \mathcal{N}(0, 1)$:

$$\mathcal{L}_i(\alpha,\beta) = \sum_{q=1}^{Q} \Pr(\mathsf{PCE}_i | \alpha, \beta, \theta_q) \widehat{\varphi}(\theta_q)$$

IRT ●000

Binary response item *j* depends on latent index θ_i^V

$$ACE_{i}^{V,j} = \begin{cases} 1 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} \ge 0\\ 0 & \text{if } \alpha_{j}(\theta_{i}^{V} - \beta_{j}) - \epsilon_{i}^{j} < 0. \end{cases}$$

Assuming ϵ_i follows a type-1 extreme value distribution:

$$Pr(ACE_i^{V,j} = 1 | \alpha, \beta, C, \theta_i^V) = \text{logit}[\alpha_j(\theta_i^V - \beta_j)]$$

Maximize the marginal LL

Selection

Nbd SES

$$\mathcal{L}_i(\alpha,\beta) = \int_{-\infty}^{\infty} \Pr(ACE_i^V | \alpha, \beta, \theta_i) d\Phi(\theta_i^V)$$

Numerical quadrature assuming $\theta_i^V \sim \mathcal{N}(0, 1)$:

$$\mathcal{L}_i(\alpha,\beta) = \sum_{q=1}^{Q} \Pr(\mathsf{PCE}_i|lpha,eta, heta_q)\widehat{\varphi}(heta_q)$$

Note: Can be generalized to ordered responses

Empirical Bayes estimates of each *i*'s latent index:

$$\overline{\theta}_{i} = \int \frac{\theta \Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)}{\Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)} d\theta$$

IRT ●000

Selection

Selection

IRT

0000

Item Response Theory

IRT ●000

Selection

Item Response Theory

IRT ●000

Selection

IRT-Based Treatment

Empirical Bayes estimates of each i's latent index:

$$\overline{\theta}_{i} = \int \frac{\theta \Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)}{\Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)} d\theta$$

Note: Assuming $\theta_i \sim \mathcal{N}(0, 1)$

How to deal w scale and location issues?

Cunha et al. (2010) · Agostinelli and Wiswall (2022, 2016)

· Del Bono et al. (2022) · Bond and Lang (2013) · Nielsen (2015)

Empirical Bayes estimates of each i's latent index:

$$\overline{\theta}_{i} = \int \frac{\theta \Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)}{\Pr(ACE_{i}^{V} | \widehat{\alpha}, \widehat{\beta}, \theta) \varphi(\theta)} d\theta$$

Note: Assuming $\theta_i \sim \mathcal{N}(0, 1)$

How to deal w scale and location issues?

Cunha et al. (2010) · Agostinelli and Wiswall (2022, 2016)

· Del Bono et al. (2022) · Bond and Lang (2013) · Nielsen (2015)

• Let's use the $\hat{\theta}_i$ to create a discrete treatment

Binary Treatment: Non-Violent Adversity

IRT 00●0

Black Male Adolescents (12-18)

Non-Violent Adversity	Percent	Cumul.
Incarcerated Parent	1.2	1.2
Homeless	1.6	2.8
Unemployed Parent	6.4	9.0
Death of parent or sibling	15.0	23.6
Any Non-Violent Adversity	23.6	23.6

Discrete IRT-Based Treatment D^V based on θ^V

• Ordering of individuals that synthesizes many variables

Discrete IRT-Based Treatment D^V based on θ^V

Selection

Nbd SES

Ordering of individuals that synthesizes many variables

But... estimated under the assumption $\theta_i \sim \mathcal{N}(0, 1)$ Seemingly innocuous normalizations \Longrightarrow biased estimates

Agostinelli and Wiswall (2016) · Del Bono et al. (2022)

IRT

Discrete IRT-Based Treatment D^V based on θ^V

Selection

Nbd SES

Ordering of individuals that synthesizes many variables

But... estimated under the assumption $\theta_i \sim \mathcal{N}(0, 1)$ Seemingly innocuous normalizations \implies biased estimates Agostinelli and Wiswall (2016) · Del Bono et al. (2022)

We just need ordering to be same under alt. assumptions This will yield identical treatments

Nielsen (2015) · Bond and Lang (2013)

IRT

Discrete IRT-Based Treatment D^V based on θ^V

Selection

Nbd SES

Ordering of individuals that synthesizes many variables

But... estimated under the assumption $\theta_i \sim \mathcal{N}(0, 1)$ Seemingly innocuous normalizations \implies biased estimates Agostinelli and Wiswall (2016) · Del Bono et al. (2022)

We just need ordering to be same under alt. assumptions This will yield identical treatments

Nielsen (2015) · Bond and Lang (2013)

IRT

So let's estimate IRT model under different distributional assumptions and compare orderings

IRT 0000

Selection

Selection Nbd SES Incarceration Gangs Non-Violent Adversity IRT Comparing Indexes occord o

Ordering does not depend on distributional assumption on θ^V

Difference in Discrete Treatments

	$D_U^V - D_N^V$		
	-1	0	1
Frequency	10	700	11
Percent	1.4	97.1	1.5

Anchoring Coefficients

Selection

Nbd SES

Anchoring Coefficients

Selection

Nbd SES

Weights for Items Anchored to HS Graduation

Anchoring Coefficients

Selection

Nbd SES

Weights for Items Anchored to HS Graduation

Indexes of Exposure to Violence

Selection

Nbd SES

Exposure to Violence and BA Attainment Black Men by Index Type

Indexes of Exposure to Violence

Selection

Nbd SES

Indexes of Exposure to Violence

Selection

Back

Indexes of Nurturing Relationships

Selection

Back

Indexes of Nurturing Relationships

Selection

Nbd SES

Comparing Indexes

00000000

Indexes of Nurturing Relationships

Selection

Nbd SES

Nurturing Relationships and Incarceration Black Men by Index Type

Comparing Indexes

00000000